Upload ctx_base.py with huggingface_hub
Browse files- ctx_base.py +494 -0
ctx_base.py
ADDED
|
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from operator import gt, lt
|
| 2 |
+
|
| 3 |
+
from .libmp.backend import xrange
|
| 4 |
+
|
| 5 |
+
from .functions.functions import SpecialFunctions
|
| 6 |
+
from .functions.rszeta import RSCache
|
| 7 |
+
from .calculus.quadrature import QuadratureMethods
|
| 8 |
+
from .calculus.inverselaplace import LaplaceTransformInversionMethods
|
| 9 |
+
from .calculus.calculus import CalculusMethods
|
| 10 |
+
from .calculus.optimization import OptimizationMethods
|
| 11 |
+
from .calculus.odes import ODEMethods
|
| 12 |
+
from .matrices.matrices import MatrixMethods
|
| 13 |
+
from .matrices.calculus import MatrixCalculusMethods
|
| 14 |
+
from .matrices.linalg import LinearAlgebraMethods
|
| 15 |
+
from .matrices.eigen import Eigen
|
| 16 |
+
from .identification import IdentificationMethods
|
| 17 |
+
from .visualization import VisualizationMethods
|
| 18 |
+
|
| 19 |
+
from . import libmp
|
| 20 |
+
|
| 21 |
+
class Context(object):
|
| 22 |
+
pass
|
| 23 |
+
|
| 24 |
+
class StandardBaseContext(Context,
|
| 25 |
+
SpecialFunctions,
|
| 26 |
+
RSCache,
|
| 27 |
+
QuadratureMethods,
|
| 28 |
+
LaplaceTransformInversionMethods,
|
| 29 |
+
CalculusMethods,
|
| 30 |
+
MatrixMethods,
|
| 31 |
+
MatrixCalculusMethods,
|
| 32 |
+
LinearAlgebraMethods,
|
| 33 |
+
Eigen,
|
| 34 |
+
IdentificationMethods,
|
| 35 |
+
OptimizationMethods,
|
| 36 |
+
ODEMethods,
|
| 37 |
+
VisualizationMethods):
|
| 38 |
+
|
| 39 |
+
NoConvergence = libmp.NoConvergence
|
| 40 |
+
ComplexResult = libmp.ComplexResult
|
| 41 |
+
|
| 42 |
+
def __init__(ctx):
|
| 43 |
+
ctx._aliases = {}
|
| 44 |
+
# Call those that need preinitialization (e.g. for wrappers)
|
| 45 |
+
SpecialFunctions.__init__(ctx)
|
| 46 |
+
RSCache.__init__(ctx)
|
| 47 |
+
QuadratureMethods.__init__(ctx)
|
| 48 |
+
LaplaceTransformInversionMethods.__init__(ctx)
|
| 49 |
+
CalculusMethods.__init__(ctx)
|
| 50 |
+
MatrixMethods.__init__(ctx)
|
| 51 |
+
|
| 52 |
+
def _init_aliases(ctx):
|
| 53 |
+
for alias, value in ctx._aliases.items():
|
| 54 |
+
try:
|
| 55 |
+
setattr(ctx, alias, getattr(ctx, value))
|
| 56 |
+
except AttributeError:
|
| 57 |
+
pass
|
| 58 |
+
|
| 59 |
+
_fixed_precision = False
|
| 60 |
+
|
| 61 |
+
# XXX
|
| 62 |
+
verbose = False
|
| 63 |
+
|
| 64 |
+
def warn(ctx, msg):
|
| 65 |
+
print("Warning:", msg)
