--- license: mit tags: - formal-verification - coq - threshold-logic - neuromorphic - modular-arithmetic --- # tiny-mod6-verified Formally verified MOD-6 circuit. Single-layer threshold network computing modulo-6 arithmetic with 100% accuracy. ## Architecture | Component | Value | |-----------|-------| | Inputs | 8 | | Outputs | 1 (per residue class) | | Neurons | 6 (one per residue 0-5) | | Parameters | 54 (6 × 9) | | Weights | [1, 1, 1, 1, 1, -5, 1, 1] | | Bias | 0 | | Activation | Heaviside step | ## Key Properties - 100% accuracy (256/256 inputs correct) - Coq-proven correctness - Algebraic weight pattern: resets every 6 positions - Computes Hamming weight mod 6 - Compatible with neuromorphic hardware ## Algebraic Pattern MOD-6 uses the pattern with reset at position 6: - Positions 1-5: weight = 1 - Position 6: weight = 1-6 = -5 - Positions 7-8: weight = 1 This creates a cumulative sum that cycles mod 6. ## Usage ```python import torch from safetensors.torch import load_file weights = load_file('mod6.safetensors') def mod6_circuit(bits): # bits: list of 8 binary values inputs = torch.tensor([float(b) for b in bits]) weighted_sum = (inputs * weights['weight']).sum() + weights['bias'] return weighted_sum.item() # Test print(mod6_circuit([1,1,1,1,1,1,0,0])) # 6 mod 6 = 0 print(mod6_circuit([1,1,1,1,1,1,1,0])) # 7 mod 6 = 1 ``` ## Verification **Coq Theorem**: ```coq Theorem mod6_correct_residue_0 : forall x0 x1 x2 x3 x4 x5 x6 x7, mod6_is_zero [x0; x1; x2; x3; x4; x5; x6; x7] = Z.eqb ((Z.of_nat (hamming_weight [x0; x1; x2; x3; x4; x5; x6; x7])) mod 6) 0. ``` Proven axiom-free using algebraic weight patterns. Full proof: [coq-circuits/Modular/Mod6.v](https://github.com/CharlesCNorton/coq-circuits/blob/main/coq/Modular/Mod6.v) ## Residue Distribution For 8-bit inputs (256 total): - Residue 0: 29 inputs - Residue 1: 16 inputs - Residue 2: 29 inputs - Residue 3: 56 inputs - Residue 4: 70 inputs - Residue 5: 56 inputs ## Citation ```bibtex @software{tiny_mod6_verified_2025, title={tiny-mod6-verified: Formally Verified MOD-6 Circuit}, author={Norton, Charles}, url={https://huggingface.co/phanerozoic/tiny-mod6-verified}, year={2025} } ```