Upload libmpf.py with huggingface_hub
Browse files
libmpf.py
ADDED
|
@@ -0,0 +1,1414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Low-level functions for arbitrary-precision floating-point arithmetic.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
__docformat__ = 'plaintext'
|
| 6 |
+
|
| 7 |
+
import math
|
| 8 |
+
|
| 9 |
+
from bisect import bisect
|
| 10 |
+
|
| 11 |
+
import sys
|
| 12 |
+
|
| 13 |
+
# Importing random is slow
|
| 14 |
+
#from random import getrandbits
|
| 15 |
+
getrandbits = None
|
| 16 |
+
|
| 17 |
+
from .backend import (MPZ, MPZ_TYPE, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE,
|
| 18 |
+
BACKEND, STRICT, HASH_MODULUS, HASH_BITS, gmpy, sage, sage_utils)
|
| 19 |
+
|
| 20 |
+
from .libintmath import (giant_steps,
|
| 21 |
+
trailtable, bctable, lshift, rshift, bitcount, trailing,
|
| 22 |
+
sqrt_fixed, numeral, isqrt, isqrt_fast, sqrtrem,
|
| 23 |
+
bin_to_radix)
|
| 24 |
+
|
| 25 |
+
# We don't pickle tuples directly for the following reasons:
|
| 26 |
+
# 1: pickle uses str() for ints, which is inefficient when they are large
|
| 27 |
+
# 2: pickle doesn't work for gmpy mpzs
|
| 28 |
+
# Both problems are solved by using hex()
|
| 29 |
+
|
| 30 |
+
if BACKEND == 'sage':
|
| 31 |
+
def to_pickable(x):
|
| 32 |
+
sign, man, exp, bc = x
|
| 33 |
+
return sign, hex(man), exp, bc
|
| 34 |
+
else:
|
| 35 |
+
def to_pickable(x):
|
| 36 |
+
sign, man, exp, bc = x
|
| 37 |
+
return sign, hex(man)[2:], exp, bc
|
| 38 |
+
|
| 39 |
+
def from_pickable(x):
|
| 40 |
+
sign, man, exp, bc = x
|
| 41 |
+
return (sign, MPZ(man, 16), exp, bc)
|
| 42 |
+
|
| 43 |
+
class ComplexResult(ValueError):
|
| 44 |
+
pass
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
intern
|
| 48 |
+
except NameError:
|
| 49 |
+
intern = lambda x: x
|
| 50 |
+
|
| 51 |
+
# All supported rounding modes
|
| 52 |
+
round_nearest = intern('n')
|
| 53 |
+
round_floor = intern('f')
|
| 54 |
+
round_ceiling = intern('c')
|
| 55 |
+
round_up = intern('u')
|
| 56 |
+
round_down = intern('d')
|
| 57 |
+
round_fast = round_down
|
| 58 |
+
|
| 59 |
+
def prec_to_dps(n):
|
| 60 |
+
"""Return number of accurate decimals that can be represented
|
| 61 |
+
with a precision of n bits."""
|
| 62 |
+
return max(1, int(round(int(n)/3.3219280948873626)-1))
|
| 63 |
+
|
| 64 |
+
def dps_to_prec(n):
|
| 65 |
+
"""Return the number of bits required to represent n decimals
|
| 66 |
+
accurately."""
|
| 67 |
+
return max(1, int(round((int(n)+1)*3.3219280948873626)))
|
| 68 |
+
|
| 69 |
+
def repr_dps(n):
|
| 70 |
+
"""Return the number of decimal digits required to represent
|
| 71 |
+
a number with n-bit precision so that it can be uniquely
|
| 72 |
+
reconstructed from the representation."""
|
| 73 |
+
dps = prec_to_dps(n)
|
| 74 |
+
if dps == 15:
|
| 75 |
+
return 17
|
| 76 |
+
return dps + 3
|
| 77 |
+
|
| 78 |
+
#----------------------------------------------------------------------------#
|
| 79 |
+
# Some commonly needed float values #
|
| 80 |
+
#----------------------------------------------------------------------------#
|
| 81 |
+
|
| 82 |
+
# Regular number format:
|
| 83 |
+
# (-1)**sign * mantissa * 2**exponent, plus bitcount of mantissa
|
| 84 |
+
fzero = (0, MPZ_ZERO, 0, 0)
|
| 85 |
+
fnzero = (1, MPZ_ZERO, 0, 0)
|
| 86 |
+
fone = (0, MPZ_ONE, 0, 1)
|
| 87 |
+
fnone = (1, MPZ_ONE, 0, 1)
|
| 88 |
+
ftwo = (0, MPZ_ONE, 1, 1)
|
| 89 |
+
ften = (0, MPZ_FIVE, 1, 3)
|
| 90 |
+
fhalf = (0, MPZ_ONE, -1, 1)
|
| 91 |
+
|
| 92 |
+
# Arbitrary encoding for special numbers: zero mantissa, nonzero exponent
|
| 93 |
+
fnan = (0, MPZ_ZERO, -123, -1)
|
| 94 |
+
finf = (0, MPZ_ZERO, -456, -2)
|
| 95 |
+
fninf = (1, MPZ_ZERO, -789, -3)
|
| 96 |
+
|
| 97 |
+
# Was 1e1000; this is broken in Python 2.4
|
| 98 |
+
math_float_inf = 1e300 * 1e300
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
#----------------------------------------------------------------------------#
|
| 102 |
+
# Rounding #
|
| 103 |
+
#----------------------------------------------------------------------------#
|
| 104 |
+
|
| 105 |
+
# This function can be used to round a mantissa generally. However,
|
| 106 |
+
# we will try to do most rounding inline for efficiency.
|
| 107 |
+
def round_int(x, n, rnd):
|
| 108 |
+
if rnd == round_nearest:
|
| 109 |
+
if x >= 0:
|
| 110 |
+
t = x >> (n-1)
|
| 111 |
+
if t & 1 and ((t & 2) or (x & h_mask[n<300][n])):
|
| 112 |
+
return (t>>1)+1
|
| 113 |
+
else:
|
| 114 |
+
return t>>1
|
| 115 |
+
else:
|
| 116 |
+
return -round_int(-x, n, rnd)
|
| 117 |
+
if rnd == round_floor:
|
| 118 |
+
return x >> n
|
| 119 |
+
if rnd == round_ceiling:
|
| 120 |
+
return -((-x) >> n)
|
| 121 |
+
if rnd == round_down:
|
| 122 |
+
if x >= 0:
|
| 123 |
+
return x >> n
|
| 124 |
+
return -((-x) >> n)
|
| 125 |
+
if rnd == round_up:
|
| 126 |
+
if x >= 0:
|
| 127 |
+
return -((-x) >> n)
|
| 128 |
+
return x >> n
|
| 129 |
+
|
| 130 |
+
# These masks are used to pick out segments of numbers to determine
|
| 131 |
+
# which direction to round when rounding to nearest.
|
| 132 |
+
class h_mask_big:
|
| 133 |
+
def __getitem__(self, n):
|
| 134 |
+
return (MPZ_ONE<<(n-1))-1
|
| 135 |
+
|
| 136 |
+
h_mask_small = [0]+[((MPZ_ONE<<(_-1))-1) for _ in range(1, 300)]
|
| 137 |
+
h_mask = [h_mask_big(), h_mask_small]
|
| 138 |
+
|
| 139 |
+
# The >> operator rounds to floor. shifts_down[rnd][sign]
|
| 140 |
+
# tells whether this is the right direction to use, or if the
|
| 141 |
+
# number should be negated before shifting
|
| 142 |
+
shifts_down = {round_floor:(1,0), round_ceiling:(0,1),
|
| 143 |
+
round_down:(1,1), round_up:(0,0)}
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
#----------------------------------------------------------------------------#
|
| 147 |
+
# Normalization of raw mpfs #
|
| 148 |
+
#----------------------------------------------------------------------------#
|
| 149 |
+
|
| 150 |
+
# This function is called almost every time an mpf is created.
|
| 151 |
+
# It has been optimized accordingly.
|
| 152 |
+
|
| 153 |
+
def _normalize(sign, man, exp, bc, prec, rnd):
|
| 154 |
+
"""
|
| 155 |
+
Create a raw mpf tuple with value (-1)**sign * man * 2**exp and
|
| 156 |
+
normalized mantissa. The mantissa is rounded in the specified
|
| 157 |
+
direction if its size exceeds the precision. Trailing zero bits
|
| 158 |
+
are also stripped from the mantissa to ensure that the
|
| 159 |
+
representation is canonical.