|
| 66 |
+
|
| 67 |
+
def bad_domain(ctx, msg):
|
| 68 |
+
raise ValueError(msg)
|
| 69 |
+
|
| 70 |
+
def _re(ctx, x):
|
| 71 |
+
if hasattr(x, "real"):
|
| 72 |
+
return x.real
|
| 73 |
+
return x
|
| 74 |
+
|
| 75 |
+
def _im(ctx, x):
|
| 76 |
+
if hasattr(x, "imag"):
|
| 77 |
+
return x.imag
|
| 78 |
+
return ctx.zero
|
| 79 |
+
|
| 80 |
+
def _as_points(ctx, x):
|
| 81 |
+
return x
|
| 82 |
+
|
| 83 |
+
def fneg(ctx, x, **kwargs):
|
| 84 |
+
return -ctx.convert(x)
|
| 85 |
+
|
| 86 |
+
def fadd(ctx, x, y, **kwargs):
|
| 87 |
+
return ctx.convert(x)+ctx.convert(y)
|
| 88 |
+
|
| 89 |
+
def fsub(ctx, x, y, **kwargs):
|
| 90 |
+
return ctx.convert(x)-ctx.convert(y)
|
| 91 |
+
|
| 92 |
+
def fmul(ctx, x, y, **kwargs):
|
| 93 |
+
return ctx.convert(x)*ctx.convert(y)
|
| 94 |
+
|
| 95 |
+
def fdiv(ctx, x, y, **kwargs):
|
| 96 |
+
return ctx.convert(x)/ctx.convert(y)
|
| 97 |
+
|
| 98 |
+
def fsum(ctx, args, absolute=False, squared=False):
|
| 99 |
+
if absolute:
|
| 100 |
+
if squared:
|
| 101 |
+
return sum((abs(x)**2 for x in args), ctx.zero)
|
| 102 |
+
return sum((abs(x) for x in args), ctx.zero)
|
| 103 |
+
if squared:
|
| 104 |
+
return sum((x**2 for x in args), ctx.zero)
|
| 105 |
+
return sum(args, ctx.zero)
|
| 106 |
+
|
| 107 |
+
def fdot(ctx, xs, ys=None, conjugate=False):
|
| 108 |
+
if ys is not None:
|
| 109 |
+
xs = zip(xs, ys)
|
| 110 |
+
if conjugate:
|
| 111 |
+
cf = ctx.conj
|
| 112 |
+
return sum((x*cf(y) for (x,y) in xs), ctx.zero)
|
| 113 |
+
else:
|
| 114 |
+
return sum((x*y for (x,y) in xs), ctx.zero)
|
| 115 |
+
|
| 116 |
+
def fprod(ctx, args):
|
| 117 |
+
prod = ctx.one
|
| 118 |
+
for arg in args:
|
| 119 |
+
prod *= arg
|
| 120 |
+
return prod
|
| 121 |
+
|
| 122 |
+
def nprint(ctx, x, n=6, **kwargs):
|
| 123 |
+
"""
|
| 124 |
+
Equivalent to ``print(nstr(x, n))``.
|
| 125 |
+
"""
|
| 126 |
+
print(ctx.nstr(x, n, **kwargs))
|
| 127 |
+
|
| 128 |
+
def chop(ctx, x, tol=None):
|
| 129 |
+
"""
|
| 130 |
+
Chops off small real or imaginary parts, or converts
|
| 131 |
+
numbers close to zero to exact zeros. The input can be a
|
| 132 |
+
single number or an iterable::
|
| 133 |
+
|
| 134 |
+
>>> from mpmath import *
|
| 135 |
+
>>> mp.dps = 15; mp.pretty = False
|
| 136 |
+
>>> chop(5+1e-10j, tol=1e-9)
|
| 137 |
+
mpf('5.0')
|
| 138 |
+
>>> nprint(chop([1.0, 1e-20, 3+1e-18j, -4, 2]))
|
| 139 |
+
[1.0, 0.0, 3.0, -4.0, 2.0]
|
| 140 |
+
|
| 141 |
+
The tolerance defaults to ``100*eps``.
