Upload ctx_mp.py with huggingface_hub
Browse files
ctx_mp.py
ADDED
|
@@ -0,0 +1,1339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This module defines the mpf, mpc classes, and standard functions for
|
| 3 |
+
operating with them.
|
| 4 |
+
"""
|
| 5 |
+
__docformat__ = 'plaintext'
|
| 6 |
+
|
| 7 |
+
import functools
|
| 8 |
+
|
| 9 |
+
import re
|
| 10 |
+
|
| 11 |
+
from .ctx_base import StandardBaseContext
|
| 12 |
+
|
| 13 |
+
from .libmp.backend import basestring, BACKEND
|
| 14 |
+
|
| 15 |
+
from . import libmp
|
| 16 |
+
|
| 17 |
+
from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps,
|
| 18 |
+
round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps,
|
| 19 |
+
ComplexResult, to_pickable, from_pickable, normalize,
|
| 20 |
+
from_int, from_float, from_str, to_int, to_float, to_str,
|
| 21 |
+
from_rational, from_man_exp,
|
| 22 |
+
fone, fzero, finf, fninf, fnan,
|
| 23 |
+
mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
|
| 24 |
+
mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod,
|
| 25 |
+
mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge,
|
| 26 |
+
mpf_hash, mpf_rand,
|
| 27 |
+
mpf_sum,
|
| 28 |
+
bitcount, to_fixed,
|
| 29 |
+
mpc_to_str,
|
| 30 |
+
mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate,
|
| 31 |
+
mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf,
|
| 32 |
+
mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int,
|
| 33 |
+
mpc_mpf_div,
|
| 34 |
+
mpf_pow,
|
| 35 |
+
mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10,
|
| 36 |
+
mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin,
|
| 37 |
+
mpf_glaisher, mpf_twinprime, mpf_mertens,
|
| 38 |
+
int_types)
|
| 39 |
+
|
| 40 |
+
from . import function_docs
|
| 41 |
+
from . import rational
|
| 42 |
+
|
| 43 |
+
new = object.__new__
|
| 44 |
+
|
| 45 |
+
get_complex = re.compile(r'^\(?(?P<re>[\+\-]?\d*(\.\d*)?(e[\+\-]?\d+)?)??'
|
| 46 |
+
r'(?P<im>[\+\-]?\d*(\.\d*)?(e[\+\-]?\d+)?j)?\)?$')
|
| 47 |
+
|
| 48 |
+
if BACKEND == 'sage':
|
| 49 |
+
from sage.libs.mpmath.ext_main import Context as BaseMPContext
|
| 50 |
+
# pickle hack
|
| 51 |
+
import sage.libs.mpmath.ext_main as _mpf_module
|
| 52 |
+
else:
|
| 53 |
+
from .ctx_mp_python import PythonMPContext as BaseMPContext
|
| 54 |
+
from . import ctx_mp_python as _mpf_module
|
| 55 |
+
|
| 56 |
+
from .ctx_mp_python import _mpf, _mpc, mpnumeric
|
| 57 |
+
|
| 58 |
+
class MPContext(BaseMPContext, StandardBaseContext):
|
| 59 |
+
"""
|
| 60 |
+
Context for multiprecision arithmetic with a global precision.
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
def __init__(ctx):
|
| 64 |
+
BaseMPContext.__init__(ctx)
|
| 65 |
+
ctx.trap_complex = False
|
| 66 |
+
ctx.pretty = False
|
| 67 |
+
ctx.types = [ctx.mpf, ctx.mpc, ctx.constant]
|
| 68 |
+
ctx._mpq = rational.mpq
|
| 69 |
+
ctx.default()
|
| 70 |
+
StandardBaseContext.__init__(ctx)
|
| 71 |
+
|
| 72 |
+
ctx.mpq = rational.mpq
|
| 73 |
+
ctx.init_builtins()
|
| 74 |
+
|
| 75 |
+
ctx.hyp_summators = {}
|
| 76 |
+
|
| 77 |
+
ctx._init_aliases()
|
| 78 |
+
|
| 79 |
+
# XXX: automate
|
| 80 |
+
try:
|
| 81 |
+
ctx.bernoulli.im_func.func_doc = function_docs.bernoulli
|
| 82 |
+
ctx.primepi.im_func.func_doc = function_docs.primepi
|
| 83 |
+
ctx.psi.im_func.func_doc = function_docs.psi
|
| 84 |
+
ctx.atan2.im_func.func_doc = function_docs.atan2
|
| 85 |
+
except AttributeError:
|
| 86 |
+
# python 3
|
| 87 |
+
ctx.bernoulli.__func__.func_doc = function_docs.bernoulli
|
| 88 |
+
ctx.primepi.__func__.func_doc = function_docs.primepi
|
| 89 |
+
ctx.psi.__func__.func_doc = function_docs.psi
|
| 90 |
+
ctx.atan2.__func__.func_doc = function_docs.atan2
|
| 91 |
+
|
| 92 |
+
ctx.digamma.func_doc = function_docs.digamma
|
| 93 |
+
ctx.cospi.func_doc = function_docs.cospi
|
| 94 |
+
ctx.sinpi.func_doc = function_docs.sinpi
|
| 95 |
+
|
| 96 |
+
def init_builtins(ctx):
|
| 97 |
+
|
| 98 |
+
mpf = ctx.mpf
|
| 99 |
+
mpc = ctx.mpc
|
| 100 |
+
|
| 101 |
+
# Exact constants
|
| 102 |
+
ctx.one = ctx.make_mpf(fone)
|
| 103 |
+
ctx.zero = ctx.make_mpf(fzero)
|
| 104 |
+
ctx.j = ctx.make_mpc((fzero,fone))
|
| 105 |
+
ctx.inf = ctx.make_mpf(finf)
|
| 106 |
+
ctx.ninf = ctx.make_mpf(fninf)
|
| 107 |
+
ctx.nan = ctx.make_mpf(fnan)
|
| 108 |
+
|
| 109 |
+
eps = ctx.constant(lambda prec, rnd: (0, MPZ_ONE, 1-prec, 1),
|
| 110 |
+
"epsilon of working precision", "eps")
|
| 111 |
+
ctx.eps = eps
|
| 112 |
+
|
| 113 |
+
# Approximate constants
|
| 114 |
+
ctx.pi = ctx.constant(mpf_pi, "pi", "pi")
|
| 115 |
+
ctx.ln2 = ctx.constant(mpf_ln2, "ln(2)", "ln2")
|
| 116 |
+
ctx.ln10 = ctx.constant(mpf_ln10, "ln(10)", "ln10")
|
| 117 |
+
ctx.phi = ctx.constant(mpf_phi, "Golden ratio phi", "phi")
|
| 118 |
+
ctx.e = ctx.constant(mpf_e, "e = exp(1)", "e")
|
| 119 |
+
ctx.euler = ctx.constant(mpf_euler, "Euler's constant", "euler")
|
| 120 |
+
ctx.catalan = ctx.constant(mpf_catalan, "Catalan's constant", "catalan")
|
| 121 |
+
ctx.khinchin = ctx.constant(mpf_khinchin, "Khinchin's constant", "khinchin")
|
| 122 |
+
ctx.glaisher = ctx.constant(mpf_glaisher, "Glaisher's constant", "glaisher")
|
| 123 |
+
ctx.apery = ctx.constant(mpf_apery, "Apery's constant", "apery")
|
| 124 |
+
ctx.degree = ctx.constant(mpf_degree, "1 deg = pi / 180", "degree")
|
| 125 |
+
ctx.twinprime = ctx.constant(mpf_twinprime, "Twin prime constant", "twinprime")
|
| 126 |
+
ctx.mertens = ctx.constant(mpf_mertens, "Mertens' constant", "mertens")
|
| 127 |
+
|
| 128 |
+
# Standard functions
|
| 129 |
+
ctx.sqrt = ctx._wrap_libmp_function(libmp.mpf_sqrt, libmp.mpc_sqrt)
|
| 130 |
+
ctx.cbrt = ctx._wrap_libmp_function(libmp.mpf_cbrt, libmp.mpc_cbrt)
|
| 131 |
+
ctx.ln = ctx._wrap_libmp_function(libmp.mpf_log, libmp.mpc_log)
|
| 132 |
+
ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
|
| 133 |
+
ctx.exp = ctx._wrap_libmp_function(libmp.mpf_exp, libmp.mpc_exp)
|
| 134 |
+
ctx.expj = ctx._wrap_libmp_function(libmp.mpf_expj, libmp.mpc_expj)
|
| 135 |
+
ctx.expjpi = ctx._wrap_libmp_function(libmp.mpf_expjpi, libmp.mpc_expjpi)
|
| 136 |
+
ctx.sin = ctx._wrap_libmp_function(libmp.mpf_sin, libmp.mpc_sin)
|
| 137 |
+
ctx.cos = ctx._wrap_libmp_function(libmp.mpf_cos, libmp.mpc_cos)
|
| 138 |
+
ctx.tan = ctx._wrap_libmp_function(libmp.mpf_tan, libmp.mpc_tan)
|
| 139 |
+
ctx.sinh = ctx._wrap_libmp_function(libmp.mpf_sinh, libmp.mpc_sinh)
|
| 140 |
+
ctx.cosh = ctx._wrap_libmp_function(libmp.mpf_cosh, libmp.mpc_cosh)
|
| 141 |
+
ctx.tanh = ctx._wrap_libmp_function(libmp.mpf_tanh, libmp.mpc_tanh)
|
| 142 |
+
ctx.asin = ctx._wrap_libmp_function(libmp.mpf_asin, libmp.mpc_asin)
|
| 143 |
+
ctx.acos = ctx._wrap_libmp_function(libmp.mpf_acos, libmp.mpc_acos)
|
| 144 |
+
ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
|
| 145 |
+
ctx.asinh = ctx._wrap_libmp_function(libmp.mpf_asinh, libmp.mpc_asinh)
|
| 146 |
+
ctx.acosh = ctx._wrap_libmp_function(libmp.mpf_acosh, libmp.mpc_acosh)
|
| 147 |
+
ctx.atanh = ctx._wrap_libmp_function(libmp.mpf_atanh, libmp.mpc_atanh)
|
| 148 |
+
ctx.sinpi = ctx._wrap_libmp_function(libmp.mpf_sin_pi, libmp.mpc_sin_pi)