|
| 160 |
+
|
| 161 |
+
Conditions on the input:
|
| 162 |
+
* The input must represent a regular (finite) number
|
| 163 |
+
* The sign bit must be 0 or 1
|
| 164 |
+
* The mantissa must be positive
|
| 165 |
+
* The exponent must be an integer
|
| 166 |
+
* The bitcount must be exact
|
| 167 |
+
|
| 168 |
+
If these conditions are not met, use from_man_exp, mpf_pos, or any
|
| 169 |
+
of the conversion functions to create normalized raw mpf tuples.
|
| 170 |
+
"""
|
| 171 |
+
if not man:
|
| 172 |
+
return fzero
|
| 173 |
+
# Cut mantissa down to size if larger than target precision
|
| 174 |
+
n = bc - prec
|
| 175 |
+
if n > 0:
|
| 176 |
+
if rnd == round_nearest:
|
| 177 |
+
t = man >> (n-1)
|
| 178 |
+
if t & 1 and ((t & 2) or (man & h_mask[n<300][n])):
|
| 179 |
+
man = (t>>1)+1
|
| 180 |
+
else:
|
| 181 |
+
man = t>>1
|
| 182 |
+
elif shifts_down[rnd][sign]:
|
| 183 |
+
man >>= n
|
| 184 |
+
else:
|
| 185 |
+
man = -((-man)>>n)
|
| 186 |
+
exp += n
|
| 187 |
+
bc = prec
|
| 188 |
+
# Strip trailing bits
|
| 189 |
+
if not man & 1:
|
| 190 |
+
t = trailtable[int(man & 255)]
|
| 191 |
+
if not t:
|
| 192 |
+
while not man & 255:
|
| 193 |
+
man >>= 8
|
| 194 |
+
exp += 8
|
| 195 |
+
bc -= 8
|
| 196 |
+
t = trailtable[int(man & 255)]
|
| 197 |
+
man >>= t
|
| 198 |
+
exp += t
|
| 199 |
+
bc -= t
|
| 200 |
+
# Bit count can be wrong if the input mantissa was 1 less than
|
| 201 |
+
# a power of 2 and got rounded up, thereby adding an extra bit.
|
| 202 |
+
# With trailing bits removed, all powers of two have mantissa 1,
|
| 203 |
+
# so this is easy to check for.
|
| 204 |
+
if man == 1:
|
| 205 |
+
bc = 1
|
| 206 |
+
return sign, man, exp, bc
|
| 207 |
+
|
| 208 |
+
def _normalize1(sign, man, exp, bc, prec, rnd):
|
| 209 |
+
"""same as normalize, but with the added condition that
|
| 210 |
+
man is odd or zero
|
| 211 |
+
"""
|
| 212 |
+
if not man:
|
| 213 |
+
return fzero
|
| 214 |
+
if bc <= prec:
|
| 215 |
+
return sign, man, exp, bc
|
| 216 |
+
n = bc - prec
|
| 217 |
+
if rnd == round_nearest:
|
| 218 |
+
t = man >> (n-1)
|
| 219 |
+
if t & 1 and ((t & 2) or (man & h_mask[n<300][n])):
|
| 220 |
+
man = (t>>1)+1
|
| 221 |
+
else:
|
| 222 |
+
man = t>>1
|
| 223 |
+
elif shifts_down[rnd][sign]:
|
| 224 |
+
man >>= n
|
| 225 |
+
else:
|
| 226 |
+
man = -((-man)>>n)
|
| 227 |
+
exp += n
|
| 228 |
+
bc = prec
|
| 229 |
+
# Strip trailing bits
|
| 230 |
+
if not man & 1:
|
| 231 |
+
t = trailtable[int(man & 255)]
|
| 232 |
+
if not t:
|
| 233 |
+
while not man & 255:
|
| 234 |
+
man >>= 8
|
| 235 |
+
exp += 8
|
| 236 |
+
bc -= 8
|
| 237 |
+
t = trailtable[int(man & 255)]
|
| 238 |
+
man >>= t
|
| 239 |
+
exp += t
|
| 240 |
+
bc -= t
|
| 241 |
+
# Bit count can be wrong if the input mantissa was 1 less than
|
| 242 |
+
# a power of 2 and got rounded up, thereby adding an extra bit.
|
| 243 |
+
# With trailing bits removed, all powers of two have mantissa 1,
|
| 244 |
+
# so this is easy to check for.
|
| 245 |
+
if man == 1:
|
| 246 |
+
bc = 1
|
| 247 |
+
return sign, man, exp, bc
|
| 248 |
+
|
| 249 |
+
try:
|
| 250 |
+
_exp_types = (int, long)
|
| 251 |
+
except NameError:
|
| 252 |
+
_exp_types = (int,)
|
| 253 |
+
|
| 254 |
+
def strict_normalize(sign, man, exp, bc, prec, rnd):
|
| 255 |
+
"""Additional checks on the components of an mpf. Enable tests by setting
|
| 256 |
+
the environment variable MPMATH_STRICT to Y."""
|
| 257 |
+
assert type(man) == MPZ_TYPE
|
| 258 |
+
assert type(bc) in _exp_types
|
| 259 |
+
assert type(exp) in _exp_types
|
| 260 |
+
assert bc == bitcount(man)
|
| 261 |
+
return _normalize(sign, man, exp, bc, prec, rnd)
|
| 262 |
+
|
| 263 |
+
def strict_normalize1(sign, man, exp, bc, prec, rnd):
|
| 264 |
+
"""Additional checks on the components of an mpf. Enable tests by setting
|
| 265 |
+
the environment variable MPMATH_STRICT to Y."""
|
| 266 |
+
assert type(man) == MPZ_TYPE
|
| 267 |
+
assert type(bc) in _exp_types
|
| 268 |
+
assert type(exp) in _exp_types
|
| 269 |
+
assert bc == bitcount(man)
|
| 270 |
+
assert (not man) or (man & 1)
|
| 271 |
+
return _normalize1(sign, man, exp, bc, prec, rnd)
|
| 272 |
+
|
| 273 |
+
if BACKEND == 'gmpy' and '_mpmath_normalize' in dir(gmpy):
|
| 274 |
+
_normalize = gmpy._mpmath_normalize
|
| 275 |
+
_normalize1 = gmpy._mpmath_normalize
|
| 276 |
+
|
| 277 |
+
if BACKEND == 'sage':
|
| 278 |
+
_normalize = _normalize1 = sage_utils.normalize
|
| 279 |
+
|
| 280 |
+
if STRICT:
|
| 281 |
+
normalize = strict_normalize
|
| 282 |
+
normalize1 = strict_normalize1
|
| 283 |
+
else:
|
| 284 |
+
normalize = _normalize
|
| 285 |
+
normalize1 = _normalize1
|
| 286 |
+
|
| 287 |
+
#----------------------------------------------------------------------------#
|
| 288 |
+
# Conversion functions #
|
| 289 |
+
#----------------------------------------------------------------------------#
|
| 290 |
+
|
| 291 |
+
def from_man_exp(man, exp, prec=None, rnd=round_fast):
|
| 292 |
+
"""Create raw mpf from (man, exp) pair. The mantissa may be signed.
