sam1120 commited on
Commit
b83adce
Β·
1 Parent(s): bb218ba

Training in progress, step 360

Browse files
{checkpoint-160 β†’ checkpoint-360}/config.json RENAMED
File without changes
{checkpoint-160 β†’ checkpoint-360}/optimizer.pt RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e6931eb0be1634ca160d98a640ea98c9567519523d277184a895ddaa1a689f67
3
- size 29838853
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:690d2b1ef69cdbca721eba282143da196373c5db8e5afd56b78418ee455a811b
3
+ size 29839045
{checkpoint-160 β†’ checkpoint-360}/pytorch_model.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:be2efbee13463578b470869e5a8fa49260f6b4faaf7075d79cefb75ca6623b86
3
  size 14932813
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bfa880e3c2fe0f3abccc0c0cc53859c38fc417811ec00758ae3cc1733cb697d
3
  size 14932813
{checkpoint-160 β†’ checkpoint-360}/rng_state.pth RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:88c547657e93f58d6d8ebd261b91d0d95a29f014be16e7edb041f57554938e2a
3
  size 14575
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25e2a23aa8e55e663fa626f372ac895d86436610bd2a2d5dc3f7be3ba8b92e19
3
  size 14575
{checkpoint-160 β†’ checkpoint-360}/scheduler.pt RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:453411dd957ce4915c4d696d202fa33ec819caadf4b5e93d4c0d225a014f7ad9
3
  size 627
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74299822a43d7884662d6c4d10a7d8967afbfdb4488cbf6c93d8420629548591
3
  size 627
{checkpoint-160 β†’ checkpoint-360}/trainer_state.json RENAMED
@@ -1,8 +1,8 @@
1
  {
2
- "best_metric": 0.7497116923332214,
3
- "best_model_checkpoint": "/robodata/smodak/Projects/nspl/scripts/terrainseg/training/models/dropoff-utcustom-train-SF-RGB-b0_2/checkpoint-160",
4
- "epoch": 53.333333333333336,
5
- "global_step": 160,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
@@ -1238,11 +1238,1551 @@
1238
  "eval_samples_per_second": 8.389,
1239
  "eval_steps_per_second": 0.559,
1240
  "step": 160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241
  }
1242
  ],
1243
  "max_steps": 360,
1244
  "num_train_epochs": 120,
1245
- "total_flos": 3.186802778701824e+16,
1246
  "trial_name": null,
1247
  "trial_params": null
1248
  }
 
1
  {
2
+ "best_metric": 0.6222037076950073,
3
+ "best_model_checkpoint": "/robodata/smodak/Projects/nspl/scripts/terrainseg/training/models/dropoff-utcustom-train-SF-RGB-b0_2/checkpoint-360",
4
+ "epoch": 120.0,
5
+ "global_step": 360,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
 
1238
  "eval_samples_per_second": 8.389,
1239
  "eval_steps_per_second": 0.559,
1240
  "step": 160
1241
+ },
1242
+ {
1243
+ "epoch": 53.67,
1244
+ "learning_rate": 5.8187134502923985e-06,
1245
+ "loss": 0.7207,
1246
+ "step": 161
1247
+ },
1248
+ {
1249
+ "epoch": 54.0,
1250
+ "learning_rate": 5.789473684210527e-06,
1251
+ "loss": 0.9743,
1252
+ "step": 162
1253
+ },
1254
+ {
1255
+ "epoch": 54.33,
1256
+ "learning_rate": 5.760233918128656e-06,
1257
+ "loss": 0.7271,
1258
+ "step": 163
1259
+ },
1260
+ {
1261
+ "epoch": 54.67,
1262
+ "learning_rate": 5.730994152046784e-06,
1263
+ "loss": 0.7114,
1264
+ "step": 164
1265
+ },
1266
+ {
1267
+ "epoch": 55.0,
1268
+ "learning_rate": 5.701754385964913e-06,
1269
+ "loss": 0.7564,
1270
+ "step": 165
1271
+ },
1272
+ {
1273
+ "epoch": 55.33,
1274
+ "learning_rate": 5.672514619883041e-06,
1275
+ "loss": 0.7265,
1276
+ "step": 166
1277
+ },
1278
+ {
1279
+ "epoch": 55.67,
1280
+ "learning_rate": 5.64327485380117e-06,
1281
+ "loss": 0.7082,
1282
+ "step": 167
1283
+ },
1284
+ {
1285
+ "epoch": 56.0,
1286
+ "learning_rate": 5.6140350877192985e-06,
1287
+ "loss": 0.9715,
1288
+ "step": 168
1289
+ },
1290
+ {
1291
+ "epoch": 56.33,
1292
+ "learning_rate": 5.584795321637428e-06,
1293
+ "loss": 0.6921,
1294
+ "step": 169
1295
+ },
1296
+ {
1297
+ "epoch": 56.67,
1298
+ "learning_rate": 5.555555555555557e-06,
1299
+ "loss": 0.7468,
1300
+ "step": 170
1301
+ },
1302
+ {
1303
+ "epoch": 56.67,
1304
+ "eval_accuracy_dropoff": 0.4195384474004641,
1305
+ "eval_accuracy_undropoff": 0.9781964166541602,
1306
+ "eval_accuracy_unlabeled": NaN,
1307
+ "eval_iou_dropoff": 0.3004878891594813,
1308
+ "eval_iou_undropoff": 0.9526777819357527,
1309
+ "eval_iou_unlabeled": 0.0,
1310
+ "eval_loss": 0.732612669467926,
1311
+ "eval_mean_accuracy": 0.6988674320273122,
1312
+ "eval_mean_iou": 0.41772189036507806,
1313
+ "eval_overall_accuracy": 0.9534601847330729,
1314
+ "eval_runtime": 1.8858,
1315
+ "eval_samples_per_second": 7.954,
1316
+ "eval_steps_per_second": 0.53,
1317
+ "step": 170
1318
+ },
1319
+ {
1320
+ "epoch": 57.0,
1321
+ "learning_rate": 5.526315789473685e-06,
1322
+ "loss": 0.9868,
1323
+ "step": 171
1324
+ },
1325
+ {
1326
+ "epoch": 57.33,
1327
+ "learning_rate": 5.497076023391813e-06,
1328
+ "loss": 0.7203,
1329
+ "step": 172
1330
+ },
1331
+ {
1332
+ "epoch": 57.67,
1333
+ "learning_rate": 5.467836257309942e-06,
1334
+ "loss": 0.6981,
1335
+ "step": 173
1336
+ },
1337
+ {
1338
+ "epoch": 58.0,
1339
+ "learning_rate": 5.438596491228071e-06,
1340
+ "loss": 0.9637,
1341
+ "step": 174
1342
+ },
1343
+ {
1344
+ "epoch": 58.33,
1345
+ "learning_rate": 5.4093567251461994e-06,
1346
+ "loss": 0.6928,
1347
+ "step": 175
1348
+ },
1349
+ {
1350
+ "epoch": 58.67,
1351
+ "learning_rate": 5.380116959064328e-06,
1352
+ "loss": 0.7607,
