Upload folder using huggingface_hub
Browse files
check.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from collections import Counter
|
| 4 |
+
|
| 5 |
+
base_dir = "generate_result/zero_shot/bd_math/generation/llama3.1/1"
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def has_repetition(text, threshold=3):
|
| 9 |
+
"""
|
| 10 |
+
Check if the given text contains repetitive substrings and return the repetitive phrases.
|
| 11 |
+
|
| 12 |
+
:param text: The text to check for repetition
|
| 13 |
+
:param threshold: The number of repetitions to consider as repetitive
|
| 14 |
+
:return: A list of repetitive phrases if found, otherwise an empty list
|
| 15 |
+
"""
|
| 16 |
+
words = text.split()
|
| 17 |
+
repetitive_phrases = []
|
| 18 |
+
for n in range(15, 20):
|
| 19 |
+
phrases = [" ".join(words[i : i + n]) for i in range(len(words) - n + 1)]
|
| 20 |
+
phrase_counts = Counter(phrases)
|
| 21 |
+
repetitive_phrases.extend(
|
| 22 |
+
[phrase for phrase, count in phrase_counts.items() if count >= threshold]
|
| 23 |
+
)
|
| 24 |
+
break
|
| 25 |
+
return repetitive_phrases
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
total_items = 0
|
| 29 |
+
items_with_repetition = 0
|
| 30 |
+
repetition_data = []
|
| 31 |
+
|
| 32 |
+
for i in range(8):
|
| 33 |
+
file_path = os.path.join(base_dir, f"{i}.json")
|
| 34 |
+
|
| 35 |
+
if not os.path.exists(file_path):
|
| 36 |
+
print(f"File {file_path} does not exist. Skipping.")
|
| 37 |
+
continue
|
| 38 |
+
|
| 39 |
+
with open(file_path, "r") as file:
|
| 40 |
+
for line_number, line in enumerate(file, 1):
|
| 41 |
+
try:
|
| 42 |
+
data = json.loads(line)
|
| 43 |
+
model_output = data.get("total output", "")[0]
|
| 44 |
+
total_items += 1
|
| 45 |
+
|
| 46 |
+
repetitive_phrases = has_repetition(model_output)
|
| 47 |
+
if len(repetitive_phrases):
|
| 48 |
+
items_with_repetition += 1
|
| 49 |
+
repetition_data.append(
|
| 50 |
+
{
|
| 51 |
+
"file": f"{i}.json",
|
| 52 |
+
"line": line_number,
|
| 53 |
+
"prompt": data.get("prompt", ""),
|
| 54 |
+
"repetitive_phrases": repetitive_phrases,
|
| 55 |
+
}
|
| 56 |
+
)
|
| 57 |
+
# print(repetitive_phrases[0])
|
| 58 |
+
except json.JSONDecodeError:
|
| 59 |
+
print(f"Error decoding JSON in file {i}.json, line {line_number}")
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"Error processing file {i}.json, line {line_number}: {str(e)}")
|
| 62 |
+
|
| 63 |
+
# Calculate the ratio
|
| 64 |
+
ratio = items_with_repetition / total_items if total_items > 0 else 0
|
| 65 |
+
print(
|
| 66 |
+
f"Ratio of items with repetition: {ratio:.2f} ({items_with_repetition}/{total_items})"
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Save repetition data to a file
|
| 70 |
+
output_file = "repetition_analysis.json"
|
| 71 |
+
with open(os.path.join(base_dir, output_file), "w") as f:
|
| 72 |
+
json.dump(repetition_data, f, indent=2)
|
| 73 |
+
|
| 74 |
+
print(f"Repetition analysis completed. Results saved to {output_file}")
|
generate_result/zero_shot/bd_math/generation/llama3.1/1/repetition_analysis.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
vllm_generate.py
CHANGED
|
@@ -11,7 +11,7 @@ import sys
|
|
| 11 |
import os
|
| 12 |
import numpy as np
|
| 13 |
|
| 14 |
-
few_shot_string =
|
| 15 |
Let's think step by step. The expressions inside each square root must be non-negative. Therefore, $x-2 \ge 0$, so $x\ge2$, and $5 - x \ge 0$, so $x \le 5$. Also, the denominator cannot be equal to zero, so $5-x>0$, which gives $x<5$. Therefore, the domain of the expression is $[2,5)$. Final Answer: The answer is $[2,5)$. I hope it is correct.
|
| 16 |
|
| 17 |
Question: If $\det \mathbf{A} = 2$ and $\det \mathbf{B} = 12,$ then find $\det (\mathbf{A} \mathbf{B}).$
|
|
@@ -35,7 +35,7 @@ Let's think step by step. If we multiply the first equation by $-\frac{3}{2}$, w
|
|
| 35 |
$$-\frac{3}{2}a=b\Rightarrow\frac{a}{b}=-\frac{2}{3}.$$
|
| 36 |
Final Answer: The answer is $-\frac{2}{3}$. I hope it is correct.
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
PROMPT_DICT = {
|
| 41 |
"lean4": (
|
|
@@ -49,9 +49,9 @@ PROMPT_DICT = {
|
|
| 49 |
"Write a response that appropriately completes the request.\n\n"
|
| 50 |
"### Instruction:\n{instruction}\n\n### Response:"
|
| 51 |
),
|
| 52 |
-
|
| 53 |
-
Let's think step by step.
|
| 54 |
-
|
| 55 |
}
|
| 56 |
|
| 57 |
|
|
|
|
| 11 |
import os
|
| 12 |
import numpy as np
|
| 13 |
|
| 14 |
+
few_shot_string = """Question: Find the domain of the expression $\frac{\sqrt{x-2}}{\sqrt{5-x}}$.}
|
| 15 |
Let's think step by step. The expressions inside each square root must be non-negative. Therefore, $x-2 \ge 0$, so $x\ge2$, and $5 - x \ge 0$, so $x \le 5$. Also, the denominator cannot be equal to zero, so $5-x>0$, which gives $x<5$. Therefore, the domain of the expression is $[2,5)$. Final Answer: The answer is $[2,5)$. I hope it is correct.
|
| 16 |
|
| 17 |
Question: If $\det \mathbf{A} = 2$ and $\det \mathbf{B} = 12,$ then find $\det (\mathbf{A} \mathbf{B}).$
|
|
|
|
| 35 |
$$-\frac{3}{2}a=b\Rightarrow\frac{a}{b}=-\frac{2}{3}.$$
|
| 36 |
Final Answer: The answer is $-\frac{2}{3}$. I hope it is correct.
|
| 37 |
|
| 38 |
+
"""
|
| 39 |
|
| 40 |
PROMPT_DICT = {
|
| 41 |
"lean4": (
|
|
|
|
| 49 |
"Write a response that appropriately completes the request.\n\n"
|
| 50 |
"### Instruction:\n{instruction}\n\n### Response:"
|
| 51 |
),
|
| 52 |
+
"old_prompt_bd": """Question: {question}
|
| 53 |
+
Let's think step by step.""",
|
| 54 |
+
"vallina": """{question}""",
|
| 55 |
}
|
| 56 |
|
| 57 |
|