sam1120 commited on
Commit
1ca5c73
Β·
1 Parent(s): d432228

Training in progress, step 360

Browse files
{checkpoint-160 β†’ checkpoint-360}/config.json RENAMED
File without changes
{checkpoint-160 β†’ checkpoint-360}/optimizer.pt RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f478382476e16e604780186f8eaa95b3e616294f125feeeced38a6e2235f4f71
3
- size 29838853
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48f7b4cdcc2430b6a2e8755e3a7ae7ac0862d7a4a5909fcbc1007d9f3cfcad8b
3
+ size 29839045
{checkpoint-160 β†’ checkpoint-360}/pytorch_model.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:799a7139daa3ad2912be81c7a454d8bec2042ef23973d113d3cc0706188fd886
3
  size 14932813
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c421eb3d5d699e0c39a35fc4efb1f3c37126995ffe5af7e0081acd2490a8b7f
3
  size 14932813
{checkpoint-160 β†’ checkpoint-360}/rng_state.pth RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:88c547657e93f58d6d8ebd261b91d0d95a29f014be16e7edb041f57554938e2a
3
  size 14575
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25e2a23aa8e55e663fa626f372ac895d86436610bd2a2d5dc3f7be3ba8b92e19
3
  size 14575
{checkpoint-160 β†’ checkpoint-360}/scheduler.pt RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:74b84667487a7d36e002b08efe21cb6ab1a3ae479f3c473551150f836d3d8b09
3
  size 627
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f06e08ccd6b6a14a8e7a3e5fd4027795f1197880c0bc274859bca180a9e1a3b1
3
  size 627
{checkpoint-160 β†’ checkpoint-360}/trainer_state.json RENAMED
@@ -1,8 +1,8 @@
1
  {
2
- "best_metric": 0.37188878655433655,
3
- "best_model_checkpoint": "/robodata/smodak/Projects/nspl/scripts/terrainseg/training/models/dropoff-utcustom-train-SF-RGB-b0_4/checkpoint-160",
4
- "epoch": 53.333333333333336,
5
- "global_step": 160,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
@@ -1238,11 +1238,1551 @@
1238
  "eval_samples_per_second": 8.833,
1239
  "eval_steps_per_second": 0.589,
1240
  "step": 160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241
  }
1242
  ],
1243
  "max_steps": 360,
1244
  "num_train_epochs": 120,
1245
- "total_flos": 3.186802778701824e+16,
1246
  "trial_name": null,
1247
  "trial_params": null
1248
  }
 
1
  {
2
+ "best_metric": 0.30316540598869324,
3
+ "best_model_checkpoint": "/robodata/smodak/Projects/nspl/scripts/terrainseg/training/models/dropoff-utcustom-train-SF-RGB-b0_4/checkpoint-360",
4
+ "epoch": 120.0,
5
+ "global_step": 360,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
 
1238
  "eval_samples_per_second": 8.833,
1239
  "eval_steps_per_second": 0.589,
1240
  "step": 160
1241
+ },
1242
+ {
1243
+ "epoch": 53.67,
1244
+ "learning_rate": 1.7456140350877195e-05,
1245
+ "loss": 0.3485,
1246
+ "step": 161
1247
+ },
1248
+ {
1249
+ "epoch": 54.0,
1250
+ "learning_rate": 1.736842105263158e-05,
1251
+ "loss": 0.5096,
1252
+ "step": 162
1253
+ },
1254
+ {
1255
+ "epoch": 54.33,
1256
+ "learning_rate": 1.7280701754385966e-05,
1257
+ "loss": 0.3459,
1258
+ "step": 163
1259
+ },
1260
+ {
1261
+ "epoch": 54.67,
1262
+ "learning_rate": 1.719298245614035e-05,
1263
+ "loss": 0.3438,
1264
+ "step": 164
1265
+ },
1266
+ {
1267
+ "epoch": 55.0,
1268
+ "learning_rate": 1.7105263157894737e-05,
1269
+ "loss": 0.3643,
1270
+ "step": 165
1271
+ },
1272
+ {
1273
+ "epoch": 55.33,
1274
+ "learning_rate": 1.7017543859649125e-05,
1275
+ "loss": 0.3394,
1276
+ "step": 166
1277
+ },
1278
+ {
1279
+ "epoch": 55.67,
1280
+ "learning_rate": 1.692982456140351e-05,
1281
+ "loss": 0.3391,
1282
+ "step": 167
1283
+ },
1284
+ {
1285
+ "epoch": 56.0,
1286
+ "learning_rate": 1.6842105263157893e-05,
1287
+ "loss": 0.4763,
1288
+ "step": 168
1289
+ },
1290
+ {
1291
+ "epoch": 56.33,
1292
+ "learning_rate": 1.6754385964912282e-05,
1293
+ "loss": 0.3345,
1294
+ "step": 169
1295
+ },
1296
+ {
1297
+ "epoch": 56.67,
1298
+ "learning_rate": 1.6666666666666667e-05,
1299
+ "loss": 0.3459,
1300
+ "step": 170
1301
+ },
1302
+ {
1303
+ "epoch": 56.67,
1304
+ "eval_accuracy_dropoff": 0.3673352172214947,
1305
+ "eval_accuracy_undropoff": 0.9875539242139278,
1306
+ "eval_accuracy_unlabeled": NaN,
1307
+ "eval_iou_dropoff": 0.2895495764687773,
1308
+ "eval_iou_undropoff": 0.9594320775222817,
1309
+ "eval_iou_unlabeled": NaN,
1310
+ "eval_loss": 0.36101919412612915,
1311
+ "eval_mean_accuracy": 0.6774445707177112,
1312
+ "eval_mean_iou": 0.6244908269955295,
1313
+ "eval_overall_accuracy": 0.9600919087727865,
1314
+ "eval_runtime": 1.7029,
1315
+ "eval_samples_per_second": 8.809,
1316
+ "eval_steps_per_second": 0.587,
1317
+ "step": 170
1318
+ },
1319
+ {
1320
+ "epoch": 57.0,
1321
+ "learning_rate": 1.6578947368421053e-05,
1322
+ "loss": 0.4976,
1323
+ "step": 171
1324
+ },
1325
+ {
1326
+ "epoch": 57.33,
1327
+ "learning_rate": 1.649122807017544e-05,
1328
+ "loss": 0.3417,
1329
+ "step": 172
1330
+ },
1331
+ {
1332
+ "epoch": 57.67,
1333
+ "learning_rate": 1.6403508771929824e-05,
1334
+ "loss": 0.3344,
1335
+ "step": 173
1336
+ },
1337
+ {
1338
+ "epoch": 58.0,
1339
+ "learning_rate": 1.6315789473684213e-05,
1340
+ "loss": 0.5173,
1341
+ "step": 174
1342
+ },
1343
+ {
1344
+ "epoch": 58.33,
1345
+ "learning_rate": 1.62280701754386e-05,
1346
+ "loss": 0.3219,
1347
+ "step": 175
1348
+ },
1349
+ {
1350
+ "epoch": 58.67,
1351
+ "learning_rate": 1.614035087719298e-05,
1352