1353
+ "step": 176
1354
+ },
1355
+ {
1356
+ "epoch": 59.0,
1357
+ "learning_rate": 5.350877192982457e-06,
1358
+ "loss": 0.6925,
1359
+ "step": 177
1360
+ },
1361
+ {
1362
+ "epoch": 59.33,
1363
+ "learning_rate": 5.321637426900586e-06,
1364
+ "loss": 0.7149,
1365
+ "step": 178
1366
+ },
1367
+ {
1368
+ "epoch": 59.67,
1369
+ "learning_rate": 5.292397660818714e-06,
1370
+ "loss": 0.7041,
1371
+ "step": 179
1372
+ },
1373
+ {
1374
+ "epoch": 60.0,
1375
+ "learning_rate": 5.263157894736842e-06,
1376
+ "loss": 0.6506,
1377
+ "step": 180
1378
+ },
1379
+ {
1380
+ "epoch": 60.0,
1381
+ "eval_accuracy_dropoff": 0.4196188572610104,
1382
+ "eval_accuracy_undropoff": 0.978872032638186,
1383
+ "eval_accuracy_unlabeled": NaN,
1384
+ "eval_iou_dropoff": 0.2986815478015576,
1385
+ "eval_iou_undropoff": 0.9532789523356896,
1386
+ "eval_iou_unlabeled": 0.0,
1387
+ "eval_loss": 0.718389630317688,
1388
+ "eval_mean_accuracy": 0.6992454449495982,
1389
+ "eval_mean_iou": 0.41732016671241573,
1390
+ "eval_overall_accuracy": 0.9541094462076823,
1391
+ "eval_runtime": 1.9089,
1392
+ "eval_samples_per_second": 7.858,
1393
+ "eval_steps_per_second": 0.524,
1394
+ "step": 180
1395
+ },
1396
+ {
1397
+ "epoch": 60.33,
1398
+ "learning_rate": 5.233918128654971e-06,
1399
+ "loss": 0.723,
1400
+ "step": 181
1401
+ },
1402
+ {
1403
+ "epoch": 60.67,
1404
+ "learning_rate": 5.2046783625731e-06,
1405
+ "loss": 0.6845,
1406
+ "step": 182
1407
+ },
1408
+ {
1409
+ "epoch": 61.0,
1410
+ "learning_rate": 5.175438596491229e-06,
1411
+ "loss": 0.8873,
1412
+ "step": 183
1413
+ },
1414
+ {
1415
+ "epoch": 61.33,
1416
+ "learning_rate": 5.146198830409357e-06,
1417
+ "loss": 0.6904,
1418
+ "step": 184
1419
+ },
1420
+ {
1421
+ "epoch": 61.67,
1422
+ "learning_rate": 5.116959064327486e-06,
1423
+ "loss": 0.783,
1424
+ "step": 185
1425
+ },
1426
+ {
1427
+ "epoch": 62.0,
1428
+ "learning_rate": 5.087719298245615e-06,
1429
+ "loss": 0.6318,
1430
+ "step": 186
1431
+ },
1432
+ {
1433
+ "epoch": 62.33,
1434
+ "learning_rate": 5.058479532163744e-06,
1435
+ "loss": 0.6781,
1436
+ "step": 187
1437
+ },
1438
+ {
1439
+ "epoch": 62.67,
1440
+ "learning_rate": 5.029239766081871e-06,
1441
+ "loss": 0.7246,
1442
+ "step": 188
1443
+ },
1444
+ {
1445
+ "epoch": 63.0,
1446
+ "learning_rate": 5e-06,
1447
+ "loss": 0.9476,
1448
+ "step": 189
1449
+ },
1450
+ {
1451
+ "epoch": 63.33,
1452
+ "learning_rate": 4.970760233918129e-06,
1453
+ "loss": 0.6761,
1454
+ "step": 190
1455
+ },
1456
+ {
1457
+ "epoch": 63.33,
1458
+ "eval_accuracy_dropoff": 0.3963574333172514,
1459
+ "eval_accuracy_undropoff": 0.9804997376300275,
1460
+ "eval_accuracy_unlabeled": NaN,
1461
+ "eval_iou_dropoff": 0.28863068873357844,
1462
+ "eval_iou_undropoff": 0.9538536290387296,
1463
+ "eval_iou_unlabeled": 0.0,
1464
+ "eval_loss": 0.7037181854248047,
1465
+ "eval_mean_accuracy": 0.6884285854736394,
1466
+ "eval_mean_iou": 0.41416143925743604,
1467
+ "eval_overall_accuracy": 0.9546351114908854,
1468
+ "eval_runtime": 1.7466,
1469
+ "eval_samples_per_second": 8.588,
1470
+ "eval_steps_per_second": 0.573,
1471
+ "step": 190
1472
+ },
1473
+ {
1474
+ "epoch": 63.67,
1475
+ "learning_rate": 4.941520467836258e-06,
1476
+ "loss": 0.753,
1477
+ "step": 191
1478
+ },
1479
+ {
1480
+ "epoch": 64.0,
1481
+ "learning_rate": 4.912280701754386e-06,
1482
+ "loss": 0.9325,
1483
+ "step": 192
1484
+ },
1485
+ {
1486
+ "epoch": 64.33,
1487
+ "learning_rate": 4.883040935672515e-06,
1488
+ "loss": 0.7045,
1489
+ "step": 193
1490
+ },
1491
+ {
1492
+ "epoch": 64.67,
1493
+ "learning_rate": 4.853801169590643e-06,
1494
+ "loss": 0.6972,
1495
+ "step": 194
1496
+ },
1497
+ {
1498
+ "epoch": 65.0,
1499
+ "learning_rate": 4.824561403508772e-06,
1500
+ "loss": 0.6756,
1501
+ "step": 195
1502
+ },
1503
+ {
1504
+ "epoch": 65.33,
1505
+ "learning_rate": 4.7953216374269005e-06,
1506
+ "loss": 0.6869,
1507
+ "step": 196
1508
+ },
1509
+ {
1510
+ "epoch": 65.67,
1511
+ "learning_rate": 4.7660818713450295e-06,
1512
+ "loss": 0.6688,
1513
+ "step": 197
1514
+ },
1515
+ {
1516
+ "epoch": 66.0,
1517
+ "learning_rate": 4.736842105263158e-06,
1518
+ "loss": 0.6584,
1519
+ "step": 198
1520
+ },
1521
+ {
1522
+ "epoch": 66.33,
1523
+ "learning_rate": 4.707602339181287e-06,
1524
+ "loss": 0.6366,
1525
+ "step": 199
1526
+ },
1527
+ {
1528
+ "epoch": 66.67,
1529
+ "learning_rate": 4.678362573099415e-06,
1530
+ "loss": 0.7245,
1531
+ "step": 200
1532
+ },
1533
+ {
1534
+ "epoch": 66.67,
1535
+ "eval_accuracy_dropoff": 0.38236037402072276,
1536
+ "eval_accuracy_undropoff": 0.9818006775850893,
1537
+ "eval_accuracy_unlabeled": NaN,
1538
+ "eval_iou_dropoff": 0.28203335832877907,
1539
+ "eval_iou_undropoff": 0.9544903881152086,
1540
+ "eval_iou_unlabeled": 0.0,
1541
+ "eval_loss": 0.6959893107414246,
1542
+ "eval_mean_accuracy": 0.682080525802906,
1543
+ "eval_mean_iou": 0.41217458214799585,
1544
+ "eval_overall_accuracy": 0.9552586873372396,
1545
+ "eval_runtime": 1.7647,
1546
+ "eval_samples_per_second": 8.5,
1547
+ "eval_steps_per_second": 0.567,
1548
+ "step": 200
1549
+ },
1550
+ {
1551
+ "epoch": 67.0,
1552
+ "learning_rate": 4.649122807017544e-06,
1553
+ "loss": 0.95,
1554
+ "step": 201
1555
+ },
1556
+ {
1557
+ "epoch": 67.33,
1558
+ "learning_rate": 4.619883040935672e-06,
1559
+ "loss": 0.6638,
1560
+ "step": 202
