megashtein / main.py
sawyerhpowell's picture
Upload main.py with huggingface_hub
2441092 verified
from random import randint
from string import printable
import numpy as np
import torch
from rapidfuzz.distance.Levenshtein import distance as ldistance
from torch.optim import AdamW
from models import EditDistanceModel
def pad_with_null(string: str, target_length: int):
null_char = "\0"
padding_needed = max(0, target_length - len(string))
return (string + (null_char * padding_needed))[:target_length]
def string_to_tensor(string: str, length: int) -> torch.Tensor:
"""Converts a string to a tensor of character indices."""
padded = pad_with_null(string, length)
# Use ord() to get integer representation, clamp to vocab size
indices = [min(ord(c), 127) for c in padded]
return torch.tensor(indices, dtype=torch.long)
def random_char() -> str:
pos = randint(0, len(printable) - 1)
return printable[pos]
def random_str(length: int) -> str:
return "".join([random_char() for _ in range(length)])
def mangle_string(source: str, d: int) -> str:
"""
Efficiently mangles a string to approximately the target distance
Uses list operations for better performance
"""
if d <= 0:
return source
mangled = list(source)
edits_made = 0
max_attempts = d * 3 # Prevent infinite loops
attempts = 0
while edits_made < d and attempts < max_attempts:
attempts += 1
if len(mangled) == 0:
position = 0
edit = "insert"
else:
position = randint(0, len(mangled) - 1)
edit = ["insert", "delete", "modify"][randint(0, 2)]
if edit == "insert":
mangled.insert(position, random_char())
edits_made += 1
elif edit == "modify" and len(mangled) > 0:
old_char = mangled[position]
new_char = random_char()
if old_char != new_char: # Only count as edit if actually different
mangled[position] = new_char
edits_made += 1
elif edit == "delete" and len(mangled) > 0:
mangled.pop(position)
edits_made += 1
return "".join(mangled)
def get_random_edit_distance(
minimum: int, maximum: int, mean: float, dev: float
) -> int:
sample = np.random.normal(loc=mean, scale=dev)
sample = int(sample)
return min(max(sample, minimum), maximum)
def get_homologous_pair(
source: str, length: int
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# Use more reasonable distance distribution
distance = get_random_edit_distance(1, min(length//4, 10), 3, 2)
mangled = mangle_string(source, distance)
# Verify actual distance and use it for training
actual_distance = ldistance(source, mangled)
return (
string_to_tensor(source, length),
string_to_tensor(mangled, length),
torch.tensor(float(actual_distance), dtype=torch.float),
)
def get_non_homologous_pair(
length: int,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
source = random_str(length)
other = random_str(length)
# Ensure strings are actually different
max_attempts = 5
attempt = 0
while source == other and attempt < max_attempts:
other = random_str(length)
attempt += 1
distance = ldistance(source, other)
return (
string_to_tensor(source, length),
string_to_tensor(other, length),
torch.tensor(float(distance), dtype=torch.float),
)
def squared_euclidean_distance(v1: torch.Tensor, v2: torch.Tensor) -> torch.Tensor:
return torch.sum((v1 - v2) ** 2, dim=1)
def get_batch(
size: int, batch_size: int
) -> list[tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
half_b = int(batch_size / 2)
# Generate diverse source strings for homologous pairs
h_pairs = []
for _ in range(half_b):
source = random_str(size)
h_pairs.append(get_homologous_pair(source, size))
non_h_pairs = [get_non_homologous_pair(size) for _ in range(half_b)]
# Shuffle the batch to prevent learning batch order patterns
all_pairs = h_pairs + non_h_pairs
np.random.shuffle(all_pairs)
return all_pairs
def estimate_M(length: int, num_samples: int = 1000) -> float:
"""Estimates M, the average Levenshtein distance for non-homologous pairs."""