+ "loss": 0.356,
1353
+ "step": 176
1354
+ },
1355
+ {
1356
+ "epoch": 59.0,
1357
+ "learning_rate": 1.605263157894737e-05,
1358
+ "loss": 0.3378,
1359
+ "step": 177
1360
+ },
1361
+ {
1362
+ "epoch": 59.33,
1363
+ "learning_rate": 1.5964912280701755e-05,
1364
+ "loss": 0.3379,
1365
+ "step": 178
1366
+ },
1367
+ {
1368
+ "epoch": 59.67,
1369
+ "learning_rate": 1.5877192982456144e-05,
1370
+ "loss": 0.3279,
1371
+ "step": 179
1372
+ },
1373
+ {
1374
+ "epoch": 60.0,
1375
+ "learning_rate": 1.5789473684210526e-05,
1376
+ "loss": 0.3099,
1377
+ "step": 180
1378
+ },
1379
+ {
1380
+ "epoch": 60.0,
1381
+ "eval_accuracy_dropoff": 0.346790497851908,
1382
+ "eval_accuracy_undropoff": 0.9905155649788774,
1383
+ "eval_accuracy_unlabeled": NaN,
1384
+ "eval_iou_dropoff": 0.28786036776940277,
1385
+ "eval_iou_undropoff": 0.9614203385986966,
1386
+ "eval_iou_unlabeled": NaN,
1387
+ "eval_loss": 0.3455052673816681,
1388
+ "eval_mean_accuracy": 0.6686530314153927,
1389
+ "eval_mean_iou": 0.6246403531840496,
1390
+ "eval_overall_accuracy": 0.9620127360026042,
1391
+ "eval_runtime": 1.7655,
1392
+ "eval_samples_per_second": 8.496,
1393
+ "eval_steps_per_second": 0.566,
1394
+ "step": 180
1395
+ },
1396
+ {
1397
+ "epoch": 60.33,
1398
+ "learning_rate": 1.570175438596491e-05,
1399
+ "loss": 0.339,
1400
+ "step": 181
1401
+ },
1402
+ {
1403
+ "epoch": 60.67,
1404
+ "learning_rate": 1.56140350877193e-05,
1405
+ "loss": 0.327,
1406
+ "step": 182
1407
+ },
1408
+ {
1409
+ "epoch": 61.0,
1410
+ "learning_rate": 1.5526315789473686e-05,
1411
+ "loss": 0.3886,
1412
+ "step": 183
1413
+ },
1414
+ {
1415
+ "epoch": 61.33,
1416
+ "learning_rate": 1.543859649122807e-05,
1417
+ "loss": 0.3251,
1418
+ "step": 184
1419
+ },
1420
+ {
1421
+ "epoch": 61.67,
1422
+ "learning_rate": 1.5350877192982457e-05,
1423
+ "loss": 0.3521,
1424
+ "step": 185
1425
+ },
1426
+ {
1427
+ "epoch": 62.0,
1428
+ "learning_rate": 1.5263157894736842e-05,
1429
+ "loss": 0.3063,
1430
+ "step": 186
1431
+ },
1432
+ {
1433
+ "epoch": 62.33,
1434
+ "learning_rate": 1.517543859649123e-05,
1435
+ "loss": 0.3185,
1436
+ "step": 187
1437
+ },
1438
+ {
1439
+ "epoch": 62.67,
1440
+ "learning_rate": 1.5087719298245613e-05,
1441
+ "loss": 0.3333,
1442
+ "step": 188
1443
+ },
1444
+ {
1445
+ "epoch": 63.0,
1446
+ "learning_rate": 1.5e-05,
1447
+ "loss": 0.4778,
1448
+ "step": 189
1449
+ },
1450
+ {
1451
+ "epoch": 63.33,
1452
+ "learning_rate": 1.4912280701754386e-05,
1453
+ "loss": 0.3124,
1454
+ "step": 190
1455
+ },
1456
+ {
1457
+ "epoch": 63.33,
1458
+ "eval_accuracy_dropoff": 0.3634008776161923,
1459
+ "eval_accuracy_undropoff": 0.9891810970151558,
1460
+ "eval_accuracy_unlabeled": NaN,
1461
+ "eval_iou_dropoff": 0.2946043600942421,
1462
+ "eval_iou_undropoff": 0.9608427639045731,
1463
+ "eval_iou_unlabeled": NaN,
1464
+ "eval_loss": 0.34364980459213257,
1465
+ "eval_mean_accuracy": 0.676290987315674,
1466
+ "eval_mean_iou": 0.6277235619994076,
1467
+ "eval_overall_accuracy": 0.9614728291829427,
1468
+ "eval_runtime": 1.772,
1469
+ "eval_samples_per_second": 8.465,
1470
+ "eval_steps_per_second": 0.564,
1471
+ "step": 190
1472
+ },
1473
+ {
1474
+ "epoch": 63.67,
1475
+ "learning_rate": 1.4824561403508773e-05,
1476
+ "loss": 0.345,
1477
+ "step": 191
1478
+ },
1479
+ {
1480
+ "epoch": 64.0,
1481
+ "learning_rate": 1.4736842105263157e-05,
1482
+ "loss": 0.4656,
1483
+ "step": 192
1484
+ },
1485
+ {
1486
+ "epoch": 64.33,
1487
+ "learning_rate": 1.4649122807017544e-05,
1488
+ "loss": 0.3192,
1489
+ "step": 193
1490
+ },
1491
+ {
1492
+ "epoch": 64.67,
1493
+ "learning_rate": 1.456140350877193e-05,
1494
+ "loss": 0.3167,
1495
+ "step": 194
1496
+ },
1497
+ {
1498
+ "epoch": 65.0,
1499
+ "learning_rate": 1.4473684210526317e-05,
1500
+ "loss": 0.31,
1501
+ "step": 195
1502
+ },
1503
+ {
1504
+ "epoch": 65.33,
1505
+ "learning_rate": 1.43859649122807e-05,
1506
+ "loss": 0.3142,
1507
+ "step": 196
1508
+ },
1509
+ {
1510
+ "epoch": 65.67,
1511
+ "learning_rate": 1.4298245614035088e-05,
1512
+ "loss": 0.3105,
1513
+ "step": 197
1514
+ },
1515
+ {
1516
+ "epoch": 66.0,
1517
+ "learning_rate": 1.4210526315789473e-05,
1518
+ "loss": 0.3048,
1519
+ "step": 198
1520
+ },
1521
+ {
1522
+ "epoch": 66.33,
1523
+ "learning_rate": 1.412280701754386e-05,
1524
+ "loss": 0.2952,
1525
+ "step": 199
1526
+ },
1527
+ {
1528
+ "epoch": 66.67,
1529
+ "learning_rate": 1.4035087719298246e-05,
1530
+ "loss": 0.3283,
1531
+ "step": 200
1532
+ },
1533
+ {
1534
+ "epoch": 66.67,
1535
+ "eval_accuracy_dropoff": 0.32855469019229444,
1536
+ "eval_accuracy_undropoff": 0.9928226112890401,
1537
+ "eval_accuracy_unlabeled": NaN,
1538
+ "eval_iou_dropoff": 0.2844823727751503,
1539
+ "eval_iou_undropoff": 0.9628700300080827,
1540
+ "eval_iou_unlabeled": NaN,
1541
+ "eval_loss": 0.334386944770813,
1542
+ "eval_mean_accuracy": 0.6606886507406673,
1543
+ "eval_mean_iou": 0.6236762013916165,
1544
+ "eval_overall_accuracy": 0.9634101867675782,
1545
+ "eval_runtime": 1.7388,
1546
+ "eval_samples_per_second": 8.627,
1547
+ "eval_steps_per_second": 0.575,
1548
+ "step": 200
1549
+ },
1550
+ {
1551
+ "epoch": 67.0,
1552
+ "learning_rate": 1.3947368421052631e-05,
1553
+ "loss": 0.4613,
1554
+ "step": 201
1555
+ },
1556
+ {
1557
+ "epoch": 67.33,
1558
+ "learning_rate": 1.3859649122807017e-05,
1559
+ "loss": 0.3104,
