Upload folder using huggingface_hub
Browse files- adapter_model.safetensors +1 -1
- optimizer.pt +1 -1
- rng_state.pth +1 -1
- scheduler.pt +1 -1
- trainer_state.json +514 -764
- training_args.bin +1 -1
adapter_model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 161515608
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:adbf32216f68817ac7b8e81d84ec05581ee1d4aec78db3102b8b8bfda9c3203a
|
| 3 |
size 161515608
|
optimizer.pt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 323181259
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1b74bcd870dc58a45d5857957da63a7b34ce5562b9a8ed24f282d74c1daa703e
|
| 3 |
size 323181259
|
rng_state.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 14645
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e5b517d1b8e2b0f837c8b00170b154961d4d989feba4326ac25583df7a55c57a
|
| 3 |
size 14645
|
scheduler.pt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1465
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6e3ed70b691deef80930296c31c1f2faec5c46190c3c196aae31c4481cc14ad8
|
| 3 |
size 1465
|
trainer_state.json
CHANGED
|
@@ -2,1018 +2,768 @@
|
|
| 2 |
"best_global_step": null,
|
| 3 |
"best_metric": null,
|
| 4 |
"best_model_checkpoint": null,
|
| 5 |
-
"epoch":
|
| 6 |
"eval_steps": 500,
|
| 7 |
-
"global_step":
|
| 8 |
"is_hyper_param_search": false,
|
| 9 |
"is_local_process_zero": true,
|
| 10 |
"is_world_process_zero": true,
|
| 11 |
"log_history": [
|
| 12 |
{
|
| 13 |
-
"entropy": 2.
|
| 14 |
-
"epoch": 0.
|
| 15 |
-
"grad_norm":
|
| 16 |
"learning_rate": 0.0,
|
| 17 |
-
"loss": 2.
|
| 18 |
-
"mean_token_accuracy": 0.
|
| 19 |
-
"num_tokens":
|
| 20 |
"step": 1
|
| 21 |
},
|
| 22 |
{
|
| 23 |
-
"entropy": 2.
|
| 24 |
-
"epoch": 0.
|
| 25 |
-
"grad_norm":
|
| 26 |
"learning_rate": 2e-06,
|
| 27 |
-
"loss": 2.
|
| 28 |
-
"mean_token_accuracy": 0.
|
| 29 |
-
"num_tokens":
|
| 30 |
"step": 2
|
| 31 |
},
|
| 32 |
{
|
| 33 |
-
"entropy": 2.
|
| 34 |
-
"epoch": 0.
|
| 35 |
-
"grad_norm":
|
| 36 |
"learning_rate": 4e-06,
|
| 37 |
-
"loss":
|
| 38 |
-
"mean_token_accuracy": 0.
|
| 39 |
-
"num_tokens":
|
| 40 |
"step": 3
|
| 41 |
},
|
| 42 |
{
|
| 43 |
-
"entropy": 2.
|
| 44 |
-
"epoch": 0.
|
| 45 |
-
"grad_norm":
|
| 46 |
"learning_rate": 6e-06,
|
| 47 |
-
"loss": 2.
|
| 48 |
-
"mean_token_accuracy": 0.
|
| 49 |
-
"num_tokens":
|
| 50 |
"step": 4
|
| 51 |
},
|
| 52 |
{
|
| 53 |
-
"entropy": 2.
|
| 54 |
-
"epoch": 0.
|
| 55 |
-
"grad_norm":
|
| 56 |
"learning_rate": 8e-06,
|
| 57 |
-
"loss": 2.
|
| 58 |
-
"mean_token_accuracy": 0.
|
| 59 |
-
"num_tokens":
|
| 60 |
"step": 5
|
| 61 |
},
|
| 62 |
{
|
| 63 |
-
"entropy": 2.
|
| 64 |
-
"epoch": 0.
|
| 65 |
-
"grad_norm":
|
| 66 |
"learning_rate": 9.999999999999999e-06,
|
| 67 |
-
"loss": 2.
|
| 68 |
-
"mean_token_accuracy": 0.
|
| 69 |
-
"num_tokens":
|
| 70 |
"step": 6
|
| 71 |
},
|
| 72 |
{
|
| 73 |
-
"entropy": 2.
|
| 74 |
-
"epoch": 0.
|
| 75 |
-
"grad_norm": 7.
|
| 76 |
"learning_rate": 1.2e-05,
|
| 77 |
-
"loss":
|
| 78 |
-
"mean_token_accuracy": 0.
|
| 79 |
-
"num_tokens":
|
| 80 |
"step": 7
|
| 81 |
},
|
| 82 |
{
|
| 83 |
-
"entropy": 2.
|
| 84 |
-
"epoch": 0.
|
| 85 |
-
"grad_norm": 5.
|
| 86 |
"learning_rate": 1.4e-05,
|
| 87 |
-
"loss": 1.
|
| 88 |
-
"mean_token_accuracy": 0.
|
| 89 |
-
"num_tokens":
|
| 90 |
"step": 8
|
| 91 |
},
|
| 92 |
{
|
| 93 |
-
"entropy": 2.
|
| 94 |
-
"epoch": 0.
|
| 95 |
-
"grad_norm":
|
| 96 |
"learning_rate": 1.6e-05,
|
| 97 |
-
"loss":
|
| 98 |
-
"mean_token_accuracy": 0.
|
| 99 |
-
"num_tokens":
|
| 100 |
"step": 9
|
| 101 |
},
|
| 102 |
{
|
| 103 |
-
"entropy": 2.
|
| 104 |
-
"epoch": 0.
|
| 105 |
-
"grad_norm":
|
| 106 |
"learning_rate": 1.8e-05,
|
| 107 |
-
"loss": 1.
|
| 108 |
-
"mean_token_accuracy": 0.
|
| 109 |
-
"num_tokens":
|
| 110 |
"step": 10
|
| 111 |
},
|
| 112 |
{
|
| 113 |
-
"entropy": 2.
|
| 114 |
-
"epoch": 0.
|
| 115 |
-
"grad_norm": 5.
|
| 116 |
"learning_rate": 1.9999999999999998e-05,
|
| 117 |
-
"loss":
|
| 118 |
-
"mean_token_accuracy": 0.
|
| 119 |
-
"num_tokens":
|
| 120 |
"step": 11
|
| 121 |
},
|
| 122 |
{
|
| 123 |
-
"entropy": 2.
|
| 124 |
-
"epoch": 0.
|
| 125 |
-
"grad_norm":
|
| 126 |
"learning_rate": 2.2e-05,
|
| 127 |
-
"loss":
|
| 128 |
-
"mean_token_accuracy": 0.
|
| 129 |
-
"num_tokens":
|
| 130 |
"step": 12
|
| 131 |
},
|
| 132 |
{
|
| 133 |
-
"entropy": 2.
|
| 134 |
-
"epoch": 0.
|
| 135 |
-
"grad_norm":
|
| 136 |
"learning_rate": 2.4e-05,
|
| 137 |
-
"loss": 1.
|
| 138 |
-
"mean_token_accuracy": 0.
|
| 139 |
-
"num_tokens":
|
| 140 |
"step": 13
|
| 141 |
},
|
| 142 |
{
|
| 143 |
-
"entropy": 2.
|
| 144 |
-
"epoch": 0.
|
| 145 |
-
"grad_norm":
|
| 146 |
"learning_rate": 2.6000000000000002e-05,
|
| 147 |
-
"loss": 1.
|
| 148 |
-
"mean_token_accuracy": 0.
|
| 149 |
-
"num_tokens":
|
| 150 |
"step": 14
|
| 151 |
},
|
| 152 |
{
|
| 153 |
-
"entropy": 2.
|
| 154 |
-
"epoch": 0.
|
| 155 |
-
"grad_norm": 5.
|
| 156 |
"learning_rate": 2.8e-05,
|
| 157 |
-
"loss": 1.
|
| 158 |
-
"mean_token_accuracy": 0.
|
| 159 |
-
"num_tokens":
|
| 160 |
"step": 15
|
| 161 |
},
|
| 162 |
{
|
| 163 |
-
"entropy":
|
| 164 |
-
"epoch": 0.
|
| 165 |
-
"grad_norm":
|
| 166 |
"learning_rate": 3e-05,
|
| 167 |
-
"loss": 1.
|
| 168 |
-
"mean_token_accuracy": 0.
|
| 169 |
-
"num_tokens":
|
| 170 |
"step": 16
|
| 171 |
},
|
| 172 |
{
|
| 173 |
-
"entropy": 2.
|
| 174 |
-
"epoch": 0.
|
| 175 |
-
"grad_norm":
|
| 176 |
-
"learning_rate": 2.
|
| 177 |
-
"loss": 1.
|
| 178 |
-
"mean_token_accuracy": 0.
|
| 179 |
-
"num_tokens":
|
| 180 |
"step": 17
|
| 181 |
},
|
| 182 |
{
|
| 183 |
-
"entropy":
|
| 184 |
-
"epoch": 0
|
| 185 |
-
"grad_norm":
|
| 186 |
-
"learning_rate": 2.
|
| 187 |
-
"loss": 1.
|
| 188 |
-
"mean_token_accuracy": 0.
|
| 189 |
-
"num_tokens":
|
| 190 |
"step": 18
|
| 191 |
},
|
| 192 |
{
|
| 193 |
-
"entropy":
|
| 194 |
-
"epoch":
|
| 195 |
-
"grad_norm":
|
| 196 |
-
"learning_rate": 2.
|
| 197 |
-
"loss": 1.
|
| 198 |
-
"mean_token_accuracy": 0.
|
| 199 |
-
"num_tokens":
|
| 200 |
"step": 19
|
| 201 |
},
|
| 202 |
{
|
| 203 |
-
"entropy":
|
| 204 |
-
"epoch":
|
| 205 |
-
"grad_norm":
|
| 206 |
-
"learning_rate": 2.
|
| 207 |
-
"loss": 1.
|
| 208 |
-
"mean_token_accuracy": 0.
|
| 209 |
-
"num_tokens":
|
| 210 |
"step": 20
|
| 211 |
},
|
| 212 |
{
|
| 213 |
-
"entropy": 2.
|
| 214 |
-
"epoch":
|
| 215 |
-
"grad_norm":
|
| 216 |
-
"learning_rate": 2.
|
| 217 |
-
"loss": 1.
|
| 218 |
-
"mean_token_accuracy": 0.
|
| 219 |
-
"num_tokens":
|
| 220 |
"step": 21
|
| 221 |
},
|
| 222 |
{
|
| 223 |
-
"entropy":
|
| 224 |
-
"epoch":
|
| 225 |
-
"grad_norm":
|
| 226 |
-
"learning_rate": 2.
|
| 227 |
-
"loss": 1.
|
| 228 |
-
"mean_token_accuracy": 0.
|
| 229 |
-
"num_tokens":
|
| 230 |
"step": 22
|
| 231 |
},
|
| 232 |
{
|
| 233 |
-
"entropy": 1.
|
| 234 |
-
"epoch":
|
| 235 |
-
"grad_norm":
|
| 236 |
-
"learning_rate": 2.
