# JEE NUJAN Math Expert 🎯📚 **The Ultimate JEE Mathematics AI Tutor - Fine-tuned Specialist** This is a fine-tuned version of [JEE NUJAN Mix v2 Base](https://huggingface.co/shivs28/jee_nujan_mix_v2_base) specifically trained on JEE-style mathematics problems to excel at Indian competitive exam mathematics. ## 🏆 Model Details - **Base Model**: `shivs28/jee_nujan_mix_v2_base` - **Fine-tuning Dataset**: 500+ JEE-relevant mathematics problems from MATH dataset - **Training Steps**: 150 (optimized for mathematical reasoning) - **LoRA Configuration**: Rank 32, Alpha 64 (high-performance setup) - **Specialization**: JEE Main & Advanced mathematics problems ## 🎯 Mathematical Capabilities This model excels at: ### Core JEE Topics - **Algebra**: Quadratic equations, inequalities, sequences & series - **Calculus**: Limits, derivatives, integrals, applications - **Coordinate Geometry**: Lines, circles, parabolas, ellipses, hyperbolas - **Trigonometry**: Identities, equations, inverse functions - **Probability**: Conditional probability, distributions, combinatorics - **Number Theory**: Divisibility, modular arithmetic, prime numbers - **Vector Algebra**: Dot product, cross product, scalar triple product ### Problem-Solving Approach - **Step-by-step Solutions**: Clear mathematical progression - **Multiple Methods**: Shows different approaches when applicable - **Error Prevention**: Highlights common JEE mistakes - **Time-Efficient**: Optimized for exam conditions ## 🚀 Usage Examples ### Basic Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "shivs28/jee_nujan_math_expert" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) # JEE problem format jee_prompt = '''<|problem|> Find the number of real solutions of the equation x³ - 3x² + 2x - 1 = 0 in the interval [0, 3]. <|solution|>''' inputs = tokenizer(jee_prompt, return_tensors="pt") outputs = model.generate( **inputs, max_length=800, temperature=0.1, # Low temperature for mathematical accuracy do_sample=True, pad_token_id=tokenizer.pad_token_id, repetition_penalty=1.05 ) solution = tokenizer.decode(outputs[0], skip_special_tokens=True) print(solution) ``` ### Advanced JEE Problem ```python complex_problem = '''<|problem|> In triangle ABC, if a = 7, b = 8, c = 9, find: 1. The area of triangle ABC 2. The radius of the circumscribed circle 3. The radius of the inscribed circle <|solution|>''' # Generate comprehensive solution inputs = tokenizer(complex_problem, return_tensors="pt") outputs = model.generate( **inputs, max_length=1200, temperature=0.05, # Very low for multi-step problems top_p=0.95, do_sample=True, pad_token_id=tokenizer.pad_token_id ) ``` ## ⚙️ Recommended Generation Settings ### For JEE Main Problems ```python generation_config = { "max_length": 800, "temperature": 0.1, "top_p": 0.95, "do_sample": True, "repetition_penalty": 1.05, "pad_token_id": tokenizer.pad_token_id } ``` ### For JEE Advanced Problems ```python advanced_config = { "max_length": 1200, # Longer for complex solutions "temperature": 0.05, # Very low for accuracy "top_p": 0.9, "do_sample": True, "repetition_penalty": 1.1, "pad_token_id": tokenizer.pad_token_id } ``` ## 🎯 Training Details - **Architecture**: LoRA fine-tuning on base model - **Training Data**: Carefully curated JEE-relevant problems - **Optimization**: Focused on mathematical reasoning patterns - **Validation**: Tested on held-out JEE problems ### LoRA Configuration - **Rank (r)**: 32 - **Alpha**: 64 - **Dropout**: 0.1 - **Target Modules**: All attention and MLP layers - **Trainable Parameters**: ~2.1% of total parameters ## 🏅 Best Practices for JEE Preparation 1. **Use specific problem format**: Always use `<|problem|>` and `<|solution|>` tags 2. **Low temperature**: Use 0.05-0.1 for mathematical accuracy 3. **Adequate length**: Set max_length based on problem complexity 4. **Multiple attempts**: Try different seeds for various solution approaches 5. **Verify results**: Always cross-check mathematical calculations ## 📈 Use Cases ### For Students - **Practice Problems**: Generate solutions with explanations - **Concept Clarification**: Understand mathematical reasoning - **Exam Preparation**: Practice with JEE-style problems - **Error Analysis**: Learn from common mistakes ### For Educators - **Solution Generation**: Create detailed problem solutions - **Teaching Aid**: Step-by-step mathematical explanations - **Problem Variation**: Generate similar problems for practice - **Assessment**: Evaluate student understanding ## 🔧 Technical Specifications - **Base Architecture**: Transformer-based language model - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) - **Precision**: 16-bit floating point - **Context Length**: 768 tokens (optimized for detailed solutions) - **Vocabulary**: Extended with mathematical notation ## 📝 Citation If you use this model in your research or educational content, please cite: ```bibtex @model{jee_nujan_math_expert, title={JEE NUJAN Math Expert: Fine-tuned Mathematics Specialist}, author={shivs28}, year={2025}, url={https://huggingface.co/shivs28/jee_nujan_math_expert} } ``` ## 🤝 Contributing Found an issue or have suggestions? Open an issue on the model repository!