1560
+ "step": 202
1561
+ },
1562
+ {
1563
+ "epoch": 67.67,
1564
+ "learning_rate": 1.3771929824561404e-05,
1565
+ "loss": 0.3083,
1566
+ "step": 203
1567
+ },
1568
+ {
1569
+ "epoch": 68.0,
1570
+ "learning_rate": 1.368421052631579e-05,
1571
+ "loss": 0.2887,
1572
+ "step": 204
1573
+ },
1574
+ {
1575
+ "epoch": 68.33,
1576
+ "learning_rate": 1.3596491228070175e-05,
1577
+ "loss": 0.3204,
1578
+ "step": 205
1579
+ },
1580
+ {
1581
+ "epoch": 68.67,
1582
+ "learning_rate": 1.350877192982456e-05,
1583
+ "loss": 0.3139,
1584
+ "step": 206
1585
+ },
1586
+ {
1587
+ "epoch": 69.0,
1588
+ "learning_rate": 1.3421052631578948e-05,
1589
+ "loss": 0.4495,
1590
+ "step": 207
1591
+ },
1592
+ {
1593
+ "epoch": 69.33,
1594
+ "learning_rate": 1.3333333333333333e-05,
1595
+ "loss": 0.312,
1596
+ "step": 208
1597
+ },
1598
+ {
1599
+ "epoch": 69.67,
1600
+ "learning_rate": 1.324561403508772e-05,
1601
+ "loss": 0.3213,
1602
+ "step": 209
1603
+ },
1604
+ {
1605
+ "epoch": 70.0,
1606
+ "learning_rate": 1.3157894736842104e-05,
1607
+ "loss": 0.2974,
1608
+ "step": 210
1609
+ },
1610
+ {
1611
+ "epoch": 70.0,
1612
+ "eval_accuracy_dropoff": 0.37460656603946973,
1613
+ "eval_accuracy_undropoff": 0.9887534818570898,
1614
+ "eval_accuracy_unlabeled": NaN,
1615
+ "eval_iou_dropoff": 0.30143317327023245,
1616
+ "eval_iou_undropoff": 0.9609119670395543,
1617
+ "eval_iou_unlabeled": NaN,
1618
+ "eval_loss": 0.34123456478118896,
1619
+ "eval_mean_accuracy": 0.6816800239482798,
1620
+ "eval_mean_iou": 0.6311725701548934,
1621
+ "eval_overall_accuracy": 0.961560312906901,
1622
+ "eval_runtime": 1.6793,
1623
+ "eval_samples_per_second": 8.932,
1624
+ "eval_steps_per_second": 0.595,
1625
+ "step": 210
1626
+ },
1627
+ {
1628
+ "epoch": 70.33,
1629
+ "learning_rate": 1.3070175438596491e-05,
1630
+ "loss": 0.2982,
1631
+ "step": 211
1632
+ },
1633
+ {
1634
+ "epoch": 70.67,
1635
+ "learning_rate": 1.2982456140350877e-05,
1636
+ "loss": 0.3144,
1637
+ "step": 212
1638
+ },
1639
+ {
1640
+ "epoch": 71.0,
1641
+ "learning_rate": 1.2894736842105264e-05,
1642
+ "loss": 0.457,
1643
+ "step": 213
1644
+ },
1645
+ {
1646
+ "epoch": 71.33,
1647
+ "learning_rate": 1.2807017543859648e-05,
1648
+ "loss": 0.2972,
1649
+ "step": 214
1650
+ },
1651
+ {
1652
+ "epoch": 71.67,
1653
+ "learning_rate": 1.2719298245614035e-05,
1654
+ "loss": 0.3,
1655
+ "step": 215
1656
+ },
1657
+ {
1658
+ "epoch": 72.0,
1659
+ "learning_rate": 1.263157894736842e-05,
1660
+ "loss": 0.4251,
1661
+ "step": 216
1662
+ },
1663
+ {
1664
+ "epoch": 72.33,
1665
+ "learning_rate": 1.2543859649122808e-05,
1666
+ "loss": 0.2965,
1667
+ "step": 217
1668
+ },
1669
+ {
1670
+ "epoch": 72.67,
1671
+ "learning_rate": 1.2456140350877193e-05,
1672
+ "loss": 0.3046,
1673
+ "step": 218
1674
+ },
1675
+ {
1676
+ "epoch": 73.0,
1677
+ "learning_rate": 1.2368421052631579e-05,
1678
+ "loss": 0.41,
1679
+ "step": 219
1680
+ },
1681
+ {
1682
+ "epoch": 73.33,
1683
+ "learning_rate": 1.2280701754385964e-05,
1684
+ "loss": 0.3003,
1685
+ "step": 220
1686
+ },
1687
+ {
1688
+ "epoch": 73.33,
1689
+ "eval_accuracy_dropoff": 0.38813839685712315,
1690
+ "eval_accuracy_undropoff": 0.9871960260262498,
1691
+ "eval_accuracy_unlabeled": NaN,
1692
+ "eval_iou_dropoff": 0.30409583037088367,
1693
+ "eval_iou_undropoff": 0.9599832530400442,
1694
+ "eval_iou_unlabeled": NaN,
1695
+ "eval_loss": 0.33220627903938293,
1696
+ "eval_mean_accuracy": 0.6876672114416864,
1697
+ "eval_mean_iou": 0.632039541705464,
1698
+ "eval_overall_accuracy": 0.9606709798177083,
1699
+ "eval_runtime": 1.7125,
1700
+ "eval_samples_per_second": 8.759,
1701
+ "eval_steps_per_second": 0.584,
1702
+ "step": 220
1703
+ },
1704
+ {
1705
+ "epoch": 73.67,
1706
+ "learning_rate": 1.2192982456140352e-05,
1707
+ "loss": 0.2938,
1708
+ "step": 221
1709
+ },
1710
+ {
1711
+ "epoch": 74.0,
1712
+ "learning_rate": 1.2105263157894737e-05,
1713
+ "loss": 0.2938,
1714
+ "step": 222
1715
+ },
1716
+ {
1717
+ "epoch": 74.33,
1718
+ "learning_rate": 1.2017543859649123e-05,
1719
+ "loss": 0.3042,
1720
+ "step": 223
1721
+ },
1722
+ {
1723
+ "epoch": 74.67,
1724
+ "learning_rate": 1.1929824561403508e-05,
1725
+ "loss": 0.2906,
1726
+ "step": 224
1727
+ },
1728
+ {
1729
+ "epoch": 75.0,
1730
+ "learning_rate": 1.1842105263157895e-05,
1731
+ "loss": 0.2817,
1732
+ "step": 225
1733
+ },
1734
+ {
1735
+ "epoch": 75.33,
1736
+ "learning_rate": 1.175438596491228e-05,
1737
+ "loss": 0.3076,
1738
+ "step": 226
1739
+ },
1740
+ {
1741
+ "epoch": 75.67,
1742
+ "learning_rate": 1.1666666666666668e-05,
1743
+ "loss": 0.2879,
1744
+ "step": 227
1745
+ },
1746
+ {
1747
+ "epoch": 76.0,
1748
+ "learning_rate": 1.1578947368421052e-05,
1749
+ "loss": 0.2936,
1750
+ "step": 228
1751
+ },
1752
+ {
1753
+ "epoch": 76.33,
1754
+ "learning_rate": 1.1491228070175439e-05,
1755
+ "loss": 0.2945,
1756
+ "step": 229
1757
+ },
1758
+ {
1759
+ "epoch": 76.67,
1760
+ "learning_rate": 1.1403508771929824e-05,
1761
+ "loss": 0.2968,
1762
+ "step": 230
1763
+ },
1764
+ {
1765
+ "epoch": 76.67,
1766
+ "eval_accuracy_dropoff": 0.371229351896524,
1767
+ "eval_accuracy_undropoff": 0.990241220717542,
1768
+ "eval_accuracy_unlabeled": NaN,
1769
+ "eval_iou_dropoff": 0.3066390868290461,
1770
+ "eval_iou_undropoff": 0.9622115016162788,
1771
+ "eval_iou_unlabeled": NaN,
1772