|
| 237 |
-
"loss": 1.
|
| 238 |
-
"mean_token_accuracy": 0.
|
| 239 |
-
"num_tokens":
|
| 240 |
"step": 23
|
| 241 |
},
|
| 242 |
{
|
| 243 |
-
"entropy":
|
| 244 |
-
"epoch":
|
| 245 |
-
"grad_norm":
|
| 246 |
-
"learning_rate": 2.
|
| 247 |
-
"loss": 1.
|
| 248 |
-
"mean_token_accuracy": 0.
|
| 249 |
-
"num_tokens":
|
| 250 |
"step": 24
|
| 251 |
},
|
| 252 |
{
|
| 253 |
-
"entropy":
|
| 254 |
-
"epoch":
|
| 255 |
-
"grad_norm":
|
| 256 |
-
"learning_rate": 2.
|
| 257 |
-
"loss": 1.
|
| 258 |
-
"mean_token_accuracy": 0.
|
| 259 |
-
"num_tokens":
|
| 260 |
"step": 25
|
| 261 |
},
|
| 262 |
{
|
| 263 |
-
"entropy": 1.
|
| 264 |
-
"epoch":
|
| 265 |
-
"grad_norm":
|
| 266 |
-
"learning_rate": 2.
|
| 267 |
-
"loss": 1.
|
| 268 |
-
"mean_token_accuracy": 0.
|
| 269 |
-
"num_tokens":
|
| 270 |
"step": 26
|
| 271 |
},
|
| 272 |
{
|
| 273 |
-
"entropy": 1.
|
| 274 |
-
"epoch":
|
| 275 |
-
"grad_norm":
|
| 276 |
-
"learning_rate": 2.
|
| 277 |
-
"loss": 1.
|
| 278 |
-
"mean_token_accuracy": 0.
|
| 279 |
-
"num_tokens":
|
| 280 |
"step": 27
|
| 281 |
},
|
| 282 |
{
|
| 283 |
-
"entropy": 1.
|
| 284 |
-
"epoch":
|
| 285 |
-
"grad_norm": 4.
|
| 286 |
-
"learning_rate": 2.
|
| 287 |
-
"loss": 1.
|
| 288 |
-
"mean_token_accuracy": 0.
|
| 289 |
-
"num_tokens":
|
| 290 |
"step": 28
|
| 291 |
},
|
| 292 |
{
|
| 293 |
-
"entropy":
|
| 294 |
-
"epoch":
|
| 295 |
-
"grad_norm":
|
| 296 |
-
"learning_rate": 2.
|
| 297 |
-
"loss": 1.
|
| 298 |
-
"mean_token_accuracy": 0.
|
| 299 |
-
"num_tokens":
|
| 300 |
"step": 29
|
| 301 |
},
|
| 302 |
{
|
| 303 |
-
"entropy":
|
| 304 |
-
"epoch":
|
| 305 |
-
"grad_norm":
|
| 306 |
-
"learning_rate": 2.
|
| 307 |
-
"loss": 1.
|
| 308 |
-
"mean_token_accuracy": 0.
|
| 309 |
-
"num_tokens":
|
| 310 |
"step": 30
|
| 311 |
},
|
| 312 |
{
|
| 313 |
-
"entropy": 1.
|
| 314 |
-
"epoch":
|
| 315 |
-
"grad_norm": 3.
|
| 316 |
-
"learning_rate": 2.
|
| 317 |
-
"loss": 1.
|
| 318 |
-
"mean_token_accuracy": 0.
|
| 319 |
-
"num_tokens":
|
| 320 |
"step": 31
|
| 321 |
},
|
| 322 |
{
|
| 323 |
-
"entropy": 1.
|
| 324 |
-
"epoch":
|
| 325 |
-
"grad_norm":
|
| 326 |
-
"learning_rate": 2.
|
| 327 |
-
"loss": 1.
|
| 328 |
-
"mean_token_accuracy": 0.
|
| 329 |
-
"num_tokens":
|
| 330 |
"step": 32
|
| 331 |
},
|
| 332 |
{
|
| 333 |
-
"entropy": 1.
|
| 334 |
-
"epoch":
|
| 335 |
-
"grad_norm": 4.
|
| 336 |
-
"learning_rate": 2.
|
| 337 |
-
"loss": 1.
|
| 338 |
-
"mean_token_accuracy": 0.
|
| 339 |
-
"num_tokens":
|
| 340 |
"step": 33
|
| 341 |
},
|
| 342 |
{
|
| 343 |
-
"entropy": 1.
|
| 344 |
-
"epoch":
|
| 345 |
-
"grad_norm":
|
| 346 |
-
"learning_rate": 2.
|
| 347 |
-
"loss": 1.
|
| 348 |
-
"mean_token_accuracy": 0.
|
| 349 |
-
"num_tokens":
|
| 350 |
"step": 34
|
| 351 |
},
|
| 352 |
{
|
| 353 |
-
"entropy": 1.
|
| 354 |
-
"epoch": 1.
|
| 355 |
-
"grad_norm":
|
| 356 |
-
"learning_rate": 2.
|
| 357 |
-
"loss": 1.
|
| 358 |
-
"mean_token_accuracy": 0.
|
| 359 |
-
"num_tokens":
|
| 360 |
"step": 35
|
| 361 |
},
|
| 362 |
{
|
| 363 |
-
"entropy": 1.
|
| 364 |
-
"epoch":
|
| 365 |
-
"grad_norm":
|
| 366 |
-
"learning_rate": 2.
|
| 367 |
-
"loss": 1.
|
| 368 |
-
"mean_token_accuracy": 0.
|
| 369 |
-
"num_tokens":
|
| 370 |
"step": 36
|
| 371 |
},
|
| 372 |
{
|
| 373 |
-
"entropy": 1.
|
| 374 |
-
"epoch":
|
| 375 |
-
"grad_norm": 3.
|
| 376 |
-
"learning_rate": 2.
|
| 377 |
-
"loss": 1.
|
| 378 |
-
"mean_token_accuracy": 0.
|
| 379 |
-
"num_tokens":
|
| 380 |
"step": 37
|
| 381 |
},
|
| 382 |
{
|
| 383 |
-
"entropy": 1.
|
| 384 |
-
"epoch":
|
| 385 |
-
"grad_norm": 3.
|
| 386 |
-
"learning_rate": 2.
|
| 387 |
-
"loss": 1.
|
| 388 |
-
"mean_token_accuracy": 0.
|
| 389 |
-
"num_tokens":
|
| 390 |
"step": 38
|
| 391 |
},
|
| 392 |
{
|
| 393 |
-
"entropy": 1.
|
| 394 |
-
"epoch":
|
| 395 |
-
"grad_norm":
|
| 396 |
-
"learning_rate": 2.
|
| 397 |
-
"loss": 1.
|
| 398 |
-
"mean_token_accuracy": 0.
|
| 399 |
-
"num_tokens":
|
| 400 |
"step": 39
|
| 401 |
},
|
| 402 |
{
|
| 403 |
-
"entropy": 1.
|
| 404 |
-
"epoch":
|
| 405 |
-
"grad_norm":
|
| 406 |
-
"learning_rate": 2.
|
| 407 |
-
"loss": 1.
|
| 408 |
-
"mean_token_accuracy": 0.
|
| 409 |
-
"num_tokens":
|
| 410 |
"step": 40
|
| 411 |
},
|
| 412 |
{
|
| 413 |
-
"entropy": 1.
|
| 414 |
-
"epoch":
|
| 415 |
-
"grad_norm":
|
| 416 |
-
"learning_rate": 2.
|
| 417 |
-
"loss": 1.
|
| 418 |
-
"mean_token_accuracy": 0.
|
| 419 |
-
"num_tokens":
|
| 420 |
"step": 41
|
| 421 |
},
|
| 422 |
{
|
| 423 |
-
"entropy": 1.
|
| 424 |
-
"epoch":
|
| 425 |
-
"grad_norm":
|
| 426 |
-
"learning_rate": 2.
|
| 427 |
-
"loss":
|
| 428 |
-
"mean_token_accuracy": 0.
|
| 429 |
-
"num_tokens":
|
| 430 |
"step": 42
|
| 431 |
},
|
| 432 |
{
|
| 433 |
-
"entropy": 1.
|
| 434 |
-
"epoch":
|
| 435 |
-
"grad_norm":
|
| 436 |
-
"learning_rate": 2.
|
| 437 |
-
"loss":
|
| 438 |
-
"mean_token_accuracy": 0.
|
| 439 |
-
"num_tokens":
|
| 440 |
"step": 43
|
| 441 |
},
|
| 442 |
{
|
| 443 |
-
"entropy": 1.
|
| 444 |
-
"epoch":
|
| 445 |
-
"grad_norm":
|
| 446 |
-
"learning_rate": 2.
|
| 447 |
-
"loss": 1.
|
| 448 |
-
"mean_token_accuracy": 0.
|
| 449 |
-
"num_tokens":
|
| 450 |
"step": 44
|
| 451 |
},
|
| 452 |
{
|
| 453 |
-
"entropy": 1.
|
| 454 |
-
"epoch":
|
| 455 |
-
"grad_norm": 4.
|
| 456 |
-
"learning_rate": 2.
|
| 457 |
-
"loss": 1.
|
| 458 |
-
"mean_token_accuracy": 0.
|
| 459 |
-
"num_tokens":
|
| 460 |
"step": 45
|
| 461 |
},
|
| 462 |
{
|
| 463 |
-
"entropy": 1.
|
| 464 |
-
"epoch":
|
| 465 |
-
"grad_norm":
|
| 466 |
-
"learning_rate":
|
| 467 |
-
"loss":
|
| 468 |
-
"mean_token_accuracy": 0.
|
| 469 |
-
"num_tokens":
|
| 470 |
"step": 46
|
| 471 |
},
|
| 472 |
{
|
| 473 |
-
"entropy": 1.
|
| 474 |
-
"epoch":
|
| 475 |
-
"grad_norm": 4.
|
| 476 |
-
"learning_rate":
|
| 477 |
-
"loss":
|
| 478 |
-
"mean_token_accuracy": 0.
|
| 479 |
-
"num_tokens":
|
| 480 |
"step": 47
|
| 481 |
},
|
| 482 |
{
|
| 483 |
-
"entropy": 1.
|
| 484 |
-
"epoch":
|
| 485 |
-
"grad_norm":
|
| 486 |
-
"learning_rate":
|
| 487 |
-
"loss":
|
| 488 |
-
"mean_token_accuracy": 0.
|
| 489 |
-
"num_tokens":
|
| 490 |
"step": 48
|
| 491 |
},
|
| 492 |
{
|
| 493 |
-
"entropy": 1.
|
| 494 |
-
"epoch":
|
| 495 |
-
"grad_norm": 4.
|
| 496 |
-
"learning_rate":
|
| 497 |
-
"loss":
|
| 498 |
-
"mean_token_accuracy": 0.