|
| 149 |
+
ctx.cospi = ctx._wrap_libmp_function(libmp.mpf_cos_pi, libmp.mpc_cos_pi)
|
| 150 |
+
ctx.floor = ctx._wrap_libmp_function(libmp.mpf_floor, libmp.mpc_floor)
|
| 151 |
+
ctx.ceil = ctx._wrap_libmp_function(libmp.mpf_ceil, libmp.mpc_ceil)
|
| 152 |
+
ctx.nint = ctx._wrap_libmp_function(libmp.mpf_nint, libmp.mpc_nint)
|
| 153 |
+
ctx.frac = ctx._wrap_libmp_function(libmp.mpf_frac, libmp.mpc_frac)
|
| 154 |
+
ctx.fib = ctx.fibonacci = ctx._wrap_libmp_function(libmp.mpf_fibonacci, libmp.mpc_fibonacci)
|
| 155 |
+
|
| 156 |
+
ctx.gamma = ctx._wrap_libmp_function(libmp.mpf_gamma, libmp.mpc_gamma)
|
| 157 |
+
ctx.rgamma = ctx._wrap_libmp_function(libmp.mpf_rgamma, libmp.mpc_rgamma)
|
| 158 |
+
ctx.loggamma = ctx._wrap_libmp_function(libmp.mpf_loggamma, libmp.mpc_loggamma)
|
| 159 |
+
ctx.fac = ctx.factorial = ctx._wrap_libmp_function(libmp.mpf_factorial, libmp.mpc_factorial)
|
| 160 |
+
|
| 161 |
+
ctx.digamma = ctx._wrap_libmp_function(libmp.mpf_psi0, libmp.mpc_psi0)
|
| 162 |
+
ctx.harmonic = ctx._wrap_libmp_function(libmp.mpf_harmonic, libmp.mpc_harmonic)
|
| 163 |
+
ctx.ei = ctx._wrap_libmp_function(libmp.mpf_ei, libmp.mpc_ei)
|
| 164 |
+
ctx.e1 = ctx._wrap_libmp_function(libmp.mpf_e1, libmp.mpc_e1)
|
| 165 |
+
ctx._ci = ctx._wrap_libmp_function(libmp.mpf_ci, libmp.mpc_ci)
|
| 166 |
+
ctx._si = ctx._wrap_libmp_function(libmp.mpf_si, libmp.mpc_si)
|
| 167 |
+
ctx.ellipk = ctx._wrap_libmp_function(libmp.mpf_ellipk, libmp.mpc_ellipk)
|
| 168 |
+
ctx._ellipe = ctx._wrap_libmp_function(libmp.mpf_ellipe, libmp.mpc_ellipe)
|
| 169 |
+
ctx.agm1 = ctx._wrap_libmp_function(libmp.mpf_agm1, libmp.mpc_agm1)
|
| 170 |
+
ctx._erf = ctx._wrap_libmp_function(libmp.mpf_erf, None)
|
| 171 |
+
ctx._erfc = ctx._wrap_libmp_function(libmp.mpf_erfc, None)
|
| 172 |
+
ctx._zeta = ctx._wrap_libmp_function(libmp.mpf_zeta, libmp.mpc_zeta)
|
| 173 |
+
ctx._altzeta = ctx._wrap_libmp_function(libmp.mpf_altzeta, libmp.mpc_altzeta)
|
| 174 |
+
|
| 175 |
+
# Faster versions
|
| 176 |
+
ctx.sqrt = getattr(ctx, "_sage_sqrt", ctx.sqrt)
|
| 177 |
+
ctx.exp = getattr(ctx, "_sage_exp", ctx.exp)
|
| 178 |
+
ctx.ln = getattr(ctx, "_sage_ln", ctx.ln)
|
| 179 |
+
ctx.cos = getattr(ctx, "_sage_cos", ctx.cos)
|
| 180 |
+
ctx.sin = getattr(ctx, "_sage_sin", ctx.sin)
|
| 181 |
+
|
| 182 |
+
def to_fixed(ctx, x, prec):
|
| 183 |
+
return x.to_fixed(prec)
|
| 184 |
+
|
| 185 |
+
def hypot(ctx, x, y):
|
| 186 |
+
r"""
|
| 187 |
+
Computes the Euclidean norm of the vector `(x, y)`, equal
|
| 188 |
+
to `\sqrt{x^2 + y^2}`. Both `x` and `y` must be real."""
|
| 189 |
+
x = ctx.convert(x)
|
| 190 |
+
y = ctx.convert(y)
|
| 191 |
+
return ctx.make_mpf(libmp.mpf_hypot(x._mpf_, y._mpf_, *ctx._prec_rounding))
|
| 192 |
+
|
| 193 |
+
def _gamma_upper_int(ctx, n, z):
|
| 194 |
+
n = int(ctx._re(n))
|
| 195 |
+
if n == 0:
|
| 196 |
+
return ctx.e1(z)
|
| 197 |
+
if not hasattr(z, '_mpf_'):
|
| 198 |
+
raise NotImplementedError
|
| 199 |
+
prec, rounding = ctx._prec_rounding
|
| 200 |
+
real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding, gamma=True)
|
| 201 |
+
if imag is None:
|
| 202 |
+
return ctx.make_mpf(real)
|
| 203 |
+
else:
|
| 204 |
+
return ctx.make_mpc((real, imag))
|
| 205 |
+
|
| 206 |
+
def _expint_int(ctx, n, z):
|
| 207 |
+
n = int(n)
|
| 208 |
+
if n == 1:
|
| 209 |
+
return ctx.e1(z)
|
| 210 |
+
if not hasattr(z, '_mpf_'):
|
| 211 |
+
raise NotImplementedError
|
| 212 |
+
prec, rounding = ctx._prec_rounding
|
| 213 |
+
real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding)
|
| 214 |
+
if imag is None:
|
| 215 |
+
return ctx.make_mpf(real)
|
| 216 |
+
else:
|
| 217 |
+
return ctx.make_mpc((real, imag))
|
| 218 |
+
|
| 219 |
+
def _nthroot(ctx, x, n):
|
| 220 |
+
if hasattr(x, '_mpf_'):
|
| 221 |
+
try:
|
| 222 |
+
return ctx.make_mpf(libmp.mpf_nthroot(x._mpf_, n, *ctx._prec_rounding))
|
| 223 |
+
except ComplexResult:
|
| 224 |
+
if ctx.trap_complex:
|
| 225 |
+
raise
|
| 226 |
+
x = (x._mpf_, libmp.fzero)
|
| 227 |
+
else:
|
| 228 |
+
x = x._mpc_
|
| 229 |
+
return ctx.make_mpc(libmp.mpc_nthroot(x, n, *ctx._prec_rounding))
|
| 230 |
+
|
| 231 |
+
def _besselj(ctx, n, z):
|
| 232 |
+
prec, rounding = ctx._prec_rounding
|
| 233 |
+
if hasattr(z, '_mpf_'):
|
| 234 |
+
return ctx.make_mpf(libmp.mpf_besseljn(n, z._mpf_, prec, rounding))
|
| 235 |
+
elif hasattr(z, '_mpc_'):
|
| 236 |
+
return ctx.make_mpc(libmp.mpc_besseljn(n, z._mpc_, prec, rounding))
|
| 237 |
+
|
| 238 |
+
def _agm(ctx, a, b=1):
|
| 239 |
+
prec, rounding = ctx._prec_rounding
|
| 240 |
+
if hasattr(a, '_mpf_') and hasattr(b, '_mpf_'):
|
| 241 |
+
try:
|
| 242 |
+
v = libmp.mpf_agm(a._mpf_, b._mpf_, prec, rounding)
|
| 243 |
+
return ctx.make_mpf(v)
|
| 244 |
+
except ComplexResult:
|
| 245 |
+
pass
|
| 246 |
+
if hasattr(a, '_mpf_'): a = (a._mpf_, libmp.fzero)
|
| 247 |
+
else: a = a._mpc_
|
| 248 |
+
if hasattr(b, '_mpf_'): b = (b._mpf_, libmp.fzero)
|
| 249 |
+
else: b = b._mpc_
|
| 250 |
+
return ctx.make_mpc(libmp.mpc_agm(a, b, prec, rounding))
|
| 251 |
+
|
| 252 |
+
def bernoulli(ctx, n):
|
| 253 |
+
return ctx.make_mpf(libmp.mpf_bernoulli(int(n), *ctx._prec_rounding))
|
| 254 |
+
|
| 255 |
+
def _zeta_int(ctx, n):
|
| 256 |
+
return ctx.make_mpf(libmp.mpf_zeta_int(int(n), *ctx._prec_rounding))
|
| 257 |
+
|
| 258 |
+
def atan2(ctx, y, x):
|
| 259 |
+
x = ctx.convert(x)
|
| 260 |
+
y = ctx.convert(y)
|
| 261 |
+
return ctx.make_mpf(libmp.mpf_atan2(y._mpf_, x._mpf_, *ctx._prec_rounding))
|
| 262 |
+
|
| 263 |
+
def psi(ctx, m, z):
|
| 264 |
+
z = ctx.convert(z)
|
| 265 |
+
m = int(m)
|
| 266 |
+
if ctx._is_real_type(z):
|
| 267 |
+
return ctx.make_mpf(libmp.mpf_psi(m, z._mpf_, *ctx._prec_rounding))
|
| 268 |
+
else:
|
| 269 |
+
return ctx.make_mpc(libmp.mpc_psi(m, z._mpc_, *ctx._prec_rounding))
|
| 270 |
+
|
| 271 |
+
def cos_sin(ctx, x, **kwargs):
|
| 272 |
+
if type(x) not in ctx.types:
|
| 273 |
+
x = ctx.convert(x)
|
| 274 |
+
prec, rounding = ctx._parse_prec(kwargs)
|
| 275 |
+
if hasattr(x, '_mpf_'):
|
| 276 |
+
c, s = libmp.mpf_cos_sin(x._mpf_, prec, rounding)
|
| 277 |
+
return ctx.make_mpf(c), ctx.make_mpf(s)
|
| 278 |
+
elif hasattr(x, '_mpc_'):
|
| 279 |
+
c, s = libmp.mpc_cos_sin(x._mpc_, prec, rounding)
|
| 280 |
+
return ctx.make_mpc(c), ctx.make_mpc(s)
|
| 281 |
+
else:
|
| 282 |
+
return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)
|
| 283 |
+
|
| 284 |
+
def cospi_sinpi(ctx, x, **kwargs):
|
| 285 |
+
if type(x) not in ctx.types:
|
| 286 |
+
x = ctx.convert(x)
|
| 287 |
+
prec, rounding = ctx._parse_prec(kwargs)
|
| 288 |
+
if hasattr(x, '_mpf_'):
|
| 289 |
+
c, s = libmp.mpf_cos_sin_pi(x._mpf_, prec, rounding)
|
| 290 |
+
return ctx.make_mpf(c), ctx.make_mpf(s)
|
| 291 |
+
elif hasattr(x, '_mpc_'):
|
| 292 |
+
c, s = libmp.mpc_cos_sin_pi(x._mpc_, prec, rounding)
|
| 293 |
+
return ctx.make_mpc(c), ctx.make_mpc(s)
|
| 294 |
+
else:
|
| 295 |
+
return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)
|
| 296 |
+
|
| 297 |
+
def clone(ctx):
|
| 298 |
+
"""
|
| 299 |
+
Create a copy of the context, with the same working precision.