+ "eval_loss": 0.32894688844680786,
1773
+ "eval_mean_accuracy": 0.680735286307033,
1774
+ "eval_mean_iou": 0.6344252942226625,
1775
+ "eval_overall_accuracy": 0.9628326416015625,
1776
+ "eval_runtime": 1.7295,
1777
+ "eval_samples_per_second": 8.673,
1778
+ "eval_steps_per_second": 0.578,
1779
+ "step": 230
1780
+ },
1781
+ {
1782
+ "epoch": 77.0,
1783
+ "learning_rate": 1.1315789473684212e-05,
1784
+ "loss": 0.2881,
1785
+ "step": 231
1786
+ },
1787
+ {
1788
+ "epoch": 77.33,
1789
+ "learning_rate": 1.1228070175438595e-05,
1790
+ "loss": 0.2923,
1791
+ "step": 232
1792
+ },
1793
+ {
1794
+ "epoch": 77.67,
1795
+ "learning_rate": 1.1140350877192983e-05,
1796
+ "loss": 0.2869,
1797
+ "step": 233
1798
+ },
1799
+ {
1800
+ "epoch": 78.0,
1801
+ "learning_rate": 1.1052631578947368e-05,
1802
+ "loss": 0.3945,
1803
+ "step": 234
1804
+ },
1805
+ {
1806
+ "epoch": 78.33,
1807
+ "learning_rate": 1.0964912280701755e-05,
1808
+ "loss": 0.2829,
1809
+ "step": 235
1810
+ },
1811
+ {
1812
+ "epoch": 78.67,
1813
+ "learning_rate": 1.087719298245614e-05,
1814
+ "loss": 0.3114,
1815
+ "step": 236
1816
+ },
1817
+ {
1818
+ "epoch": 79.0,
1819
+ "learning_rate": 1.0789473684210526e-05,
1820
+ "loss": 0.2701,
1821
+ "step": 237
1822
+ },
1823
+ {
1824
+ "epoch": 79.33,
1825
+ "learning_rate": 1.0701754385964912e-05,
1826
+ "loss": 0.2843,
1827
+ "step": 238
1828
+ },
1829
+ {
1830
+ "epoch": 79.67,
1831
+ "learning_rate": 1.0614035087719299e-05,
1832
+ "loss": 0.2926,
1833
+ "step": 239
1834
+ },
1835
+ {
1836
+ "epoch": 80.0,
1837
+ "learning_rate": 1.0526315789473684e-05,
1838
+ "loss": 0.4415,
1839
+ "step": 240
1840
+ },
1841
+ {
1842
+ "epoch": 80.0,
1843
+ "eval_accuracy_dropoff": 0.37051140671307464,
1844
+ "eval_accuracy_undropoff": 0.9895621454945275,
1845
+ "eval_accuracy_unlabeled": NaN,
1846
+ "eval_iou_dropoff": 0.30238499254689827,
1847
+ "eval_iou_undropoff": 0.9615205715303682,
1848
+ "eval_iou_unlabeled": NaN,
1849
+ "eval_loss": 0.333290159702301,
1850
+ "eval_mean_accuracy": 0.6800367761038011,
1851
+ "eval_mean_iou": 0.6319527820386333,
1852
+ "eval_overall_accuracy": 0.962151845296224,
1853
+ "eval_runtime": 1.7448,
1854
+ "eval_samples_per_second": 8.597,
1855
+ "eval_steps_per_second": 0.573,
1856
+ "step": 240
1857
+ },
1858
+ {
1859
+ "epoch": 80.33,
1860
+ "learning_rate": 1.043859649122807e-05,
1861
+ "loss": 0.2859,
1862
+ "step": 241
1863
+ },
1864
+ {
1865
+ "epoch": 80.67,
1866
+ "learning_rate": 1.0350877192982455e-05,
1867
+ "loss": 0.2881,
1868
+ "step": 242
1869
+ },
1870
+ {
1871
+ "epoch": 81.0,
1872
+ "learning_rate": 1.0263157894736843e-05,
1873
+ "loss": 0.2879,
1874
+ "step": 243
1875
+ },
1876
+ {
1877
+ "epoch": 81.33,
1878
+ "learning_rate": 1.0175438596491228e-05,
1879
+ "loss": 0.2842,
1880
+ "step": 244
1881
+ },
1882
+ {
1883
+ "epoch": 81.67,
1884
+ "learning_rate": 1.0087719298245615e-05,
1885
+ "loss": 0.2787,
1886
+ "step": 245
1887
+ },
1888
+ {
1889
+ "epoch": 82.0,
1890
+ "learning_rate": 9.999999999999999e-06,
1891
+ "loss": 0.4344,
1892
+ "step": 246
1893
+ },
1894
+ {
1895
+ "epoch": 82.33,
1896
+ "learning_rate": 9.912280701754386e-06,
1897
+ "loss": 0.2793,
1898
+ "step": 247
1899
+ },
1900
+ {
1901
+ "epoch": 82.67,
1902
+ "learning_rate": 9.824561403508772e-06,
1903
+ "loss": 0.285,
1904
+ "step": 248
1905
+ },
1906
+ {
1907
+ "epoch": 83.0,
1908
+ "learning_rate": 9.736842105263159e-06,
1909
+ "loss": 0.2917,
1910
+ "step": 249
1911
+ },
1912
+ {
1913
+ "epoch": 83.33,
1914
+ "learning_rate": 9.649122807017543e-06,
1915
+ "loss": 0.2836,
1916
+ "step": 250
1917
+ },
1918
+ {
1919
+ "epoch": 83.33,
1920
+ "eval_accuracy_dropoff": 0.36174673191352497,
1921
+ "eval_accuracy_undropoff": 0.9897151502959513,
1922
+ "eval_accuracy_unlabeled": NaN,
1923
+ "eval_iou_dropoff": 0.2960297801738117,
1924
+ "eval_iou_undropoff": 0.961289959079153,
1925
+ "eval_iou_unlabeled": NaN,
1926
+ "eval_loss": 0.32710760831832886,
1927
+ "eval_mean_accuracy": 0.6757309411047381,
1928
+ "eval_mean_iou": 0.6286598696264823,
1929
+ "eval_overall_accuracy": 0.9619099934895833,
1930
+ "eval_runtime": 1.7114,
1931
+ "eval_samples_per_second": 8.765,
1932
+ "eval_steps_per_second": 0.584,
1933
+ "step": 250
1934
+ },
1935
+ {
1936
+ "epoch": 83.67,
1937
+ "learning_rate": 9.56140350877193e-06,
1938
+ "loss": 0.2828,
1939
+ "step": 251
1940
+ },
1941
+ {
1942
+ "epoch": 84.0,
1943
+ "learning_rate": 9.473684210526315e-06,
1944
+ "loss": 0.2569,
1945
+ "step": 252
1946
+ },
1947
+ {
1948
+ "epoch": 84.33,
1949
+ "learning_rate": 9.385964912280703e-06,
1950
+ "loss": 0.2759,
1951
+ "step": 253
1952
+ },
1953
+ {
1954
+ "epoch": 84.67,
1955
+ "learning_rate": 9.298245614035088e-06,
1956
+ "loss": 0.2976,
1957
+ "step": 254
1958
+ },
1959
+ {
1960
+ "epoch": 85.0,
1961
+ "learning_rate": 9.210526315789474e-06,
1962
+ "loss": 0.2836,
1963
+ "step": 255
1964
+ },
1965
+ {
1966
+ "epoch": 85.33,
1967
+ "learning_rate": 9.12280701754386e-06,
1968
+ "loss": 0.2999,
1969
+ "step": 256
1970
+ },
1971
+ {
1972
+ "epoch": 85.67,
1973
+ "learning_rate": 9.035087719298246e-06,
1974
+ "loss": 0.275,
1975
+ "step": 257
1976
+ },
1977
+ {
1978
+ "epoch": 86.0,
1979
+ "learning_rate": 8.947368421052632e-06,
1980
+ "loss": 0.2665,
1981
+ "step": 258
1982
+ },
1983
+ {
1984
+ "epoch": 86.33,
1985