|
| 293 |
+
If no precision is specified, the mantissa is stored exactly."""
|
| 294 |
+
man = MPZ(man)
|
| 295 |
+
sign = 0
|
| 296 |
+
if man < 0:
|
| 297 |
+
sign = 1
|
| 298 |
+
man = -man
|
| 299 |
+
if man < 1024:
|
| 300 |
+
bc = bctable[int(man)]
|
| 301 |
+
else:
|
| 302 |
+
bc = bitcount(man)
|
| 303 |
+
if not prec:
|
| 304 |
+
if not man:
|
| 305 |
+
return fzero
|
| 306 |
+
if not man & 1:
|
| 307 |
+
if man & 2:
|
| 308 |
+
return (sign, man >> 1, exp + 1, bc - 1)
|
| 309 |
+
t = trailtable[int(man & 255)]
|
| 310 |
+
if not t:
|
| 311 |
+
while not man & 255:
|
| 312 |
+
man >>= 8
|
| 313 |
+
exp += 8
|
| 314 |
+
bc -= 8
|
| 315 |
+
t = trailtable[int(man & 255)]
|
| 316 |
+
man >>= t
|
| 317 |
+
exp += t
|
| 318 |
+
bc -= t
|
| 319 |
+
return (sign, man, exp, bc)
|
| 320 |
+
return normalize(sign, man, exp, bc, prec, rnd)
|
| 321 |
+
|
| 322 |
+
int_cache = dict((n, from_man_exp(n, 0)) for n in range(-10, 257))
|
| 323 |
+
|
| 324 |
+
if BACKEND == 'gmpy' and '_mpmath_create' in dir(gmpy):
|
| 325 |
+
from_man_exp = gmpy._mpmath_create
|
| 326 |
+
|
| 327 |
+
if BACKEND == 'sage':
|
| 328 |
+
from_man_exp = sage_utils.from_man_exp
|
| 329 |
+
|
| 330 |
+
def from_int(n, prec=0, rnd=round_fast):
|
| 331 |
+
"""Create a raw mpf from an integer. If no precision is specified,
|
| 332 |
+
the mantissa is stored exactly."""
|
| 333 |
+
if not prec:
|
| 334 |
+
if n in int_cache:
|
| 335 |
+
return int_cache[n]
|
| 336 |
+
return from_man_exp(n, 0, prec, rnd)
|
| 337 |
+
|
| 338 |
+
def to_man_exp(s):
|
| 339 |
+
"""Return (man, exp) of a raw mpf. Raise an error if inf/nan."""
|
| 340 |
+
sign, man, exp, bc = s
|
| 341 |
+
if (not man) and exp:
|
| 342 |
+
raise ValueError("mantissa and exponent are undefined for %s" % man)
|
| 343 |
+
return man, exp
|
| 344 |
+
|
| 345 |
+
def to_int(s, rnd=None):
|
| 346 |
+
"""Convert a raw mpf to the nearest int. Rounding is done down by
|
| 347 |
+
default (same as int(float) in Python), but can be changed. If the
|
| 348 |
+
input is inf/nan, an exception is raised."""
|
| 349 |
+
sign, man, exp, bc = s
|
| 350 |
+
if (not man) and exp:
|
| 351 |
+
raise ValueError("cannot convert inf or nan to int")
|
| 352 |
+
if exp >= 0:
|
| 353 |
+
if sign:
|
| 354 |
+
return (-man) << exp
|
| 355 |
+
return man << exp
|
| 356 |
+
# Make default rounding fast
|
| 357 |
+
if not rnd:
|
| 358 |
+
if sign:
|
| 359 |
+
return -(man >> (-exp))
|
| 360 |
+
else:
|
| 361 |
+
return man >> (-exp)
|
| 362 |
+
if sign:
|
| 363 |
+
return round_int(-man, -exp, rnd)
|
| 364 |
+
else:
|
| 365 |
+
return round_int(man, -exp, rnd)
|
| 366 |
+
|
| 367 |
+
def mpf_round_int(s, rnd):
|
| 368 |
+
sign, man, exp, bc = s
|
| 369 |
+
if (not man) and exp:
|
| 370 |
+
return s
|
| 371 |
+
if exp >= 0:
|
| 372 |
+
return s
|
| 373 |
+
mag = exp+bc
|
| 374 |
+
if mag < 1:
|
| 375 |
+
if rnd == round_ceiling:
|
| 376 |
+
if sign: return fzero
|
| 377 |
+
else: return fone
|
| 378 |
+
elif rnd == round_floor:
|
| 379 |
+
if sign: return fnone
|
| 380 |
+
else: return fzero
|
| 381 |
+
elif rnd == round_nearest:
|
| 382 |
+
if mag < 0 or man == MPZ_ONE: return fzero
|
| 383 |
+
elif sign: return fnone
|
| 384 |
+
else: return fone
|
| 385 |
+
else:
|
| 386 |
+
raise NotImplementedError
|
| 387 |
+
return mpf_pos(s, min(bc, mag), rnd)
|
| 388 |
+
|
| 389 |
+
def mpf_floor(s, prec=0, rnd=round_fast):
|
| 390 |
+
v = mpf_round_int(s, round_floor)
|
| 391 |
+
if prec:
|
| 392 |
+
v = mpf_pos(v, prec, rnd)
|
| 393 |
+
return v
|
| 394 |
+
|
| 395 |
+
def mpf_ceil(s, prec=0, rnd=round_fast):
|
| 396 |
+
v = mpf_round_int(s, round_ceiling)
|
| 397 |
+
if prec:
|
| 398 |
+
v = mpf_pos(v, prec, rnd)
|
| 399 |
+
return v
|
| 400 |
+
|
| 401 |
+
def mpf_nint(s, prec=0, rnd=round_fast):
|
| 402 |
+
v = mpf_round_int(s, round_nearest)
|
| 403 |
+
if prec:
|
| 404 |
+
v = mpf_pos(v, prec, rnd)
|
| 405 |
+
return v
|
| 406 |
+
|
| 407 |
+
def mpf_frac(s, prec=0, rnd=round_fast):
|
| 408 |
+
return mpf_sub(s, mpf_floor(s), prec, rnd)
|
| 409 |
+
|
| 410 |
+
def from_float(x, prec=53, rnd=round_fast):
|
| 411 |
+
"""Create a raw mpf from a Python float, rounding if necessary.
|
| 412 |
+
If prec >= 53, the result is guaranteed to represent exactly the
|
| 413 |
+
same number as the input. If prec is not specified, use prec=53."""
|
| 414 |
+
# frexp only raises an exception for nan on some platforms
|
| 415 |
+
if x != x:
|
| 416 |
+
return fnan
|
| 417 |
+
# in Python2.5 math.frexp gives an exception for float infinity
|
| 418 |
+
# in Python2.6 it returns (float infinity, 0)
|
| 419 |
+
try:
|
| 420 |
+
m, e = math.frexp(x)
|
| 421 |
+
except:
|
| 422 |
+
if x == math_float_inf: return finf
|
| 423 |
+
if x == -math_float_inf: return fninf
|
| 424 |
+
return fnan
|
| 425 |
+
if x == math_float_inf: return finf
|
| 426 |
+
if x == -math_float_inf: return fninf
|
| 427 |
+
return from_man_exp(int(m*(1<<53)), e-53, prec, rnd)
|
| 428 |
+
|
| 429 |
+
def from_npfloat(x, prec=113, rnd=round_fast):
|
| 430 |
+
"""Create a raw mpf from a numpy float, rounding if necessary.