|
| 300 |
+
"""
|
| 301 |
+
a = ctx.__class__()
|
| 302 |
+
a.prec = ctx.prec
|
| 303 |
+
return a
|
| 304 |
+
|
| 305 |
+
# Several helper methods
|
| 306 |
+
# TODO: add more of these, make consistent, write docstrings, ...
|
| 307 |
+
|
| 308 |
+
def _is_real_type(ctx, x):
|
| 309 |
+
if hasattr(x, '_mpc_') or type(x) is complex:
|
| 310 |
+
return False
|
| 311 |
+
return True
|
| 312 |
+
|
| 313 |
+
def _is_complex_type(ctx, x):
|
| 314 |
+
if hasattr(x, '_mpc_') or type(x) is complex:
|
| 315 |
+
return True
|
| 316 |
+
return False
|
| 317 |
+
|
| 318 |
+
def isnan(ctx, x):
|
| 319 |
+
"""
|
| 320 |
+
Return *True* if *x* is a NaN (not-a-number), or for a complex
|
| 321 |
+
number, whether either the real or complex part is NaN;
|
| 322 |
+
otherwise return *False*::
|
| 323 |
+
|
| 324 |
+
>>> from mpmath import *
|
| 325 |
+
>>> isnan(3.14)
|
| 326 |
+
False
|
| 327 |
+
>>> isnan(nan)
|
| 328 |
+
True
|
| 329 |
+
>>> isnan(mpc(3.14,2.72))
|
| 330 |
+
False
|
| 331 |
+
>>> isnan(mpc(3.14,nan))
|
| 332 |
+
True
|
| 333 |
+
|
| 334 |
+
"""
|
| 335 |
+
if hasattr(x, "_mpf_"):
|
| 336 |
+
return x._mpf_ == fnan
|
| 337 |
+
if hasattr(x, "_mpc_"):
|
| 338 |
+
return fnan in x._mpc_
|
| 339 |
+
if isinstance(x, int_types) or isinstance(x, rational.mpq):
|
| 340 |
+
return False
|
| 341 |
+
x = ctx.convert(x)
|
| 342 |
+
if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
|
| 343 |
+
return ctx.isnan(x)
|
| 344 |
+
raise TypeError("isnan() needs a number as input")
|
| 345 |
+
|
| 346 |
+
def isfinite(ctx, x):
|
| 347 |
+
"""
|
| 348 |
+
Return *True* if *x* is a finite number, i.e. neither
|
| 349 |
+
an infinity or a NaN.
|
| 350 |
+
|
| 351 |
+
>>> from mpmath import *
|
| 352 |
+
>>> isfinite(inf)
|
| 353 |
+
False
|
| 354 |
+
>>> isfinite(-inf)
|
| 355 |
+
False
|
| 356 |
+
>>> isfinite(3)
|
| 357 |
+
True
|
| 358 |
+
>>> isfinite(nan)
|
| 359 |
+
False
|
| 360 |
+
>>> isfinite(3+4j)
|
| 361 |
+
True
|
| 362 |
+
>>> isfinite(mpc(3,inf))
|
| 363 |
+
False
|
| 364 |
+
>>> isfinite(mpc(nan,3))
|
| 365 |
+
False
|
| 366 |
+
|
| 367 |
+
"""
|
| 368 |
+
if ctx.isinf(x) or ctx.isnan(x):
|
| 369 |
+
return False
|
| 370 |
+
return True
|
| 371 |
+
|
| 372 |
+
def isnpint(ctx, x):
|
| 373 |
+
"""
|
| 374 |
+
Determine if *x* is a nonpositive integer.
|
| 375 |
+
"""
|
| 376 |
+
if not x:
|
| 377 |
+
return True
|
| 378 |
+
if hasattr(x, '_mpf_'):
|
| 379 |
+
sign, man, exp, bc = x._mpf_
|
| 380 |
+
return sign and exp >= 0
|
| 381 |
+
if hasattr(x, '_mpc_'):
|
| 382 |
+
return not x.imag and ctx.isnpint(x.real)
|
| 383 |
+
if type(x) in int_types:
|
| 384 |
+
return x <= 0
|
| 385 |
+
if isinstance(x, ctx.mpq):
|
| 386 |
+
p, q = x._mpq_
|
| 387 |
+
if not p:
|
| 388 |
+
return True
|
| 389 |
+
return q == 1 and p <= 0
|
| 390 |
+
return ctx.isnpint(ctx.convert(x))
|
| 391 |
+
|
| 392 |
+
def __str__(ctx):
|
| 393 |
+
lines = ["Mpmath settings:",
|
| 394 |
+
(" mp.prec = %s" % ctx.prec).ljust(30) + "[default: 53]",
|
| 395 |
+
(" mp.dps = %s" % ctx.dps).ljust(30) + "[default: 15]",
|
| 396 |
+
(" mp.trap_complex = %s" % ctx.trap_complex).ljust(30) + "[default: False]",
|
| 397 |
+
]
|
| 398 |
+
return "\n".join(lines)
|
| 399 |
+
|
| 400 |
+
@property
|
| 401 |
+
def _repr_digits(ctx):
|
| 402 |
+
return repr_dps(ctx._prec)
|
| 403 |
+
|
| 404 |
+
@property
|
| 405 |
+
def _str_digits(ctx):
|
| 406 |
+
return ctx._dps
|
| 407 |
+
|
| 408 |
+
def extraprec(ctx, n, normalize_output=False):
|
| 409 |
+
"""
|
| 410 |
+
The block
|
| 411 |
+
|
| 412 |
+
with extraprec(n):
|
| 413 |
+
<code>
|
| 414 |
+
|
| 415 |
+
increases the precision n bits, executes <code>, and then
|
| 416 |
+
restores the precision.
|
| 417 |
+
|
| 418 |
+
extraprec(n)(f) returns a decorated version of the function f
|
| 419 |
+
that increases the working precision by n bits before execution,
|
| 420 |
+
and restores the parent precision afterwards. With
|
| 421 |
+
normalize_output=True, it rounds the return value to the parent
|
| 422 |
+
precision.
|
| 423 |
+
"""
|
| 424 |
+
return PrecisionManager(ctx, lambda p: p + n, None, normalize_output)
|
| 425 |
+
|
| 426 |
+
def extradps(ctx, n, normalize_output=False):
|
| 427 |
+
"""
|
| 428 |
+
This function is analogous to extraprec (see documentation)
|
| 429 |
+
but changes the decimal precision instead of the number of bits.
|
| 430 |
+
"""
|
| 431 |
+
return PrecisionManager(ctx, None, lambda d: d + n, normalize_output)
|
| 432 |
+
|
| 433 |
+
def workprec(ctx, n, normalize_output=False):
|
| 434 |
+
"""
|
| 435 |
+
The block
|
| 436 |
+
|
| 437 |
+
with workprec(n):
|
| 438 |
+
<code>
|
| 439 |
+
|
| 440 |
+
sets the precision to n bits, executes <code>, and then restores
|
| 441 |
+
the precision.
|
| 442 |
+
|
| 443 |
+
workprec(n)(f) returns a decorated version of the function f
|
| 444 |
+
that sets the precision to n bits before execution,
|
| 445 |
+
and restores the precision afterwards. With normalize_output=True,
|
| 446 |
+
it rounds the return value to the parent precision.
|
| 447 |
+
"""
|
| 448 |
+
return PrecisionManager(ctx, lambda p: n, None, normalize_output)
|
| 449 |
+
|
| 450 |
+
def workdps(ctx, n, normalize_output=False):
|
| 451 |
+
"""
|
| 452 |
+
This function is analogous to workprec (see documentation)
|
| 453 |
+
but changes the decimal precision instead of the number of bits.
|
| 454 |
+
"""
|
| 455 |
+
return PrecisionManager(ctx, None, lambda d: n, normalize_output)
|
| 456 |
+
|
| 457 |
+
def autoprec(ctx, f, maxprec=None, catch=(), verbose=False):
|
| 458 |
+
r"""
|
| 459 |
+
Return a wrapped copy of *f* that repeatedly evaluates *f*
|
| 460 |
+
with increasing precision until the result converges to the
|
| 461 |
+
full precision used at the point of the call.