+ "learning_rate": 8.859649122807017e-06,
1986
+ "loss": 0.2703,
1987
+ "step": 259
1988
+ },
1989
+ {
1990
+ "epoch": 86.67,
1991
+ "learning_rate": 8.771929824561403e-06,
1992
+ "loss": 0.2762,
1993
+ "step": 260
1994
+ },
1995
+ {
1996
+ "epoch": 86.67,
1997
+ "eval_accuracy_dropoff": 0.3429135938612815,
1998
+ "eval_accuracy_undropoff": 0.9916094827852302,
1999
+ "eval_accuracy_unlabeled": NaN,
2000
+ "eval_iou_dropoff": 0.2903326201128185,
2001
+ "eval_iou_undropoff": 0.962314355540773,
2002
+ "eval_iou_unlabeled": NaN,
2003
+ "eval_loss": 0.3202665448188782,
2004
+ "eval_mean_accuracy": 0.6672615383232559,
2005
+ "eval_mean_iou": 0.6263234878267958,
2006
+ "eval_overall_accuracy": 0.9628865559895833,
2007
+ "eval_runtime": 1.6823,
2008
+ "eval_samples_per_second": 8.916,
2009
+ "eval_steps_per_second": 0.594,
2010
+ "step": 260
2011
+ },
2012
+ {
2013
+ "epoch": 87.0,
2014
+ "learning_rate": 8.68421052631579e-06,
2015
+ "loss": 0.3979,
2016
+ "step": 261
2017
+ },
2018
+ {
2019
+ "epoch": 87.33,
2020
+ "learning_rate": 8.596491228070176e-06,
2021
+ "loss": 0.2849,
2022
+ "step": 262
2023
+ },
2024
+ {
2025
+ "epoch": 87.67,
2026
+ "learning_rate": 8.508771929824563e-06,
2027
+ "loss": 0.2815,
2028
+ "step": 263
2029
+ },
2030
+ {
2031
+ "epoch": 88.0,
2032
+ "learning_rate": 8.421052631578947e-06,
2033
+ "loss": 0.2683,
2034
+ "step": 264
2035
+ },
2036
+ {
2037
+ "epoch": 88.33,
2038
+ "learning_rate": 8.333333333333334e-06,
2039
+ "loss": 0.2759,
2040
+ "step": 265
2041
+ },
2042
+ {
2043
+ "epoch": 88.67,
2044
+ "learning_rate": 8.24561403508772e-06,
2045
+ "loss": 0.2838,
2046
+ "step": 266
2047
+ },
2048
+ {
2049
+ "epoch": 89.0,
2050
+ "learning_rate": 8.157894736842106e-06,
2051
+ "loss": 0.2532,
2052
+ "step": 267
2053
+ },
2054
+ {
2055
+ "epoch": 89.33,
2056
+ "learning_rate": 8.07017543859649e-06,
2057
+ "loss": 0.2816,
2058
+ "step": 268
2059
+ },
2060
+ {
2061
+ "epoch": 89.67,
2062
+ "learning_rate": 7.982456140350877e-06,
2063
+ "loss": 0.2791,
2064
+ "step": 269
2065
+ },
2066
+ {
2067
+ "epoch": 90.0,
2068
+ "learning_rate": 7.894736842105263e-06,
2069
+ "loss": 0.3901,
2070
+ "step": 270
2071
+ },
2072
+ {
2073
+ "epoch": 90.0,
2074
+ "eval_accuracy_dropoff": 0.3685126473223516,
2075
+ "eval_accuracy_undropoff": 0.9888721603639332,
2076
+ "eval_accuracy_unlabeled": NaN,
2077
+ "eval_iou_dropoff": 0.29714208968771855,
2078
+ "eval_iou_undropoff": 0.9607636920278417,
2079
+ "eval_iou_unlabeled": NaN,
2080
+ "eval_loss": 0.3186405599117279,
2081
+ "eval_mean_accuracy": 0.6786924038431424,
2082
+ "eval_mean_iou": 0.6289528908577802,
2083
+ "eval_overall_accuracy": 0.9614039103190104,
2084
+ "eval_runtime": 1.758,
2085
+ "eval_samples_per_second": 8.532,
2086
+ "eval_steps_per_second": 0.569,
2087
+ "step": 270
2088
+ },
2089
+ {
2090
+ "epoch": 90.33,
2091
+ "learning_rate": 7.80701754385965e-06,
2092
+ "loss": 0.2778,
2093
+ "step": 271
2094
+ },
2095
+ {
2096
+ "epoch": 90.67,
2097
+ "learning_rate": 7.719298245614036e-06,
2098
+ "loss": 0.2824,
2099
+ "step": 272
2100
+ },
2101
+ {
2102
+ "epoch": 91.0,
2103
+ "learning_rate": 7.631578947368421e-06,
2104
+ "loss": 0.3983,
2105
+ "step": 273
2106
+ },
2107
+ {
2108
+ "epoch": 91.33,
2109
+ "learning_rate": 7.543859649122807e-06,
2110
+ "loss": 0.2797,
2111
+ "step": 274
2112
+ },
2113
+ {
2114
+ "epoch": 91.67,
2115
+ "learning_rate": 7.456140350877193e-06,
2116
+ "loss": 0.2673,
2117
+ "step": 275
2118
+ },
2119
+ {
2120
+ "epoch": 92.0,
2121
+ "learning_rate": 7.3684210526315784e-06,
2122
+ "loss": 0.2817,
2123
+ "step": 276
2124
+ },
2125
+ {
2126
+ "epoch": 92.33,
2127
+ "learning_rate": 7.280701754385965e-06,
2128
+ "loss": 0.273,
2129
+ "step": 277
2130
+ },
2131
+ {
2132
+ "epoch": 92.67,
2133
+ "learning_rate": 7.19298245614035e-06,
2134
+ "loss": 0.2669,
2135
+ "step": 278
2136
+ },
2137
+ {
2138
+ "epoch": 93.0,
2139
+ "learning_rate": 7.105263157894737e-06,
2140
+ "loss": 0.2744,
2141
+ "step": 279
2142
+ },
2143
+ {
2144
+ "epoch": 93.33,
2145
+ "learning_rate": 7.017543859649123e-06,
2146
+ "loss": 0.2755,
2147
+ "step": 280
2148
+ },
2149
+ {
2150
+ "epoch": 93.33,
2151
+ "eval_accuracy_dropoff": 0.34684793346658394,
2152
+ "eval_accuracy_undropoff": 0.9916666932761974,
2153
+ "eval_accuracy_unlabeled": NaN,
2154
+ "eval_iou_dropoff": 0.29397103565778265,
2155
+ "eval_iou_undropoff": 0.9625401398998029,
2156
+ "eval_iou_unlabeled": NaN,
2157
+ "eval_loss": 0.308605819940567,
2158
+ "eval_mean_accuracy": 0.6692573133713906,
2159
+ "eval_mean_iou": 0.6282555877787928,
2160
+ "eval_overall_accuracy": 0.9631154378255208,
2161
+ "eval_runtime": 1.7591,
2162
+ "eval_samples_per_second": 8.527,
2163
+ "eval_steps_per_second": 0.568,
2164
+ "step": 280
2165
+ },
2166
+ {
2167
+ "epoch": 93.67,
2168
+ "learning_rate": 6.9298245614035085e-06,
2169
+ "loss": 0.2648,
2170
+ "step": 281
2171
+ },
2172
+ {
2173
+ "epoch": 94.0,
2174
+ "learning_rate": 6.842105263157895e-06,
2175
+ "loss": 0.359,
2176
+ "step": 282
2177
+ },
2178
+ {
2179
+ "epoch": 94.33,
2180
+ "learning_rate": 6.75438596491228e-06,
2181
+ "loss": 0.2767,
2182
+ "step": 283
2183
+ },
2184
+ {
2185
+ "epoch": 94.67,
2186
+ "learning_rate": 6.666666666666667e-06,
2187
+ "loss": 0.2738,
2188
+ "step": 284
2189
+ },
2190
+ {
2191
+ "epoch": 95.0,
2192
+ "learning_rate": 6.578947368421052e-06,