|
| 142 |
+
"""
|
| 143 |
+
if tol is None:
|
| 144 |
+
tol = 100*ctx.eps
|
| 145 |
+
try:
|
| 146 |
+
x = ctx.convert(x)
|
| 147 |
+
absx = abs(x)
|
| 148 |
+
if abs(x) < tol:
|
| 149 |
+
return ctx.zero
|
| 150 |
+
if ctx._is_complex_type(x):
|
| 151 |
+
#part_tol = min(tol, absx*tol)
|
| 152 |
+
part_tol = max(tol, absx*tol)
|
| 153 |
+
if abs(x.imag) < part_tol:
|
| 154 |
+
return x.real
|
| 155 |
+
if abs(x.real) < part_tol:
|
| 156 |
+
return ctx.mpc(0, x.imag)
|
| 157 |
+
except TypeError:
|
| 158 |
+
if isinstance(x, ctx.matrix):
|
| 159 |
+
return x.apply(lambda a: ctx.chop(a, tol))
|
| 160 |
+
if hasattr(x, "__iter__"):
|
| 161 |
+
return [ctx.chop(a, tol) for a in x]
|
| 162 |
+
return x
|
| 163 |
+
|
| 164 |
+
def almosteq(ctx, s, t, rel_eps=None, abs_eps=None):
|
| 165 |
+
r"""
|
| 166 |
+
Determine whether the difference between `s` and `t` is smaller
|
| 167 |
+
than a given epsilon, either relatively or absolutely.
|
| 168 |
+
|
| 169 |
+
Both a maximum relative difference and a maximum difference
|
| 170 |
+
('epsilons') may be specified. The absolute difference is
|
| 171 |
+
defined as `|s-t|` and the relative difference is defined
|
| 172 |
+
as `|s-t|/\max(|s|, |t|)`.
|
| 173 |
+
|
| 174 |
+
If only one epsilon is given, both are set to the same value.
|
| 175 |
+
If none is given, both epsilons are set to `2^{-p+m}` where
|
| 176 |
+
`p` is the current working precision and `m` is a small
|
| 177 |
+
integer. The default setting typically allows :func:`~mpmath.almosteq`
|
| 178 |
+
to be used to check for mathematical equality
|
| 179 |
+
in the presence of small rounding errors.
|
| 180 |
+
|
| 181 |
+
**Examples**
|
| 182 |
+
|
| 183 |
+
>>> from mpmath import *
|
| 184 |
+
>>> mp.dps = 15
|
| 185 |
+
>>> almosteq(3.141592653589793, 3.141592653589790)
|
| 186 |
+
True
|
| 187 |
+
>>> almosteq(3.141592653589793, 3.141592653589700)
|
| 188 |
+
False
|
| 189 |
+
>>> almosteq(3.141592653589793, 3.141592653589700, 1e-10)
|
| 190 |
+
True
|
| 191 |
+
>>> almosteq(1e-20, 2e-20)
|
| 192 |
+
True
|
| 193 |
+
>>> almosteq(1e-20, 2e-20, rel_eps=0, abs_eps=0)
|
| 194 |
+
False
|
| 195 |
+
|
| 196 |
+
"""
|
| 197 |
+
t = ctx.convert(t)
|
| 198 |
+
if abs_eps is None and rel_eps is None:
|
| 199 |
+
rel_eps = abs_eps = ctx.ldexp(1, -ctx.prec+4)
|
| 200 |
+
if abs_eps is None:
|
| 201 |
+
abs_eps = rel_eps
|
| 202 |
+
elif rel_eps is None:
|
| 203 |
+
rel_eps = abs_eps
|
| 204 |
+
diff = abs(s-t)
|
| 205 |
+
if diff <= abs_eps:
|
| 206 |
+
return True
|
| 207 |
+
abss = abs(s)
|
| 208 |
+
abst = abs(t)
|
| 209 |
+
if abss < abst:
|
| 210 |
+
err = diff/abst
|
| 211 |
+
else:
|
| 212 |
+
err = diff/abss
|
| 213 |
+
return err <= rel_eps
|
| 214 |
+
|
| 215 |
+
def arange(ctx, *args):
|
| 216 |
+
r"""
|
| 217 |
+
This is a generalized version of Python's :func:`~mpmath.range` function
|
| 218 |
+
that accepts fractional endpoints and step sizes and
|
| 219 |
+
returns a list of ``mpf`` instances. Like :func:`~mpmath.range`,
|
| 220 |
+
:func:`~mpmath.arange` can be called with 1, 2 or 3 arguments:
|
| 221 |
+
|
| 222 |
+
``arange(b)``
|
| 223 |
+
`[0, 1, 2, \ldots, x]`
|
| 224 |
+
``arange(a, b)``
|
| 225 |
+
`[a, a+1, a+2, \ldots, x]`
|
| 226 |
+
``arange(a, b, h)``
|
| 227 |
+
`[a, a+h, a+h, \ldots, x]`
|
| 228 |
+
|
| 229 |
+
where `b-1 \le x < b` (in the third case, `b-h \le x < b`).