1561
+ },
1562
+ {
1563
+ "epoch": 67.67,
1564
+ "learning_rate": 4.590643274853801e-06,
1565
+ "loss": 0.665,
1566
+ "step": 203
1567
+ },
1568
+ {
1569
+ "epoch": 68.0,
1570
+ "learning_rate": 4.56140350877193e-06,
1571
+ "loss": 0.6479,
1572
+ "step": 204
1573
+ },
1574
+ {
1575
+ "epoch": 68.33,
1576
+ "learning_rate": 4.532163742690059e-06,
1577
+ "loss": 0.6732,
1578
+ "step": 205
1579
+ },
1580
+ {
1581
+ "epoch": 68.67,
1582
+ "learning_rate": 4.502923976608187e-06,
1583
+ "loss": 0.6869,
1584
+ "step": 206
1585
+ },
1586
+ {
1587
+ "epoch": 69.0,
1588
+ "learning_rate": 4.473684210526316e-06,
1589
+ "loss": 0.9015,
1590
+ "step": 207
1591
+ },
1592
+ {
1593
+ "epoch": 69.33,
1594
+ "learning_rate": 4.444444444444444e-06,
1595
+ "loss": 0.6845,
1596
+ "step": 208
1597
+ },
1598
+ {
1599
+ "epoch": 69.67,
1600
+ "learning_rate": 4.415204678362573e-06,
1601
+ "loss": 0.7129,
1602
+ "step": 209
1603
+ },
1604
+ {
1605
+ "epoch": 70.0,
1606
+ "learning_rate": 4.385964912280702e-06,
1607
+ "loss": 0.6514,
1608
+ "step": 210
1609
+ },
1610
+ {
1611
+ "epoch": 70.0,
1612
+ "eval_accuracy_dropoff": 0.3559227605853838,
1613
+ "eval_accuracy_undropoff": 0.9851614613102746,
1614
+ "eval_accuracy_unlabeled": NaN,
1615
+ "eval_iou_dropoff": 0.27459156227705966,
1616
+ "eval_iou_undropoff": 0.956616600218594,
1617
+ "eval_iou_unlabeled": 0.0,
1618
+ "eval_loss": 0.6755360960960388,
1619
+ "eval_mean_accuracy": 0.6705421109478292,
1620
+ "eval_mean_iou": 0.41040272083188456,
1621
+ "eval_overall_accuracy": 0.9573000590006511,
1622
+ "eval_runtime": 1.6967,
1623
+ "eval_samples_per_second": 8.84,
1624
+ "eval_steps_per_second": 0.589,
1625
+ "step": 210
1626
+ },
1627
+ {
1628
+ "epoch": 70.33,
1629
+ "learning_rate": 4.3567251461988305e-06,
1630
+ "loss": 0.6626,
1631
+ "step": 211
1632
+ },
1633
+ {
1634
+ "epoch": 70.67,
1635
+ "learning_rate": 4.3274853801169596e-06,
1636
+ "loss": 0.703,
1637
+ "step": 212
1638
+ },
1639
+ {
1640
+ "epoch": 71.0,
1641
+ "learning_rate": 4.298245614035088e-06,
1642
+ "loss": 0.9492,
1643
+ "step": 213
1644
+ },
1645
+ {
1646
+ "epoch": 71.33,
1647
+ "learning_rate": 4.269005847953217e-06,
1648
+ "loss": 0.6613,
1649
+ "step": 214
1650
+ },
1651
+ {
1652
+ "epoch": 71.67,
1653
+ "learning_rate": 4.239766081871345e-06,
1654
+ "loss": 0.655,
1655
+ "step": 215
1656
+ },
1657
+ {
1658
+ "epoch": 72.0,
1659
+ "learning_rate": 4.210526315789474e-06,
1660
+ "loss": 0.8745,
1661
+ "step": 216
1662
+ },
1663
+ {
1664
+ "epoch": 72.33,
1665
+ "learning_rate": 4.181286549707602e-06,
1666
+ "loss": 0.6602,
1667
+ "step": 217
1668
+ },
1669
+ {
1670
+ "epoch": 72.67,
1671
+ "learning_rate": 4.152046783625731e-06,
1672
+ "loss": 0.6767,
1673
+ "step": 218
1674
+ },
1675
+ {
1676
+ "epoch": 73.0,
1677
+ "learning_rate": 4.12280701754386e-06,
1678
+ "loss": 0.9219,
1679
+ "step": 219
1680
+ },
1681
+ {
1682
+ "epoch": 73.33,
1683
+ "learning_rate": 4.093567251461989e-06,
1684
+ "loss": 0.6433,
1685
+ "step": 220
1686
+ },
1687
+ {
1688
+ "epoch": 73.33,
1689
+ "eval_accuracy_dropoff": 0.4099639304339835,
1690
+ "eval_accuracy_undropoff": 0.9808879706826835,
1691
+ "eval_accuracy_unlabeled": NaN,
1692
+ "eval_iou_dropoff": 0.29912706760930513,
1693
+ "eval_iou_undropoff": 0.9548156149062209,
1694
+ "eval_iou_unlabeled": 0.0,
1695
+ "eval_loss": 0.6803807616233826,
1696
+ "eval_mean_accuracy": 0.6954259505583336,
1697
+ "eval_mean_iou": 0.417980894171842,
1698
+ "eval_overall_accuracy": 0.955608622233073,
1699
+ "eval_runtime": 1.7817,
1700
+ "eval_samples_per_second": 8.419,
1701
+ "eval_steps_per_second": 0.561,
1702
+ "step": 220
1703
+ },
1704
+ {
1705
+ "epoch": 73.67,
1706
+ "learning_rate": 4.064327485380118e-06,
1707
+ "loss": 0.6502,
1708
+ "step": 221
1709
+ },
1710
+ {
1711
+ "epoch": 74.0,
1712
+ "learning_rate": 4.035087719298246e-06,
1713
+ "loss": 0.6356,
1714
+ "step": 222
1715
+ },
1716
+ {
1717
+ "epoch": 74.33,
1718
+ "learning_rate": 4.005847953216375e-06,
1719
+ "loss": 0.6709,
1720
+ "step": 223
1721
+ },
1722
+ {
1723
+ "epoch": 74.67,
1724
+ "learning_rate": 3.976608187134503e-06,
1725
+ "loss": 0.641,
1726
+ "step": 224
1727
+ },
1728
+ {
1729
+ "epoch": 75.0,
1730
+ "learning_rate": 3.947368421052632e-06,
1731
+ "loss": 0.6381,
1732
+ "step": 225
1733
+ },
1734
+ {
1735
+ "epoch": 75.33,
1736
+ "learning_rate": 3.9181286549707605e-06,
1737
+ "loss": 0.6744,
1738
+ "step": 226
1739
+ },
1740
+ {
1741
+ "epoch": 75.67,
1742
+ "learning_rate": 3.88888888888889e-06,
1743
+ "loss": 0.6525,
1744
+ "step": 227
1745
+ },
1746
+ {
1747
+ "epoch": 76.0,
1748
+ "learning_rate": 3.859649122807018e-06,
1749
+ "loss": 0.6357,
1750
+ "step": 228
1751
+ },
1752
+ {
1753
+ "epoch": 76.33,
1754
+ "learning_rate": 3.830409356725147e-06,
1755
+ "loss": 0.6491,
1756
+ "step": 229
1757
+ },
1758
+ {
1759
+ "epoch": 76.67,
1760
+ "learning_rate": 3.801169590643275e-06,
1761
+ "loss": 0.6686,
1762
+ "step": 230
1763
+ },
1764
+ {
1765
+ "epoch": 76.67,
1766
+ "eval_accuracy_dropoff": 0.35306821053598914,
1767
+ "eval_accuracy_undropoff": 0.9858205793852772,
1768
+ "eval_accuracy_unlabeled": NaN,
1769
+ "eval_iou_dropoff": 0.2748764728240213,
1770
+ "eval_iou_undropoff": 0.9571334605114129,
1771
+ "eval_iou_unlabeled": 0.0,
1772
+ "eval_loss": 0.6608495712280273,
1773