|
| 499 |
-
"num_tokens":
|
| 500 |
"step": 49
|
| 501 |
},
|
| 502 |
{
|
| 503 |
-
"entropy": 1.
|
| 504 |
-
"epoch":
|
| 505 |
-
"grad_norm": 4.
|
| 506 |
-
"learning_rate":
|
| 507 |
-
"loss": 1.
|
| 508 |
-
"mean_token_accuracy": 0.
|
| 509 |
-
"num_tokens":
|
| 510 |
"step": 50
|
| 511 |
},
|
| 512 |
{
|
| 513 |
-
"entropy": 1.
|
| 514 |
-
"epoch":
|
| 515 |
-
"grad_norm": 5.
|
| 516 |
-
"learning_rate":
|
| 517 |
-
"loss": 1.
|
| 518 |
-
"mean_token_accuracy": 0.
|
| 519 |
-
"num_tokens":
|
| 520 |
"step": 51
|
| 521 |
},
|
| 522 |
{
|
| 523 |
-
"entropy": 1.
|
| 524 |
-
"epoch":
|
| 525 |
-
"grad_norm": 4.
|
| 526 |
-
"learning_rate": 1.
|
| 527 |
-
"loss": 1.
|
| 528 |
-
"mean_token_accuracy": 0.
|
| 529 |
-
"num_tokens":
|
| 530 |
"step": 52
|
| 531 |
},
|
| 532 |
{
|
| 533 |
-
"entropy": 1.
|
| 534 |
-
"epoch":
|
| 535 |
-
"grad_norm":
|
| 536 |
-
"learning_rate": 1.
|
| 537 |
-
"loss": 1.
|
| 538 |
-
"mean_token_accuracy": 0.
|
| 539 |
-
"num_tokens":
|
| 540 |
"step": 53
|
| 541 |
},
|
| 542 |
{
|
| 543 |
-
"entropy": 1.
|
| 544 |
-
"epoch":
|
| 545 |
-
"grad_norm":
|
| 546 |
-
"learning_rate": 1.
|
| 547 |
-
"loss": 1.
|
| 548 |
-
"mean_token_accuracy": 0.
|
| 549 |
-
"num_tokens":
|
| 550 |
"step": 54
|
| 551 |
},
|
| 552 |
{
|
| 553 |
-
"entropy": 1.
|
| 554 |
-
"epoch":
|
| 555 |
-
"grad_norm":
|
| 556 |
-
"learning_rate": 1.
|
| 557 |
-
"loss":
|
| 558 |
-
"mean_token_accuracy": 0.
|
| 559 |
-
"num_tokens":
|
| 560 |
"step": 55
|
| 561 |
},
|
| 562 |
{
|
| 563 |
-
"entropy": 1.
|
| 564 |
-
"epoch":
|
| 565 |
-
"grad_norm":
|
| 566 |
-
"learning_rate": 1.
|
| 567 |
-
"loss":
|
| 568 |
-
"mean_token_accuracy": 0.
|
| 569 |
-
"num_tokens":
|
| 570 |
"step": 56
|
| 571 |
},
|
| 572 |
{
|
| 573 |
-
"entropy": 1.
|
| 574 |
-
"epoch":
|
| 575 |
-
"grad_norm":
|
| 576 |
-
"learning_rate": 1.
|
| 577 |
-
"loss":
|
| 578 |
-
"mean_token_accuracy": 0.
|
| 579 |
-
"num_tokens":
|
| 580 |
"step": 57
|
| 581 |
},
|
| 582 |
{
|
| 583 |
-
"entropy": 1.
|
| 584 |
-
"epoch":
|
| 585 |
-
"grad_norm":
|
| 586 |
-
"learning_rate": 1.
|
| 587 |
-
"loss":
|
| 588 |
-
"mean_token_accuracy": 0.
|
| 589 |
-
"num_tokens":
|
| 590 |
"step": 58
|
| 591 |
},
|
| 592 |
{
|
| 593 |
-
"entropy": 1.
|
| 594 |
-
"epoch":
|
| 595 |
-
"grad_norm":
|
| 596 |
-
"learning_rate": 1.
|
| 597 |
-
"loss":
|
| 598 |
-
"mean_token_accuracy": 0.
|
| 599 |
-
"num_tokens":
|
| 600 |
"step": 59
|
| 601 |
},
|
| 602 |
{
|
| 603 |
-
"entropy": 1.
|
| 604 |
-
"epoch":
|
| 605 |
-
"grad_norm":
|
| 606 |
-
"learning_rate": 1.
|
| 607 |
-
"loss":
|
| 608 |
-
"mean_token_accuracy": 0.
|
| 609 |
-
"num_tokens":
|
| 610 |
"step": 60
|
| 611 |
},
|
| 612 |
{
|
| 613 |
-
"entropy": 1.
|
| 614 |
-
"epoch":
|
| 615 |
-
"grad_norm": 4.
|
| 616 |
-
"learning_rate": 1.
|
| 617 |
-
"loss":
|
| 618 |
-
"mean_token_accuracy": 0.
|
| 619 |
-
"num_tokens":
|
| 620 |
"step": 61
|
| 621 |
},
|
| 622 |
{
|
| 623 |
-
"entropy": 1.
|
| 624 |
-
"epoch":
|
| 625 |
-
"grad_norm":
|
| 626 |
-
"learning_rate":
|
| 627 |
-
"loss":
|
| 628 |
-
"mean_token_accuracy": 0.
|
| 629 |
-
"num_tokens":
|
| 630 |
"step": 62
|
| 631 |
},
|
| 632 |
{
|
| 633 |
-
"entropy": 1.
|
| 634 |
-
"epoch":
|
| 635 |
-
"grad_norm":
|
| 636 |
-
"learning_rate":
|
| 637 |
-
"loss":
|
| 638 |
-
"mean_token_accuracy": 0.
|
| 639 |
-
"num_tokens":
|
| 640 |
"step": 63
|
| 641 |
},
|
| 642 |
{
|
| 643 |
-
"entropy": 1.
|
| 644 |
-
"epoch":
|
| 645 |
-
"grad_norm":
|
| 646 |
-
"learning_rate":
|
| 647 |
-
"loss":
|
| 648 |
-
"mean_token_accuracy": 0.
|
| 649 |
-
"num_tokens":
|
| 650 |
"step": 64
|
| 651 |
},
|
| 652 |
{
|
| 653 |
-
"entropy": 1.
|
| 654 |
-
"epoch":
|
| 655 |
-
"grad_norm":
|
| 656 |
-
"learning_rate":
|
| 657 |
-
"loss":
|
| 658 |
-
"mean_token_accuracy": 0.
|
| 659 |
-
"num_tokens":
|
| 660 |
"step": 65
|
| 661 |
},
|
| 662 |
{
|
| 663 |
-
"entropy": 1.
|
| 664 |
-
"epoch":
|
| 665 |
-
"grad_norm":
|
| 666 |
-
"learning_rate":
|
| 667 |
-
"loss":
|
| 668 |
-
"mean_token_accuracy": 0.
|
| 669 |
-
"num_tokens":
|
| 670 |
"step": 66
|
| 671 |
},
|
| 672 |
{
|
| 673 |
-
"entropy": 1.
|
| 674 |
-
"epoch":
|
| 675 |
-
"grad_norm": 4.
|
| 676 |
-
"learning_rate":
|
| 677 |
-
"loss":
|
| 678 |
-
"mean_token_accuracy": 0.
|
| 679 |
-
"num_tokens":
|
| 680 |
"step": 67
|
| 681 |
},
|
| 682 |
{
|
| 683 |
-
"entropy": 1.
|
| 684 |
-
"epoch":
|
| 685 |
-
"grad_norm":
|
| 686 |
-
"learning_rate":
|
| 687 |
-
"loss":
|
| 688 |
-
"mean_token_accuracy": 0.
|
| 689 |
-
"num_tokens":
|
| 690 |
"step": 68
|
| 691 |
},
|
| 692 |
{
|
| 693 |
-
"entropy": 1.
|
| 694 |
-
"epoch":
|
| 695 |
-
"grad_norm": 5.
|
| 696 |
-
"learning_rate":
|
| 697 |
-
"loss":
|
| 698 |
-
"mean_token_accuracy": 0.
|
| 699 |
-
"num_tokens":
|
| 700 |
"step": 69
|
| 701 |
},
|
| 702 |
{
|
| 703 |
-
"entropy": 1.
|
| 704 |
-
"epoch":
|
| 705 |
-
"grad_norm":
|
| 706 |
-
"learning_rate":
|
| 707 |
-
"loss":
|
| 708 |
-
"mean_token_accuracy": 0.
|
| 709 |
-
"num_tokens":
|
| 710 |
"step": 70
|
| 711 |
},
|
| 712 |
{
|
| 713 |
-
"entropy": 1.
|
| 714 |
-
"epoch":
|
| 715 |
-
"grad_norm": 4.
|
| 716 |
-
"learning_rate":
|
| 717 |
-
"loss": 0.
|
| 718 |
-
"mean_token_accuracy": 0.
|
| 719 |
-
"num_tokens":
|
| 720 |
"step": 71
|
| 721 |
},
|
| 722 |
{
|
| 723 |
-
"entropy": 1.
|
| 724 |
-
"epoch":
|
| 725 |
-
"grad_norm":
|
| 726 |
-
"learning_rate":
|
| 727 |
-
"loss": 0.
|
| 728 |
-
"mean_token_accuracy": 0.
|
| 729 |
-
"num_tokens":
|
| 730 |
"step": 72
|
| 731 |
},
|
| 732 |
{
|
| 733 |
-
"entropy": 1.
|
| 734 |
-
"epoch":
|
| 735 |
-
"grad_norm": 4.
|
| 736 |
-
"learning_rate":
|
| 737 |
-
"loss": 0.
|
| 738 |
-
"mean_token_accuracy": 0.
|
| 739 |
-
"num_tokens":
|
| 740 |
"step": 73
|
| 741 |
},
|
| 742 |
{
|
| 743 |
-
"entropy": 1.
|
| 744 |
-
"epoch":
|
| 745 |
-
"grad_norm": 4.
|
| 746 |
-
"learning_rate":
|
| 747 |
-
"loss": 0.
|
| 748 |
-
"mean_token_accuracy": 0.
|
| 749 |
-
"num_tokens":
|
| 750 |
"step": 74
|
| 751 |
},
|
| 752 |
{
|
| 753 |
-
"entropy": 1.
|
| 754 |
-
"epoch":
|
| 755 |
-
"grad_norm":
|
| 756 |
-
"learning_rate":
|
| 757 |
-
"loss": 0.
|
| 758 |
-
"mean_token_accuracy": 0.