|
| 431 |
+
If prec >= 113, the result is guaranteed to represent exactly the
|
| 432 |
+
same number as the input. If prec is not specified, use prec=113."""
|
| 433 |
+
y = float(x)
|
| 434 |
+
if x == y: # ldexp overflows for float16
|
| 435 |
+
return from_float(y, prec, rnd)
|
| 436 |
+
import numpy as np
|
| 437 |
+
if np.isfinite(x):
|
| 438 |
+
m, e = np.frexp(x)
|
| 439 |
+
return from_man_exp(int(np.ldexp(m, 113)), int(e-113), prec, rnd)
|
| 440 |
+
if np.isposinf(x): return finf
|
| 441 |
+
if np.isneginf(x): return fninf
|
| 442 |
+
return fnan
|
| 443 |
+
|
| 444 |
+
def from_Decimal(x, prec=None, rnd=round_fast):
|
| 445 |
+
"""Create a raw mpf from a Decimal, rounding if necessary.
|
| 446 |
+
If prec is not specified, use the equivalent bit precision
|
| 447 |
+
of the number of significant digits in x."""
|
| 448 |
+
if x.is_nan(): return fnan
|
| 449 |
+
if x.is_infinite(): return fninf if x.is_signed() else finf
|
| 450 |
+
if prec is None:
|
| 451 |
+
prec = int(len(x.as_tuple()[1])*3.3219280948873626)
|
| 452 |
+
return from_str(str(x), prec, rnd)
|
| 453 |
+
|
| 454 |
+
def to_float(s, strict=False, rnd=round_fast):
|
| 455 |
+
"""
|
| 456 |
+
Convert a raw mpf to a Python float. The result is exact if the
|
| 457 |
+
bitcount of s is <= 53 and no underflow/overflow occurs.
|
| 458 |
+
|
| 459 |
+
If the number is too large or too small to represent as a regular
|
| 460 |
+
float, it will be converted to inf or 0.0. Setting strict=True
|
| 461 |
+
forces an OverflowError to be raised instead.
|
| 462 |
+
|
| 463 |
+
Warning: with a directed rounding mode, the correct nearest representable
|
| 464 |
+
floating-point number in the specified direction might not be computed
|
| 465 |
+
in case of overflow or (gradual) underflow.
|
| 466 |
+
"""
|
| 467 |
+
sign, man, exp, bc = s
|
| 468 |
+
if not man:
|
| 469 |
+
if s == fzero: return 0.0
|
| 470 |
+
if s == finf: return math_float_inf
|
| 471 |
+
if s == fninf: return -math_float_inf
|
| 472 |
+
return math_float_inf/math_float_inf
|
| 473 |
+
if bc > 53:
|
| 474 |
+
sign, man, exp, bc = normalize1(sign, man, exp, bc, 53, rnd)
|
| 475 |
+
if sign:
|
| 476 |
+
man = -man
|
| 477 |
+
try:
|
| 478 |
+
return math.ldexp(man, exp)
|
| 479 |
+
except OverflowError:
|
| 480 |
+
if strict:
|
| 481 |
+
raise
|
| 482 |
+
# Overflow to infinity
|
| 483 |
+
if exp + bc > 0:
|
| 484 |
+
if sign:
|
| 485 |
+
return -math_float_inf
|
| 486 |
+
else:
|
| 487 |
+
return math_float_inf
|
| 488 |
+
# Underflow to zero
|
| 489 |
+
return 0.0
|
| 490 |
+
|
| 491 |
+
def from_rational(p, q, prec, rnd=round_fast):
|
| 492 |
+
"""Create a raw mpf from a rational number p/q, round if
|
| 493 |
+
necessary."""
|
| 494 |
+
return mpf_div(from_int(p), from_int(q), prec, rnd)
|
| 495 |
+
|
| 496 |
+
def to_rational(s):
|
| 497 |
+
"""Convert a raw mpf to a rational number. Return integers (p, q)
|
| 498 |
+
such that s = p/q exactly."""
|
| 499 |
+
sign, man, exp, bc = s
|
| 500 |
+
if sign:
|
| 501 |
+
man = -man
|
| 502 |
+
if bc == -1:
|
| 503 |
+
raise ValueError("cannot convert %s to a rational number" % man)
|
| 504 |
+
if exp >= 0:
|
| 505 |
+
return man * (1<<exp), 1
|
| 506 |
+
else:
|
| 507 |
+
return man, 1<<(-exp)
|
| 508 |
+
|
| 509 |
+
def to_fixed(s, prec):
|
| 510 |
+
"""Convert a raw mpf to a fixed-point big integer"""
|
| 511 |
+
sign, man, exp, bc = s
|
| 512 |
+
offset = exp + prec
|
| 513 |
+
if sign:
|
| 514 |
+
if offset >= 0: return (-man) << offset
|
| 515 |
+
else: return (-man) >> (-offset)
|
| 516 |
+
else:
|
| 517 |
+
if offset >= 0: return man << offset
|
| 518 |
+
else: return man >> (-offset)
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
##############################################################################
|
| 522 |
+
##############################################################################
|
| 523 |
+
|
| 524 |
+
#----------------------------------------------------------------------------#
|
| 525 |
+
# Arithmetic operations, etc. #
|
| 526 |
+
#----------------------------------------------------------------------------#
|
| 527 |
+
|
| 528 |
+
def mpf_rand(prec):
|
| 529 |
+
"""Return a raw mpf chosen randomly from [0, 1), with prec bits
|
| 530 |
+
in the mantissa."""
|
| 531 |
+
global getrandbits
|
| 532 |
+
if not getrandbits:
|
| 533 |
+
import random
|
| 534 |
+
getrandbits = random.getrandbits
|
| 535 |
+
return from_man_exp(getrandbits(prec), -prec, prec, round_floor)
|
| 536 |
+
|
| 537 |
+
def mpf_eq(s, t):
|
| 538 |
+
"""Test equality of two raw mpfs. This is simply tuple comparison
|
| 539 |
+
unless either number is nan, in which case the result is False."""
|
| 540 |
+
if not s[1] or not t[1]:
|
| 541 |
+
if s == fnan or t == fnan:
|
| 542 |
+
return False
|
| 543 |
+
return s == t
|
| 544 |
+
|
| 545 |
+
def mpf_hash(s):
|
| 546 |
+
# Duplicate the new hash algorithm introduces in Python 3.2.
|
| 547 |
+
if sys.version_info >= (3, 2):
|
| 548 |
+
ssign, sman, sexp, sbc = s
|
| 549 |
+
|
| 550 |
+
# Handle special numbers
|
| 551 |
+
if not sman:
|
| 552 |
+
if s == fnan: return sys.hash_info.nan
|
| 553 |
+
if s == finf: return sys.hash_info.inf
|
| 554 |
+
if s == fninf: return -sys.hash_info.inf
|
| 555 |
+
h = sman % HASH_MODULUS
|
| 556 |
+
if sexp >= 0:
|
| 557 |
+
sexp = sexp % HASH_BITS
|
| 558 |
+
else:
|
| 559 |
+
sexp = HASH_BITS - 1 - ((-1 - sexp) % HASH_BITS)
|
| 560 |
+
h = (h << sexp) % HASH_MODULUS
|
| 561 |
+
if ssign: h = -h
|
| 562 |
+
if h == -1: h = -2
|
| 563 |
+
return int(h)
|
| 564 |
+
else:
|
| 565 |
+
try:
|
| 566 |
+
# Try to be compatible with hash values for floats and ints
|
| 567 |
+
return hash(to_float(s, strict=1))
|
| 568 |
+
except OverflowError:
|
| 569 |
+
# We must unfortunately sacrifice compatibility with ints here.
|
| 570 |
+
# We could do hash(man << exp) when the exponent is positive, but
|
| 571 |
+
# this would cause unreasonable inefficiency for large numbers.
|
| 572 |
+
return hash(s)
|
| 573 |
+
|
| 574 |
+
def mpf_cmp(s, t):
|
| 575 |
+
"""Compare the raw mpfs s and t. Return -1 if s < t, 0 if s == t,
|
| 576 |
+
and 1 if s > t. (Same convention as Python's cmp() function.)"""