+ "eval_mean_accuracy": 0.6694443949606332,
1774
+ "eval_mean_iou": 0.4106699777784781,
1775
+ "eval_overall_accuracy": 0.9578035990397136,
1776
+ "eval_runtime": 1.7393,
1777
+ "eval_samples_per_second": 8.624,
1778
+ "eval_steps_per_second": 0.575,
1779
+ "step": 230
1780
+ },
1781
+ {
1782
+ "epoch": 77.0,
1783
+ "learning_rate": 3.7719298245614037e-06,
1784
+ "loss": 0.6871,
1785
+ "step": 231
1786
+ },
1787
+ {
1788
+ "epoch": 77.33,
1789
+ "learning_rate": 3.7426900584795324e-06,
1790
+ "loss": 0.6416,
1791
+ "step": 232
1792
+ },
1793
+ {
1794
+ "epoch": 77.67,
1795
+ "learning_rate": 3.713450292397661e-06,
1796
+ "loss": 0.6469,
1797
+ "step": 233
1798
+ },
1799
+ {
1800
+ "epoch": 78.0,
1801
+ "learning_rate": 3.6842105263157896e-06,
1802
+ "loss": 0.8602,
1803
+ "step": 234
1804
+ },
1805
+ {
1806
+ "epoch": 78.33,
1807
+ "learning_rate": 3.6549707602339187e-06,
1808
+ "loss": 0.6188,
1809
+ "step": 235
1810
+ },
1811
+ {
1812
+ "epoch": 78.67,
1813
+ "learning_rate": 3.625730994152047e-06,
1814
+ "loss": 0.7108,
1815
+ "step": 236
1816
+ },
1817
+ {
1818
+ "epoch": 79.0,
1819
+ "learning_rate": 3.596491228070176e-06,
1820
+ "loss": 0.6065,
1821
+ "step": 237
1822
+ },
1823
+ {
1824
+ "epoch": 79.33,
1825
+ "learning_rate": 3.567251461988304e-06,
1826
+ "loss": 0.6272,
1827
+ "step": 238
1828
+ },
1829
+ {
1830
+ "epoch": 79.67,
1831
+ "learning_rate": 3.5380116959064333e-06,
1832
+ "loss": 0.6602,
1833
+ "step": 239
1834
+ },
1835
+ {
1836
+ "epoch": 80.0,
1837
+ "learning_rate": 3.5087719298245615e-06,
1838
+ "loss": 0.9091,
1839
+ "step": 240
1840
+ },
1841
+ {
1842
+ "epoch": 80.0,
1843
+ "eval_accuracy_dropoff": 0.40314057941048087,
1844
+ "eval_accuracy_undropoff": 0.9813366073699885,
1845
+ "eval_accuracy_unlabeled": NaN,
1846
+ "eval_iou_dropoff": 0.29295880462456697,
1847
+ "eval_iou_undropoff": 0.9549312682031544,
1848
+ "eval_iou_unlabeled": 0.0,
1849
+ "eval_loss": 0.670059323310852,
1850
+ "eval_mean_accuracy": 0.6922385933902346,
1851
+ "eval_mean_iou": 0.41596335760924047,
1852
+ "eval_overall_accuracy": 0.9557352701822917,
1853
+ "eval_runtime": 1.9268,
1854
+ "eval_samples_per_second": 7.785,
1855
+ "eval_steps_per_second": 0.519,
1856
+ "step": 240
1857
+ },
1858
+ {
1859
+ "epoch": 80.33,
1860
+ "learning_rate": 3.4795321637426905e-06,
1861
+ "loss": 0.6373,
1862
+ "step": 241
1863
+ },
1864
+ {
1865
+ "epoch": 80.67,
1866
+ "learning_rate": 3.4502923976608188e-06,
1867
+ "loss": 0.6484,
1868
+ "step": 242
1869
+ },
1870
+ {
1871
+ "epoch": 81.0,
1872
+ "learning_rate": 3.421052631578948e-06,
1873
+ "loss": 0.6679,
1874
+ "step": 243
1875
+ },
1876
+ {
1877
+ "epoch": 81.33,
1878
+ "learning_rate": 3.391812865497076e-06,
1879
+ "loss": 0.6349,
1880
+ "step": 244
1881
+ },
1882
+ {
1883
+ "epoch": 81.67,
1884
+ "learning_rate": 3.362573099415205e-06,
1885
+ "loss": 0.6319,
1886
+ "step": 245
1887
+ },
1888
+ {
1889
+ "epoch": 82.0,
1890
+ "learning_rate": 3.3333333333333333e-06,
1891
+ "loss": 0.9136,
1892
+ "step": 246
1893
+ },
1894
+ {
1895
+ "epoch": 82.33,
1896
+ "learning_rate": 3.3040935672514624e-06,
1897
+ "loss": 0.637,
1898
+ "step": 247
1899
+ },
1900
+ {
1901
+ "epoch": 82.67,
1902
+ "learning_rate": 3.2748538011695906e-06,
1903
+ "loss": 0.6478,
1904
+ "step": 248
1905
+ },
1906
+ {
1907
+ "epoch": 83.0,
1908
+ "learning_rate": 3.2456140350877197e-06,
1909
+ "loss": 0.7076,
1910
+ "step": 249
1911
+ },
1912
+ {
1913
+ "epoch": 83.33,
1914
+ "learning_rate": 3.216374269005848e-06,
1915
+ "loss": 0.6346,
1916
+ "step": 250
1917
+ },
1918
+ {
1919
+ "epoch": 83.33,
1920
+ "eval_accuracy_dropoff": 0.39871803708043285,
1921
+ "eval_accuracy_undropoff": 0.9820861978493113,
1922
+ "eval_accuracy_unlabeled": NaN,
1923
+ "eval_iou_dropoff": 0.29438330894981235,
1924
+ "eval_iou_undropoff": 0.9554704345649212,
1925
+ "eval_iou_unlabeled": 0.0,
1926
+ "eval_loss": 0.6724778413772583,
1927
+ "eval_mean_accuracy": 0.690402117464872,
1928
+ "eval_mean_iou": 0.4166179145049112,
1929
+ "eval_overall_accuracy": 0.956255849202474,
1930
+ "eval_runtime": 2.1195,
1931
+ "eval_samples_per_second": 7.077,
1932
+ "eval_steps_per_second": 0.472,
1933
+ "step": 250
1934
+ },
1935
+ {
1936
+ "epoch": 83.67,
1937
+ "learning_rate": 3.187134502923977e-06,
1938
+ "loss": 0.6372,
1939
+ "step": 251
1940
+ },
1941
+ {
1942
+ "epoch": 84.0,
1943
+ "learning_rate": 3.157894736842105e-06,
1944
+ "loss": 0.5675,
1945
+ "step": 252
1946
+ },
1947
+ {
1948
+ "epoch": 84.33,
1949
+ "learning_rate": 3.1286549707602342e-06,
1950
+ "loss": 0.6351,
1951
+ "step": 253
1952
+ },
1953
+ {
1954
+ "epoch": 84.67,
1955
+ "learning_rate": 3.0994152046783624e-06,
1956
+ "loss": 0.6653,
1957
+ "step": 254
1958
+ },
1959
+ {
1960
+ "epoch": 85.0,
1961
+ "learning_rate": 3.0701754385964915e-06,
1962
+ "loss": 0.6255,
1963
+ "step": 255
1964
+ },
1965
+ {
1966
+ "epoch": 85.33,
1967
+ "learning_rate": 3.04093567251462e-06,
1968
+ "loss": 0.697,
1969
+ "step": 256
1970
+ },
1971
+ {
1972
+ "epoch": 85.67,
1973
+ "learning_rate": 3.011695906432749e-06,
1974
+ "loss": 0.606,
1975
+ "step": 257
1976
+ },
1977
+ {
1978
+ "epoch": 86.0,
1979
+ "learning_rate": 2.9824561403508774e-06,
1980
+ "loss": 0.5992,
1981
+ "step": 258
1982
+ },
1983
+ {
1984
+ "epoch": 86.33,
1985
+ "learning_rate": 2.953216374269006e-06,
1986
+ "loss": 0.6058,