|
| 462 |
+
|
| 463 |
+
This heuristically protects against rounding errors, at the cost of
|
| 464 |
+
roughly a 2x slowdown compared to manually setting the optimal
|
| 465 |
+
precision. This method can, however, easily be fooled if the results
|
| 466 |
+
from *f* depend "discontinuously" on the precision, for instance
|
| 467 |
+
if catastrophic cancellation can occur. Therefore, :func:`~mpmath.autoprec`
|
| 468 |
+
should be used judiciously.
|
| 469 |
+
|
| 470 |
+
**Examples**
|
| 471 |
+
|
| 472 |
+
Many functions are sensitive to perturbations of the input arguments.
|
| 473 |
+
If the arguments are decimal numbers, they may have to be converted
|
| 474 |
+
to binary at a much higher precision. If the amount of required
|
| 475 |
+
extra precision is unknown, :func:`~mpmath.autoprec` is convenient::
|
| 476 |
+
|
| 477 |
+
>>> from mpmath import *
|
| 478 |
+
>>> mp.dps = 15
|
| 479 |
+
>>> mp.pretty = True
|
| 480 |
+
>>> besselj(5, 125 * 10**28) # Exact input
|
| 481 |
+
-8.03284785591801e-17
|
| 482 |
+
>>> besselj(5, '1.25e30') # Bad
|
| 483 |
+
7.12954868316652e-16
|
| 484 |
+
>>> autoprec(besselj)(5, '1.25e30') # Good
|
| 485 |
+
-8.03284785591801e-17
|
| 486 |
+
|
| 487 |
+
The following fails to converge because `\sin(\pi) = 0` whereas all
|
| 488 |
+
finite-precision approximations of `\pi` give nonzero values::
|
| 489 |
+
|
| 490 |
+
>>> autoprec(sin)(pi) # doctest: +IGNORE_EXCEPTION_DETAIL
|
| 491 |
+
Traceback (most recent call last):
|
| 492 |
+
...
|
| 493 |
+
NoConvergence: autoprec: prec increased to 2910 without convergence
|
| 494 |
+
|
| 495 |
+
As the following example shows, :func:`~mpmath.autoprec` can protect against
|
| 496 |
+
cancellation, but is fooled by too severe cancellation::
|
| 497 |
+
|
| 498 |
+
>>> x = 1e-10
|
| 499 |
+
>>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
|
| 500 |
+
1.00000008274037e-10
|
| 501 |
+
1.00000000005e-10
|
| 502 |
+
1.00000000005e-10
|
| 503 |
+
>>> x = 1e-50
|
| 504 |
+
>>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
|
| 505 |
+
0.0
|
| 506 |
+
1.0e-50
|
| 507 |
+
0.0
|
| 508 |
+
|
| 509 |
+
With *catch*, an exception or list of exceptions to intercept
|
| 510 |
+
may be specified. The raised exception is interpreted
|
| 511 |
+
as signaling insufficient precision. This permits, for example,
|
| 512 |
+
evaluating a function where a too low precision results in a
|
| 513 |
+
division by zero::
|
| 514 |
+
|
| 515 |
+
>>> f = lambda x: 1/(exp(x)-1)
|
| 516 |
+
>>> f(1e-30)
|
| 517 |
+
Traceback (most recent call last):
|
| 518 |
+
...
|
| 519 |
+
ZeroDivisionError
|
| 520 |
+
>>> autoprec(f, catch=ZeroDivisionError)(1e-30)
|
| 521 |
+
1.0e+30
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
"""
|
| 525 |
+
def f_autoprec_wrapped(*args, **kwargs):
|
| 526 |
+
prec = ctx.prec
|
| 527 |
+
if maxprec is None:
|
| 528 |
+
maxprec2 = ctx._default_hyper_maxprec(prec)
|
| 529 |
+
else:
|
| 530 |
+
maxprec2 = maxprec
|
| 531 |
+
try:
|
| 532 |
+
ctx.prec = prec + 10
|
| 533 |
+
try:
|
| 534 |
+
v1 = f(*args, **kwargs)
|
| 535 |
+
except catch:
|
| 536 |
+
v1 = ctx.nan
|
| 537 |
+
prec2 = prec + 20
|
| 538 |
+
while 1:
|
| 539 |
+
ctx.prec = prec2
|
| 540 |
+
try:
|
| 541 |
+
v2 = f(*args, **kwargs)
|
| 542 |
+
except catch:
|
| 543 |
+
v2 = ctx.nan
|
| 544 |
+
if v1 == v2:
|
| 545 |
+
break
|
| 546 |
+
err = ctx.mag(v2-v1) - ctx.mag(v2)
|
| 547 |
+
if err < (-prec):
|
| 548 |
+
break
|
| 549 |
+
if verbose:
|
| 550 |
+
print("autoprec: target=%s, prec=%s, accuracy=%s" \
|
| 551 |
+
% (prec, prec2, -err))
|
| 552 |
+
v1 = v2
|
| 553 |
+
if prec2 >= maxprec2:
|
| 554 |
+
raise ctx.NoConvergence(\
|
| 555 |
+
"autoprec: prec increased to %i without convergence"\
|
| 556 |
+
% prec2)
|
| 557 |
+
prec2 += int(prec2*2)
|
| 558 |
+
prec2 = min(prec2, maxprec2)
|
| 559 |
+
finally:
|
| 560 |
+
ctx.prec = prec
|
| 561 |
+
return +v2
|
| 562 |
+
return f_autoprec_wrapped
|
| 563 |
+
|
| 564 |
+
def nstr(ctx, x, n=6, **kwargs):
|
| 565 |
+
"""
|
| 566 |
+
Convert an ``mpf`` or ``mpc`` to a decimal string literal with *n*
|
| 567 |
+
significant digits. The small default value for *n* is chosen to
|
| 568 |
+
make this function useful for printing collections of numbers
|
| 569 |
+
(lists, matrices, etc).
|
| 570 |
+
|
| 571 |
+
If *x* is a list or tuple, :func:`~mpmath.nstr` is applied recursively
|
| 572 |
+
to each element. For unrecognized classes, :func:`~mpmath.nstr`
|
| 573 |
+
simply returns ``str(x)``.
|
| 574 |
+
|
| 575 |
+
The companion function :func:`~mpmath.nprint` prints the result
|
| 576 |
+
instead of returning it.
|
| 577 |
+
|
| 578 |
+
The keyword arguments *strip_zeros*, *min_fixed*, *max_fixed*
|
| 579 |
+
and *show_zero_exponent* are forwarded to :func:`~mpmath.libmp.to_str`.
|
| 580 |
+
|
| 581 |
+
The number will be printed in fixed-point format if the position
|
| 582 |
+
of the leading digit is strictly between min_fixed
|
| 583 |
+
(default = min(-dps/3,-5)) and max_fixed (default = dps).
|
| 584 |
+
|
| 585 |
+
To force fixed-point format always, set min_fixed = -inf,
|
| 586 |
+
max_fixed = +inf. To force floating-point format, set
|
| 587 |
+
min_fixed >= max_fixed.
|
| 588 |
+
|
| 589 |
+
>>> from mpmath import *
|
| 590 |
+
>>> nstr([+pi, ldexp(1,-500)])
|
| 591 |
+
'[3.14159, 3.05494e-151]'
|
| 592 |
+
>>> nprint([+pi, ldexp(1,-500)])
|
| 593 |
+
[3.14159, 3.05494e-151]
|
| 594 |
+
>>> nstr(mpf("5e-10"), 5)
|
| 595 |
+
'5.0e-10'
|
| 596 |
+
>>> nstr(mpf("5e-10"), 5, strip_zeros=False)
|
| 597 |
+
'5.0000e-10'
|
| 598 |
+
>>> nstr(mpf("5e-10"), 5, strip_zeros=False, min_fixed=-11)
|
| 599 |
+
'0.00000000050000'
|
| 600 |
+
>>> nstr(mpf(0), 5, show_zero_exponent=True)
|
| 601 |
+
'0.0e+0'
|
| 602 |
+
|
| 603 |
+
"""
|
| 604 |
+
if isinstance(x, list):
|
| 605 |
+
return "[%s]" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
|
| 606 |
+
if isinstance(x, tuple):
|
| 607 |
+
return "(%s)" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
|
| 608 |
+
if hasattr(x, '_mpf_'):
|
| 609 |
+
return to_str(x._mpf_, n, **kwargs)
|
| 610 |
+
if hasattr(x, '_mpc_'):
|
| 611 |
+
return "(" + mpc_to_str(x._mpc_, n, **kwargs) + ")"
|
| 612 |
+
if isinstance(x, basestring):
|
| 613 |
+
return repr(x)
|
| 614 |
+
if isinstance(x, ctx.matrix):
|
| 615 |
+
return x.__nstr__(n, **kwargs)
|
| 616 |
+
return str(x)
|
| 617 |
+
|
| 618 |
+
def _convert_fallback(ctx, x, strings):
|
| 619 |
+
if strings and isinstance(x, basestring):
|
| 620 |
+
if 'j' in x.lower():
|
| 621 |
+
x = x.lower().replace(' ', '')
|
| 622 |
+
match = get_complex.match(x)
|
| 623 |
+
re = match.group('re')
|
| 624 |
+
if not re:
|
| 625 |
+
re = 0
|
| 626 |
+
im = match.group('im').rstrip('j')
|
| 627 |
+
return ctx.mpc(ctx.convert(re), ctx.convert(im))
|
| 628 |
+
if hasattr(x, "_mpi_"):
|
| 629 |
+
a, b = x._mpi_
|
| 630 |
+
if a == b:
|
| 631 |
+
return ctx.make_mpf(a)
|
| 632 |
+
else:
|
| 633 |
+
raise ValueError("can only create mpf from zero-width interval")
|
| 634 |
+
raise TypeError("cannot create mpf from " + repr(x))
|
| 635 |
+
|
| 636 |
+
def mpmathify(ctx, *args, **kwargs):
|
| 637 |
+
return ctx.convert(*args, **kwargs)
|
| 638 |
+
|
| 639 |
+
def _parse_prec(ctx, kwargs):
|
| 640 |
+
if kwargs:
|
| 641 |
+
if kwargs.get('exact'):
|
| 642 |
+
return 0, 'f'
|
| 643 |
+
prec, rounding = ctx._prec_rounding
|
| 644 |
+
if 'rounding' in kwargs:
|
| 645 |
+
rounding = kwargs['rounding']
|
| 646 |
+
if 'prec' in kwargs:
|
| 647 |
+
prec = kwargs['prec']
|
| 648 |
+
if prec == ctx.inf:
|
| 649 |
+
return 0, 'f'
|
| 650 |
+
else:
|
| 651 |
+
prec = int(prec)
|
| 652 |
+
elif 'dps' in kwargs:
|
| 653 |
+
dps = kwargs['dps']
|
| 654 |
+
if dps == ctx.inf:
|
| 655 |
+
return 0, 'f'
|
| 656 |
+
prec = dps_to_prec(dps)
|
| 657 |
+
return prec, rounding
|
| 658 |
+
return ctx._prec_rounding
|
| 659 |
+
|
| 660 |
+
_exact_overflow_msg = "the exact result does not fit in memory"
|
| 661 |
+
|
| 662 |
+
_hypsum_msg = """hypsum() failed to converge to the requested %i bits of accuracy
|
| 663 |
+
using a working precision of %i bits. Try with a higher maxprec,
|
| 664 |
+
maxterms, or set zeroprec."""