|
| 577 |
+
|
| 578 |
+
# In principle, a comparison amounts to determining the sign of s-t.
|
| 579 |
+
# A full subtraction is relatively slow, however, so we first try to
|
| 580 |
+
# look at the components.
|
| 581 |
+
ssign, sman, sexp, sbc = s
|
| 582 |
+
tsign, tman, texp, tbc = t
|
| 583 |
+
|
| 584 |
+
# Handle zeros and special numbers
|
| 585 |
+
if not sman or not tman:
|
| 586 |
+
if s == fzero: return -mpf_sign(t)
|
| 587 |
+
if t == fzero: return mpf_sign(s)
|
| 588 |
+
if s == t: return 0
|
| 589 |
+
# Follow same convention as Python's cmp for float nan
|
| 590 |
+
if t == fnan: return 1
|
| 591 |
+
if s == finf: return 1
|
| 592 |
+
if t == fninf: return 1
|
| 593 |
+
return -1
|
| 594 |
+
# Different sides of zero
|
| 595 |
+
if ssign != tsign:
|
| 596 |
+
if not ssign: return 1
|
| 597 |
+
return -1
|
| 598 |
+
# This reduces to direct integer comparison
|
| 599 |
+
if sexp == texp:
|
| 600 |
+
if sman == tman:
|
| 601 |
+
return 0
|
| 602 |
+
if sman > tman:
|
| 603 |
+
if ssign: return -1
|
| 604 |
+
else: return 1
|
| 605 |
+
else:
|
| 606 |
+
if ssign: return 1
|
| 607 |
+
else: return -1
|
| 608 |
+
# Check position of the highest set bit in each number. If
|
| 609 |
+
# different, there is certainly an inequality.
|
| 610 |
+
a = sbc + sexp
|
| 611 |
+
b = tbc + texp
|
| 612 |
+
if ssign:
|
| 613 |
+
if a < b: return 1
|
| 614 |
+
if a > b: return -1
|
| 615 |
+
else:
|
| 616 |
+
if a < b: return -1
|
| 617 |
+
if a > b: return 1
|
| 618 |
+
|
| 619 |
+
# Both numbers have the same highest bit. Subtract to find
|
| 620 |
+
# how the lower bits compare.
|
| 621 |
+
delta = mpf_sub(s, t, 5, round_floor)
|
| 622 |
+
if delta[0]:
|
| 623 |
+
return -1
|
| 624 |
+
return 1
|
| 625 |
+
|
| 626 |
+
def mpf_lt(s, t):
|
| 627 |
+
if s == fnan or t == fnan:
|
| 628 |
+
return False
|
| 629 |
+
return mpf_cmp(s, t) < 0
|
| 630 |
+
|
| 631 |
+
def mpf_le(s, t):
|
| 632 |
+
if s == fnan or t == fnan:
|
| 633 |
+
return False
|
| 634 |
+
return mpf_cmp(s, t) <= 0
|
| 635 |
+
|
| 636 |
+
def mpf_gt(s, t):
|
| 637 |
+
if s == fnan or t == fnan:
|
| 638 |
+
return False
|
| 639 |
+
return mpf_cmp(s, t) > 0
|
| 640 |
+
|
| 641 |
+
def mpf_ge(s, t):
|
| 642 |
+
if s == fnan or t == fnan:
|
| 643 |
+
return False
|
| 644 |
+
return mpf_cmp(s, t) >= 0
|
| 645 |
+
|
| 646 |
+
def mpf_min_max(seq):
|
| 647 |
+
min = max = seq[0]
|
| 648 |
+
for x in seq[1:]:
|
| 649 |
+
if mpf_lt(x, min): min = x
|
| 650 |
+
if mpf_gt(x, max): max = x
|
| 651 |
+
return min, max
|
| 652 |
+
|
| 653 |
+
def mpf_pos(s, prec=0, rnd=round_fast):
|
| 654 |
+
"""Calculate 0+s for a raw mpf (i.e., just round s to the specified
|
| 655 |
+
precision)."""
|
| 656 |
+
if prec:
|
| 657 |
+
sign, man, exp, bc = s
|
| 658 |
+
if (not man) and exp:
|
| 659 |
+
return s
|
| 660 |
+
return normalize1(sign, man, exp, bc, prec, rnd)
|
| 661 |
+
return s
|
| 662 |
+
|
| 663 |
+
def mpf_neg(s, prec=None, rnd=round_fast):
|
| 664 |
+
"""Negate a raw mpf (return -s), rounding the result to the
|
| 665 |
+
specified precision. The prec argument can be omitted to do the
|
| 666 |
+
operation exactly."""
|
| 667 |
+
sign, man, exp, bc = s
|
| 668 |
+
if not man:
|
| 669 |
+
if exp:
|
| 670 |
+
if s == finf: return fninf
|
| 671 |
+
if s == fninf: return finf
|
| 672 |
+
return s
|
| 673 |
+
if not prec:
|
| 674 |
+
return (1-sign, man, exp, bc)
|
| 675 |
+
return normalize1(1-sign, man, exp, bc, prec, rnd)
|
| 676 |
+
|
| 677 |
+
def mpf_abs(s, prec=None, rnd=round_fast):
|
| 678 |
+
"""Return abs(s) of the raw mpf s, rounded to the specified
|
| 679 |
+
precision. The prec argument can be omitted to generate an
|
| 680 |
+
exact result."""
|
| 681 |
+
sign, man, exp, bc = s
|
| 682 |
+
if (not man) and exp:
|
| 683 |
+
if s == fninf:
|
| 684 |
+
return finf
|
| 685 |
+
return s
|
| 686 |
+
if not prec:
|
| 687 |
+
if sign:
|
| 688 |
+
return (0, man, exp, bc)
|
| 689 |
+
return s
|
| 690 |
+
return normalize1(0, man, exp, bc, prec, rnd)
|
| 691 |
+
|
| 692 |
+
def mpf_sign(s):
|
| 693 |
+
"""Return -1, 0, or 1 (as a Python int, not a raw mpf) depending on
|
| 694 |
+
whether s is negative, zero, or positive. (Nan is taken to give 0.)"""
|
| 695 |
+
sign, man, exp, bc = s
|
| 696 |
+
if not man:
|
| 697 |
+
if s == finf: return 1
|
| 698 |
+
if s == fninf: return -1
|
| 699 |
+
return 0
|
| 700 |
+
return (-1) ** sign
|
| 701 |
+
|
| 702 |
+
def mpf_add(s, t, prec=0, rnd=round_fast, _sub=0):
|
| 703 |
+
"""
|
| 704 |
+
Add the two raw mpf values s and t.
|
| 705 |
+
|
| 706 |
+
With prec=0, no rounding is performed. Note that this can
|
| 707 |
+
produce a very large mantissa (potentially too large to fit
|
| 708 |
+
in memory) if exponents are far apart.