|
| 759 |
-
"num_tokens":
|
| 760 |
"step": 75
|
| 761 |
-
},
|
| 762 |
-
{
|
| 763 |
-
"entropy": 1.375910922884941,
|
| 764 |
-
"epoch": 2.1751824817518246,
|
| 765 |
-
"grad_norm": 4.0625,
|
| 766 |
-
"learning_rate": 7.500000000000004e-06,
|
| 767 |
-
"loss": 0.8403,
|
| 768 |
-
"mean_token_accuracy": 0.7337475717067719,
|
| 769 |
-
"num_tokens": 146069.0,
|
| 770 |
-
"step": 76
|
| 771 |
-
},
|
| 772 |
-
{
|
| 773 |
-
"entropy": 1.530395969748497,
|
| 774 |
-
"epoch": 2.204379562043796,
|
| 775 |
-
"grad_norm": 4.8125,
|
| 776 |
-
"learning_rate": 7.051211036501928e-06,
|
| 777 |
-
"loss": 0.9023,
|
| 778 |
-
"mean_token_accuracy": 0.7458862364292145,
|
| 779 |
-
"num_tokens": 147948.0,
|
| 780 |
-
"step": 77
|
| 781 |
-
},
|
| 782 |
-
{
|
| 783 |
-
"entropy": 1.5619382560253143,
|
| 784 |
-
"epoch": 2.2335766423357666,
|
| 785 |
-
"grad_norm": 5.375,
|
| 786 |
-
"learning_rate": 6.6121064479388e-06,
|
| 787 |
-
"loss": 0.9471,
|
| 788 |
-
"mean_token_accuracy": 0.7247473746538162,
|
| 789 |
-
"num_tokens": 149664.0,
|
| 790 |
-
"step": 78
|
| 791 |
-
},
|
| 792 |
-
{
|
| 793 |
-
"entropy": 1.4002738296985626,
|
| 794 |
-
"epoch": 2.2627737226277373,
|
| 795 |
-
"grad_norm": 4.90625,
|
| 796 |
-
"learning_rate": 6.1832212156129045e-06,
|
| 797 |
-
"loss": 0.8002,
|
| 798 |
-
"mean_token_accuracy": 0.7359691336750984,
|
| 799 |
-
"num_tokens": 151422.0,
|
| 800 |
-
"step": 79
|
| 801 |
-
},
|
| 802 |
-
{
|
| 803 |
-
"entropy": 1.3783821165561676,
|
| 804 |
-
"epoch": 2.291970802919708,
|
| 805 |
-
"grad_norm": 4.875,
|
| 806 |
-
"learning_rate": 5.765077870115126e-06,
|
| 807 |
-
"loss": 0.9352,
|
| 808 |
-
"mean_token_accuracy": 0.7229901030659676,
|
| 809 |
-
"num_tokens": 153330.0,
|
| 810 |
-
"step": 80
|
| 811 |
-
},
|
| 812 |
-
{
|
| 813 |
-
"entropy": 1.3214146196842194,
|
| 814 |
-
"epoch": 2.321167883211679,
|
| 815 |
-
"grad_norm": 4.875,
|
| 816 |
-
"learning_rate": 5.3581858547019095e-06,
|
| 817 |
-
"loss": 0.7626,
|
| 818 |
-
"mean_token_accuracy": 0.7818252220749855,
|
| 819 |
-
"num_tokens": 155088.0,
|
| 820 |
-
"step": 81
|
| 821 |
-
},
|
| 822 |
-
{
|
| 823 |
-
"entropy": 1.2702767699956894,
|
| 824 |
-
"epoch": 2.3503649635036497,
|
| 825 |
-
"grad_norm": 4.375,
|
| 826 |
-
"learning_rate": 4.963040904617131e-06,
|
| 827 |
-
"loss": 0.7893,
|
| 828 |
-
"mean_token_accuracy": 0.7699355036020279,
|
| 829 |
-
"num_tokens": 157396.0,
|
| 830 |
-
"step": 82
|
| 831 |
-
},
|
| 832 |
-
{
|
| 833 |
-
"entropy": 1.397829994559288,
|
| 834 |
-
"epoch": 2.3795620437956204,
|
| 835 |
-
"grad_norm": 5.25,
|
| 836 |
-
"learning_rate": 4.58012444311504e-06,
|
| 837 |
-
"loss": 0.9191,
|
| 838 |
-
"mean_token_accuracy": 0.7331462875008583,
|
| 839 |
-
"num_tokens": 159218.0,
|
| 840 |
-
"step": 83
|
| 841 |
-
},
|
| 842 |
-
{
|
| 843 |
-
"entropy": 1.2017180174589157,
|
| 844 |
-
"epoch": 2.408759124087591,
|
| 845 |
-
"grad_norm": 3.6875,
|
| 846 |
-
"learning_rate": 4.209902994920236e-06,
|
| 847 |
-
"loss": 0.8082,
|
| 848 |
-
"mean_token_accuracy": 0.7587887346744537,
|
| 849 |
-
"num_tokens": 162386.0,
|
| 850 |
-
"step": 84
|
| 851 |
-
},
|
| 852 |
-
{
|
| 853 |
-
"entropy": 1.374891072511673,
|
| 854 |
-
"epoch": 2.437956204379562,
|
| 855 |
-
"grad_norm": 5.09375,
|
| 856 |
-
"learning_rate": 3.852827617839085e-06,
|
| 857 |
-
"loss": 0.8665,
|
| 858 |
-
"mean_token_accuracy": 0.7603413909673691,
|
| 859 |
-
"num_tokens": 164138.0,
|
| 860 |
-
"step": 85
|
| 861 |
-
},
|
| 862 |
-
{
|
| 863 |
-
"entropy": 1.3341291099786758,
|
| 864 |
-
"epoch": 2.4671532846715327,
|
| 865 |
-
"grad_norm": 4.6875,
|
| 866 |
-
"learning_rate": 3.5093333532153316e-06,
|
| 867 |
-
"loss": 0.8604,
|
| 868 |
-
"mean_token_accuracy": 0.7294721901416779,
|
| 869 |
-
"num_tokens": 166308.0,
|
| 870 |
-
"step": 86
|
| 871 |
-
},
|
| 872 |
-
{
|
| 873 |
-
"entropy": 1.3214628398418427,
|
| 874 |
-
"epoch": 2.4963503649635035,
|
| 875 |
-
"grad_norm": 5.4375,
|
| 876 |
-
"learning_rate": 3.1798386958991715e-06,
|
| 877 |
-
"loss": 0.8978,
|
| 878 |
-
"mean_token_accuracy": 0.7371588498353958,
|
| 879 |
-
"num_tokens": 168073.0,
|
| 880 |
-
"step": 87
|
| 881 |
-
},
|
| 882 |
-
{
|
| 883 |
-
"entropy": 1.358703538775444,
|
| 884 |
-
"epoch": 2.5255474452554747,
|
| 885 |
-
"grad_norm": 5.125,
|
| 886 |
-
"learning_rate": 2.86474508437579e-06,
|
| 887 |
-
"loss": 0.859,
|
| 888 |
-
"mean_token_accuracy": 0.7255095988512039,
|
| 889 |
-
"num_tokens": 169979.0,
|
| 890 |
-
"step": 88
|
| 891 |
-
},
|
| 892 |
-
{
|
| 893 |
-
"entropy": 1.258324310183525,
|
| 894 |
-
"epoch": 2.554744525547445,
|
| 895 |
-
"grad_norm": 4.15625,
|
| 896 |
-
"learning_rate": 2.564436411674376e-06,
|
| 897 |
-
"loss": 0.825,
|
| 898 |
-
"mean_token_accuracy": 0.7614458128809929,
|
| 899 |
-
"num_tokens": 172706.0,
|
| 900 |
-
"step": 89
|
| 901 |
-
},
|
| 902 |
-
{
|
| 903 |
-
"entropy": 1.329784169793129,
|
| 904 |
-
"epoch": 2.5839416058394162,
|
| 905 |
-
"grad_norm": 5.40625,
|
| 906 |
-
"learning_rate": 2.279278557653611e-06,
|
| 907 |
-
"loss": 0.8799,
|
| 908 |
-
"mean_token_accuracy": 0.7584780603647232,
|
| 909 |
-
"num_tokens": 174586.0,
|
| 910 |
-
"step": 90
|
| 911 |
-
},
|
| 912 |
-
{
|
| 913 |
-
"entropy": 1.2622641026973724,
|
| 914 |
-
"epoch": 2.613138686131387,
|
| 915 |
-
"grad_norm": 5.125,
|
| 916 |
-
"learning_rate": 2.0096189432334194e-06,
|
| 917 |
-
"loss": 0.8348,
|
| 918 |
-
"mean_token_accuracy": 0.7513260990381241,
|
| 919 |
-
"num_tokens": 176525.0,
|
| 920 |
-
"step": 91
|
| 921 |
-
},
|
| 922 |
-
{
|
| 923 |
-
"entropy": 1.2846813797950745,
|
| 924 |
-
"epoch": 2.6423357664233578,
|
| 925 |
-
"grad_norm": 5.0,
|
| 926 |
-
"learning_rate": 1.7557861071160953e-06,
|
| 927 |
-
"loss": 0.7697,
|
| 928 |
-
"mean_token_accuracy": 0.7566402554512024,
|
| 929 |
-
"num_tokens": 178535.0,
|
| 930 |
-
"step": 92
|
| 931 |
-
},
|
| 932 |
-
{
|
| 933 |
-
"entropy": 1.2429047673940659,
|
| 934 |
-
"epoch": 2.6715328467153285,
|
| 935 |
-
"grad_norm": 4.1875,
|
| 936 |
-
"learning_rate": 1.518089305512498e-06,
|
| 937 |
-
"loss": 0.8523,
|
| 938 |
-
"mean_token_accuracy": 0.7609995678067207,
|
| 939 |
-
"num_tokens": 181688.0,
|
| 940 |
-
"step": 93
|
| 941 |
-
},
|
| 942 |
-
{
|
| 943 |
-
"entropy": 1.2306764125823975,
|
| 944 |
-
"epoch": 2.7007299270072993,
|
| 945 |
-
"grad_norm": 5.6875,
|
| 946 |
-
"learning_rate": 1.2968181353609854e-06,
|
| 947 |
-
"loss": 0.795,
|
| 948 |
-
"mean_token_accuracy": 0.7538608759641647,
|
| 949 |
-
"num_tokens": 183350.0,
|
| 950 |
-
"step": 94
|
| 951 |
-
},
|
| 952 |
-
{
|
| 953 |
-
"entropy": 1.2729838192462921,
|
| 954 |
-
"epoch": 2.72992700729927,
|
| 955 |
-
"grad_norm": 5.25,
|
| 956 |
-
"learning_rate": 1.0922421814981904e-06,
|
| 957 |
-
"loss": 0.8463,
|
| 958 |
-
"mean_token_accuracy": 0.7443541586399078,
|
| 959 |
-
"num_tokens": 185369.0,
|
| 960 |
-
"step": 95
|
| 961 |
-
},
|
| 962 |
-
{
|
| 963 |
-
"entropy": 1.2911252602934837,
|
| 964 |
-
"epoch": 2.759124087591241,