2193
+ "loss": 0.2827,
2194
+ "step": 285
2195
+ },
2196
+ {
2197
+ "epoch": 95.33,
2198
+ "learning_rate": 6.4912280701754385e-06,
2199
+ "loss": 0.2708,
2200
+ "step": 286
2201
+ },
2202
+ {
2203
+ "epoch": 95.67,
2204
+ "learning_rate": 6.403508771929824e-06,
2205
+ "loss": 0.27,
2206
+ "step": 287
2207
+ },
2208
+ {
2209
+ "epoch": 96.0,
2210
+ "learning_rate": 6.31578947368421e-06,
2211
+ "loss": 0.2552,
2212
+ "step": 288
2213
+ },
2214
+ {
2215
+ "epoch": 96.33,
2216
+ "learning_rate": 6.228070175438597e-06,
2217
+ "loss": 0.2681,
2218
+ "step": 289
2219
+ },
2220
+ {
2221
+ "epoch": 96.67,
2222
+ "learning_rate": 6.140350877192982e-06,
2223
+ "loss": 0.2652,
2224
+ "step": 290
2225
+ },
2226
+ {
2227
+ "epoch": 96.67,
2228
+ "eval_accuracy_dropoff": 0.3660946079444942,
2229
+ "eval_accuracy_undropoff": 0.9896209525573355,
2230
+ "eval_accuracy_unlabeled": NaN,
2231
+ "eval_iou_dropoff": 0.2990901540497295,
2232
+ "eval_iou_undropoff": 0.9613865609215132,
2233
+ "eval_iou_unlabeled": NaN,
2234
+ "eval_loss": 0.30988389253616333,
2235
+ "eval_mean_accuracy": 0.6778577802509149,
2236
+ "eval_mean_iou": 0.6302383574856214,
2237
+ "eval_overall_accuracy": 0.9620124816894531,
2238
+ "eval_runtime": 1.7226,
2239
+ "eval_samples_per_second": 8.708,
2240
+ "eval_steps_per_second": 0.581,
2241
+ "step": 290
2242
+ },
2243
+ {
2244
+ "epoch": 97.0,
2245
+ "learning_rate": 6.0526315789473685e-06,
2246
+ "loss": 0.2743,
2247
+ "step": 291
2248
+ },
2249
+ {
2250
+ "epoch": 97.33,
2251
+ "learning_rate": 5.964912280701754e-06,
2252
+ "loss": 0.2614,
2253
+ "step": 292
2254
+ },
2255
+ {
2256
+ "epoch": 97.67,
2257
+ "learning_rate": 5.87719298245614e-06,
2258
+ "loss": 0.2758,
2259
+ "step": 293
2260
+ },
2261
+ {
2262
+ "epoch": 98.0,
2263
+ "learning_rate": 5.789473684210526e-06,
2264
+ "loss": 0.2869,
2265
+ "step": 294
2266
+ },
2267
+ {
2268
+ "epoch": 98.33,
2269
+ "learning_rate": 5.701754385964912e-06,
2270
+ "loss": 0.2763,
2271
+ "step": 295
2272
+ },
2273
+ {
2274
+ "epoch": 98.67,
2275
+ "learning_rate": 5.614035087719298e-06,
2276
+ "loss": 0.255,
2277
+ "step": 296
2278
+ },
2279
+ {
2280
+ "epoch": 99.0,
2281
+ "learning_rate": 5.526315789473684e-06,
2282
+ "loss": 0.3951,
2283
+ "step": 297
2284
+ },
2285
+ {
2286
+ "epoch": 99.33,
2287
+ "learning_rate": 5.43859649122807e-06,
2288
+ "loss": 0.2727,
2289
+ "step": 298
2290
+ },
2291
+ {
2292
+ "epoch": 99.67,
2293
+ "learning_rate": 5.350877192982456e-06,
2294
+ "loss": 0.2592,
2295
+ "step": 299
2296
+ },
2297
+ {
2298
+ "epoch": 100.0,
2299
+ "learning_rate": 5.263157894736842e-06,
2300
+ "loss": 0.2627,
2301
+ "step": 300
2302
+ },
2303
+ {
2304
+ "epoch": 100.0,
2305
+ "eval_accuracy_dropoff": 0.3547740482918648,
2306
+ "eval_accuracy_undropoff": 0.9909123130813517,
2307
+ "eval_accuracy_unlabeled": NaN,
2308
+ "eval_iou_dropoff": 0.29659560165178145,
2309
+ "eval_iou_undropoff": 0.9621508524590926,
2310
+ "eval_iou_unlabeled": NaN,
2311
+ "eval_loss": 0.3055838942527771,
2312
+ "eval_mean_accuracy": 0.6728431806866083,
2313
+ "eval_mean_iou": 0.6293732270554371,
2314
+ "eval_overall_accuracy": 0.9627454121907552,
2315
+ "eval_runtime": 1.7545,
2316
+ "eval_samples_per_second": 8.549,
2317
+ "eval_steps_per_second": 0.57,
2318
+ "step": 300
2319
+ },
2320
+ {
2321
+ "epoch": 100.33,
2322
+ "learning_rate": 5.175438596491228e-06,
2323
+ "loss": 0.2787,
2324
+ "step": 301
2325
+ },
2326
+ {
2327
+ "epoch": 100.67,
2328
+ "learning_rate": 5.087719298245614e-06,
2329
+ "loss": 0.2673,
2330
+ "step": 302
2331
+ },
2332
+ {
2333
+ "epoch": 101.0,
2334
+ "learning_rate": 4.9999999999999996e-06,
2335
+ "loss": 0.2558,
2336
+ "step": 303
2337
+ },
2338
+ {
2339
+ "epoch": 101.33,
2340
+ "learning_rate": 4.912280701754386e-06,
2341
+ "loss": 0.2655,
2342
+ "step": 304
2343
+ },
2344
+ {
2345
+ "epoch": 101.67,
2346
+ "learning_rate": 4.824561403508771e-06,
2347
+ "loss": 0.2683,
2348
+ "step": 305
2349
+ },
2350
+ {
2351
+ "epoch": 102.0,
2352
+ "learning_rate": 4.736842105263158e-06,
2353
+ "loss": 0.2645,
2354
+ "step": 306
2355
+ },
2356
+ {
2357
+ "epoch": 102.33,
2358
+ "learning_rate": 4.649122807017544e-06,
2359
+ "loss": 0.2794,
2360
+ "step": 307
2361
+ },
2362
+ {
2363
+ "epoch": 102.67,
2364
+ "learning_rate": 4.56140350877193e-06,
2365
+ "loss": 0.2712,
2366
+ "step": 308
2367
+ },
2368
+ {
2369
+ "epoch": 103.0,
2370
+ "learning_rate": 4.473684210526316e-06,
2371
+ "loss": 0.245,
2372
+ "step": 309
2373
+ },
2374
+ {
2375
+ "epoch": 103.33,
2376
+ "learning_rate": 4.3859649122807014e-06,
2377
+ "loss": 0.2647,
2378
+ "step": 310
2379
+ },
2380
+ {
2381
+ "epoch": 103.33,
2382
+ "eval_accuracy_dropoff": 0.3457509132262733,
2383
+ "eval_accuracy_undropoff": 0.9921036217700021,
2384
+ "eval_accuracy_unlabeled": NaN,
2385
+ "eval_iou_dropoff": 0.29540246242326396,
2386
+ "eval_iou_undropoff": 0.9629167331704185,
2387
+ "eval_iou_unlabeled": NaN,
2388
+ "eval_loss": 0.3036021888256073,
2389
+ "eval_mean_accuracy": 0.6689272674981377,
2390
+ "eval_mean_iou": 0.6291595977968412,
2391
+ "eval_overall_accuracy": 0.9634844462076823,
2392
+ "eval_runtime": 1.6948,
2393
+ "eval_samples_per_second": 8.85,
2394
+ "eval_steps_per_second": 0.59,
2395
+ "step": 310
2396
+ },
2397
+ {
2398
+ "epoch": 103.67,
2399
+ "learning_rate": 4.298245614035088e-06,