|
| 709 |
+
"""
|
| 710 |
+
ssign, sman, sexp, sbc = s
|
| 711 |
+
tsign, tman, texp, tbc = t
|
| 712 |
+
tsign ^= _sub
|
| 713 |
+
# Standard case: two nonzero, regular numbers
|
| 714 |
+
if sman and tman:
|
| 715 |
+
offset = sexp - texp
|
| 716 |
+
if offset:
|
| 717 |
+
if offset > 0:
|
| 718 |
+
# Outside precision range; only need to perturb
|
| 719 |
+
if offset > 100 and prec:
|
| 720 |
+
delta = sbc + sexp - tbc - texp
|
| 721 |
+
if delta > prec + 4:
|
| 722 |
+
offset = prec + 4
|
| 723 |
+
sman <<= offset
|
| 724 |
+
if tsign == ssign: sman += 1
|
| 725 |
+
else: sman -= 1
|
| 726 |
+
return normalize1(ssign, sman, sexp-offset,
|
| 727 |
+
bitcount(sman), prec, rnd)
|
| 728 |
+
# Add
|
| 729 |
+
if ssign == tsign:
|
| 730 |
+
man = tman + (sman << offset)
|
| 731 |
+
# Subtract
|
| 732 |
+
else:
|
| 733 |
+
if ssign: man = tman - (sman << offset)
|
| 734 |
+
else: man = (sman << offset) - tman
|
| 735 |
+
if man >= 0:
|
| 736 |
+
ssign = 0
|
| 737 |
+
else:
|
| 738 |
+
man = -man
|
| 739 |
+
ssign = 1
|
| 740 |
+
bc = bitcount(man)
|
| 741 |
+
return normalize1(ssign, man, texp, bc, prec or bc, rnd)
|
| 742 |
+
elif offset < 0:
|
| 743 |
+
# Outside precision range; only need to perturb
|
| 744 |
+
if offset < -100 and prec:
|
| 745 |
+
delta = tbc + texp - sbc - sexp
|
| 746 |
+
if delta > prec + 4:
|
| 747 |
+
offset = prec + 4
|
| 748 |
+
tman <<= offset
|
| 749 |
+
if ssign == tsign: tman += 1
|
| 750 |
+
else: tman -= 1
|
| 751 |
+
return normalize1(tsign, tman, texp-offset,
|
| 752 |
+
bitcount(tman), prec, rnd)
|
| 753 |
+
# Add
|
| 754 |
+
if ssign == tsign:
|
| 755 |
+
man = sman + (tman << -offset)
|
| 756 |
+
# Subtract
|
| 757 |
+
else:
|
| 758 |
+
if tsign: man = sman - (tman << -offset)
|
| 759 |
+
else: man = (tman << -offset) - sman
|
| 760 |
+
if man >= 0:
|
| 761 |
+
ssign = 0
|
| 762 |
+
else:
|
| 763 |
+
man = -man
|
| 764 |
+
ssign = 1
|
| 765 |
+
bc = bitcount(man)
|
| 766 |
+
return normalize1(ssign, man, sexp, bc, prec or bc, rnd)
|
| 767 |
+
# Equal exponents; no shifting necessary
|
| 768 |
+
if ssign == tsign:
|
| 769 |
+
man = tman + sman
|
| 770 |
+
else:
|
| 771 |
+
if ssign: man = tman - sman
|
| 772 |
+
else: man = sman - tman
|
| 773 |
+
if man >= 0:
|
| 774 |
+
ssign = 0
|
| 775 |
+
else:
|
| 776 |
+
man = -man
|
| 777 |
+
ssign = 1
|
| 778 |
+
bc = bitcount(man)
|
| 779 |
+
return normalize(ssign, man, texp, bc, prec or bc, rnd)
|
| 780 |
+
# Handle zeros and special numbers
|
| 781 |
+
if _sub:
|
| 782 |
+
t = mpf_neg(t)
|
| 783 |
+
if not sman:
|
| 784 |
+
if sexp:
|
| 785 |
+
if s == t or tman or not texp:
|
| 786 |
+
return s
|
| 787 |
+
return fnan
|
| 788 |
+
if tman:
|
| 789 |
+
return normalize1(tsign, tman, texp, tbc, prec or tbc, rnd)
|
| 790 |
+
return t
|
| 791 |
+
if texp:
|
| 792 |
+
return t
|
| 793 |
+
if sman:
|
| 794 |
+
return normalize1(ssign, sman, sexp, sbc, prec or sbc, rnd)
|
| 795 |
+
return s
|
| 796 |
+
|
| 797 |
+
def mpf_sub(s, t, prec=0, rnd=round_fast):
|
| 798 |
+
"""Return the difference of two raw mpfs, s-t. This function is
|
| 799 |
+
simply a wrapper of mpf_add that changes the sign of t."""
|
| 800 |
+
return mpf_add(s, t, prec, rnd, 1)
|
| 801 |
+
|
| 802 |
+
def mpf_sum(xs, prec=0, rnd=round_fast, absolute=False):
|
| 803 |
+
"""
|
| 804 |
+
Sum a list of mpf values efficiently and accurately
|
| 805 |
+
(typically no temporary roundoff occurs). If prec=0,
|
| 806 |
+
the final result will not be rounded either.
|
| 807 |
+
|
| 808 |
+
There may be roundoff error or cancellation if extremely
|
| 809 |
+
large exponent differences occur.
|
| 810 |
+
|
| 811 |
+
With absolute=True, sums the absolute values.
|
| 812 |
+
"""
|
| 813 |
+
man = 0
|
| 814 |
+
exp = 0
|
| 815 |
+
max_extra_prec = prec*2 or 1000000 # XXX
|
| 816 |
+
special = None
|
| 817 |
+
for x in xs:
|
| 818 |
+
xsign, xman, xexp, xbc = x
|
| 819 |
+
if xman:
|
| 820 |
+
if xsign and not absolute:
|
| 821 |
+
xman = -xman
|
| 822 |
+
delta = xexp - exp
|
| 823 |
+
if xexp >= exp:
|
| 824 |
+
# x much larger than existing sum?
|
| 825 |
+
# first: quick test
|
| 826 |
+
if (delta > max_extra_prec) and \
|
| 827 |
+
((not man) or delta-bitcount(abs(man)) > max_extra_prec):
|
| 828 |
+
man = xman
|
| 829 |
+
exp = xexp
|
| 830 |
+
else:
|
| 831 |
+
man += (xman << delta)
|
| 832 |
+
else:
|
| 833 |
+
delta = -delta
|
| 834 |
+
# x much smaller than existing sum?
|
| 835 |
+
if delta-xbc > max_extra_prec:
|
| 836 |
+
if not man:
|
| 837 |
+
man, exp = xman, xexp
|
| 838 |
+
else:
|
| 839 |
+
man = (man << delta) + xman
|
| 840 |
+
exp = xexp
|
| 841 |
+
elif xexp:
|
| 842 |
+
if absolute:
|
| 843 |
+
x = mpf_abs(x)
|
| 844 |
+
special = mpf_add(special or fzero, x, 1)
|
| 845 |
+
# Will be inf or nan
|
| 846 |
+
if special:
|
| 847 |
+
return special
|
| 848 |
+
return from_man_exp(man, exp, prec, rnd)
|
| 849 |
+
|
| 850 |
+
def gmpy_mpf_mul(s, t, prec=0, rnd=round_fast):
|
| 851 |
+
"""Multiply two raw mpfs"""
|
| 852 |
+
ssign, sman, sexp, sbc = s
|
| 853 |
+
tsign, tman, texp, tbc = t
|
| 854 |
+
sign = ssign ^ tsign
|
| 855 |
+
man = sman*tman
|
| 856 |
+
if man:
|
| 857 |
+
bc = bitcount(man)
|
| 858 |
+
if prec:
|
| 859 |
+
return normalize1(sign, man, sexp+texp, bc, prec, rnd)
|
| 860 |
+
else:
|
| 861 |
+
return (sign, man, sexp+texp, bc)
|
| 862 |
+
s_special = (not sman) and sexp
|
| 863 |
+
t_special = (not tman) and texp
|
| 864 |
+
if not s_special and not t_special:
|
| 865 |
+
return fzero
|
| 866 |
+
if fnan in (s, t): return fnan
|
| 867 |
+
if (not tman) and texp: s, t = t, s
|
| 868 |
+
if t == fzero: return fnan
|
| 869 |
+
return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)]
|
| 870 |
+
|
| 871 |
+
def gmpy_mpf_mul_int(s, n, prec, rnd=round_fast):
|
| 872 |
+
"""Multiply by a Python integer."""