|
| 665 |
+
|
| 666 |
+
def hypsum(ctx, p, q, flags, coeffs, z, accurate_small=True, **kwargs):
|
| 667 |
+
if hasattr(z, "_mpf_"):
|
| 668 |
+
key = p, q, flags, 'R'
|
| 669 |
+
v = z._mpf_
|
| 670 |
+
elif hasattr(z, "_mpc_"):
|
| 671 |
+
key = p, q, flags, 'C'
|
| 672 |
+
v = z._mpc_
|
| 673 |
+
if key not in ctx.hyp_summators:
|
| 674 |
+
ctx.hyp_summators[key] = libmp.make_hyp_summator(key)[1]
|
| 675 |
+
summator = ctx.hyp_summators[key]
|
| 676 |
+
prec = ctx.prec
|
| 677 |
+
maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(prec))
|
| 678 |
+
extraprec = 50
|
| 679 |
+
epsshift = 25
|
| 680 |
+
# Jumps in magnitude occur when parameters are close to negative
|
| 681 |
+
# integers. We must ensure that these terms are included in
|
| 682 |
+
# the sum and added accurately
|
| 683 |
+
magnitude_check = {}
|
| 684 |
+
max_total_jump = 0
|
| 685 |
+
for i, c in enumerate(coeffs):
|
| 686 |
+
if flags[i] == 'Z':
|
| 687 |
+
if i >= p and c <= 0:
|
| 688 |
+
ok = False
|
| 689 |
+
for ii, cc in enumerate(coeffs[:p]):
|
| 690 |
+
# Note: c <= cc or c < cc, depending on convention
|
| 691 |
+
if flags[ii] == 'Z' and cc <= 0 and c <= cc:
|
| 692 |
+
ok = True
|
| 693 |
+
if not ok:
|
| 694 |
+
raise ZeroDivisionError("pole in hypergeometric series")
|
| 695 |
+
continue
|
| 696 |
+
n, d = ctx.nint_distance(c)
|
| 697 |
+
n = -int(n)
|
| 698 |
+
d = -d
|
| 699 |
+
if i >= p and n >= 0 and d > 4:
|
| 700 |
+
if n in magnitude_check:
|
| 701 |
+
magnitude_check[n] += d
|
| 702 |
+
else:
|
| 703 |
+
magnitude_check[n] = d
|
| 704 |
+
extraprec = max(extraprec, d - prec + 60)
|
| 705 |
+
max_total_jump += abs(d)
|
| 706 |
+
while 1:
|
| 707 |
+
if extraprec > maxprec:
|
| 708 |
+
raise ValueError(ctx._hypsum_msg % (prec, prec+extraprec))
|
| 709 |
+
wp = prec + extraprec
|
| 710 |
+
if magnitude_check:
|
| 711 |
+
mag_dict = dict((n,None) for n in magnitude_check)
|
| 712 |
+
else:
|
| 713 |
+
mag_dict = {}
|
| 714 |
+
zv, have_complex, magnitude = summator(coeffs, v, prec, wp, \
|
| 715 |
+
epsshift, mag_dict, **kwargs)
|
| 716 |
+
cancel = -magnitude
|
| 717 |
+
jumps_resolved = True
|
| 718 |
+
if extraprec < max_total_jump:
|
| 719 |
+
for n in mag_dict.values():
|
| 720 |
+
if (n is None) or (n < prec):
|
| 721 |
+
jumps_resolved = False
|
| 722 |
+
break
|
| 723 |
+
accurate = (cancel < extraprec-25-5 or not accurate_small)
|
| 724 |
+
if jumps_resolved:
|
| 725 |
+
if accurate:
|
| 726 |
+
break
|
| 727 |
+
# zero?
|
| 728 |
+
zeroprec = kwargs.get('zeroprec')
|
| 729 |
+
if zeroprec is not None:
|
| 730 |
+
if cancel > zeroprec:
|
| 731 |
+
if have_complex:
|
| 732 |
+
return ctx.mpc(0)
|
| 733 |
+
else:
|
| 734 |
+
return ctx.zero
|
| 735 |
+
|
| 736 |
+
# Some near-singularities were not included, so increase
|
| 737 |
+
# precision and repeat until they are
|
| 738 |
+
extraprec *= 2
|
| 739 |
+
# Possible workaround for bad roundoff in fixed-point arithmetic
|
| 740 |
+
epsshift += 5
|
| 741 |
+
extraprec += 5
|
| 742 |
+
|
| 743 |
+
if type(zv) is tuple:
|
| 744 |
+
if have_complex:
|
| 745 |
+
return ctx.make_mpc(zv)
|
| 746 |
+
else:
|
| 747 |
+
return ctx.make_mpf(zv)
|
| 748 |
+
else:
|
| 749 |
+
return zv
|
| 750 |
+
|
| 751 |
+
def ldexp(ctx, x, n):
|
| 752 |
+
r"""
|
| 753 |
+
Computes `x 2^n` efficiently. No rounding is performed.
|
| 754 |
+
The argument `x` must be a real floating-point number (or
|
| 755 |
+
possible to convert into one) and `n` must be a Python ``int``.
|
| 756 |
+
|
| 757 |
+
>>> from mpmath import *
|
| 758 |
+
>>> mp.dps = 15; mp.pretty = False
|
| 759 |
+
>>> ldexp(1, 10)
|
| 760 |
+
mpf('1024.0')
|
| 761 |
+
>>> ldexp(1, -3)
|
| 762 |
+
mpf('0.125')
|
| 763 |
+
|
| 764 |
+
"""
|
| 765 |
+
x = ctx.convert(x)
|
| 766 |
+
return ctx.make_mpf(libmp.mpf_shift(x._mpf_, n))
|
| 767 |
+
|
| 768 |
+
def frexp(ctx, x):
|
| 769 |
+
r"""
|
| 770 |
+
Given a real number `x`, returns `(y, n)` with `y \in [0.5, 1)`,
|
| 771 |
+
`n` a Python integer, and such that `x = y 2^n`. No rounding is
|
| 772 |
+
performed.
|
| 773 |
+
|
| 774 |
+
>>> from mpmath import *
|
| 775 |
+
>>> mp.dps = 15; mp.pretty = False
|
| 776 |
+
>>> frexp(7.5)
|
| 777 |
+
(mpf('0.9375'), 3)
|
| 778 |
+
|
| 779 |
+
"""
|
| 780 |
+
x = ctx.convert(x)
|
| 781 |
+
y, n = libmp.mpf_frexp(x._mpf_)
|
| 782 |
+
return ctx.make_mpf(y), n
|
| 783 |
+
|
| 784 |
+
def fneg(ctx, x, **kwargs):
|
| 785 |
+
"""
|
| 786 |
+
Negates the number *x*, giving a floating-point result, optionally
|
| 787 |
+
using a custom precision and rounding mode.
|
| 788 |
+
|
| 789 |
+
See the documentation of :func:`~mpmath.fadd` for a detailed description
|
| 790 |
+
of how to specify precision and rounding.
|
| 791 |
+
|
| 792 |
+
**Examples**
|
| 793 |
+
|
| 794 |
+
An mpmath number is returned::
|
| 795 |
+
|
| 796 |
+
>>> from mpmath import *
|
| 797 |
+
>>> mp.dps = 15; mp.pretty = False
|
| 798 |
+
>>> fneg(2.5)
|
| 799 |
+
mpf('-2.5')
|
| 800 |
+
>>> fneg(-5+2j)
|
| 801 |
+
mpc(real='5.0', imag='-2.0')
|
| 802 |
+
|
| 803 |
+
Precise control over rounding is possible::
|
| 804 |
+
|
| 805 |
+
>>> x = fadd(2, 1e-100, exact=True)
|
| 806 |
+
>>> fneg(x)
|
| 807 |
+
mpf('-2.0')
|
| 808 |
+
>>> fneg(x, rounding='f')
|
| 809 |
+
mpf('-2.0000000000000004')
|
| 810 |
+
|
| 811 |
+
Negating with and without roundoff::
|
| 812 |
+
|
| 813 |
+
>>> n = 200000000000000000000001
|
| 814 |
+
>>> print(int(-mpf(n)))
|
| 815 |
+
-200000000000000016777216
|
| 816 |
+
>>> print(int(fneg(n)))
|
| 817 |
+
-200000000000000016777216
|
| 818 |
+
>>> print(int(fneg(n, prec=log(n,2)+1)))
|
| 819 |
+
-200000000000000000000001
|
| 820 |
+
>>> print(int(fneg(n, dps=log(n,10)+1)))
|
| 821 |
+
-200000000000000000000001
|
| 822 |
+
>>> print(int(fneg(n, prec=inf)))
|
| 823 |
+
-200000000000000000000001
|
| 824 |
+
>>> print(int(fneg(n, dps=inf)))
|
| 825 |
+
-200000000000000000000001
|
| 826 |
+
>>> print(int(fneg(n, exact=True)))
|
| 827 |
+
-200000000000000000000001
|
| 828 |
+
|
| 829 |
+
"""
|
| 830 |
+
prec, rounding = ctx._parse_prec(kwargs)
|
| 831 |
+
x = ctx.convert(x)
|
| 832 |
+
if hasattr(x, '_mpf_'):
|
| 833 |
+
return ctx.make_mpf(mpf_neg(x._mpf_, prec, rounding))
|
| 834 |
+
if hasattr(x, '_mpc_'):
|
| 835 |
+
return ctx.make_mpc(mpc_neg(x._mpc_, prec, rounding))
|
| 836 |
+
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
|
| 837 |
+
|
| 838 |
+
def fadd(ctx, x, y, **kwargs):
|
| 839 |
+
"""
|
| 840 |
+
Adds the numbers *x* and *y*, giving a floating-point result,
|
| 841 |
+
optionally using a custom precision and rounding mode.