2400
+ "loss": 0.2642,
2401
+ "step": 311
2402
+ },
2403
+ {
2404
+ "epoch": 104.0,
2405
+ "learning_rate": 4.210526315789473e-06,
2406
+ "loss": 0.3691,
2407
+ "step": 312
2408
+ },
2409
+ {
2410
+ "epoch": 104.33,
2411
+ "learning_rate": 4.12280701754386e-06,
2412
+ "loss": 0.2571,
2413
+ "step": 313
2414
+ },
2415
+ {
2416
+ "epoch": 104.67,
2417
+ "learning_rate": 4.035087719298245e-06,
2418
+ "loss": 0.2652,
2419
+ "step": 314
2420
+ },
2421
+ {
2422
+ "epoch": 105.0,
2423
+ "learning_rate": 3.9473684210526315e-06,
2424
+ "loss": 0.2417,
2425
+ "step": 315
2426
+ },
2427
+ {
2428
+ "epoch": 105.33,
2429
+ "learning_rate": 3.859649122807018e-06,
2430
+ "loss": 0.2673,
2431
+ "step": 316
2432
+ },
2433
+ {
2434
+ "epoch": 105.67,
2435
+ "learning_rate": 3.7719298245614033e-06,
2436
+ "loss": 0.2618,
2437
+ "step": 317
2438
+ },
2439
+ {
2440
+ "epoch": 106.0,
2441
+ "learning_rate": 3.6842105263157892e-06,
2442
+ "loss": 0.3631,
2443
+ "step": 318
2444
+ },
2445
+ {
2446
+ "epoch": 106.33,
2447
+ "learning_rate": 3.596491228070175e-06,
2448
+ "loss": 0.2536,
2449
+ "step": 319
2450
+ },
2451
+ {
2452
+ "epoch": 106.67,
2453
+ "learning_rate": 3.5087719298245615e-06,
2454
+ "loss": 0.2697,
2455
+ "step": 320
2456
+ },
2457
+ {
2458
+ "epoch": 106.67,
2459
+ "eval_accuracy_dropoff": 0.351029246214993,
2460
+ "eval_accuracy_undropoff": 0.9915802123014796,
2461
+ "eval_accuracy_unlabeled": NaN,
2462
+ "eval_iou_dropoff": 0.297044957472661,
2463
+ "eval_iou_undropoff": 0.9626372013950762,
2464
+ "eval_iou_unlabeled": NaN,
2465
+ "eval_loss": 0.30429932475090027,
2466
+ "eval_mean_accuracy": 0.6713047292582364,
2467
+ "eval_mean_iou": 0.6298410794338687,
2468
+ "eval_overall_accuracy": 0.9632179260253906,
2469
+ "eval_runtime": 1.6867,
2470
+ "eval_samples_per_second": 8.893,
2471
+ "eval_steps_per_second": 0.593,
2472
+ "step": 320
2473
+ },
2474
+ {
2475
+ "epoch": 107.0,
2476
+ "learning_rate": 3.4210526315789474e-06,
2477
+ "loss": 0.281,
2478
+ "step": 321
2479
+ },
2480
+ {
2481
+ "epoch": 107.33,
2482
+ "learning_rate": 3.3333333333333333e-06,
2483
+ "loss": 0.2623,
2484
+ "step": 322
2485
+ },
2486
+ {
2487
+ "epoch": 107.67,
2488
+ "learning_rate": 3.2456140350877192e-06,
2489
+ "loss": 0.2591,
2490
+ "step": 323
2491
+ },
2492
+ {
2493
+ "epoch": 108.0,
2494
+ "learning_rate": 3.157894736842105e-06,
2495
+ "loss": 0.3256,
2496
+ "step": 324
2497
+ },
2498
+ {
2499
+ "epoch": 108.33,
2500
+ "learning_rate": 3.070175438596491e-06,
2501
+ "loss": 0.2596,
2502
+ "step": 325
2503
+ },
2504
+ {
2505
+ "epoch": 108.67,
2506
+ "learning_rate": 2.982456140350877e-06,
2507
+ "loss": 0.2597,
2508
+ "step": 326
2509
+ },
2510
+ {
2511
+ "epoch": 109.0,
2512
+ "learning_rate": 2.894736842105263e-06,
2513
+ "loss": 0.2611,
2514
+ "step": 327
2515
+ },
2516
+ {
2517
+ "epoch": 109.33,
2518
+ "learning_rate": 2.807017543859649e-06,
2519
+ "loss": 0.2597,
2520
+ "step": 328
2521
+ },
2522
+ {
2523
+ "epoch": 109.67,
2524
+ "learning_rate": 2.719298245614035e-06,
2525
+ "loss": 0.2575,
2526
+ "step": 329
2527
+ },
2528
+ {
2529
+ "epoch": 110.0,
2530
+ "learning_rate": 2.631578947368421e-06,
2531
+ "loss": 0.3878,
2532
+ "step": 330
2533
+ },
2534
+ {
2535
+ "epoch": 110.0,
2536
+ "eval_accuracy_dropoff": 0.35732418958347695,
2537
+ "eval_accuracy_undropoff": 0.9906547328243462,
2538
+ "eval_accuracy_unlabeled": NaN,
2539
+ "eval_iou_dropoff": 0.2973454795725238,
2540
+ "eval_iou_undropoff": 0.9620111076456602,
2541
+ "eval_iou_unlabeled": NaN,
2542
+ "eval_loss": 0.3036753535270691,
2543
+ "eval_mean_accuracy": 0.6739894612039116,
2544
+ "eval_mean_iou": 0.629678293609092,
2545
+ "eval_overall_accuracy": 0.9626121520996094,
2546
+ "eval_runtime": 1.738,
2547
+ "eval_samples_per_second": 8.631,
2548
+ "eval_steps_per_second": 0.575,
2549
+ "step": 330
2550
+ },
2551
+ {
2552
+ "epoch": 110.33,
2553
+ "learning_rate": 2.543859649122807e-06,
2554
+ "loss": 0.2624,
2555
+ "step": 331
2556
+ },
2557
+ {
2558
+ "epoch": 110.67,
2559
+ "learning_rate": 2.456140350877193e-06,
2560
+ "loss": 0.2663,
2561
+ "step": 332
2562
+ },
2563
+ {
2564
+ "epoch": 111.0,
2565
+ "learning_rate": 2.368421052631579e-06,
2566
+ "loss": 0.242,
2567
+ "step": 333
2568
+ },
2569
+ {
2570
+ "epoch": 111.33,
2571
+ "learning_rate": 2.280701754385965e-06,
2572
+ "loss": 0.254,
2573
+ "step": 334
2574
+ },
2575
+ {
2576
+ "epoch": 111.67,
2577
+ "learning_rate": 2.1929824561403507e-06,
2578
+ "loss": 0.2583,
2579
+ "step": 335
2580
+ },
2581
+ {
2582
+ "epoch": 112.0,
2583
+ "learning_rate": 2.1052631578947366e-06,
2584
+ "loss": 0.2472,
2585
+ "step": 336
2586
+ },
2587
+ {
2588
+ "epoch": 112.33,
2589
+ "learning_rate": 2.0175438596491226e-06,
2590
+ "loss": 0.2693,
2591
+ "step": 337
2592
+ },
2593
+ {
2594
+ "epoch": 112.67,
2595
+ "learning_rate": 1.929824561403509e-06,
2596
+ "loss": 0.2499,
2597
+ "step": 338
2598
+ },
2599
+ {
2600
+ "epoch": 113.0,
2601
+ "learning_rate": 1.8421052631578946e-06,
2602
+ "loss": 0.3728,
2603
+ "step": 339
2604
+ },
2605
+ {
2606
+ "epoch": 113.33,
2607
+ "learning_rate": 1.7543859649122807e-06,
2608
+ "loss": 0.2521,
2609
+ "step": 340
2610
+ },
2611
+ {
2612
+ "epoch": 113.33,
2613
+ "eval_accuracy_dropoff": 0.35127621935809955,
2614
+ "eval_accuracy_undropoff": 0.9916081523086961,