|
| 230 |
+
|
| 231 |
+
Like Python's :func:`~mpmath.range`, the endpoint is not included. To
|
| 232 |
+
produce ranges where the endpoint is included, :func:`~mpmath.linspace`
|
| 233 |
+
is more convenient.
|
| 234 |
+
|
| 235 |
+
**Examples**
|
| 236 |
+
|
| 237 |
+
>>> from mpmath import *
|
| 238 |
+
>>> mp.dps = 15; mp.pretty = False
|
| 239 |
+
>>> arange(4)
|
| 240 |
+
[mpf('0.0'), mpf('1.0'), mpf('2.0'), mpf('3.0')]
|
| 241 |
+
>>> arange(1, 2, 0.25)
|
| 242 |
+
[mpf('1.0'), mpf('1.25'), mpf('1.5'), mpf('1.75')]
|
| 243 |
+
>>> arange(1, -1, -0.75)
|
| 244 |
+
[mpf('1.0'), mpf('0.25'), mpf('-0.5')]
|
| 245 |
+
|
| 246 |
+
"""
|
| 247 |
+
if not len(args) <= 3:
|
| 248 |
+
raise TypeError('arange expected at most 3 arguments, got %i'
|
| 249 |
+
% len(args))
|
| 250 |
+
if not len(args) >= 1:
|
| 251 |
+
raise TypeError('arange expected at least 1 argument, got %i'
|
| 252 |
+
% len(args))
|
| 253 |
+
# set default
|
| 254 |
+
a = 0
|
| 255 |
+
dt = 1
|
| 256 |
+
# interpret arguments
|
| 257 |
+
if len(args) == 1:
|
| 258 |
+
b = args[0]
|
| 259 |
+
elif len(args) >= 2:
|
| 260 |
+
a = args[0]
|
| 261 |
+
b = args[1]
|
| 262 |
+
if len(args) == 3:
|
| 263 |
+
dt = args[2]
|
| 264 |
+
a, b, dt = ctx.mpf(a), ctx.mpf(b), ctx.mpf(dt)
|
| 265 |
+
assert a + dt != a, 'dt is too small and would cause an infinite loop'
|
| 266 |
+
# adapt code for sign of dt
|
| 267 |
+
if a > b:
|
| 268 |
+
if dt > 0:
|
| 269 |
+
return []
|
| 270 |
+
op = gt
|
| 271 |
+
else:
|
| 272 |
+
if dt < 0:
|
| 273 |
+
return []
|
| 274 |
+
op = lt
|
| 275 |
+
# create list
|
| 276 |
+
result = []
|
| 277 |
+
i = 0
|
| 278 |
+
t = a
|
| 279 |
+
while 1:
|
| 280 |
+
t = a + dt*i
|
| 281 |
+
i += 1
|
| 282 |
+
if op(t, b):
|
| 283 |
+
result.append(t)
|
| 284 |
+
else:
|
| 285 |
+
break
|
| 286 |
+
return result
|
| 287 |
+
|
| 288 |
+
def linspace(ctx, *args, **kwargs):
|
| 289 |
+
"""
|
| 290 |
+
``linspace(a, b, n)`` returns a list of `n` evenly spaced
|
| 291 |
+
samples from `a` to `b`. The syntax ``linspace(mpi(a,b), n)``
|
| 292 |
+
is also valid.