1987
+ "step": 259
1988
+ },
1989
+ {
1990
+ "epoch": 86.67,
1991
+ "learning_rate": 2.9239766081871347e-06,
1992
+ "loss": 0.6303,
1993
+ "step": 260
1994
+ },
1995
+ {
1996
+ "epoch": 86.67,
1997
+ "eval_accuracy_dropoff": 0.3481287476738576,
1998
+ "eval_accuracy_undropoff": 0.9858072746199361,
1999
+ "eval_accuracy_unlabeled": NaN,
2000
+ "eval_iou_dropoff": 0.27019966744381985,
2001
+ "eval_iou_undropoff": 0.9569079345006184,
2002
+ "eval_iou_unlabeled": 0.0,
2003
+ "eval_loss": 0.6459957957267761,
2004
+ "eval_mean_accuracy": 0.6669680111468969,
2005
+ "eval_mean_iou": 0.40903586731481273,
2006
+ "eval_overall_accuracy": 0.9575721740722656,
2007
+ "eval_runtime": 1.8655,
2008
+ "eval_samples_per_second": 8.041,
2009
+ "eval_steps_per_second": 0.536,
2010
+ "step": 260
2011
+ },
2012
+ {
2013
+ "epoch": 87.0,
2014
+ "learning_rate": 2.8947368421052634e-06,
2015
+ "loss": 0.8867,
2016
+ "step": 261
2017
+ },
2018
+ {
2019
+ "epoch": 87.33,
2020
+ "learning_rate": 2.865497076023392e-06,
2021
+ "loss": 0.6459,
2022
+ "step": 262
2023
+ },
2024
+ {
2025
+ "epoch": 87.67,
2026
+ "learning_rate": 2.8362573099415206e-06,
2027
+ "loss": 0.6791,
2028
+ "step": 263
2029
+ },
2030
+ {
2031
+ "epoch": 88.0,
2032
+ "learning_rate": 2.8070175438596493e-06,
2033
+ "loss": 0.5866,
2034
+ "step": 264
2035
+ },
2036
+ {
2037
+ "epoch": 88.33,
2038
+ "learning_rate": 2.7777777777777783e-06,
2039
+ "loss": 0.6311,
2040
+ "step": 265
2041
+ },
2042
+ {
2043
+ "epoch": 88.67,
2044
+ "learning_rate": 2.7485380116959066e-06,
2045
+ "loss": 0.6489,
2046
+ "step": 266
2047
+ },
2048
+ {
2049
+ "epoch": 89.0,
2050
+ "learning_rate": 2.7192982456140356e-06,
2051
+ "loss": 0.5736,
2052
+ "step": 267
2053
+ },
2054
+ {
2055
+ "epoch": 89.33,
2056
+ "learning_rate": 2.690058479532164e-06,
2057
+ "loss": 0.6387,
2058
+ "step": 268
2059
+ },
2060
+ {
2061
+ "epoch": 89.67,
2062
+ "learning_rate": 2.660818713450293e-06,
2063
+ "loss": 0.6558,
2064
+ "step": 269
2065
+ },
2066
+ {
2067
+ "epoch": 90.0,
2068
+ "learning_rate": 2.631578947368421e-06,
2069
+ "loss": 0.8923,
2070
+ "step": 270
2071
+ },
2072
+ {
2073
+ "epoch": 90.0,
2074
+ "eval_accuracy_dropoff": 0.37603671284490087,
2075
+ "eval_accuracy_undropoff": 0.9837325295126305,
2076
+ "eval_accuracy_unlabeled": NaN,
2077
+ "eval_iou_dropoff": 0.2832072394745152,
2078
+ "eval_iou_undropoff": 0.95609396049178,
2079
+ "eval_iou_unlabeled": 0.0,
2080
+ "eval_loss": 0.6549919843673706,
2081
+ "eval_mean_accuracy": 0.6798846211787657,
2082
+ "eval_mean_iou": 0.4131003999887651,
2083
+ "eval_overall_accuracy": 0.9568250020345052,
2084
+ "eval_runtime": 1.8036,
2085
+ "eval_samples_per_second": 8.317,
2086
+ "eval_steps_per_second": 0.554,
2087
+ "step": 270
2088
+ },
2089
+ {
2090
+ "epoch": 90.33,
2091
+ "learning_rate": 2.60233918128655e-06,
2092
+ "loss": 0.6328,
2093
+ "step": 271
2094
+ },
2095
+ {
2096
+ "epoch": 90.67,
2097
+ "learning_rate": 2.5730994152046784e-06,
2098
+ "loss": 0.6585,
2099
+ "step": 272
2100
+ },
2101
+ {
2102
+ "epoch": 91.0,
2103
+ "learning_rate": 2.5438596491228075e-06,
2104
+ "loss": 0.9006,
2105
+ "step": 273
2106
+ },
2107
+ {
2108
+ "epoch": 91.33,
2109
+ "learning_rate": 2.5146198830409357e-06,
2110
+ "loss": 0.6464,
2111
+ "step": 274
2112
+ },
2113
+ {
2114
+ "epoch": 91.67,
2115
+ "learning_rate": 2.4853801169590643e-06,
2116
+ "loss": 0.6188,
2117
+ "step": 275
2118
+ },
2119
+ {
2120
+ "epoch": 92.0,
2121
+ "learning_rate": 2.456140350877193e-06,
2122
+ "loss": 0.6249,
2123
+ "step": 276
2124
+ },
2125
+ {
2126
+ "epoch": 92.33,
2127
+ "learning_rate": 2.4269005847953216e-06,
2128
+ "loss": 0.6195,
2129
+ "step": 277
2130
+ },
2131
+ {
2132
+ "epoch": 92.67,
2133
+ "learning_rate": 2.3976608187134502e-06,
2134
+ "loss": 0.6036,
2135
+ "step": 278
2136
+ },
2137
+ {
2138
+ "epoch": 93.0,
2139
+ "learning_rate": 2.368421052631579e-06,
2140
+ "loss": 0.7175,
2141
+ "step": 279
2142
+ },
2143
+ {
2144
+ "epoch": 93.33,
2145
+ "learning_rate": 2.3391812865497075e-06,
2146
+ "loss": 0.6334,
2147
+ "step": 280
2148
+ },
2149
+ {
2150
+ "epoch": 93.33,
2151
+ "eval_accuracy_dropoff": 0.3565660394697544,
2152
+ "eval_accuracy_undropoff": 0.9850611433796019,
2153
+ "eval_accuracy_unlabeled": NaN,
2154
+ "eval_iou_dropoff": 0.27340870154979013,
2155
+ "eval_iou_undropoff": 0.9565466234668595,
2156
+ "eval_iou_unlabeled": 0.0,
2157
+ "eval_loss": 0.6467730402946472,
2158
+ "eval_mean_accuracy": 0.6708135914246782,
2159
+ "eval_mean_iou": 0.4099851083388832,
2160
+ "eval_overall_accuracy": 0.957232666015625,
2161
+ "eval_runtime": 1.8074,
2162
+ "eval_samples_per_second": 8.299,
2163
+ "eval_steps_per_second": 0.553,
2164
+ "step": 280
2165
+ },
2166
+ {
2167
+ "epoch": 93.67,
2168
+ "learning_rate": 2.309941520467836e-06,
2169
+ "loss": 0.6033,
2170
+ "step": 281
2171
+ },
2172
+ {
2173
+ "epoch": 94.0,
2174
+ "learning_rate": 2.280701754385965e-06,
2175
+ "loss": 0.8517,
2176
+ "step": 282
2177
+ },
2178
+ {
2179
+ "epoch": 94.33,
2180
+ "learning_rate": 2.2514619883040934e-06,
2181
+ "loss": 0.6438,
2182
+ "step": 283
2183
+ },
2184
+ {
2185
+ "epoch": 94.67,
2186
+ "learning_rate": 2.222222222222222e-06,
2187
+ "loss": 0.6265,
2188
+ "step": 284
2189
+ },
2190
+ {
2191
+ "epoch": 95.0,
2192
+ "learning_rate": 2.192982456140351e-06,
