| { | |
| "id": "geo_triangle_001", | |
| "category": "scientific", | |
| "subcategory": "geometry", | |
| "question": "In triangle ABC, angle A = 60°, angle B = 45°. If side AB = 10 units, find the length of side BC.", | |
| "input_images": [], | |
| "reasoning_steps": [ | |
| { | |
| "step": 1, | |
| "type": "text", | |
| "content": "First, find angle C using the triangle angle sum property: C = 180° - 60° - 45° = 75°", | |
| "intermediate_result": "angle C = 75°" | |
| }, | |
| { | |
| "step": 2, | |
| "type": "interleaved", | |
| "content": "Draw the triangle with labeled angles and the known side AB.", | |
| "image_path": "images/geo_triangle_001_step2.png", | |
| "intermediate_result": "Visual representation created" | |
| }, | |
| { | |
| "step": 3, | |
| "type": "text", | |
| "content": "Apply the Law of Sines: BC/sin(A) = AB/sin(C). Therefore BC = AB × sin(A)/sin(C) = 10 × sin(60°)/sin(75°)", | |
| "intermediate_result": "BC = 10 × 0.866/0.966" | |
| }, | |
| { | |
| "step": 4, | |
| "type": "text", | |
| "content": "Calculate: BC = 10 × 0.866/0.966 ≈ 8.97 units", | |
| "intermediate_result": "BC ≈ 8.97 units" | |
| } | |
| ], | |
| "answer": "BC ≈ 8.97 units", | |
| "metadata": { | |
| "difficulty": "medium", | |
| "source": "synthetic", | |
| "tags": ["law-of-sines", "triangle", "trigonometry"] | |
| } | |
| } | |