|
| 293 |
+
|
| 294 |
+
This function is often more convenient than :func:`~mpmath.arange`
|
| 295 |
+
for partitioning an interval into subintervals, since
|
| 296 |
+
the endpoint is included::
|
| 297 |
+
|
| 298 |
+
>>> from mpmath import *
|
| 299 |
+
>>> mp.dps = 15; mp.pretty = False
|
| 300 |
+
>>> linspace(1, 4, 4)
|
| 301 |
+
[mpf('1.0'), mpf('2.0'), mpf('3.0'), mpf('4.0')]
|
| 302 |
+
|
| 303 |
+
You may also provide the keyword argument ``endpoint=False``::
|
| 304 |
+
|
| 305 |
+
>>> linspace(1, 4, 4, endpoint=False)
|
| 306 |
+
[mpf('1.0'), mpf('1.75'), mpf('2.5'), mpf('3.25')]
|
| 307 |
+
|
| 308 |
+
"""
|
| 309 |
+
if len(args) == 3:
|
| 310 |
+
a = ctx.mpf(args[0])
|
| 311 |
+
b = ctx.mpf(args[1])
|
| 312 |
+
n = int(args[2])
|
| 313 |
+
elif len(args) == 2:
|
| 314 |
+
assert hasattr(args[0], '_mpi_')
|
| 315 |
+
a = args[0].a
|
| 316 |
+
b = args[0].b
|
| 317 |
+
n = int(args[1])
|
| 318 |
+
else:
|
| 319 |
+
raise TypeError('linspace expected 2 or 3 arguments, got %i' \
|
| 320 |
+
% len(args))
|
| 321 |
+
if n < 1:
|
| 322 |
+
raise ValueError('n must be greater than 0')
|
| 323 |
+
if not 'endpoint' in kwargs or kwargs['endpoint']:
|
| 324 |
+
if n == 1:
|
| 325 |
+
return [ctx.mpf(a)]
|
| 326 |
+
step = (b - a) / ctx.mpf(n - 1)
|
| 327 |
+
y = [i*step + a for i in xrange(n)]
|
| 328 |
+
y[-1] = b
|
| 329 |
+
else:
|
| 330 |
+
step = (b - a) / ctx.mpf(n)
|
| 331 |
+
y = [i*step + a for i in xrange(n)]
|
| 332 |
+
return y
|
| 333 |
+
|
| 334 |
+
def cos_sin(ctx, z, **kwargs):
|
| 335 |
+
return ctx.cos(z, **kwargs), ctx.sin(z, **kwargs)
|
| 336 |
+
|
| 337 |
+
def cospi_sinpi(ctx, z, **kwargs):
|
| 338 |
+
return ctx.cospi(z, **kwargs), ctx.sinpi(z, **kwargs)
|
| 339 |
+
|
| 340 |
+
def _default_hyper_maxprec(ctx, p):
|
| 341 |
+
return int(1000 * p**0.25 + 4*p)
|
| 342 |
+
|
| 343 |
+
_gcd = staticmethod(libmp.gcd)
|
| 344 |
+
list_primes = staticmethod(libmp.list_primes)
|
| 345 |
+
isprime = staticmethod(libmp.isprime)
|
| 346 |
+
bernfrac = staticmethod(libmp.bernfrac)
|
| 347 |
+
moebius = staticmethod(libmp.moebius)
|
| 348 |
+
_ifac = staticmethod(libmp.ifac)
|
| 349 |
+
_eulernum = staticmethod(libmp.eulernum)
|
| 350 |
+
_stirling1 = staticmethod(libmp.stirling1)
|
| 351 |
+
_stirling2 = staticmethod(libmp.stirling2)
|
| 352 |
+
|
| 353 |
+
def sum_accurately(ctx, terms, check_step=1):
|
| 354 |
+
prec = ctx.prec
|
| 355 |
+