2193
+ "loss": 0.6216,
2194
+ "step": 285
2195
+ },
2196
+ {
2197
+ "epoch": 95.33,
2198
+ "learning_rate": 2.1637426900584798e-06,
2199
+ "loss": 0.6381,
2200
+ "step": 286
2201
+ },
2202
+ {
2203
+ "epoch": 95.67,
2204
+ "learning_rate": 2.1345029239766084e-06,
2205
+ "loss": 0.6458,
2206
+ "step": 287
2207
+ },
2208
+ {
2209
+ "epoch": 96.0,
2210
+ "learning_rate": 2.105263157894737e-06,
2211
+ "loss": 0.5837,
2212
+ "step": 288
2213
+ },
2214
+ {
2215
+ "epoch": 96.33,
2216
+ "learning_rate": 2.0760233918128657e-06,
2217
+ "loss": 0.6099,
2218
+ "step": 289
2219
+ },
2220
+ {
2221
+ "epoch": 96.67,
2222
+ "learning_rate": 2.0467836257309943e-06,
2223
+ "loss": 0.6242,
2224
+ "step": 290
2225
+ },
2226
+ {
2227
+ "epoch": 96.67,
2228
+ "eval_accuracy_dropoff": 0.36074160865669586,
2229
+ "eval_accuracy_undropoff": 0.9848365589406427,
2230
+ "eval_accuracy_unlabeled": NaN,
2231
+ "eval_iou_dropoff": 0.27543140307408953,
2232
+ "eval_iou_undropoff": 0.9565082215316674,
2233
+ "eval_iou_unlabeled": 0.0,
2234
+ "eval_loss": 0.6483049392700195,
2235
+ "eval_mean_accuracy": 0.6727890837986693,
2236
+ "eval_mean_iou": 0.4106465415352523,
2237
+ "eval_overall_accuracy": 0.9572029113769531,
2238
+ "eval_runtime": 1.8293,
2239
+ "eval_samples_per_second": 8.2,
2240
+ "eval_steps_per_second": 0.547,
2241
+ "step": 290
2242
+ },
2243
+ {
2244
+ "epoch": 97.0,
2245
+ "learning_rate": 2.017543859649123e-06,
2246
+ "loss": 0.6073,
2247
+ "step": 291
2248
+ },
2249
+ {
2250
+ "epoch": 97.33,
2251
+ "learning_rate": 1.9883040935672516e-06,
2252
+ "loss": 0.6105,
2253
+ "step": 292
2254
+ },
2255
+ {
2256
+ "epoch": 97.67,
2257
+ "learning_rate": 1.9590643274853803e-06,
2258
+ "loss": 0.621,
2259
+ "step": 293
2260
+ },
2261
+ {
2262
+ "epoch": 98.0,
2263
+ "learning_rate": 1.929824561403509e-06,
2264
+ "loss": 0.6491,
2265
+ "step": 294
2266
+ },
2267
+ {
2268
+ "epoch": 98.33,
2269
+ "learning_rate": 1.9005847953216375e-06,
2270
+ "loss": 0.6567,
2271
+ "step": 295
2272
+ },
2273
+ {
2274
+ "epoch": 98.67,
2275
+ "learning_rate": 1.8713450292397662e-06,
2276
+ "loss": 0.59,
2277
+ "step": 296
2278
+ },
2279
+ {
2280
+ "epoch": 99.0,
2281
+ "learning_rate": 1.8421052631578948e-06,
2282
+ "loss": 0.9013,
2283
+ "step": 297
2284
+ },
2285
+ {
2286
+ "epoch": 99.33,
2287
+ "learning_rate": 1.8128654970760235e-06,
2288
+ "loss": 0.6339,
2289
+ "step": 298
2290
+ },
2291
+ {
2292
+ "epoch": 99.67,
2293
+ "learning_rate": 1.783625730994152e-06,
2294
+ "loss": 0.5897,
2295
+ "step": 299
2296
+ },
2297
+ {
2298
+ "epoch": 100.0,
2299
+ "learning_rate": 1.7543859649122807e-06,
2300
+ "loss": 0.7401,
2301
+ "step": 300
2302
+ },
2303
+ {
2304
+ "epoch": 100.0,
2305
+ "eval_accuracy_dropoff": 0.375468100259609,
2306
+ "eval_accuracy_undropoff": 0.9838123581046776,
2307
+ "eval_accuracy_unlabeled": NaN,
2308
+ "eval_iou_dropoff": 0.2824600973046777,
2309
+ "eval_iou_undropoff": 0.9561470657300064,
2310
+ "eval_iou_unlabeled": 0.0,
2311
+ "eval_loss": 0.6469975709915161,
2312
+ "eval_mean_accuracy": 0.6796402291821433,
2313
+ "eval_mean_iou": 0.4128690543448947,
2314
+ "eval_overall_accuracy": 0.9568761189778646,
2315
+ "eval_runtime": 1.7964,
2316
+ "eval_samples_per_second": 8.35,
2317
+ "eval_steps_per_second": 0.557,
2318
+ "step": 300
2319
+ },
2320
+ {
2321
+ "epoch": 100.33,
2322
+ "learning_rate": 1.7251461988304094e-06,
2323
+ "loss": 0.652,
2324
+ "step": 301
2325
+ },
2326
+ {
2327
+ "epoch": 100.67,
2328
+ "learning_rate": 1.695906432748538e-06,
2329
+ "loss": 0.6203,
2330
+ "step": 302
2331
+ },
2332
+ {
2333
+ "epoch": 101.0,
2334
+ "learning_rate": 1.6666666666666667e-06,
2335
+ "loss": 0.6215,
2336
+ "step": 303
2337
+ },
2338
+ {
2339
+ "epoch": 101.33,
2340
+ "learning_rate": 1.6374269005847953e-06,
2341
+ "loss": 0.6197,
2342
+ "step": 304
2343
+ },
2344
+ {
2345
+ "epoch": 101.67,
2346
+ "learning_rate": 1.608187134502924e-06,
2347
+ "loss": 0.6337,
2348
+ "step": 305
2349
+ },
2350
+ {
2351
+ "epoch": 102.0,
2352
+ "learning_rate": 1.5789473684210526e-06,
2353
+ "loss": 0.5749,
2354
+ "step": 306
2355
+ },
2356
+ {
2357
+ "epoch": 102.33,
2358
+ "learning_rate": 1.5497076023391812e-06,
2359
+ "loss": 0.6456,
2360
+ "step": 307
2361
+ },
2362
+ {
2363
+ "epoch": 102.67,
2364
+ "learning_rate": 1.52046783625731e-06,
2365
+ "loss": 0.6368,
2366
+ "step": 308
2367
+ },
2368
+ {
2369
+ "epoch": 103.0,
2370
+ "learning_rate": 1.4912280701754387e-06,
2371
+ "loss": 0.5797,
2372
+ "step": 309
2373
+ },
2374
+ {
2375
+ "epoch": 103.33,
2376
+ "learning_rate": 1.4619883040935674e-06,
2377
+ "loss": 0.6148,
2378
+ "step": 310
2379
+ },
2380
+ {
2381
+ "epoch": 103.33,
2382
+ "eval_accuracy_dropoff": 0.3397144301238312,
2383
+ "eval_accuracy_undropoff": 0.9868187028811736,
2384
+ "eval_accuracy_unlabeled": NaN,
2385
+ "eval_iou_dropoff": 0.2667655906800951,
2386
+ "eval_iou_undropoff": 0.9575273824280992,
2387
+ "eval_iou_unlabeled": 0.0,
2388
+ "eval_loss": 0.6242181062698364,
2389
+ "eval_mean_accuracy": 0.6632665665025024,
2390
+ "eval_mean_iou": 0.4080976577027314,
2391
+ "eval_overall_accuracy": 0.9581662495930989,
2392
+ "eval_runtime": 1.8212,
2393
+ "eval_samples_per_second": 8.236,
2394
+ "eval_steps_per_second": 0.549,
2395
+ "step": 310
2396
+ },
2397
+ {
2398
+ "epoch": 103.67,
2399
