--- license: mit tags: - pytorch - safetensors - formal-verification - coq - mod5 - modular-arithmetic - threshold-network - neuromorphic --- # tiny-mod5-prover Formally verified neural network that computes the MOD-5 function (Hamming weight mod 5) on 8-bit inputs. This repository contains the model artifacts; for proof development and Coq source code, see [mod5-verified](https://github.com/CharlesCNorton/mod5-verified). ## Overview This is a threshold network that computes `mod5(x) = HW(x) mod 5` for 8-bit binary inputs, where HW denotes Hamming weight (number of set bits). The network outputs 0, 1, 2, 3, or 4 corresponding to the five residue classes. **Key properties:** - 100% accuracy on all 256 possible inputs - Correctness proven in Coq via constructive algebraic proof - Weights constrained to integers - Heaviside step activation (x >= 0 -> 1, else 0) - Part of the verified MOD-m family: {MOD-2, MOD-3, MOD-5, ...} ## Architecture | Layer | Neurons | Function | |-------|---------|----------| | Input | 8 | Binary input bits | | Hidden 1 | 9 | Thermometer encoding (HW >= k) | | Hidden 2 | 4 | MOD-5 detection | | Output | 5 | Classification (one-hot) | **Total: 18 neurons, 146 parameters** ## Quick Start ```python import torch from safetensors.torch import load_file weights = load_file('model.safetensors') def forward(x, weights): x = x.float() x = (x @ weights['layer1.weight'].T + weights['layer1.bias'] >= 0).float() x = (x @ weights['layer2.weight'].T + weights['layer2.bias'] >= 0).float() out = x @ weights['output.weight'].T + weights['output.bias'] return out.argmax(dim=-1) inputs = torch.tensor([[1, 0, 1, 1, 1, 0, 0, 0]], dtype=torch.float32) output = forward(inputs, weights) print(f"MOD-5 of [1,0,1,1,1,0,0,0]: {output.item()}") # 4 (4 bits set, 4 mod 5 = 4) ``` ## Weight Structure | Tensor | Shape | Values | Description | |--------|-------|--------|-------------| | `layer1.weight` | [9, 8] | All 1s | Thermometer encoding | | `layer1.bias` | [9] | [0, -1, ..., -8] | Threshold at HW >= k | | `layer2.weight` | [4, 9] | [0,1,1,1,1,-4,1,1,1] | MOD-5 detection | | `layer2.bias` | [4] | [-1, -2, -3, -4] | Class thresholds | | `output.weight` | [5, 4] | Various | Classification | | `output.bias` | [5] | [0, -1, -1, -1, -1] | Output thresholds | ## Algebraic Insight The MOD-m construction uses weights `(1, 1, ..., 1, 1-m)` with `m-1` ones before the reset term. For MOD-5, the pattern `(1, 1, 1, 1, -4)` produces cumulative sums that cycle through `(0, 1, 2, 3, 4, 0, 1, 2, 3, 4, ...)`: ``` HW=0: cumsum = 0 -> 0 mod 5 HW=1: cumsum = 1 -> 1 mod 5 HW=2: cumsum = 2 -> 2 mod 5 HW=3: cumsum = 3 -> 3 mod 5 HW=4: cumsum = 4 -> 4 mod 5 HW=5: cumsum = 0 -> 0 mod 5 (reset: 1+1+1+1-4=0) HW=6: cumsum = 1 -> 1 mod 5 HW=7: cumsum = 2 -> 2 mod 5 HW=8: cumsum = 3 -> 3 mod 5 ``` ## Formal Verification The network is proven correct in the Coq proof assistant with three independent proofs: **1. Exhaustive verification:** ```coq Theorem network_correct_exhaustive : verify_all = true. Proof. vm_compute. reflexivity. Qed. ``` **2. Constructive verification (case analysis):** ```coq Theorem network_correct_constructive : forall x0 x1 x2 x3 x4 x5 x6 x7, predict [x0; x1; x2; x3; x4; x5; x6; x7] = mod5 [x0; x1; x2; x3; x4; x5; x6; x7]. ``` **3. Algebraic verification:** ```coq Theorem cumsum_eq_mod5 : forall k, (k <= 8)%nat -> cumsum k = Z.of_nat (Nat.modulo k 5). Theorem network_algebraic_correct : forall h, (h <= 8)%nat -> classify ... = Nat.modulo h 5. ``` All proofs are axiom-free ("Closed under the global context"). ## MOD-5 Distribution For 8-bit inputs (256 total): | Class | Count | Hamming Weights | |-------|-------|-----------------| | 0 | 57 | 0, 5 | | 1 | 36 | 1, 6 | | 2 | 36 | 2, 7 | | 3 | 57 | 3, 8 | | 4 | 70 | 4 | ## The MOD-m Family | Model | Function | Neurons | Params | Weight Pattern | |-------|----------|---------|--------|----------------| | tiny-parity-prover | MOD-2 | 14 | 139 | (1, -1) | | tiny-mod3-prover | MOD-3 | 14 | 110 | (1, 1, -2) | | **tiny-mod5-prover** | MOD-5 | 18 | 146 | (1, 1, 1, 1, -4) | ## Limitations - **Fixed input size**: 8 bits only (algebraic construction extends to any n) - **Binary inputs**: Expects {0, 1}, not continuous values - **No noise margin**: Heaviside threshold at exactly 0 - **Not differentiable**: Cannot be fine-tuned with gradient descent ## Files ``` tiny-mod5-prover/ ├── model.safetensors # Network weights (146 params) ├── model.py # Inference code ├── config.json # Model metadata └── README.md # This file ``` ## Citation ```bibtex @software{tiny_mod5_prover_2026, title={tiny-mod5-prover: Formally Verified Threshold Network for MOD-5}, author={Norton, Charles}, url={https://huggingface.co/phanerozoic/tiny-mod5-prover}, year={2026}, note={Part of the verified MOD-m threshold circuit family} } ``` ## Related - **Proof repository**: [mod5-verified](https://github.com/CharlesCNorton/mod5-verified) - **MOD-3 network**: [tiny-mod3-prover](https://huggingface.co/phanerozoic/tiny-mod3-prover) - **Parity network**: [tiny-parity-prover](https://huggingface.co/phanerozoic/tiny-parity-prover) ## License MIT