total_distance = 0.0
for _ in range(num_samples):
_, _, dist_tensor = get_non_homologous_pair(length)
total_distance += dist_tensor.item()
return total_distance / num_samples
def get_distances(
batch: list[tuple[torch.Tensor, torch.Tensor, torch.Tensor]],
model: torch.nn.Module,
M: float | None = None,
embedding_dim: int | None = None
):
first: torch.Tensor = torch.stack([b[0] for b in batch])
first = model(first)
second: torch.Tensor = torch.stack([b[1] for b in batch])
second = model(second)
ds = torch.stack([b[2] for b in batch])
d_hats = squared_euclidean_distance(first, second)
if M is not None and embedding_dim is not None:
# r(n) = sqrt(M / (2n)) from paper Eq. 6
# We need r(n)^2 * d_hats, so (M / (2n)) * d_hats
scaling_factor_squared = M / (2 * embedding_dim)
d_hats = d_hats * scaling_factor_squared
return (d_hats, ds)
def approximation_error(d_hat: torch.Tensor, d: torch.Tensor):
return torch.mean(torch.abs(d - d_hat))
def get_loss(d_hat: torch.Tensor, d: torch.Tensor) -> torch.Tensor:
"""
Wei et al. Poisson regression loss function
"""
# Wei et al. Poisson regression with improved numerical stability
# PNLL(d̂, d) = d̂ - d * ln(d̂) with better handling of edge cases
epsilon = 1e-8
d_hat_stable = torch.clamp(d_hat, min=epsilon)
return torch.mean(d_hat_stable - d * torch.log(d_hat_stable))
def validate_training_data(batch: list[tuple[torch.Tensor, torch.Tensor, torch.Tensor]]) -> dict:
"""Validate and analyze training batch quality"""
distances = [b[2].item() for b in batch]
stats = {
'min_distance': min(distances),
'max_distance': max(distances),
'mean_distance': np.mean(distances),
'std_distance': np.std(distances),
'zero_distance_count': sum(1 for d in distances if d == 0),
'high_distance_count': sum(1 for d in distances if d > 15)
}
return stats
def run_experiment(
embedding_dim: int,
model: torch.nn.Module,
learning_rate: float,
num_steps: int,
size: int,
batch_size: int,
use_gradient_clipping: bool = True,
max_grad_norm: float = 1.0,
distance_metric: str = "euclidean"
):
"""
Runs a training experiment with the given parameters and improved loss functions.
"""
optimizer = AdamW(model.parameters(), lr=learning_rate, weight_decay=1e-5)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=200, gamma=0.5)
final_loss = 0.0
final_approx_error = 0.0
# Estimate M once at the beginning of the experiment
M_estimate = estimate_M(size)
print(f"Estimated M (average non-homologous distance): {M_estimate:.2f}")
for x in range(num_steps):
batch = get_batch(size, batch_size)
distances = get_distances(batch, model, distance_metric, M=M_estimate, embedding_dim=embedding_dim)
loss = get_loss(distances[0], distances[1])
if x % 10 == 0:
print(
f"step: {x}, loss: {loss.item()}, approx_error: {approximation_error(distances[0], distances[1]).item()}"
)
loss.backward()
optimizer.step()
scheduler.step()
final_loss = loss.item()
final_approx_error = approximation_error(distances[0], distances[1]).item()
return final_loss, final_approx_error
if __name__ == "__main__":
embedding_dim = 140
model = EditDistanceModel(embedding_dim=embedding_dim)
final_loss, final_approx_error = run_experiment(
embedding_dim=embedding_dim,
model=model,
learning_rate=0.000817,
num_steps=1000,
size=80,
batch_size=32,
use_gradient_clipping=True,
max_grad_norm=2.463,
distance_metric="euclidean",
)
print(f"Final loss: {final_loss:.4f}")
print(f"Final approximation error: {final_approx_error:.4f}")
# Save the trained model
model_path = "megashtein_trained_model.pth"
torch.save(model.state_dict(), model_path)
print(f"\n model saved to: {model_path}")