|
| 965 |
-
"grad_norm": 5.125,
|
| 966 |
-
"learning_rate": 9.046106882113753e-07,
|
| 967 |
-
"loss": 0.7471,
|
| 968 |
-
"mean_token_accuracy": 0.752311646938324,
|
| 969 |
-
"num_tokens": 187493.0,
|
| 970 |
-
"step": 96
|
| 971 |
-
},
|
| 972 |
-
{
|
| 973 |
-
"entropy": 1.28748519718647,
|
| 974 |
-
"epoch": 2.7883211678832116,
|
| 975 |
-
"grad_norm": 6.4375,
|
| 976 |
-
"learning_rate": 7.341522555726971e-07,
|
| 977 |
-
"loss": 0.7536,
|
| 978 |
-
"mean_token_accuracy": 0.7757409885525703,
|
| 979 |
-
"num_tokens": 188864.0,
|
| 980 |
-
"step": 97
|
| 981 |
-
},
|
| 982 |
-
{
|
| 983 |
-
"entropy": 1.2816387563943863,
|
| 984 |
-
"epoch": 2.8175182481751824,
|
| 985 |
-
"grad_norm": 5.46875,
|
| 986 |
-
"learning_rate": 5.810745609252166e-07,
|
| 987 |
-
"loss": 0.9127,
|
| 988 |
-
"mean_token_accuracy": 0.7290580719709396,
|
| 989 |
-
"num_tokens": 190843.0,
|
| 990 |
-
"step": 98
|
| 991 |
-
},
|
| 992 |
-
{
|
| 993 |
-
"entropy": 1.4024466425180435,
|
| 994 |
-
"epoch": 2.846715328467153,
|
| 995 |
-
"grad_norm": 6.71875,
|
| 996 |
-
"learning_rate": 4.455641058600529e-07,
|
| 997 |
-
"loss": 0.9032,
|
| 998 |
-
"mean_token_accuracy": 0.7520110681653023,
|
| 999 |
-
"num_tokens": 192230.0,
|
| 1000 |
-
"step": 99
|
| 1001 |
-
},
|
| 1002 |
-
{
|
| 1003 |
-
"entropy": 1.354932889342308,
|
| 1004 |
-
"epoch": 2.875912408759124,
|
| 1005 |
-
"grad_norm": 6.71875,
|
| 1006 |
-
"learning_rate": 3.277859889929147e-07,
|
| 1007 |
-
"loss": 0.7987,
|
| 1008 |
-
"mean_token_accuracy": 0.785490907728672,
|
| 1009 |
-
"num_tokens": 193518.0,
|
| 1010 |
-
"step": 100
|
| 1011 |
}
|
| 1012 |
],
|
| 1013 |
"logging_steps": 1,
|
| 1014 |
-
"max_steps":
|
| 1015 |
"num_input_tokens_seen": 0,
|
| 1016 |
-
"num_train_epochs":
|
| 1017 |
"save_steps": 5,
|
| 1018 |
"stateful_callbacks": {
|
| 1019 |
"TrainerControl": {
|
|
@@ -1027,7 +777,7 @@
|
|
| 1027 |
"attributes": {}
|
| 1028 |
}
|
| 1029 |
},
|
| 1030 |
-
"total_flos":
|
| 1031 |
"train_batch_size": 2,
|
| 1032 |
"trial_name": null,
|
| 1033 |
"trial_params": null
|
|
|
|
| 2 |
"best_global_step": null,
|
| 3 |
"best_metric": null,
|
| 4 |
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 4.175182481751825,
|
| 6 |
"eval_steps": 500,
|
| 7 |
+
"global_step": 75,
|
| 8 |
"is_hyper_param_search": false,
|
| 9 |
"is_local_process_zero": true,
|
| 10 |
"is_world_process_zero": true,
|
| 11 |
"log_history": [
|
| 12 |
{
|
| 13 |
+
"entropy": 2.1336327642202377,
|
| 14 |
+
"epoch": 0.058394160583941604,
|
| 15 |
+
"grad_norm": 16.25,
|
| 16 |
"learning_rate": 0.0,
|
| 17 |
+
"loss": 2.4507,
|
| 18 |
+
"mean_token_accuracy": 0.4276521671563387,
|
| 19 |
+
"num_tokens": 3890.0,
|
| 20 |
"step": 1
|
| 21 |
},
|
| 22 |
{
|
| 23 |
+
"entropy": 2.222498059272766,
|
| 24 |
+
"epoch": 0.11678832116788321,
|
| 25 |
+
"grad_norm": 17.875,
|
| 26 |
"learning_rate": 2e-06,
|
| 27 |
+
"loss": 2.6879,
|
| 28 |
+
"mean_token_accuracy": 0.4140724800527096,
|
| 29 |
+
"num_tokens": 6825.0,
|
| 30 |
"step": 2
|
| 31 |
},
|
| 32 |
{
|
| 33 |
+
"entropy": 2.262238770723343,
|
| 34 |
+
"epoch": 0.17518248175182483,
|
| 35 |
+
"grad_norm": 14.25,
|
| 36 |
"learning_rate": 4e-06,
|
| 37 |
+
"loss": 2.4973,
|
| 38 |
+
"mean_token_accuracy": 0.42698577605187893,
|
| 39 |
+
"num_tokens": 10473.0,
|
| 40 |
"step": 3
|
| 41 |
},
|
| 42 |
{
|
| 43 |
+
"entropy": 2.1316296458244324,
|
| 44 |
+
"epoch": 0.23357664233576642,
|
| 45 |
+
"grad_norm": 10.0,
|
| 46 |
"learning_rate": 6e-06,
|
| 47 |
+
"loss": 2.0863,
|
| 48 |
+
"mean_token_accuracy": 0.4788516294211149,
|
| 49 |
+
"num_tokens": 15657.0,
|
| 50 |
"step": 4
|
| 51 |
},
|
| 52 |
{
|
| 53 |
+
"entropy": 2.3611446991562843,
|
| 54 |
+
"epoch": 0.291970802919708,
|
| 55 |
+
"grad_norm": 10.1875,
|
| 56 |
"learning_rate": 8e-06,
|
| 57 |
+
"loss": 2.1751,
|
| 58 |
+
"mean_token_accuracy": 0.4456866979598999,
|
| 59 |
+
"num_tokens": 20159.0,
|
| 60 |
"step": 5
|
| 61 |
},
|
| 62 |
{
|
| 63 |
+
"entropy": 2.460206426680088,
|
| 64 |
+
"epoch": 0.35036496350364965,
|
| 65 |
+
"grad_norm": 8.875,
|
| 66 |
"learning_rate": 9.999999999999999e-06,
|
| 67 |
+
"loss": 2.2655,
|
| 68 |
+
"mean_token_accuracy": 0.4509607646614313,
|
| 69 |
+
"num_tokens": 23949.0,
|
| 70 |
"step": 6
|
| 71 |
},
|
| 72 |
{
|
| 73 |
+
"entropy": 2.321817234158516,
|
| 74 |
+
"epoch": 0.40875912408759124,
|
| 75 |
+
"grad_norm": 7.125,
|
| 76 |
"learning_rate": 1.2e-05,
|
| 77 |
+
"loss": 2.0123,
|
| 78 |
+
"mean_token_accuracy": 0.5055391453206539,
|
| 79 |
+
"num_tokens": 27703.0,
|
| 80 |
"step": 7
|
| 81 |
},
|
| 82 |
{
|
| 83 |
+
"entropy": 2.2407592684030533,
|
| 84 |
+
"epoch": 0.46715328467153283,
|
| 85 |
+
"grad_norm": 5.4375,
|
| 86 |
"learning_rate": 1.4e-05,
|
| 87 |
+
"loss": 1.8516,
|
| 88 |
+
"mean_token_accuracy": 0.5130146574229002,
|
| 89 |
+
"num_tokens": 32243.0,
|
| 90 |
"step": 8
|
| 91 |
},
|
| 92 |
{
|
| 93 |
+
"entropy": 2.46332585811615,
|
| 94 |
+
"epoch": 0.5255474452554745,
|
| 95 |
+
"grad_norm": 7.09375,
|
| 96 |
"learning_rate": 1.6e-05,
|
| 97 |
+
"loss": 2.0974,
|
| 98 |
+
"mean_token_accuracy": 0.5035313870757818,
|
| 99 |
+
"num_tokens": 35222.0,
|
| 100 |
"step": 9
|
| 101 |
},
|
| 102 |
{
|
| 103 |
+
"entropy": 2.237804166972637,
|
| 104 |
+
"epoch": 0.583941605839416,
|
| 105 |
+
"grad_norm": 5.65625,
|
| 106 |
"learning_rate": 1.8e-05,
|
| 107 |
+
"loss": 1.7838,
|
| 108 |
+
"mean_token_accuracy": 0.5259560514241457,
|
| 109 |
+
"num_tokens": 39208.0,
|
| 110 |
"step": 10
|
| 111 |
},
|
| 112 |
{
|
| 113 |
+
"entropy": 2.352365091443062,
|
| 114 |
+
"epoch": 0.6423357664233577,
|
| 115 |
+
"grad_norm": 5.84375,
|
| 116 |
"learning_rate": 1.9999999999999998e-05,
|
| 117 |
+
"loss": 2.0078,
|
| 118 |
+
"mean_token_accuracy": 0.5078456345945597,
|
| 119 |
+
"num_tokens": 42447.0,
|
| 120 |
"step": 11
|
| 121 |
},
|
| 122 |
{
|
| 123 |
+
"entropy": 2.1229992732405663,
|
| 124 |
+
"epoch": 0.7007299270072993,
|
| 125 |
+
"grad_norm": 4.5625,
|
| 126 |
"learning_rate": 2.2e-05,
|
| 127 |
+
"loss": 1.7155,
|
| 128 |
+
"mean_token_accuracy": 0.5374241229146719,
|
| 129 |
+
"num_tokens": 47138.0,
|
| 130 |
"step": 12
|
| 131 |
},
|
| 132 |
{
|
| 133 |
+
"entropy": 2.121931955218315,
|
| 134 |
+
"epoch": 0.7591240875912408,
|
| 135 |
+
"grad_norm": 4.625,
|
| 136 |
"learning_rate": 2.4e-05,
|
| 137 |
+
"loss": 1.7379,
|
| 138 |
+
"mean_token_accuracy": 0.5694513749331236,
|
| 139 |
+
"num_tokens": 51009.0,
|
| 140 |
"step": 13
|
| 141 |
},
|
| 142 |
{
|
| 143 |
+
"entropy": 2.085137240588665,
|
| 144 |
+
"epoch": 0.8175182481751825,
|
| 145 |
+
"grad_norm": 4.25,
|
| 146 |
"learning_rate": 2.6000000000000002e-05,
|
| 147 |
+
"loss": 1.6524,
|
| 148 |
+
"mean_token_accuracy": 0.5468352809548378,
|
| 149 |
+
"num_tokens": 55235.0,
|
| 150 |
"step": 14
|
| 151 |
},
|
| 152 |
{
|
| 153 |
+
"entropy": 2.1976606771349907,
|
| 154 |
+
"epoch": 0.8759124087591241,
|
| 155 |
+
"grad_norm": 5.625,
|
| 156 |
"learning_rate": 2.8e-05,