try:
|
| 356 |
+
extraprec = 10
|
| 357 |
+
while 1:
|
| 358 |
+
ctx.prec = prec + extraprec + 5
|
| 359 |
+
max_mag = ctx.ninf
|
| 360 |
+
s = ctx.zero
|
| 361 |
+
k = 0
|
| 362 |
+
for term in terms():
|
| 363 |
+
s += term
|
| 364 |
+
if (not k % check_step) and term:
|
| 365 |
+
term_mag = ctx.mag(term)
|
| 366 |
+
max_mag = max(max_mag, term_mag)
|
| 367 |
+
sum_mag = ctx.mag(s)
|
| 368 |
+
if sum_mag - term_mag > ctx.prec:
|
| 369 |
+
break
|
| 370 |
+
k += 1
|
| 371 |
+
cancellation = max_mag - sum_mag
|
| 372 |
+
if cancellation != cancellation:
|
| 373 |
+
break
|
| 374 |
+
if cancellation < extraprec or ctx._fixed_precision:
|
| 375 |
+
break
|
| 376 |
+
extraprec += min(ctx.prec, cancellation)
|
| 377 |
+
return s
|
| 378 |
+
finally:
|
| 379 |
+
ctx.prec = prec
|
| 380 |
+
|
| 381 |
+
def mul_accurately(ctx, factors, check_step=1):
|
| 382 |
+
prec = ctx.prec
|
| 383 |
+
try:
|
| 384 |
+
extraprec = 10
|
| 385 |
+
while 1:
|
| 386 |
+
ctx.prec = prec + extraprec + 5
|
| 387 |
+
max_mag = ctx.ninf
|
| 388 |
+
one = ctx.one
|
| 389 |
+
s = one
|
| 390 |
+
k = 0
|
| 391 |
+
for factor in factors():
|
| 392 |
+
s *= factor
|
| 393 |
+
term = factor - one
|
| 394 |
+
if (not k % check_step):
|
| 395 |
+
term_mag = ctx.mag(term)
|
| 396 |
+
max_mag = max(max_mag, term_mag)
|
| 397 |
+
sum_mag = ctx.mag(s-one)
|
| 398 |
+
#if sum_mag - term_mag > ctx.prec:
|
| 399 |
+
# break
|
| 400 |
+
if -term_mag > ctx.prec:
|
| 401 |
+
break
|
| 402 |
+
k += 1
|
| 403 |
+
cancellation = max_mag - sum_mag
|
| 404 |
+
if cancellation != cancellation:
|
| 405 |
+
break
|
| 406 |
+
if cancellation < extraprec or ctx._fixed_precision:
|
| 407 |
+
break
|
| 408 |
+
extraprec += min(ctx.prec, cancellation)
|
| 409 |
+
return s
|
| 410 |
+
finally:
|
| 411 |
+
ctx.prec = prec
|
| 412 |
+
|
| 413 |
+
def power(ctx, x, y):
|
| 414 |
+
r"""Converts `x` and `y` to mpmath numbers and evaluates
|
| 415 |
+
`x^y = \exp(y \log(x))`::
|
| 416 |
+
|
| 417 |
+
>>> from mpmath import *
|
| 418 |
+
>>> mp.dps = 30; mp.pretty = True
|
| 419 |
+
>>> power(2, 0.5)
|
| 420 |
+
1.41421356237309504880168872421
|
| 421 |
+
|
| 422 |
+
This shows the leading few digits of a large Mersenne prime
|
| 423 |
+
(performing the exact calculation ``2**43112609-1`` and
|
| 424 |
+
displaying the result in Python would be very slow)::
|
| 425 |
+
|
| 426 |
+
>>> power(2, 43112609)-1
|
| 427 |
+