+ "learning_rate": 1.432748538011696e-06,
2400
+ "loss": 0.6082,
2401
+ "step": 311
2402
+ },
2403
+ {
2404
+ "epoch": 104.0,
2405
+ "learning_rate": 1.4035087719298246e-06,
2406
+ "loss": 0.9087,
2407
+ "step": 312
2408
+ },
2409
+ {
2410
+ "epoch": 104.33,
2411
+ "learning_rate": 1.3742690058479533e-06,
2412
+ "loss": 0.5963,
2413
+ "step": 313
2414
+ },
2415
+ {
2416
+ "epoch": 104.67,
2417
+ "learning_rate": 1.345029239766082e-06,
2418
+ "loss": 0.6039,
2419
+ "step": 314
2420
+ },
2421
+ {
2422
+ "epoch": 105.0,
2423
+ "learning_rate": 1.3157894736842106e-06,
2424
+ "loss": 0.5417,
2425
+ "step": 315
2426
+ },
2427
+ {
2428
+ "epoch": 105.33,
2429
+ "learning_rate": 1.2865497076023392e-06,
2430
+ "loss": 0.6354,
2431
+ "step": 316
2432
+ },
2433
+ {
2434
+ "epoch": 105.67,
2435
+ "learning_rate": 1.2573099415204678e-06,
2436
+ "loss": 0.6061,
2437
+ "step": 317
2438
+ },
2439
+ {
2440
+ "epoch": 106.0,
2441
+ "learning_rate": 1.2280701754385965e-06,
2442
+ "loss": 0.894,
2443
+ "step": 318
2444
+ },
2445
+ {
2446
+ "epoch": 106.33,
2447
+ "learning_rate": 1.1988304093567251e-06,
2448
+ "loss": 0.5906,
2449
+ "step": 319
2450
+ },
2451
+ {
2452
+ "epoch": 106.67,
2453
+ "learning_rate": 1.1695906432748538e-06,
2454
+ "loss": 0.6345,
2455
+ "step": 320
2456
+ },
2457
+ {
2458
+ "epoch": 106.67,
2459
+ "eval_accuracy_dropoff": 0.3478013646702047,
2460
+ "eval_accuracy_undropoff": 0.986197104244433,
2461
+ "eval_accuracy_unlabeled": NaN,
2462
+ "eval_iou_dropoff": 0.27076151256220743,
2463
+ "eval_iou_undropoff": 0.9572722423904299,
2464
+ "eval_iou_unlabeled": 0.0,
2465
+ "eval_loss": 0.628661036491394,
2466
+ "eval_mean_accuracy": 0.6669992344573188,
2467
+ "eval_mean_iou": 0.4093445849842124,
2468
+ "eval_overall_accuracy": 0.9579302469889323,
2469
+ "eval_runtime": 1.876,
2470
+ "eval_samples_per_second": 7.996,
2471
+ "eval_steps_per_second": 0.533,
2472
+ "step": 320
2473
+ },
2474
+ {
2475
+ "epoch": 107.0,
2476
+ "learning_rate": 1.1403508771929824e-06,
2477
+ "loss": 0.6445,
2478
+ "step": 321
2479
+ },
2480
+ {
2481
+ "epoch": 107.33,
2482
+ "learning_rate": 1.111111111111111e-06,
2483
+ "loss": 0.6068,
2484
+ "step": 322
2485
+ },
2486
+ {
2487
+ "epoch": 107.67,
2488
+ "learning_rate": 1.0818713450292399e-06,
2489
+ "loss": 0.6212,
2490
+ "step": 323
2491
+ },
2492
+ {
2493
+ "epoch": 108.0,
2494
+ "learning_rate": 1.0526315789473685e-06,
2495
+ "loss": 0.8927,
2496
+ "step": 324
2497
+ },
2498
+ {
2499
+ "epoch": 108.33,
2500
+ "learning_rate": 1.0233918128654972e-06,
2501
+ "loss": 0.6067,
2502
+ "step": 325
2503
+ },
2504
+ {
2505
+ "epoch": 108.67,
2506
+ "learning_rate": 9.941520467836258e-07,
2507
+ "loss": 0.6,
2508
+ "step": 326
2509
+ },
2510
+ {
2511
+ "epoch": 109.0,
2512
+ "learning_rate": 9.649122807017545e-07,
2513
+ "loss": 0.636,
2514
+ "step": 327
2515
+ },
2516
+ {
2517
+ "epoch": 109.33,
2518
+ "learning_rate": 9.356725146198831e-07,
2519
+ "loss": 0.6087,
2520
+ "step": 328
2521
+ },
2522
+ {
2523
+ "epoch": 109.67,
2524
+ "learning_rate": 9.064327485380117e-07,
2525
+ "loss": 0.6098,
2526
+ "step": 329
2527
+ },
2528
+ {
2529
+ "epoch": 110.0,
2530
+ "learning_rate": 8.771929824561404e-07,
2531
+ "loss": 0.8711,
2532
+ "step": 330
2533
+ },
2534
+ {
2535
+ "epoch": 110.0,
2536
+ "eval_accuracy_dropoff": 0.3719989891331817,
2537
+ "eval_accuracy_undropoff": 0.9843307117623705,
2538
+ "eval_accuracy_unlabeled": NaN,
2539
+ "eval_iou_dropoff": 0.2826272887539055,
2540
+ "eval_iou_undropoff": 0.9565014355927716,
2541
+ "eval_iou_unlabeled": 0.0,
2542
+ "eval_loss": 0.6396395564079285,
2543
+ "eval_mean_accuracy": 0.6781648504477761,
2544
+ "eval_mean_iou": 0.41304290811555905,
2545
+ "eval_overall_accuracy": 0.9572179158528645,
2546
+ "eval_runtime": 1.7809,
2547
+ "eval_samples_per_second": 8.423,
2548
+ "eval_steps_per_second": 0.562,
2549
+ "step": 330
2550
+ },
2551
+ {
2552
+ "epoch": 110.33,
2553
+ "learning_rate": 8.47953216374269e-07,
2554
+ "loss": 0.6206,
2555
+ "step": 331
2556
+ },
2557
+ {
2558
+ "epoch": 110.67,
2559
+ "learning_rate": 8.187134502923977e-07,
2560
+ "loss": 0.6306,
2561
+ "step": 332
2562
+ },
2563
+ {
2564
+ "epoch": 111.0,
2565
+ "learning_rate": 7.894736842105263e-07,
2566
+ "loss": 0.5302,
2567
+ "step": 333
2568
+ },
2569
+ {
2570
+ "epoch": 111.33,
2571
+ "learning_rate": 7.60233918128655e-07,
2572
+ "loss": 0.5798,
2573
+ "step": 334
2574
+ },
2575
+ {
2576
+ "epoch": 111.67,
2577
+ "learning_rate": 7.309941520467837e-07,
2578
+ "loss": 0.6009,
2579
+ "step": 335
2580
+ },
2581
+ {
2582
+ "epoch": 112.0,
2583
+ "learning_rate": 7.017543859649123e-07,
2584
+ "loss": 0.6054,
2585
+ "step": 336
2586
+ },
2587
+ {
2588
+ "epoch": 112.33,
2589
+ "learning_rate": 6.72514619883041e-07,
2590
+ "loss": 0.6292,
2591
+ "step": 337
2592
+ },
2593
+ {
2594
+ "epoch": 112.67,
2595
+ "learning_rate": 6.432748538011696e-07,
2596
+ "loss": 0.5848,
2597
+ "step": 338
2598
+ },
2599
+ {
2600
+ "epoch": 113.0,
2601
+ "learning_rate": 6.140350877192982e-07,
2602
+ "loss": 0.8663,
2603
+ "step": 339
2604
+ },
2605
+ {
2606
+ "epoch": 113.33,
2607
+ "learning_rate": 5.847953216374269e-07,
2608
+ "loss": 0.5812,
2609
+ "step": 340
2610
+ },
2611
+ {
2612
+ "epoch": 113.33,
2613
+ "eval_accuracy_dropoff": 0.3516725250993636,
2614
+ "eval_accuracy_undropoff": 0.9860648548769415,