|
| 842 |
+
|
| 843 |
+
The default precision is the working precision of the context.
|
| 844 |
+
You can specify a custom precision in bits by passing the *prec* keyword
|
| 845 |
+
argument, or by providing an equivalent decimal precision with the *dps*
|
| 846 |
+
keyword argument. If the precision is set to ``+inf``, or if the flag
|
| 847 |
+
*exact=True* is passed, an exact addition with no rounding is performed.
|
| 848 |
+
|
| 849 |
+
When the precision is finite, the optional *rounding* keyword argument
|
| 850 |
+
specifies the direction of rounding. Valid options are ``'n'`` for
|
| 851 |
+
nearest (default), ``'f'`` for floor, ``'c'`` for ceiling, ``'d'``
|
| 852 |
+
for down, ``'u'`` for up.
|
| 853 |
+
|
| 854 |
+
**Examples**
|
| 855 |
+
|
| 856 |
+
Using :func:`~mpmath.fadd` with precision and rounding control::
|
| 857 |
+
|
| 858 |
+
>>> from mpmath import *
|
| 859 |
+
>>> mp.dps = 15; mp.pretty = False
|
| 860 |
+
>>> fadd(2, 1e-20)
|
| 861 |
+
mpf('2.0')
|
| 862 |
+
>>> fadd(2, 1e-20, rounding='u')
|
| 863 |
+
mpf('2.0000000000000004')
|
| 864 |
+
>>> nprint(fadd(2, 1e-20, prec=100), 25)
|
| 865 |
+
2.00000000000000000001
|
| 866 |
+
>>> nprint(fadd(2, 1e-20, dps=15), 25)
|
| 867 |
+
2.0
|
| 868 |
+
>>> nprint(fadd(2, 1e-20, dps=25), 25)
|
| 869 |
+
2.00000000000000000001
|
| 870 |
+
>>> nprint(fadd(2, 1e-20, exact=True), 25)
|
| 871 |
+
2.00000000000000000001
|
| 872 |
+
|
| 873 |
+
Exact addition avoids cancellation errors, enforcing familiar laws
|
| 874 |
+
of numbers such as `x+y-x = y`, which don't hold in floating-point
|
| 875 |
+
arithmetic with finite precision::
|
| 876 |
+
|
| 877 |
+
>>> x, y = mpf(2), mpf('1e-1000')
|
| 878 |
+
>>> print(x + y - x)
|
| 879 |
+
0.0
|
| 880 |
+
>>> print(fadd(x, y, prec=inf) - x)
|
| 881 |
+
1.0e-1000
|
| 882 |
+
>>> print(fadd(x, y, exact=True) - x)
|
| 883 |
+
1.0e-1000
|
| 884 |
+
|
| 885 |
+
Exact addition can be inefficient and may be impossible to perform
|
| 886 |
+
with large magnitude differences::
|
| 887 |
+
|
| 888 |
+
>>> fadd(1, '1e-100000000000000000000', prec=inf)
|
| 889 |
+
Traceback (most recent call last):
|
| 890 |
+
...
|
| 891 |
+
OverflowError: the exact result does not fit in memory
|
| 892 |
+
|
| 893 |
+
"""
|
| 894 |
+
prec, rounding = ctx._parse_prec(kwargs)
|
| 895 |
+
x = ctx.convert(x)
|
| 896 |
+
y = ctx.convert(y)
|
| 897 |
+
try:
|
| 898 |
+
if hasattr(x, '_mpf_'):
|
| 899 |
+
if hasattr(y, '_mpf_'):
|
| 900 |
+
return ctx.make_mpf(mpf_add(x._mpf_, y._mpf_, prec, rounding))
|
| 901 |
+
if hasattr(y, '_mpc_'):
|
| 902 |
+
return ctx.make_mpc(mpc_add_mpf(y._mpc_, x._mpf_, prec, rounding))
|
| 903 |
+
if hasattr(x, '_mpc_'):
|
| 904 |
+
if hasattr(y, '_mpf_'):
|
| 905 |
+
return ctx.make_mpc(mpc_add_mpf(x._mpc_, y._mpf_, prec, rounding))
|
| 906 |
+
if hasattr(y, '_mpc_'):
|
| 907 |
+
return ctx.make_mpc(mpc_add(x._mpc_, y._mpc_, prec, rounding))
|
| 908 |
+
except (ValueError, OverflowError):
|
| 909 |
+
raise OverflowError(ctx._exact_overflow_msg)
|
| 910 |
+
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
|
| 911 |
+
|
| 912 |
+
def fsub(ctx, x, y, **kwargs):
|
| 913 |
+
"""
|
| 914 |
+
Subtracts the numbers *x* and *y*, giving a floating-point result,
|
| 915 |
+
optionally using a custom precision and rounding mode.
|
| 916 |
+
|
| 917 |
+
See the documentation of :func:`~mpmath.fadd` for a detailed description
|
| 918 |
+
of how to specify precision and rounding.
|
| 919 |
+
|
| 920 |
+
**Examples**
|
| 921 |
+
|
| 922 |
+
Using :func:`~mpmath.fsub` with precision and rounding control::
|
| 923 |
+
|
| 924 |
+
>>> from mpmath import *
|
| 925 |
+
>>> mp.dps = 15; mp.pretty = False
|
| 926 |
+
>>> fsub(2, 1e-20)
|
| 927 |
+
mpf('2.0')
|
| 928 |
+
>>> fsub(2, 1e-20, rounding='d')
|
| 929 |
+
mpf('1.9999999999999998')
|
| 930 |
+
>>> nprint(fsub(2, 1e-20, prec=100), 25)
|
| 931 |
+
1.99999999999999999999
|
| 932 |
+
>>> nprint(fsub(2, 1e-20, dps=15), 25)
|
| 933 |
+
2.0
|
| 934 |
+
>>> nprint(fsub(2, 1e-20, dps=25), 25)
|
| 935 |
+
1.99999999999999999999
|
| 936 |
+
>>> nprint(fsub(2, 1e-20, exact=True), 25)
|
| 937 |
+
1.99999999999999999999
|
| 938 |
+
|
| 939 |
+
Exact subtraction avoids cancellation errors, enforcing familiar laws
|
| 940 |
+
of numbers such as `x-y+y = x`, which don't hold in floating-point
|
| 941 |
+
arithmetic with finite precision::
|
| 942 |
+
|
| 943 |
+
>>> x, y = mpf(2), mpf('1e1000')
|
| 944 |
+
>>> print(x - y + y)
|
| 945 |
+
0.0
|
| 946 |
+
>>> print(fsub(x, y, prec=inf) + y)
|
| 947 |
+
2.0
|
| 948 |
+
>>> print(fsub(x, y, exact=True) + y)
|
| 949 |
+
2.0
|
| 950 |
+
|
| 951 |
+
Exact addition can be inefficient and may be impossible to perform
|
| 952 |
+
with large magnitude differences::
|
| 953 |
+
|
| 954 |
+
>>> fsub(1, '1e-100000000000000000000', prec=inf)
|
| 955 |
+
Traceback (most recent call last):
|
| 956 |
+
...
|
| 957 |
+
OverflowError: the exact result does not fit in memory
|
| 958 |
+
|
| 959 |
+
"""
|
| 960 |
+
prec, rounding = ctx._parse_prec(kwargs)
|
| 961 |
+
x = ctx.convert(x)
|
| 962 |
+
y = ctx.convert(y)
|
| 963 |
+
try:
|
| 964 |
+
if hasattr(x, '_mpf_'):
|
| 965 |
+
if hasattr(y, '_mpf_'):
|
| 966 |
+
return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding))
|
| 967 |
+
if hasattr(y, '_mpc_'):
|
| 968 |
+
return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding))
|
| 969 |
+
if hasattr(x, '_mpc_'):
|
| 970 |
+
if hasattr(y, '_mpf_'):
|
| 971 |
+
return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding))
|
| 972 |
+
if hasattr(y, '_mpc_'):
|
| 973 |
+
return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding))
|
| 974 |
+
except (ValueError, OverflowError):
|
| 975 |
+
raise OverflowError(ctx._exact_overflow_msg)
|
| 976 |
+
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
|
| 977 |
+
|
| 978 |
+
def fmul(ctx, x, y, **kwargs):
|
| 979 |
+
"""
|
| 980 |
+
Multiplies the numbers *x* and *y*, giving a floating-point result,
|
| 981 |
+
optionally using a custom precision and rounding mode.
|
| 982 |
+
|
| 983 |
+
See the documentation of :func:`~mpmath.fadd` for a detailed description
|
| 984 |
+
of how to specify precision and rounding.