3.16470269330255923143453723949e+12978188
|
| 428 |
+
"""
|
| 429 |
+
return ctx.convert(x) ** ctx.convert(y)
|
| 430 |
+
|
| 431 |
+
def _zeta_int(ctx, n):
|
| 432 |
+
return ctx.zeta(n)
|
| 433 |
+
|
| 434 |
+
def maxcalls(ctx, f, N):
|
| 435 |
+
"""
|
| 436 |
+
Return a wrapped copy of *f* that raises ``NoConvergence`` when *f*
|
| 437 |
+
has been called more than *N* times::
|
| 438 |
+
|
| 439 |
+
>>> from mpmath import *
|
| 440 |
+
>>> mp.dps = 15
|
| 441 |
+
>>> f = maxcalls(sin, 10)
|
| 442 |
+
>>> print(sum(f(n) for n in range(10)))
|
| 443 |
+
1.95520948210738
|
| 444 |
+
>>> f(10) # doctest: +IGNORE_EXCEPTION_DETAIL
|
| 445 |
+
Traceback (most recent call last):
|
| 446 |
+
...
|
| 447 |
+
NoConvergence: maxcalls: function evaluated 10 times
|
| 448 |
+
|
| 449 |
+
"""
|
| 450 |
+
counter = [0]
|
| 451 |
+
def f_maxcalls_wrapped(*args, **kwargs):
|
| 452 |
+
counter[0] += 1
|
| 453 |
+
if counter[0] > N:
|
| 454 |
+
raise ctx.NoConvergence("maxcalls: function evaluated %i times" % N)
|
| 455 |
+
return f(*args, **kwargs)
|
| 456 |
+
return f_maxcalls_wrapped
|
| 457 |
+
|
| 458 |
+
def memoize(ctx, f):
|
| 459 |
+
"""
|
| 460 |
+
Return a wrapped copy of *f* that caches computed values, i.e.
|
| 461 |
+
a memoized copy of *f*. Values are only reused if the cached precision
|
| 462 |
+
is equal to or higher than the working precision::
|
| 463 |
+
|
| 464 |
+
>>> from mpmath import *
|
| 465 |
+
>>> mp.dps = 15; mp.pretty = True
|
| 466 |
+
>>> f = memoize(maxcalls(sin, 1))
|
| 467 |
+
>>> f(2)
|
| 468 |
+
0.909297426825682
|
| 469 |
+
>>> f(2)
|
| 470 |
+
0.909297426825682
|
| 471 |
+
>>> mp.dps = 25
|
| 472 |
+
>>> f(2) # doctest: +IGNORE_EXCEPTION_DETAIL
|
| 473 |
+
Traceback (most recent call last):
|
| 474 |
+
...
|
| 475 |
+
NoConvergence: maxcalls: function evaluated 1 times
|
| 476 |
+
|
| 477 |
+
"""
|
| 478 |
+
f_cache = {}
|
| 479 |
+
def f_cached(*args, **kwargs):
|
| 480 |
+
if kwargs:
|
| 481 |
+
key = args, tuple(kwargs.items())
|
| 482 |
+
else:
|
| 483 |
+
key = args
|
| 484 |
+
prec = ctx.prec
|
| 485 |
+
if key in f_cache:
|
| 486 |
+
cprec, cvalue = f_cache[key]
|
| 487 |
+
if cprec >= prec:
|
| 488 |
+
return +cvalue
|
| 489 |
+
value = f(*args, **kwargs)
|
| 490 |
+
f_cache[key] = (prec, value)
|
| 491 |
+
return value
|
| 492 |
+
f_cached.__name__ = f.__name__
|
| 493 |
+
f_cached.__doc__ = f.__doc__
|
| 494 |
+
return f_cached
|