|
| 157 |
+
"loss": 1.8096,
|
| 158 |
+
"mean_token_accuracy": 0.5231170020997524,
|
| 159 |
+
"num_tokens": 58219.0,
|
| 160 |
"step": 15
|
| 161 |
},
|
| 162 |
{
|
| 163 |
+
"entropy": 1.9179195016622543,
|
| 164 |
+
"epoch": 0.9343065693430657,
|
| 165 |
+
"grad_norm": 3.84375,
|
| 166 |
"learning_rate": 3e-05,
|
| 167 |
+
"loss": 1.5974,
|
| 168 |
+
"mean_token_accuracy": 0.5759452320635319,
|
| 169 |
+
"num_tokens": 63057.0,
|
| 170 |
"step": 16
|
| 171 |
},
|
| 172 |
{
|
| 173 |
+
"entropy": 2.0428223088383675,
|
| 174 |
+
"epoch": 0.9927007299270073,
|
| 175 |
+
"grad_norm": 4.53125,
|
| 176 |
+
"learning_rate": 2.9986842451482876e-05,
|
| 177 |
+
"loss": 1.7372,
|
| 178 |
+
"mean_token_accuracy": 0.5385774970054626,
|
| 179 |
+
"num_tokens": 66564.0,
|
| 180 |
"step": 17
|
| 181 |
},
|
| 182 |
{
|
| 183 |
+
"entropy": 1.9300671219825745,
|
| 184 |
+
"epoch": 1.0,
|
| 185 |
+
"grad_norm": 12.9375,
|
| 186 |
+
"learning_rate": 2.9947392888742566e-05,
|
| 187 |
+
"loss": 1.7476,
|
| 188 |
+
"mean_token_accuracy": 0.5453733801841736,
|
| 189 |
+
"num_tokens": 66897.0,
|
| 190 |
"step": 18
|
| 191 |
},
|
| 192 |
{
|
| 193 |
+
"entropy": 1.935000792145729,
|
| 194 |
+
"epoch": 1.0583941605839415,
|
| 195 |
+
"grad_norm": 3.484375,
|
| 196 |
+
"learning_rate": 2.988172051971717e-05,
|
| 197 |
+
"loss": 1.4249,
|
| 198 |
+
"mean_token_accuracy": 0.6101336404681206,
|
| 199 |
+
"num_tokens": 71403.0,
|
| 200 |
"step": 19
|
| 201 |
},
|
| 202 |
{
|
| 203 |
+
"entropy": 2.0335680916905403,
|
| 204 |
+
"epoch": 1.1167883211678833,
|
| 205 |
+
"grad_norm": 3.84375,
|
| 206 |
+
"learning_rate": 2.9789940556057574e-05,
|
| 207 |
+
"loss": 1.5345,
|
| 208 |
+
"mean_token_accuracy": 0.5629026051610708,
|
| 209 |
+
"num_tokens": 75484.0,
|
| 210 |
"step": 20
|
| 211 |
},
|
| 212 |
{
|
| 213 |
+
"entropy": 2.10165449231863,
|
| 214 |
+
"epoch": 1.1751824817518248,
|
| 215 |
+
"grad_norm": 4.0625,
|
| 216 |
+
"learning_rate": 2.9672214011007087e-05,
|
| 217 |
+
"loss": 1.4949,
|
| 218 |
+
"mean_token_accuracy": 0.5799959097057581,
|
| 219 |
+
"num_tokens": 79113.0,
|
| 220 |
"step": 21
|
| 221 |
},
|
| 222 |
{
|
| 223 |
+
"entropy": 1.992341309785843,
|
| 224 |
+
"epoch": 1.2335766423357664,
|
| 225 |
+
"grad_norm": 3.59375,
|
| 226 |
+
"learning_rate": 2.9528747416929467e-05,
|
| 227 |
+
"loss": 1.4678,
|
| 228 |
+
"mean_token_accuracy": 0.5918100215494633,
|
| 229 |
+
"num_tokens": 83095.0,
|
| 230 |
"step": 22
|
| 231 |
},
|
| 232 |
{
|
| 233 |
+
"entropy": 1.9140778183937073,
|
| 234 |
+
"epoch": 1.2919708029197081,
|
| 235 |
+
"grad_norm": 3.375,
|
| 236 |
+
"learning_rate": 2.9359792462981007e-05,
|
| 237 |
+
"loss": 1.4038,
|
| 238 |
+
"mean_token_accuracy": 0.6022733096033335,
|
| 239 |
+
"num_tokens": 87754.0,
|
| 240 |
"step": 23
|
| 241 |
},
|
| 242 |
{
|
| 243 |
+
"entropy": 1.8838416188955307,
|
| 244 |
+
"epoch": 1.3503649635036497,
|
| 245 |
+
"grad_norm": 3.8125,
|
| 246 |
+
"learning_rate": 2.9165645553562215e-05,
|
| 247 |
+
"loss": 1.4554,
|
| 248 |
+
"mean_token_accuracy": 0.6133127138018608,
|
| 249 |
+
"num_tokens": 91666.0,
|
| 250 |
"step": 24
|
| 251 |
},
|
| 252 |
{
|
| 253 |
+
"entropy": 1.816191054880619,
|
| 254 |
+
"epoch": 1.4087591240875912,
|
| 255 |
+
"grad_norm": 3.859375,
|
| 256 |
+
"learning_rate": 2.894664728832377e-05,
|
| 257 |
+
"loss": 1.3643,
|
| 258 |
+
"mean_token_accuracy": 0.6147295907139778,
|
| 259 |
+
"num_tokens": 95819.0,
|
| 260 |
"step": 25
|
| 261 |
},
|
| 262 |
{
|
| 263 |
+
"entropy": 1.7681904509663582,
|
| 264 |
+
"epoch": 1.4671532846715327,
|
| 265 |
+
"grad_norm": 3.609375,
|
| 266 |
+
"learning_rate": 2.8703181864639013e-05,
|
| 267 |
+
"loss": 1.3711,
|
| 268 |
+
"mean_token_accuracy": 0.6297403201460838,
|
| 269 |
+
"num_tokens": 99865.0,
|
| 270 |
"step": 26
|
| 271 |
},
|
| 272 |
{
|
| 273 |
+
"entropy": 1.7096636295318604,
|
| 274 |
+
"epoch": 1.5255474452554745,
|
| 275 |
+
"grad_norm": 3.390625,
|
| 276 |
+
"learning_rate": 2.8435676403591193e-05,
|
| 277 |
+
"loss": 1.3362,
|
| 278 |
+
"mean_token_accuracy": 0.6145001202821732,
|
| 279 |
+
"num_tokens": 104135.0,
|
| 280 |
"step": 27
|
| 281 |
},
|
| 282 |
{
|
| 283 |
+
"entropy": 1.828701414167881,
|
| 284 |
+
"epoch": 1.583941605839416,
|
| 285 |
+
"grad_norm": 4.3125,
|
| 286 |
+
"learning_rate": 2.8144600200657953e-05,
|
| 287 |
+
"loss": 1.4266,
|
| 288 |
+
"mean_token_accuracy": 0.5893764644861221,
|
| 289 |
+
"num_tokens": 107324.0,
|
| 290 |
"step": 28
|
| 291 |
},
|
| 292 |
{
|
| 293 |
+
"entropy": 1.8768919259309769,
|
| 294 |
+
"epoch": 1.6423357664233578,
|
| 295 |
+
"grad_norm": 4.65625,
|
| 296 |
+
"learning_rate": 2.78304639024076e-05,
|
| 297 |
+
"loss": 1.5031,
|
| 298 |
+
"mean_token_accuracy": 0.5983850117772818,
|
| 299 |
+
"num_tokens": 110263.0,
|
| 300 |
"step": 29
|
| 301 |
},
|
| 302 |
{
|
| 303 |
+
"entropy": 1.7338064908981323,
|
| 304 |
+
"epoch": 1.7007299270072993,
|
| 305 |
+
"grad_norm": 4.34375,
|
| 306 |
+
"learning_rate": 2.7493818610651493e-05,
|
| 307 |
+
"loss": 1.4431,
|
| 308 |
+
"mean_token_accuracy": 0.5914898477494717,
|
| 309 |
+
"num_tokens": 113911.0,
|
| 310 |
"step": 30
|
| 311 |
},
|
| 312 |
{
|
| 313 |
+
"entropy": 1.7540361359715462,
|
| 314 |
+
"epoch": 1.7591240875912408,
|
| 315 |
+
"grad_norm": 3.734375,
|
| 316 |
+
"learning_rate": 2.7135254915624213e-05,
|
| 317 |
+
"loss": 1.3489,
|
| 318 |
+
"mean_token_accuracy": 0.6010549142956734,
|
| 319 |
+
"num_tokens": 118007.0,
|
| 320 |
"step": 31
|
| 321 |
},
|
| 322 |
{
|
| 323 |
+
"entropy": 1.8890240713953972,
|
| 324 |
+
"epoch": 1.8175182481751824,
|
| 325 |
+
"grad_norm": 4.65625,
|
| 326 |
+
"learning_rate": 2.6755401859887598e-05,
|
| 327 |
+
"loss": 1.4448,
|
| 328 |
+
"mean_token_accuracy": 0.6083299573510885,
|
| 329 |
+
"num_tokens": 120725.0,
|
| 330 |
"step": 32
|
| 331 |
},
|
| 332 |
{
|
| 333 |
+
"entropy": 1.850830078125,
|
| 334 |
+
"epoch": 1.8759124087591241,
|
| 335 |
+
"grad_norm": 4.28125,
|
| 336 |
+
"learning_rate": 2.6354925834776346e-05,
|
| 337 |
+
"loss": 1.502,
|
| 338 |
+
"mean_token_accuracy": 0.6061263754963875,
|
| 339 |
+
"num_tokens": 124333.0,
|
| 340 |
"step": 33
|
| 341 |
},
|
| 342 |
{
|
| 343 |
+
"entropy": 1.7397000417113304,
|
| 344 |
+
"epoch": 1.9343065693430657,
|
| 345 |
+
"grad_norm": 3.671875,
|
| 346 |
+
"learning_rate": 2.5934529411321174e-05,
|
| 347 |
+
"loss": 1.2539,
|
| 348 |
+
"mean_token_accuracy": 0.6317082159221172,
|
| 349 |
+
"num_tokens": 128615.0,
|
| 350 |
"step": 34
|
| 351 |
},
|
| 352 |
{
|
| 353 |
+
"entropy": 1.813131682574749,
|
| 354 |
+
"epoch": 1.9927007299270074,
|
| 355 |
+
"grad_norm": 3.5625,
|
| 356 |
+
"learning_rate": 2.5494950107700482e-05,
|
| 357 |
+
"loss": 1.3284,
|
| 358 |
+
"mean_token_accuracy": 0.6140319798141718,
|
| 359 |
+
"num_tokens": 132847.0,
|
| 360 |
"step": 35
|
| 361 |
},
|
| 362 |
{
|
| 363 |
+
"entropy": 1.5973615646362305,
|
| 364 |
+
"epoch": 2.0,
|
| 365 |
+
"grad_norm": 7.46875,