|
| 985 |
+
|
| 986 |
+
**Examples**
|
| 987 |
+
|
| 988 |
+
The result is an mpmath number::
|
| 989 |
+
|
| 990 |
+
>>> from mpmath import *
|
| 991 |
+
>>> mp.dps = 15; mp.pretty = False
|
| 992 |
+
>>> fmul(2, 5.0)
|
| 993 |
+
mpf('10.0')
|
| 994 |
+
>>> fmul(0.5j, 0.5)
|
| 995 |
+
mpc(real='0.0', imag='0.25')
|
| 996 |
+
|
| 997 |
+
Avoiding roundoff::
|
| 998 |
+
|
| 999 |
+
>>> x, y = 10**10+1, 10**15+1
|
| 1000 |
+
>>> print(x*y)
|
| 1001 |
+
10000000001000010000000001
|
| 1002 |
+
>>> print(mpf(x) * mpf(y))
|
| 1003 |
+
1.0000000001e+25
|
| 1004 |
+
>>> print(int(mpf(x) * mpf(y)))
|
| 1005 |
+
10000000001000011026399232
|
| 1006 |
+
>>> print(int(fmul(x, y)))
|
| 1007 |
+
10000000001000011026399232
|
| 1008 |
+
>>> print(int(fmul(x, y, dps=25)))
|
| 1009 |
+
10000000001000010000000001
|
| 1010 |
+
>>> print(int(fmul(x, y, exact=True)))
|
| 1011 |
+
10000000001000010000000001
|
| 1012 |
+
|
| 1013 |
+
Exact multiplication with complex numbers can be inefficient and may
|
| 1014 |
+
be impossible to perform with large magnitude differences between
|
| 1015 |
+
real and imaginary parts::
|
| 1016 |
+
|
| 1017 |
+
>>> x = 1+2j
|
| 1018 |
+
>>> y = mpc(2, '1e-100000000000000000000')
|
| 1019 |
+
>>> fmul(x, y)
|
| 1020 |
+
mpc(real='2.0', imag='4.0')
|
| 1021 |
+
>>> fmul(x, y, rounding='u')
|
| 1022 |
+
mpc(real='2.0', imag='4.0000000000000009')
|
| 1023 |
+
>>> fmul(x, y, exact=True)
|
| 1024 |
+
Traceback (most recent call last):
|
| 1025 |
+
...
|
| 1026 |
+
OverflowError: the exact result does not fit in memory
|
| 1027 |
+
|
| 1028 |
+
"""
|
| 1029 |
+
prec, rounding = ctx._parse_prec(kwargs)
|
| 1030 |
+
x = ctx.convert(x)
|
| 1031 |
+
y = ctx.convert(y)
|
| 1032 |
+
try:
|
| 1033 |
+
if hasattr(x, '_mpf_'):
|
| 1034 |
+
if hasattr(y, '_mpf_'):
|
| 1035 |
+
return ctx.make_mpf(mpf_mul(x._mpf_, y._mpf_, prec, rounding))
|
| 1036 |
+
if hasattr(y, '_mpc_'):
|
| 1037 |
+
return ctx.make_mpc(mpc_mul_mpf(y._mpc_, x._mpf_, prec, rounding))
|
| 1038 |
+
if hasattr(x, '_mpc_'):
|
| 1039 |
+
if hasattr(y, '_mpf_'):
|
| 1040 |
+
return ctx.make_mpc(mpc_mul_mpf(x._mpc_, y._mpf_, prec, rounding))
|
| 1041 |
+
if hasattr(y, '_mpc_'):
|
| 1042 |
+
return ctx.make_mpc(mpc_mul(x._mpc_, y._mpc_, prec, rounding))
|
| 1043 |
+
except (ValueError, OverflowError):
|
| 1044 |
+
raise OverflowError(ctx._exact_overflow_msg)
|
| 1045 |
+
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
|
| 1046 |
+
|
| 1047 |
+
def fdiv(ctx, x, y, **kwargs):
|
| 1048 |
+
"""
|
| 1049 |
+
Divides the numbers *x* and *y*, giving a floating-point result,
|
| 1050 |
+
optionally using a custom precision and rounding mode.
|
| 1051 |
+
|
| 1052 |
+
See the documentation of :func:`~mpmath.fadd` for a detailed description
|
| 1053 |
+
of how to specify precision and rounding.
|
| 1054 |
+
|
| 1055 |
+
**Examples**
|
| 1056 |
+
|
| 1057 |
+
The result is an mpmath number::
|
| 1058 |
+
|
| 1059 |
+
>>> from mpmath import *
|
| 1060 |
+
>>> mp.dps = 15; mp.pretty = False
|
| 1061 |
+
>>> fdiv(3, 2)
|
| 1062 |
+
mpf('1.5')
|
| 1063 |
+
>>> fdiv(2, 3)
|
| 1064 |
+
mpf('0.66666666666666663')
|
| 1065 |
+
>>> fdiv(2+4j, 0.5)
|
| 1066 |
+
mpc(real='4.0', imag='8.0')
|
| 1067 |
+
|
| 1068 |
+
The rounding direction and precision can be controlled::
|
| 1069 |
+
|
| 1070 |
+
>>> fdiv(2, 3, dps=3) # Should be accurate to at least 3 digits
|
| 1071 |
+
mpf('0.6666259765625')
|
| 1072 |
+
>>> fdiv(2, 3, rounding='d')
|
| 1073 |
+
mpf('0.66666666666666663')
|
| 1074 |
+
>>> fdiv(2, 3, prec=60)
|
| 1075 |
+
mpf('0.66666666666666667')
|
| 1076 |
+
>>> fdiv(2, 3, rounding='u')
|
| 1077 |
+
mpf('0.66666666666666674')
|
| 1078 |
+
|
| 1079 |
+
Checking the error of a division by performing it at higher precision::
|
| 1080 |
+
|
| 1081 |
+
>>> fdiv(2, 3) - fdiv(2, 3, prec=100)
|
| 1082 |
+
mpf('-3.7007434154172148e-17')
|
| 1083 |
+
|
| 1084 |
+
Unlike :func:`~mpmath.fadd`, :func:`~mpmath.fmul`, etc., exact division is not
|
| 1085 |
+
allowed since the quotient of two floating-point numbers generally
|
| 1086 |
+
does not have an exact floating-point representation. (In the
|
| 1087 |
+
future this might be changed to allow the case where the division
|
| 1088 |
+
is actually exact.)
|
| 1089 |
+
|
| 1090 |
+
>>> fdiv(2, 3, exact=True)
|
| 1091 |
+
Traceback (most recent call last):
|
| 1092 |
+
...
|
| 1093 |
+
ValueError: division is not an exact operation
|
| 1094 |
+
|
| 1095 |
+
"""
|
| 1096 |
+
prec, rounding = ctx._parse_prec(kwargs)
|
| 1097 |
+
if not prec:
|
| 1098 |
+
raise ValueError("division is not an exact operation")
|
| 1099 |
+
x = ctx.convert(x)
|
| 1100 |
+
y = ctx.convert(y)
|
| 1101 |
+
if hasattr(x, '_mpf_'):
|
| 1102 |
+
if hasattr(y, '_mpf_'):
|
| 1103 |
+
return ctx.make_mpf(mpf_div(x._mpf_, y._mpf_, prec, rounding))
|
| 1104 |
+
if hasattr(y, '_mpc_'):
|
| 1105 |
+
return ctx.make_mpc(mpc_div((x._mpf_, fzero), y._mpc_, prec, rounding))
|
| 1106 |
+
if hasattr(x, '_mpc_'):
|
| 1107 |
+
if hasattr(y, '_mpf_'):
|
| 1108 |
+
return ctx.make_mpc(mpc_div_mpf(x._mpc_, y._mpf_, prec, rounding))
|
| 1109 |
+
if hasattr(y, '_mpc_'):
|
| 1110 |
+
return ctx.make_mpc(mpc_div(x._mpc_, y._mpc_, prec, rounding))
|
| 1111 |
+
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
|
| 1112 |
+
|
| 1113 |
+
def nint_distance(ctx, x):
|
| 1114 |
+
r"""
|
| 1115 |
+
Return `(n,d)` where `n` is the nearest integer to `x` and `d` is
|
| 1116 |
+
an estimate of `\log_2(|x-n|)`. If `d < 0`, `-d` gives the precision
|
| 1117 |
+
(measured in bits) lost to cancellation when computing `x-n`.