2615
+ "eval_accuracy_unlabeled": NaN,
2616
+ "eval_iou_dropoff": 0.2974057234554694,
2617
+ "eval_iou_undropoff": 0.9626750193748386,
2618
+ "eval_iou_unlabeled": NaN,
2619
+ "eval_loss": 0.30133530497550964,
2620
+ "eval_mean_accuracy": 0.6714421858333979,
2621
+ "eval_mean_iou": 0.630040371415154,
2622
+ "eval_overall_accuracy": 0.9632555643717448,
2623
+ "eval_runtime": 1.7646,
2624
+ "eval_samples_per_second": 8.501,
2625
+ "eval_steps_per_second": 0.567,
2626
+ "step": 340
2627
+ },
2628
+ {
2629
+ "epoch": 113.67,
2630
+ "learning_rate": 1.6666666666666667e-06,
2631
+ "loss": 0.2664,
2632
+ "step": 341
2633
+ },
2634
+ {
2635
+ "epoch": 114.0,
2636
+ "learning_rate": 1.5789473684210526e-06,
2637
+ "loss": 0.2532,
2638
+ "step": 342
2639
+ },
2640
+ {
2641
+ "epoch": 114.33,
2642
+ "learning_rate": 1.4912280701754385e-06,
2643
+ "loss": 0.2586,
2644
+ "step": 343
2645
+ },
2646
+ {
2647
+ "epoch": 114.67,
2648
+ "learning_rate": 1.4035087719298244e-06,
2649
+ "loss": 0.2619,
2650
+ "step": 344
2651
+ },
2652
+ {
2653
+ "epoch": 115.0,
2654
+ "learning_rate": 1.3157894736842106e-06,
2655
+ "loss": 0.287,
2656
+ "step": 345
2657
+ },
2658
+ {
2659
+ "epoch": 115.33,
2660
+ "learning_rate": 1.2280701754385965e-06,
2661
+ "loss": 0.2622,
2662
+ "step": 346
2663
+ },
2664
+ {
2665
+ "epoch": 115.67,
2666
+ "learning_rate": 1.1403508771929824e-06,
2667
+ "loss": 0.2513,
2668
+ "step": 347
2669
+ },
2670
+ {
2671
+ "epoch": 116.0,
2672
+ "learning_rate": 1.0526315789473683e-06,
2673
+ "loss": 0.2956,
2674
+ "step": 348
2675
+ },
2676
+ {
2677
+ "epoch": 116.33,
2678
+ "learning_rate": 9.649122807017545e-07,
2679
+ "loss": 0.2615,
2680
+ "step": 349
2681
+ },
2682
+ {
2683
+ "epoch": 116.67,
2684
+ "learning_rate": 8.771929824561404e-07,
2685
+ "loss": 0.2663,
2686
+ "step": 350
2687
+ },
2688
+ {
2689
+ "epoch": 116.67,
2690
+ "eval_accuracy_dropoff": 0.3633779033703219,
2691
+ "eval_accuracy_undropoff": 0.9898630992865453,
2692
+ "eval_accuracy_unlabeled": NaN,
2693
+ "eval_iou_dropoff": 0.2981437585708025,
2694
+ "eval_iou_undropoff": 0.9615042338984304,
2695
+ "eval_iou_unlabeled": NaN,
2696
+ "eval_loss": 0.30599743127822876,
2697
+ "eval_mean_accuracy": 0.6766205013284335,
2698
+ "eval_mean_iou": 0.6298239962346165,
2699
+ "eval_overall_accuracy": 0.9621236165364583,
2700
+ "eval_runtime": 1.7035,
2701
+ "eval_samples_per_second": 8.805,
2702
+ "eval_steps_per_second": 0.587,
2703
+ "step": 350
2704
+ },
2705
+ {
2706
+ "epoch": 117.0,
2707
+ "learning_rate": 7.894736842105263e-07,
2708
+ "loss": 0.2494,
2709
+ "step": 351
2710
+ },
2711
+ {
2712
+ "epoch": 117.33,
2713
+ "learning_rate": 7.017543859649122e-07,
2714
+ "loss": 0.2725,
2715
+ "step": 352
2716
+ },
2717
+ {
2718
+ "epoch": 117.67,
2719
+ "learning_rate": 6.140350877192982e-07,
2720
+ "loss": 0.254,
2721
+ "step": 353
2722
+ },
2723
+ {
2724
+ "epoch": 118.0,
2725
+ "learning_rate": 5.263157894736842e-07,
2726
+ "loss": 0.267,
2727
+ "step": 354
2728
+ },
2729
+ {
2730
+ "epoch": 118.33,
2731
+ "learning_rate": 4.385964912280702e-07,
2732
+ "loss": 0.2645,
2733
+ "step": 355
2734
+ },
2735
+ {
2736
+ "epoch": 118.67,
2737
+ "learning_rate": 3.508771929824561e-07,
2738
+ "loss": 0.2544,
2739
+ "step": 356
2740
+ },
2741
+ {
2742
+ "epoch": 119.0,
2743
+ "learning_rate": 2.631578947368421e-07,
2744
+ "loss": 0.2559,
2745
+ "step": 357
2746
+ },
2747
+ {
2748
+ "epoch": 119.33,
2749
+ "learning_rate": 1.7543859649122805e-07,
2750
+ "loss": 0.2521,
2751
+ "step": 358
2752
+ },
2753
+ {
2754
+ "epoch": 119.67,
2755
+ "learning_rate": 8.771929824561403e-08,
2756
+ "loss": 0.2566,
2757
+ "step": 359
2758
+ },
2759
+ {
2760
+ "epoch": 120.0,
2761
+ "learning_rate": 0.0,
2762
+ "loss": 0.2507,
2763
+ "step": 360
2764
+ },
2765
+ {
2766
+ "epoch": 120.0,
2767
+ "eval_accuracy_dropoff": 0.35020217336365933,
2768
+ "eval_accuracy_undropoff": 0.9917622214913471,
2769
+ "eval_accuracy_unlabeled": NaN,
2770
+ "eval_iou_dropoff": 0.2973335413964285,
2771
+ "eval_iou_undropoff": 0.9627780833113978,
2772
+ "eval_iou_unlabeled": NaN,
2773
+ "eval_loss": 0.30316540598869324,
2774
+ "eval_mean_accuracy": 0.6709821974275032,
2775
+ "eval_mean_iou": 0.6300558123539132,
2776
+ "eval_overall_accuracy": 0.9633552551269531,
2777
+ "eval_runtime": 1.7757,
2778
+ "eval_samples_per_second": 8.447,
2779
+ "eval_steps_per_second": 0.563,
2780
+ "step": 360
2781
  }
2782
  ],
2783
  "max_steps": 360,
2784
  "num_train_epochs": 120,
2785
+ "total_flos": 7.15190062546944e+16,
2786
  "trial_name": null,
2787
  "trial_params": null
2788
  }
{checkpoint-160 β†’ checkpoint-360}/training_args.bin RENAMED
File without changes
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a55ec50fc42ea86d9ec6df99fd09fafedf78db1bbbfa6b1133fb7d585c613bea
3
  size 14932813
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c421eb3d5d699e0c39a35fc4efb1f3c37126995ffe5af7e0081acd2490a8b7f
3
  size 14932813
runs/Feb12_06-10-26_robovision.csres.utexas.edu/events.out.tfevents.1707739842.robovision.csres.utexas.edu.2691488.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:53324b3b98889363100f35bab43b1840cd288d09a92c8511998eb30caea803cd
3
- size 79843
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bb2025f92fd7d7a3103ce269456eff11aafb346824c30809ae83cf2d7b847ff
3
+ size 89295