2615
+ "eval_accuracy_unlabeled": NaN,
2616
+ "eval_iou_dropoff": 0.2731218385062137,
2617
+ "eval_iou_undropoff": 0.9573105281390962,
2618
+ "eval_iou_unlabeled": 0.0,
2619
+ "eval_loss": 0.6265794038772583,
2620
+ "eval_mean_accuracy": 0.6688686899881525,
2621
+ "eval_mean_iou": 0.41014412221510327,
2622
+ "eval_overall_accuracy": 0.9579752604166667,
2623
+ "eval_runtime": 1.872,
2624
+ "eval_samples_per_second": 8.013,
2625
+ "eval_steps_per_second": 0.534,
2626
+ "step": 340
2627
+ },
2628
+ {
2629
+ "epoch": 113.67,
2630
+ "learning_rate": 5.555555555555555e-07,
2631
+ "loss": 0.6256,
2632
+ "step": 341
2633
+ },
2634
+ {
2635
+ "epoch": 114.0,
2636
+ "learning_rate": 5.263157894736843e-07,
2637
+ "loss": 0.6466,
2638
+ "step": 342
2639
+ },
2640
+ {
2641
+ "epoch": 114.33,
2642
+ "learning_rate": 4.970760233918129e-07,
2643
+ "loss": 0.6116,
2644
+ "step": 343
2645
+ },
2646
+ {
2647
+ "epoch": 114.67,
2648
+ "learning_rate": 4.6783625730994155e-07,
2649
+ "loss": 0.6163,
2650
+ "step": 344
2651
+ },
2652
+ {
2653
+ "epoch": 115.0,
2654
+ "learning_rate": 4.385964912280702e-07,
2655
+ "loss": 0.6741,
2656
+ "step": 345
2657
+ },
2658
+ {
2659
+ "epoch": 115.33,
2660
+ "learning_rate": 4.093567251461988e-07,
2661
+ "loss": 0.6073,
2662
+ "step": 346
2663
+ },
2664
+ {
2665
+ "epoch": 115.67,
2666
+ "learning_rate": 3.801169590643275e-07,
2667
+ "loss": 0.5819,
2668
+ "step": 347
2669
+ },
2670
+ {
2671
+ "epoch": 116.0,
2672
+ "learning_rate": 3.5087719298245616e-07,
2673
+ "loss": 0.6744,
2674
+ "step": 348
2675
+ },
2676
+ {
2677
+ "epoch": 116.33,
2678
+ "learning_rate": 3.216374269005848e-07,
2679
+ "loss": 0.6013,
2680
+ "step": 349
2681
+ },
2682
+ {
2683
+ "epoch": 116.67,
2684
+ "learning_rate": 2.9239766081871344e-07,
2685
+ "loss": 0.6503,
2686
+ "step": 350
2687
+ },
2688
+ {
2689
+ "epoch": 116.67,
2690
+ "eval_accuracy_dropoff": 0.3705573552048154,
2691
+ "eval_accuracy_undropoff": 0.9845244291457382,
2692
+ "eval_accuracy_unlabeled": NaN,
2693
+ "eval_iou_dropoff": 0.2823822404299833,
2694
+ "eval_iou_undropoff": 0.9566275894646946,
2695
+ "eval_iou_unlabeled": 0.0,
2696
+ "eval_loss": 0.6383503675460815,
2697
+ "eval_mean_accuracy": 0.6775408921752768,
2698
+ "eval_mean_iou": 0.4130032766315593,
2699
+ "eval_overall_accuracy": 0.9573392232259115,
2700
+ "eval_runtime": 1.9904,
2701
+ "eval_samples_per_second": 7.536,
2702
+ "eval_steps_per_second": 0.502,
2703
+ "step": 350
2704
+ },
2705
+ {
2706
+ "epoch": 117.0,
2707
+ "learning_rate": 2.6315789473684213e-07,
2708
+ "loss": 0.5574,
2709
+ "step": 351
2710
+ },
2711
+ {
2712
+ "epoch": 117.33,
2713
+ "learning_rate": 2.3391812865497077e-07,
2714
+ "loss": 0.6548,
2715
+ "step": 352
2716
+ },
2717
+ {
2718
+ "epoch": 117.67,
2719
+ "learning_rate": 2.046783625730994e-07,
2720
+ "loss": 0.5903,
2721
+ "step": 353
2722
+ },
2723
+ {
2724
+ "epoch": 118.0,
2725
+ "learning_rate": 1.7543859649122808e-07,
2726
+ "loss": 0.6399,
2727
+ "step": 354
2728
+ },
2729
+ {
2730
+ "epoch": 118.33,
2731
+ "learning_rate": 1.4619883040935672e-07,
2732
+ "loss": 0.6272,
2733
+ "step": 355
2734
+ },
2735
+ {
2736
+ "epoch": 118.67,
2737
+ "learning_rate": 1.1695906432748539e-07,
2738
+ "loss": 0.5984,
2739
+ "step": 356
2740
+ },
2741
+ {
2742
+ "epoch": 119.0,
2743
+ "learning_rate": 8.771929824561404e-08,
2744
+ "loss": 0.5881,
2745
+ "step": 357
2746
+ },
2747
+ {
2748
+ "epoch": 119.33,
2749
+ "learning_rate": 5.847953216374269e-08,
2750
+ "loss": 0.583,
2751
+ "step": 358
2752
+ },
2753
+ {
2754
+ "epoch": 119.67,
2755
+ "learning_rate": 2.9239766081871347e-08,
2756
+ "loss": 0.5894,
2757
+ "step": 359
2758
+ },
2759
+ {
2760
+ "epoch": 120.0,
2761
+ "learning_rate": 0.0,
2762
+ "loss": 0.5923,
2763
+ "step": 360
2764
+ },
2765
+ {
2766
+ "epoch": 120.0,
2767
+ "eval_accuracy_dropoff": 0.3408114503641418,
2768
+ "eval_accuracy_undropoff": 0.9868857588984932,
2769
+ "eval_accuracy_unlabeled": NaN,
2770
+ "eval_iou_dropoff": 0.2681882895301801,
2771
+ "eval_iou_undropoff": 0.9576396746351885,
2772
+ "eval_iou_unlabeled": 0.0,
2773
+ "eval_loss": 0.6222037076950073,
2774
+ "eval_mean_accuracy": 0.6638486046313175,
2775
+ "eval_mean_iou": 0.40860932138845624,
2776
+ "eval_overall_accuracy": 0.9582789103190105,
2777
+ "eval_runtime": 1.8147,
2778
+ "eval_samples_per_second": 8.266,
2779
+ "eval_steps_per_second": 0.551,
2780
+ "step": 360
2781
  }
2782
  ],
2783
  "max_steps": 360,
2784
  "num_train_epochs": 120,
2785
+ "total_flos": 7.15190062546944e+16,
2786
  "trial_name": null,
2787
  "trial_params": null
2788
  }
{checkpoint-160 β†’ checkpoint-360}/training_args.bin RENAMED
File without changes
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ffe29792fc4be949142d41d54535aac3a2583db38ff6c6d79433bbb27a0c9090
3
  size 14932813
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bfa880e3c2fe0f3abccc0c0cc53859c38fc417811ec00758ae3cc1733cb697d
3
  size 14932813
runs/Feb12_06-10-23_robovision.csres.utexas.edu/events.out.tfevents.1707739829.robovision.csres.utexas.edu.2691170.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6e9a1c81c31eae7317185b695b461baac42d4146d06489a10dfa9b1b584de936
3
- size 79843
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:617cc3c9a5861b01b7156562400aac37fa581666e9d6b3c9c13cde5c95637fe4
3
+ size 89295