|
| 1118 |
+
|
| 1119 |
+
>>> from mpmath import *
|
| 1120 |
+
>>> n, d = nint_distance(5)
|
| 1121 |
+
>>> print(n); print(d)
|
| 1122 |
+
5
|
| 1123 |
+
-inf
|
| 1124 |
+
>>> n, d = nint_distance(mpf(5))
|
| 1125 |
+
>>> print(n); print(d)
|
| 1126 |
+
5
|
| 1127 |
+
-inf
|
| 1128 |
+
>>> n, d = nint_distance(mpf(5.00000001))
|
| 1129 |
+
>>> print(n); print(d)
|
| 1130 |
+
5
|
| 1131 |
+
-26
|
| 1132 |
+
>>> n, d = nint_distance(mpf(4.99999999))
|
| 1133 |
+
>>> print(n); print(d)
|
| 1134 |
+
5
|
| 1135 |
+
-26
|
| 1136 |
+
>>> n, d = nint_distance(mpc(5,10))
|
| 1137 |
+
>>> print(n); print(d)
|
| 1138 |
+
5
|
| 1139 |
+
4
|
| 1140 |
+
>>> n, d = nint_distance(mpc(5,0.000001))
|
| 1141 |
+
>>> print(n); print(d)
|
| 1142 |
+
5
|
| 1143 |
+
-19
|
| 1144 |
+
|
| 1145 |
+
"""
|
| 1146 |
+
typx = type(x)
|
| 1147 |
+
if typx in int_types:
|
| 1148 |
+
return int(x), ctx.ninf
|
| 1149 |
+
elif typx is rational.mpq:
|
| 1150 |
+
p, q = x._mpq_
|
| 1151 |
+
n, r = divmod(p, q)
|
| 1152 |
+
if 2*r >= q:
|
| 1153 |
+
n += 1
|
| 1154 |
+
elif not r:
|
| 1155 |
+
return n, ctx.ninf
|
| 1156 |
+
# log(p/q-n) = log((p-nq)/q) = log(p-nq) - log(q)
|
| 1157 |
+
d = bitcount(abs(p-n*q)) - bitcount(q)
|
| 1158 |
+
return n, d
|
| 1159 |
+
if hasattr(x, "_mpf_"):
|
| 1160 |
+
re = x._mpf_
|
| 1161 |
+
im_dist = ctx.ninf
|
| 1162 |
+
elif hasattr(x, "_mpc_"):
|
| 1163 |
+
re, im = x._mpc_
|
| 1164 |
+
isign, iman, iexp, ibc = im
|
| 1165 |
+
if iman:
|
| 1166 |
+
im_dist = iexp + ibc
|
| 1167 |
+
elif im == fzero:
|
| 1168 |
+
im_dist = ctx.ninf
|
| 1169 |
+
else:
|
| 1170 |
+
raise ValueError("requires a finite number")
|
| 1171 |
+
else:
|
| 1172 |
+
x = ctx.convert(x)
|
| 1173 |
+
if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"):
|
| 1174 |
+
return ctx.nint_distance(x)
|
| 1175 |
+
else:
|
| 1176 |
+
raise TypeError("requires an mpf/mpc")
|
| 1177 |
+
sign, man, exp, bc = re
|
| 1178 |
+
mag = exp+bc
|
| 1179 |
+
# |x| < 0.5
|
| 1180 |
+
if mag < 0:
|
| 1181 |
+
n = 0
|
| 1182 |
+
re_dist = mag
|
| 1183 |
+
elif man:
|
| 1184 |
+
# exact integer
|
| 1185 |
+
if exp >= 0:
|
| 1186 |
+
n = man << exp
|
| 1187 |
+
re_dist = ctx.ninf
|
| 1188 |
+
# exact half-integer
|
| 1189 |
+
elif exp == -1:
|
| 1190 |
+
n = (man>>1)+1
|
| 1191 |
+
re_dist = 0
|
| 1192 |
+
else:
|
| 1193 |
+
d = (-exp-1)
|
| 1194 |
+
t = man >> d
|
| 1195 |
+
if t & 1:
|
| 1196 |
+
t += 1
|
| 1197 |
+
man = (t<<d) - man
|
| 1198 |
+
else:
|
| 1199 |
+
man -= (t<<d)
|
| 1200 |
+
n = t>>1 # int(t)>>1
|
| 1201 |
+
re_dist = exp+bitcount(man)
|
| 1202 |
+
if sign:
|
| 1203 |
+
n = -n
|
| 1204 |
+
elif re == fzero:
|
| 1205 |
+
re_dist = ctx.ninf
|
| 1206 |
+
n = 0
|
| 1207 |
+
else:
|
| 1208 |
+
raise ValueError("requires a finite number")
|
| 1209 |
+
return n, max(re_dist, im_dist)
|
| 1210 |
+
|
| 1211 |
+
def fprod(ctx, factors):
|
| 1212 |
+
r"""
|
| 1213 |
+
Calculates a product containing a finite number of factors (for
|
| 1214 |
+
infinite products, see :func:`~mpmath.nprod`). The factors will be
|
| 1215 |
+
converted to mpmath numbers.
|
| 1216 |
+
|
| 1217 |
+
>>> from mpmath import *
|
| 1218 |
+
>>> mp.dps = 15; mp.pretty = False
|
| 1219 |
+
>>> fprod([1, 2, 0.5, 7])
|
| 1220 |
+
mpf('7.0')
|
| 1221 |
+
|
| 1222 |
+
"""
|
| 1223 |
+
orig = ctx.prec
|
| 1224 |
+
try:
|
| 1225 |
+
v = ctx.one
|
| 1226 |
+
for p in factors:
|
| 1227 |
+
v *= p
|
| 1228 |
+
finally:
|
| 1229 |
+
ctx.prec = orig
|
| 1230 |
+
return +v
|
| 1231 |
+
|
| 1232 |
+
def rand(ctx):
|
| 1233 |
+
"""
|
| 1234 |
+
Returns an ``mpf`` with value chosen randomly from `[0, 1)`.
|
| 1235 |
+
The number of randomly generated bits in the mantissa is equal
|
| 1236 |
+
to the working precision.
|
| 1237 |
+
"""
|
| 1238 |
+
return ctx.make_mpf(mpf_rand(ctx._prec))
|
| 1239 |
+
|
| 1240 |
+
def fraction(ctx, p, q):
|
| 1241 |
+
"""
|
| 1242 |
+
Given Python integers `(p, q)`, returns a lazy ``mpf`` representing
|
| 1243 |
+
the fraction `p/q`. The value is updated with the precision.
|
| 1244 |
+
|
| 1245 |
+
>>> from mpmath import *
|
| 1246 |
+
>>> mp.dps = 15
|
| 1247 |
+
>>> a = fraction(1,100)
|
| 1248 |
+
>>> b = mpf(1)/100
|
| 1249 |
+
>>> print(a); print(b)
|
| 1250 |
+
0.01
|
| 1251 |
+
0.01
|
| 1252 |
+
>>> mp.dps = 30
|
| 1253 |
+
>>> print(a); print(b) # a will be accurate
|
| 1254 |
+
0.01
|
| 1255 |
+
0.0100000000000000002081668171172
|
| 1256 |
+
>>> mp.dps = 15
|
| 1257 |
+
"""
|
| 1258 |
+
return ctx.constant(lambda prec, rnd: from_rational(p, q, prec, rnd),
|
| 1259 |
+
'%s/%s' % (p, q))
|
| 1260 |
+
|
| 1261 |
+
def absmin(ctx, x):
|
| 1262 |
+
return abs(ctx.convert(x))
|
| 1263 |
+
|
| 1264 |
+
def absmax(ctx, x):
|
| 1265 |
+
return abs(ctx.convert(x))
|
| 1266 |
+
|
| 1267 |
+
def _as_points(ctx, x):
|
| 1268 |
+
# XXX: remove this?
|
| 1269 |
+
if hasattr(x, '_mpi_'):
|
| 1270 |
+
a, b = x._mpi_
|
| 1271 |
+
return [ctx.make_mpf(a), ctx.make_mpf(b)]
|
| 1272 |
+
return x
|
| 1273 |
+
|
| 1274 |
+
'''
|
| 1275 |
+
def _zetasum(ctx, s, a, b):
|
| 1276 |
+
"""
|
| 1277 |
+
Computes sum of k^(-s) for k = a, a+1, ..., b with a, b both small
|
| 1278 |
+
integers.
|
| 1279 |
+
"""
|
| 1280 |
+
a = int(a)
|
| 1281 |
+
b = int(b)
|
| 1282 |
+
s = ctx.convert(s)
|
| 1283 |
+
prec, rounding = ctx._prec_rounding
|
| 1284 |
+
if hasattr(s, '_mpf_'):
|
| 1285 |
+
v = ctx.make_mpf(libmp.mpf_zetasum(s._mpf_, a, b, prec))
|
| 1286 |
+
elif hasattr(s, '_mpc_'):
|
| 1287 |
+
v = ctx.make_mpc(libmp.mpc_zetasum(s._mpc_, a, b, prec))
|
| 1288 |
+
return v
|
| 1289 |
+
'''
|
| 1290 |
+
|
| 1291 |
+
def _zetasum_fast(ctx, s, a, n, derivatives=[0], reflect=False):
|
| 1292 |
+
if not (ctx.isint(a) and hasattr(s, "_mpc_")):
|
| 1293 |
+
raise NotImplementedError
|
| 1294 |
+
a = int(a)
|
| 1295 |
+
prec = ctx._prec
|
| 1296 |
+
xs, ys = libmp.mpc_zetasum(s._mpc_, a, n, derivatives, reflect, prec)
|
| 1297 |
+
xs = [ctx.make_mpc(x) for x in xs]
|
| 1298 |
+
ys = [ctx.make_mpc(y) for y in ys]
|
| 1299 |
+
return xs, ys
|
| 1300 |
+
|
| 1301 |
+
class PrecisionManager:
|
| 1302 |
+
def __init__(self, ctx, precfun, dpsfun, normalize_output=False):
|
| 1303 |
+
self.ctx = ctx
|
| 1304 |
+
self.precfun = precfun
|
| 1305 |
+
self.dpsfun = dpsfun
|
| 1306 |
+
self.normalize_output = normalize_output
|
| 1307 |
+
def __call__(self, f):
|
| 1308 |
+
@functools.wraps(f)
|
| 1309 |
+
def g(*args, **kwargs):
|
| 1310 |
+
orig = self.ctx.prec
|
| 1311 |
+
try:
|
| 1312 |
+
if self.precfun:
|
| 1313 |
+
self.ctx.prec = self.precfun(self.ctx.prec)
|
| 1314 |
+
else:
|
| 1315 |
+
self.ctx.dps = self.dpsfun(self.ctx.dps)
|
| 1316 |
+
if self.normalize_output:
|
| 1317 |
+
v = f(*args, **kwargs)
|
| 1318 |
+
if type(v) is tuple:
|
| 1319 |
+
return tuple([+a for a in v])
|
| 1320 |
+
return +v
|
| 1321 |
+
else:
|
| 1322 |
+
return f(*args, **kwargs)
|
| 1323 |
+
finally:
|
| 1324 |
+
self.ctx.prec = orig
|
| 1325 |
+
return g
|
| 1326 |
+
def __enter__(self):
|
| 1327 |
+
self.origp = self.ctx.prec
|
| 1328 |
+
if self.precfun:
|
| 1329 |
+
self.ctx.prec = self.precfun(self.ctx.prec)
|
| 1330 |
+
else:
|
| 1331 |
+
self.ctx.dps = self.dpsfun(self.ctx.dps)
|
| 1332 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 1333 |
+
self.ctx.prec = self.origp
|
| 1334 |
+
return False
|
| 1335 |
+
|
| 1336 |
+
|
| 1337 |
+
if __name__ == '__main__':
|
| 1338 |
+
import doctest
|
| 1339 |
+
doctest.testmod()
|