|
| 366 |
+
"learning_rate": 2.5036959095382875e-05,
|
| 367 |
+
"loss": 1.2697,
|
| 368 |
+
"mean_token_accuracy": 0.6285321712493896,
|
| 369 |
+
"num_tokens": 133794.0,
|
| 370 |
"step": 36
|
| 371 |
},
|
| 372 |
{
|
| 373 |
+
"entropy": 1.7645720839500427,
|
| 374 |
+
"epoch": 2.0583941605839415,
|
| 375 |
+
"grad_norm": 3.859375,
|
| 376 |
+
"learning_rate": 2.4561359846230346e-05,
|
| 377 |
+
"loss": 1.0785,
|
| 378 |
+
"mean_token_accuracy": 0.6664150357246399,
|
| 379 |
+
"num_tokens": 137554.0,
|
| 380 |
"step": 37
|
| 381 |
},
|
| 382 |
{
|
| 383 |
+
"entropy": 1.753688521683216,
|
| 384 |
+
"epoch": 2.116788321167883,
|
| 385 |
+
"grad_norm": 3.3125,
|
| 386 |
+
"learning_rate": 2.4068986722935625e-05,
|
| 387 |
+
"loss": 1.0716,
|
| 388 |
+
"mean_token_accuracy": 0.6744864694774151,
|
| 389 |
+
"num_tokens": 141721.0,
|
| 390 |
"step": 38
|
| 391 |
},
|
| 392 |
{
|
| 393 |
+
"entropy": 1.6263050064444542,
|
| 394 |
+
"epoch": 2.1751824817518246,
|
| 395 |
+
"grad_norm": 4.3125,
|
| 396 |
+
"learning_rate": 2.356070351526648e-05,
|
| 397 |
+
"loss": 1.0687,
|
| 398 |
+
"mean_token_accuracy": 0.6837072521448135,
|
| 399 |
+
"num_tokens": 146069.0,
|
| 400 |
"step": 39
|
| 401 |
},
|
| 402 |
{
|
| 403 |
+
"entropy": 1.8026663437485695,
|
| 404 |
+
"epoch": 2.2335766423357666,
|
| 405 |
+
"grad_norm": 3.84375,
|
| 406 |
+
"learning_rate": 2.303740192468495e-05,
|
| 407 |
+
"loss": 1.1566,
|
| 408 |
+
"mean_token_accuracy": 0.6734990328550339,
|
| 409 |
+
"num_tokens": 149664.0,
|
| 410 |
"step": 40
|
| 411 |
},
|
| 412 |
{
|
| 413 |
+
"entropy": 1.5874073877930641,
|
| 414 |
+
"epoch": 2.291970802919708,
|
| 415 |
+
"grad_norm": 3.53125,
|
| 416 |
+
"learning_rate": 2.25e-05,
|
| 417 |
+
"loss": 1.0591,
|
| 418 |
+
"mean_token_accuracy": 0.6754884608089924,
|
| 419 |
+
"num_tokens": 153330.0,
|
| 420 |
"step": 41
|
| 421 |
},
|
| 422 |
{
|
| 423 |
+
"entropy": 1.4746350944042206,
|
| 424 |
+
"epoch": 2.3503649635036497,
|
| 425 |
+
"grad_norm": 3.453125,
|
| 426 |
+
"learning_rate": 2.1949440526797928e-05,
|
| 427 |
+
"loss": 0.9312,
|
| 428 |
+
"mean_token_accuracy": 0.7215368486940861,
|
| 429 |
+
"num_tokens": 157396.0,
|
| 430 |
"step": 42
|
| 431 |
},
|
| 432 |
{
|
| 433 |
+
"entropy": 1.4334233030676842,
|
| 434 |
+
"epoch": 2.408759124087591,
|
| 435 |
+
"grad_norm": 6.96875,
|
| 436 |
+
"learning_rate": 2.138668937347609e-05,
|
| 437 |
+
"loss": 0.9952,
|
| 438 |
+
"mean_token_accuracy": 0.7047883793711662,
|
| 439 |
+
"num_tokens": 162386.0,
|
| 440 |
"step": 43
|
| 441 |
},
|
| 442 |
{
|
| 443 |
+
"entropy": 1.4815244674682617,
|
| 444 |
+
"epoch": 2.4671532846715327,
|
| 445 |
+
"grad_norm": 3.9375,
|
| 446 |
+
"learning_rate": 2.0812733796781544e-05,
|
| 447 |
+
"loss": 1.0847,
|
| 448 |
+
"mean_token_accuracy": 0.680337205529213,
|
| 449 |
+
"num_tokens": 166308.0,
|
| 450 |
"step": 44
|
| 451 |
},
|
| 452 |
{
|
| 453 |
+
"entropy": 1.4337811917066574,
|
| 454 |
+
"epoch": 2.5255474452554747,
|
| 455 |
+
"grad_norm": 4.21875,
|
| 456 |
+
"learning_rate": 2.022858070982723e-05,
|
| 457 |
+
"loss": 1.0594,
|
| 458 |
+
"mean_token_accuracy": 0.686751551926136,
|
| 459 |
+
"num_tokens": 169979.0,
|
| 460 |
"step": 45
|
| 461 |
},
|
| 462 |
{
|
| 463 |
+
"entropy": 1.380111612379551,
|
| 464 |
+
"epoch": 2.5839416058394162,
|
| 465 |
+
"grad_norm": 3.984375,
|
| 466 |
+
"learning_rate": 1.963525491562421e-05,
|
| 467 |
+
"loss": 0.9718,
|
| 468 |
+
"mean_token_accuracy": 0.7241853773593903,
|
| 469 |
+
"num_tokens": 174586.0,
|
| 470 |
"step": 46
|
| 471 |
},
|
| 472 |
{
|
| 473 |
+
"entropy": 1.339597962796688,
|
| 474 |
+
"epoch": 2.6423357664233578,
|
| 475 |
+
"grad_norm": 4.0625,
|
| 476 |
+
"learning_rate": 1.9033797309228984e-05,
|
| 477 |
+
"loss": 0.9445,
|
| 478 |
+
"mean_token_accuracy": 0.7082682773470879,
|
| 479 |
+
"num_tokens": 178535.0,
|
| 480 |
"step": 47
|
| 481 |
},
|
| 482 |
{
|
| 483 |
+
"entropy": 1.293665699660778,
|
| 484 |
+
"epoch": 2.7007299270072993,
|
| 485 |
+
"grad_norm": 3.765625,
|
| 486 |
+
"learning_rate": 1.8425263051659838e-05,
|
| 487 |
+
"loss": 0.9213,
|
| 488 |
+
"mean_token_accuracy": 0.7238599583506584,
|
| 489 |
+
"num_tokens": 183350.0,
|
| 490 |
"step": 48
|
| 491 |
},
|
| 492 |
{
|
| 493 |
+
"entropy": 1.3446906879544258,
|
| 494 |
+
"epoch": 2.759124087591241,
|
| 495 |
+
"grad_norm": 4.46875,
|
| 496 |
+
"learning_rate": 1.781071971878587e-05,
|
| 497 |
+
"loss": 0.9652,
|
| 498 |
+
"mean_token_accuracy": 0.6951282061636448,
|
| 499 |
+
"num_tokens": 187493.0,
|
| 500 |
"step": 49
|
| 501 |
},
|
| 502 |
{
|
| 503 |
+
"entropy": 1.3415213227272034,
|
| 504 |
+
"epoch": 2.8175182481751824,
|
| 505 |
+
"grad_norm": 4.8125,
|
| 506 |
+
"learning_rate": 1.7191245428436175e-05,
|
| 507 |
+
"loss": 1.0102,
|
| 508 |
+
"mean_token_accuracy": 0.7021605856716633,
|
| 509 |
+
"num_tokens": 190843.0,
|
| 510 |
"step": 50
|
| 511 |
},
|
| 512 |
{
|
| 513 |
+
"entropy": 1.4499380737543106,
|
| 514 |
+
"epoch": 2.875912408759124,
|
| 515 |
+
"grad_norm": 5.71875,
|
| 516 |
+
"learning_rate": 1.6567926949014805e-05,
|
| 517 |
+
"loss": 1.0649,
|
| 518 |
+
"mean_token_accuracy": 0.7037234976887703,
|
| 519 |
+
"num_tokens": 193518.0,
|
| 520 |
"step": 51
|
| 521 |
},
|
| 522 |
{
|
| 523 |
+
"entropy": 1.3929353207349777,
|
| 524 |
+
"epoch": 2.9343065693430654,
|
| 525 |
+
"grad_norm": 4.75,
|
| 526 |
+
"learning_rate": 1.5941857792939702e-05,
|
| 527 |
+
"loss": 1.0284,
|
| 528 |
+
"mean_token_accuracy": 0.6902767680585384,
|
| 529 |
+
"num_tokens": 196895.0,
|
| 530 |
"step": 52
|
| 531 |
},
|
| 532 |
{
|
| 533 |
+
"entropy": 1.4459699764847755,
|
| 534 |
+
"epoch": 2.9927007299270074,
|
| 535 |
+
"grad_norm": 4.75,
|
| 536 |
+
"learning_rate": 1.5314136298250355e-05,
|
| 537 |
+
"loss": 1.013,
|
| 538 |
+
"mean_token_accuracy": 0.6965249925851822,
|
| 539 |
+
"num_tokens": 200296.0,
|
| 540 |
"step": 53
|
| 541 |
},
|
| 542 |
{
|
| 543 |
+
"entropy": 1.399910032749176,
|
| 544 |
+
"epoch": 3.0,
|
| 545 |
+
"grad_norm": 13.0625,
|
| 546 |
+
"learning_rate": 1.4685863701749648e-05,
|
| 547 |
+
"loss": 1.0552,
|
| 548 |
+
"mean_token_accuracy": 0.6890038251876831,
|
| 549 |
+
"num_tokens": 200691.0,
|
| 550 |
"step": 54
|
| 551 |
},
|
| 552 |
{
|
| 553 |
+
"entropy": 1.3579635098576546,
|
| 554 |
+
"epoch": 3.0583941605839415,
|
| 555 |
+
"grad_norm": 4.28125,
|
| 556 |
+
"learning_rate": 1.40581422070603e-05,
|
| 557 |
+
"loss": 0.7865,
|
| 558 |
+
"mean_token_accuracy": 0.765391580760479,
|
| 559 |
+
"num_tokens": 204197.0,
|
| 560 |
"step": 55
|
| 561 |
},
|
| 562 |
{
|
| 563 |
+
"entropy": 1.411361187696457,
|
| 564 |
+
"epoch": 3.116788321167883,
|
| 565 |
+
"grad_norm": 4.21875,
|
| 566 |
+
"learning_rate": 1.3432073050985201e-05,
|
| 567 |
+
"loss": 0.7665,
|
| 568 |
+
"mean_token_accuracy": 0.7553833983838558,
|
| 569 |
+
"num_tokens": 207610.0,
|
| 570 |
"step": 56
|
| 571 |
},
|
| 572 |
{
|
| 573 |
+
"entropy": 1.3223325684666634,
|
| 574 |
