--- license: mit tags: - formal-verification - coq - threshold-logic - neuromorphic - modular-arithmetic --- # tiny-mod9-verified Formally verified MOD-9 circuit. Single-layer threshold network computing modulo-9 arithmetic with 100% accuracy. ## Architecture | Component | Value | |-----------|-------| | Inputs | 8 | | Outputs | 1 (per residue class) | | Neurons | 9 (one per residue 0-8) | | Parameters | 81 (9 × 9) | | Weights | [1, 1, 1, 1, 1, 1, 1, 1] | | Bias | 0 | | Activation | Heaviside step | ## Key Properties - 100% accuracy (256/256 inputs correct) - Coq-proven correctness - All-ones weight pattern (m > input width) - Computes Hamming weight mod 9 - Compatible with neuromorphic hardware ## Algebraic Pattern MOD-9 uses all-ones weights because the reset position (position 9) is beyond the 8-bit input width: - All positions 1-8: weight = 1 - Position 9 (beyond input): would be weight = 1-9 = -8 The circuit tracks cumulative sum mod 9 using the Hamming weight directly. ## Usage ```python import torch from safetensors.torch import load_file weights = load_file('mod9.safetensors') def mod9_circuit(bits): # bits: list of 8 binary values inputs = torch.tensor([float(b) for b in bits]) weighted_sum = (inputs * weights['weight']).sum() + weights['bias'] # Weighted sum equals Hamming weight for all-ones weights return int(weighted_sum.item()) % 9 # Test print(mod9_circuit([1,1,1,1,1,1,1,1])) # 8 mod 9 = 8 print(mod9_circuit([1,1,1,1,1,1,1,1])) # 8 mod 9 = 8 ``` ## Verification **Coq Theorem**: ```coq Theorem mod9_correct_residue_0 : forall x0 x1 x2 x3 x4 x5 x6 x7, mod9_is_zero [x0; x1; x2; x3; x4; x5; x6; x7] = Z.eqb ((Z.of_nat (hamming_weight [x0; x1; x2; x3; x4; x5; x6; x7])) mod 9) 0. ``` Proven axiom-free using algebraic weight patterns. Full proof: [coq-circuits/Modular/Mod9.v](https://github.com/CharlesCNorton/coq-circuits/blob/main/coq/Modular/Mod9.v) ## Residue Distribution For 8-bit inputs (256 total): - Residue 0: 1 inputs - Residue 1: 8 inputs - Residue 2: 28 inputs - Residue 3: 56 inputs - Residue 4: 70 inputs - Residue 5: 56 inputs - Residue 6: 28 inputs - Residue 7: 8 inputs - Residue 8: 1 inputs ## Citation ```bibtex @software{tiny_mod9_verified_2025, title={tiny-mod9-verified: Formally Verified MOD-9 Circuit}, author={Norton, Charles}, url={https://huggingface.co/phanerozoic/tiny-mod9-verified}, year={2025} } ```