+
"epoch": 3.1751824817518246,
|
| 575 |
+
"grad_norm": 3.71875,
|
| 576 |
+
"learning_rate": 1.2808754571563827e-05,
|
| 577 |
+
"loss": 0.804,
|
| 578 |
+
"mean_token_accuracy": 0.7530029378831387,
|
| 579 |
+
"num_tokens": 211730.0,
|
| 580 |
"step": 57
|
| 581 |
},
|
| 582 |
{
|
| 583 |
+
"entropy": 1.2704328149557114,
|
| 584 |
+
"epoch": 3.2335766423357666,
|
| 585 |
+
"grad_norm": 3.46875,
|
| 586 |
+
"learning_rate": 1.2189280281214128e-05,
|
| 587 |
+
"loss": 0.7542,
|
| 588 |
+
"mean_token_accuracy": 0.775670263916254,
|
| 589 |
+
"num_tokens": 216415.0,
|
| 590 |
"step": 58
|
| 591 |
},
|
| 592 |
{
|
| 593 |
+
"entropy": 1.3555709198117256,
|
| 594 |
+
"epoch": 3.291970802919708,
|
| 595 |
+
"grad_norm": 3.9375,
|
| 596 |
+
"learning_rate": 1.1574736948340163e-05,
|
| 597 |
+
"loss": 0.7992,
|
| 598 |
+
"mean_token_accuracy": 0.7488890923559666,
|
| 599 |
+
"num_tokens": 219953.0,
|
| 600 |
"step": 59
|
| 601 |
},
|
| 602 |
{
|
| 603 |
+
"entropy": 1.2632866501808167,
|
| 604 |
+
"epoch": 3.3503649635036497,
|
| 605 |
+
"grad_norm": 3.578125,
|
| 606 |
+
"learning_rate": 1.0966202690771015e-05,
|
| 607 |
+
"loss": 0.75,
|
| 608 |
+
"mean_token_accuracy": 0.7654453739523888,
|
| 609 |
+
"num_tokens": 224335.0,
|
| 610 |
"step": 60
|
| 611 |
},
|
| 612 |
{
|
| 613 |
+
"entropy": 1.2773741334676743,
|
| 614 |
+
"epoch": 3.408759124087591,
|
| 615 |
+
"grad_norm": 4.125,
|
| 616 |
+
"learning_rate": 1.036474508437579e-05,
|
| 617 |
+
"loss": 0.8394,
|
| 618 |
+
"mean_token_accuracy": 0.7538279145956039,
|
| 619 |
+
"num_tokens": 228300.0,
|
| 620 |
"step": 61
|
| 621 |
},
|
| 622 |
{
|
| 623 |
+
"entropy": 1.2203935906291008,
|
| 624 |
+
"epoch": 3.4671532846715327,
|
| 625 |
+
"grad_norm": 4.3125,
|
| 626 |
+
"learning_rate": 9.771419290172776e-06,
|
| 627 |
+
"loss": 0.7866,
|
| 628 |
+
"mean_token_accuracy": 0.7759390734136105,
|
| 629 |
+
"num_tokens": 231820.0,
|
| 630 |
"step": 62
|
| 631 |
},
|
| 632 |
{
|
| 633 |
+
"entropy": 1.2281916178762913,
|
| 634 |
+
"epoch": 3.5255474452554747,
|
| 635 |
+
"grad_norm": 4.5,
|
| 636 |
+
"learning_rate": 9.187266203218457e-06,
|
| 637 |
+
"loss": 0.7456,
|
| 638 |
+
"mean_token_accuracy": 0.7896540127694607,
|
| 639 |
+
"num_tokens": 235502.0,
|
| 640 |
"step": 63
|
| 641 |
},
|
| 642 |
{
|
| 643 |
+
"entropy": 1.1479723155498505,
|
| 644 |
+
"epoch": 3.5839416058394162,
|
| 645 |
+
"grad_norm": 3.84375,
|
| 646 |
+
"learning_rate": 8.61331062652391e-06,
|
| 647 |
+
"loss": 0.6779,
|
| 648 |
+
"mean_token_accuracy": 0.7954859808087349,
|
| 649 |
+
"num_tokens": 239847.0,
|
| 650 |
"step": 64
|
| 651 |
},
|
| 652 |
{
|
| 653 |
+
"entropy": 1.227071214467287,
|
| 654 |
+
"epoch": 3.6423357664233578,
|
| 655 |
+
"grad_norm": 4.78125,
|
| 656 |
+
"learning_rate": 8.050559473202078e-06,
|
| 657 |
+
"loss": 0.7642,
|
| 658 |
+
"mean_token_accuracy": 0.7581925354897976,
|
| 659 |
+
"num_tokens": 243356.0,
|
| 660 |
"step": 65
|
| 661 |
},
|
| 662 |
{
|
| 663 |
+
"entropy": 1.131257489323616,
|
| 664 |
+
"epoch": 3.7007299270072993,
|
| 665 |
+
"grad_norm": 3.5625,
|
| 666 |
+
"learning_rate": 7.500000000000004e-06,
|
| 667 |
+
"loss": 0.7819,
|
| 668 |
+
"mean_token_accuracy": 0.7654204778373241,
|
| 669 |
+
"num_tokens": 249682.0,
|
| 670 |
"step": 66
|
| 671 |
},
|
| 672 |
{
|
| 673 |
+
"entropy": 1.16723557934165,
|
| 674 |
+
"epoch": 3.759124087591241,
|
| 675 |
+
"grad_norm": 4.5,
|
| 676 |
+
"learning_rate": 6.962598075315047e-06,
|
| 677 |
+
"loss": 0.6689,
|
| 678 |
+
"mean_token_accuracy": 0.783266007900238,
|
| 679 |
+
"num_tokens": 253238.0,
|
| 680 |
"step": 67
|
| 681 |
},
|
| 682 |
{
|
| 683 |
+
"entropy": 1.2070689871907234,
|
| 684 |
+
"epoch": 3.8175182481751824,
|
| 685 |
+
"grad_norm": 5.1875,
|
| 686 |
+
"learning_rate": 6.439296484733526e-06,
|
| 687 |
+
"loss": 0.7421,
|
| 688 |
+
"mean_token_accuracy": 0.7796755991876125,
|
| 689 |
+
"num_tokens": 256423.0,
|
| 690 |
"step": 68
|
| 691 |
},
|
| 692 |
{
|
| 693 |
+
"entropy": 1.1488405130803585,
|
| 694 |
+
"epoch": 3.875912408759124,
|
| 695 |
+
"grad_norm": 5.34375,
|
| 696 |
+
"learning_rate": 5.931013277064377e-06,
|
| 697 |
+
"loss": 0.7267,
|
| 698 |
+
"mean_token_accuracy": 0.7691169492900372,
|
| 699 |
+
"num_tokens": 259934.0,
|
| 700 |
"step": 69
|
| 701 |
},
|
| 702 |
{
|
| 703 |
+
"entropy": 1.130510926246643,
|
| 704 |
+
"epoch": 3.9343065693430654,
|
| 705 |
+
"grad_norm": 5.25,
|
| 706 |
+
"learning_rate": 5.438640153769654e-06,
|
| 707 |
+
"loss": 0.7209,
|
| 708 |
+
"mean_token_accuracy": 0.7871466726064682,
|
| 709 |
+
"num_tokens": 263187.0,
|
| 710 |
"step": 70
|
| 711 |
},
|
| 712 |
{
|
| 713 |
+
"entropy": 1.1477855034172535,
|
| 714 |
+
"epoch": 3.9927007299270074,
|
| 715 |
+
"grad_norm": 4.75,
|
| 716 |
+
"learning_rate": 4.963040904617131e-06,
|
| 717 |
+
"loss": 0.7762,
|
| 718 |
+
"mean_token_accuracy": 0.7656804099678993,
|
| 719 |
+
"num_tokens": 267097.0,
|
| 720 |
"step": 71
|
| 721 |
},
|
| 722 |
{
|
| 723 |
+
"entropy": 1.09878408908844,
|
| 724 |
+
"epoch": 4.0,
|
| 725 |
+
"grad_norm": 12.875,
|
| 726 |
+
"learning_rate": 4.505049892299517e-06,
|
| 727 |
+
"loss": 0.7072,
|
| 728 |
+
"mean_token_accuracy": 0.7617444694042206,
|
| 729 |
+
"num_tokens": 267588.0,
|
| 730 |
"step": 72
|
| 731 |
},
|
| 732 |
{
|
| 733 |
+
"entropy": 1.0318926461040974,
|
| 734 |
+
"epoch": 4.0583941605839415,
|
| 735 |
+
"grad_norm": 4.28125,
|
| 736 |
+
"learning_rate": 4.06547058867883e-06,
|
| 737 |
+
"loss": 0.5992,
|
| 738 |
+
"mean_token_accuracy": 0.8166146464645863,
|
| 739 |
+
"num_tokens": 271589.0,
|
| 740 |
"step": 73
|
| 741 |
},
|
| 742 |
{
|
| 743 |
+
"entropy": 1.1504660807549953,
|
| 744 |
+
"epoch": 4.116788321167883,
|
| 745 |
+
"grad_norm": 4.78125,
|
| 746 |
+
"learning_rate": 3.645074165223656e-06,
|
| 747 |
+
"loss": 0.606,
|
| 748 |
+
"mean_token_accuracy": 0.8282722532749176,
|
| 749 |
+
"num_tokens": 274468.0,
|
| 750 |
"step": 74
|
| 751 |
},
|
| 752 |
{
|
| 753 |
+
"entropy": 1.1046061255037785,
|
| 754 |
+
"epoch": 4.175182481751825,
|
| 755 |
+
"grad_norm": 3.671875,
|
| 756 |
+
"learning_rate": 3.244598140112404e-06,
|
| 757 |
+
"loss": 0.6325,
|
| 758 |
+
"mean_token_accuracy": 0.8047133162617683,
|
| 759 |
+
"num_tokens": 278830.0,
|
| 760 |
"step": 75
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 761 |
}
|
| 762 |
],
|
| 763 |
"logging_steps": 1,
|
| 764 |
+
"max_steps": 90,
|
| 765 |
"num_input_tokens_seen": 0,
|
| 766 |
+
"num_train_epochs": 5,
|
| 767 |
"save_steps": 5,
|
| 768 |
"stateful_callbacks": {
|
| 769 |
"TrainerControl": {
|
|
|
|
| 777 |
"attributes": {}
|
| 778 |
}
|
| 779 |
},
|
| 780 |
+
"total_flos": 7471994807169024.0,
|
| 781 |
"train_batch_size": 2,
|
| 782 |
"trial_name": null,
|
| 783 |
"trial_params": null
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 6353
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4299c868efdf07b9f67c43aca6993615cee8602c1155c2c9e52cf027fcd29126
|
| 3 |
size 6353
|