|
| 873 |
+
sign, man, exp, bc = s
|
| 874 |
+
if not man:
|
| 875 |
+
return mpf_mul(s, from_int(n), prec, rnd)
|
| 876 |
+
if not n:
|
| 877 |
+
return fzero
|
| 878 |
+
if n < 0:
|
| 879 |
+
sign ^= 1
|
| 880 |
+
n = -n
|
| 881 |
+
man *= n
|
| 882 |
+
return normalize(sign, man, exp, bitcount(man), prec, rnd)
|
| 883 |
+
|
| 884 |
+
def python_mpf_mul(s, t, prec=0, rnd=round_fast):
|
| 885 |
+
"""Multiply two raw mpfs"""
|
| 886 |
+
ssign, sman, sexp, sbc = s
|
| 887 |
+
tsign, tman, texp, tbc = t
|
| 888 |
+
sign = ssign ^ tsign
|
| 889 |
+
man = sman*tman
|
| 890 |
+
if man:
|
| 891 |
+
bc = sbc + tbc - 1
|
| 892 |
+
bc += int(man>>bc)
|
| 893 |
+
if prec:
|
| 894 |
+
return normalize1(sign, man, sexp+texp, bc, prec, rnd)
|
| 895 |
+
else:
|
| 896 |
+
return (sign, man, sexp+texp, bc)
|
| 897 |
+
s_special = (not sman) and sexp
|
| 898 |
+
t_special = (not tman) and texp
|
| 899 |
+
if not s_special and not t_special:
|
| 900 |
+
return fzero
|
| 901 |
+
if fnan in (s, t): return fnan
|
| 902 |
+
if (not tman) and texp: s, t = t, s
|
| 903 |
+
if t == fzero: return fnan
|
| 904 |
+
return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)]
|
| 905 |
+
|
| 906 |
+
def python_mpf_mul_int(s, n, prec, rnd=round_fast):
|
| 907 |
+
"""Multiply by a Python integer."""
|
| 908 |
+
sign, man, exp, bc = s
|
| 909 |
+
if not man:
|
| 910 |
+
return mpf_mul(s, from_int(n), prec, rnd)
|
| 911 |
+
if not n:
|
| 912 |
+
return fzero
|
| 913 |
+
if n < 0:
|
| 914 |
+
sign ^= 1
|
| 915 |
+
n = -n
|
| 916 |
+
man *= n
|
| 917 |
+
# Generally n will be small
|
| 918 |
+
if n < 1024:
|
| 919 |
+
bc += bctable[int(n)] - 1
|
| 920 |
+
else:
|
| 921 |
+
bc += bitcount(n) - 1
|
| 922 |
+
bc += int(man>>bc)
|
| 923 |
+
return normalize(sign, man, exp, bc, prec, rnd)
|
| 924 |
+
|
| 925 |
+
|
| 926 |
+
if BACKEND == 'gmpy':
|
| 927 |
+
mpf_mul = gmpy_mpf_mul
|
| 928 |
+
mpf_mul_int = gmpy_mpf_mul_int
|
| 929 |
+
else:
|
| 930 |
+
mpf_mul = python_mpf_mul
|
| 931 |
+
mpf_mul_int = python_mpf_mul_int
|
| 932 |
+
|
| 933 |
+
def mpf_shift(s, n):
|
| 934 |
+
"""Quickly multiply the raw mpf s by 2**n without rounding."""
|
| 935 |
+
sign, man, exp, bc = s
|
| 936 |
+
if not man:
|
| 937 |
+
return s
|
| 938 |
+
return sign, man, exp+n, bc
|
| 939 |
+
|
| 940 |
+
def mpf_frexp(x):
|
| 941 |
+
"""Convert x = y*2**n to (y, n) with abs(y) in [0.5, 1) if nonzero"""
|
| 942 |
+
sign, man, exp, bc = x
|
| 943 |
+
if not man:
|
| 944 |
+
if x == fzero:
|
| 945 |
+
return (fzero, 0)
|
| 946 |
+
else:
|
| 947 |
+
raise ValueError
|
| 948 |
+
return mpf_shift(x, -bc-exp), bc+exp
|
| 949 |
+
|
| 950 |
+
def mpf_div(s, t, prec, rnd=round_fast):
|
| 951 |
+
"""Floating-point division"""
|
| 952 |
+
ssign, sman, sexp, sbc = s
|
| 953 |
+
tsign, tman, texp, tbc = t
|
| 954 |
+
if not sman or not tman:
|
| 955 |
+
if s == fzero:
|
| 956 |
+
if t == fzero: raise ZeroDivisionError
|
| 957 |
+
if t == fnan: return fnan
|
| 958 |
+
return fzero
|
| 959 |
+
if t == fzero:
|
| 960 |
+
raise ZeroDivisionError
|
| 961 |
+
s_special = (not sman) and sexp
|
| 962 |
+
t_special = (not tman) and texp
|
| 963 |
+
if s_special and t_special:
|
| 964 |
+
return fnan
|
| 965 |
+
if s == fnan or t == fnan:
|
| 966 |
+
return fnan
|
| 967 |
+
if not t_special:
|
| 968 |
+
if t == fzero:
|
| 969 |
+
return fnan
|
| 970 |
+
return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)]
|
| 971 |
+
return fzero
|
| 972 |
+
sign = ssign ^ tsign
|
| 973 |
+
if tman == 1:
|
| 974 |
+
return normalize1(sign, sman, sexp-texp, sbc, prec, rnd)
|
| 975 |
+
# Same strategy as for addition: if there is a remainder, perturb
|
| 976 |
+
# the result a few bits outside the precision range before rounding
|
| 977 |
+
extra = prec - sbc + tbc + 5
|
| 978 |
+
if extra < 5:
|
| 979 |
+
extra = 5
|
| 980 |
+
quot, rem = divmod(sman<<extra, tman)
|
| 981 |
+
if rem:
|
| 982 |
+
quot = (quot<<1) + 1
|
| 983 |
+
extra += 1
|
| 984 |
+
return normalize1(sign, quot, sexp-texp-extra, bitcount(quot), prec, rnd)
|
| 985 |
+
return normalize(sign, quot, sexp-texp-extra, bitcount(quot), prec, rnd)
|
| 986 |
+
|
| 987 |
+
def mpf_rdiv_int(n, t, prec, rnd=round_fast):
|
| 988 |
+
"""Floating-point division n/t with a Python integer as numerator"""
|
| 989 |
+
sign, man, exp, bc = t
|
| 990 |
+
if not n or not man:
|
| 991 |
+
return mpf_div(from_int(n), t, prec, rnd)
|
| 992 |
+
if n < 0:
|
| 993 |
+
sign ^= 1
|
| 994 |
+
n = -n
|
| 995 |
+
extra = prec + bc + 5
|
| 996 |
+
quot, rem = divmod(n<<extra, man)
|
| 997 |
+
if rem:
|
| 998 |
+
quot = (quot<<1) + 1
|
| 999 |
+
extra += 1
|
| 1000 |
+
return normalize1(sign, quot, -exp-extra, bitcount(quot), prec, rnd)
|
| 1001 |
+
return normalize(sign, quot, -exp-extra, bitcount(quot), prec, rnd)
|
| 1002 |
+
|
| 1003 |
+
def mpf_mod(s, t, prec, rnd=round_fast):
|
| 1004 |
+
ssign, sman, sexp, sbc = s
|
| 1005 |
+
tsign, tman, texp, tbc = t
|
| 1006 |
+
if ((not sman) and sexp) or ((not tman) and texp):
|
| 1007 |
+
return fnan
|
| 1008 |
+
# Important special case: do nothing if t is larger
|
| 1009 |
+
if ssign == tsign and texp > sexp+sbc:
|
| 1010 |
+
return s
|
| 1011 |
+
# Another important special case: this allows us to do e.g. x % 1.0
|
| 1012 |
+
# to find the fractional part of x, and it will work when x is huge.
|
| 1013 |
+
if tman == 1 and sexp > texp+tbc:
|
| 1014 |
+
return fzero
|
| 1015 |
+
base = min(sexp, texp)
|
| 1016 |
+
sman = (-1)**ssign * sman
|
| 1017 |
+
tman = (-1)**tsign * tman
|
| 1018 |
+
man = (sman << (sexp-base)) % (tman << (texp-base))
|
| 1019 |
+
if man >= 0:
|
| 1020 |
+
sign = 0
|
| 1021 |
+
else:
|
| 1022 |
+
man = -man
|
| 1023 |
+
sign = 1
|
| 1024 |
+
return normalize(sign, man, base, bitcount(man), prec, rnd)
|
| 1025 |
+
|
| 1026 |
+
reciprocal_rnd = {
|
| 1027 |
+
round_down : round_up,
|
| 1028 |
+
round_up : round_down,
|
| 1029 |
+
round_floor : round_ceiling,
|
| 1030 |
+
round_ceiling : round_floor,
|
| 1031 |
+
round_nearest : round_nearest
|
| 1032 |
+
}
|
| 1033 |
+
|
| 1034 |
+
negative_rnd = {
|
| 1035 |
+
round_down : round_down,
|
| 1036 |
+
round_up : round_up,
|
| 1037 |
+
round_floor : round_ceiling,
|
| 1038 |
+
round_ceiling : round_floor,
|
| 1039 |
+
round_nearest : round_nearest
|
| 1040 |
+
}
|
| 1041 |
+
|
| 1042 |
+
def mpf_pow_int(s, n, prec, rnd=round_fast):
|
| 1043 |
+
"""Compute s**n, where s is a raw mpf and n is a Python integer."""
|
| 1044 |
+
sign, man, exp, bc = s
|
| 1045 |
+
|
| 1046 |
+
if (not man) and exp:
|
| 1047 |
+
if s == finf:
|
| 1048 |
+
if n > 0: return s
|
| 1049 |
+
if n == 0: return fnan
|
| 1050 |
+
return fzero
|
| 1051 |
+
if s == fninf:
|
| 1052 |
+
if n > 0: return [finf, fninf][n & 1]
|
| 1053 |
+
if n == 0: return fnan
|
| 1054 |
+
return fzero
|
| 1055 |
+
return fnan
|
| 1056 |
+
|
| 1057 |
+
n = int(n)
|
| 1058 |
+
if n == 0: return fone
|
| 1059 |
+
if n == 1: return mpf_pos(s, prec, rnd)
|
| 1060 |
+
if n == 2:
|
| 1061 |
+
_, man, exp, bc = s
|
| 1062 |
+
if not man:
|
| 1063 |
+
return fzero
|
| 1064 |
+
man = man*man
|
| 1065 |
+
if man == 1:
|
| 1066 |
+
return (0, MPZ_ONE, exp+exp, 1)
|
| 1067 |
+
bc = bc + bc - 2
|
| 1068 |
+
bc += bctable[int(man>>bc)]
|
| 1069 |
+
return normalize1(0, man, exp+exp, bc, prec, rnd)
|
| 1070 |
+
if n == -1: return mpf_div(fone, s, prec, rnd)
|
| 1071 |
+
if n < 0:
|
| 1072 |
+
inverse = mpf_pow_int(s, -n, prec+5, reciprocal_rnd[rnd])
|
| 1073 |
+
return mpf_div(fone, inverse, prec, rnd)
|
| 1074 |
+
|
| 1075 |
+
result_sign = sign & n
|
| 1076 |
+
|
| 1077 |
+
# Use exact integer power when the exact mantissa is small
|
| 1078 |
+
if man == 1:
|
| 1079 |
+
return (result_sign, MPZ_ONE, exp*n, 1)
|
| 1080 |
+
if bc*n < 1000:
|
| 1081 |
+
man **= n
|
| 1082 |
+
return normalize1(result_sign, man, exp*n, bitcount(man), prec, rnd)
|
| 1083 |
+
|
| 1084 |
+
# Use directed rounding all the way through to maintain rigorous
|
| 1085 |
+
# bounds for interval arithmetic
|
| 1086 |
+
rounds_down = (rnd == round_nearest) or \
|
| 1087 |
+
shifts_down[rnd][result_sign]
|
| 1088 |
+
|
| 1089 |
+
# Now we perform binary exponentiation. Need to estimate precision
|
| 1090 |
+
# to avoid rounding errors from temporary operations. Roughly log_2(n)
|
| 1091 |
+
# operations are performed.
|
| 1092 |
+
workprec = prec + 4*bitcount(n) + 4
|
| 1093 |
+
_, pm, pe, pbc = fone
|
| 1094 |
+
while 1:
|
| 1095 |
+
if n & 1:
|
| 1096 |
+
pm = pm*man
|
| 1097 |
+
pe = pe+exp
|
| 1098 |
+
pbc += bc - 2
|
| 1099 |
+
pbc = pbc + bctable[int(pm >> pbc)]
|
| 1100 |
+
if pbc > workprec:
|
| 1101 |
+
if rounds_down:
|
| 1102 |
+
pm = pm >> (pbc-workprec)
|
| 1103 |
+
else:
|
| 1104 |
+
pm = -((-pm) >> (pbc-workprec))
|
| 1105 |
+
pe += pbc - workprec
|
| 1106 |
+
pbc = workprec
|
| 1107 |
+
n -= 1
|
| 1108 |
+
if not n:
|
| 1109 |
+
break
|
| 1110 |
+
man = man*man
|
| 1111 |
+
exp = exp+exp
|
| 1112 |
+
bc = bc + bc - 2
|
| 1113 |
+
bc = bc + bctable[int(man >> bc)]
|
| 1114 |
+
if bc > workprec:
|
| 1115 |
+
if rounds_down:
|
| 1116 |
+
man = man >> (bc-workprec)
|
| 1117 |
+
else:
|
| 1118 |
+
man = -((-man) >> (bc-workprec))
|
| 1119 |
+
exp += bc - workprec
|
| 1120 |
+
bc = workprec
|
| 1121 |
+
n = n // 2
|
| 1122 |
+
|
| 1123 |
+
return normalize(result_sign, pm, pe, pbc, prec, rnd)
|
| 1124 |
+
|
| 1125 |
+
|
| 1126 |
+
def mpf_perturb(x, eps_sign, prec, rnd):
|
| 1127 |
+
"""
|
| 1128 |
+
For nonzero x, calculate x + eps with directed rounding, where
|
| 1129 |
+
eps < prec relatively and eps has the given sign (0 for
|
| 1130 |
+
positive, 1 for negative).
|
| 1131 |
+
|
| 1132 |
+
With rounding to nearest, this is taken to simply normalize
|
| 1133 |
+
x to the given precision.
|
| 1134 |
+
"""
|
| 1135 |
+
if rnd == round_nearest:
|
| 1136 |
+
return mpf_pos(x, prec, rnd)
|
| 1137 |
+
sign, man, exp, bc = x
|
| 1138 |
+
eps = (eps_sign, MPZ_ONE, exp+bc-prec-1, 1)
|
| 1139 |
+
if sign:
|
| 1140 |
+
away = (rnd in (round_down, round_ceiling)) ^ eps_sign
|
| 1141 |
+
else:
|
| 1142 |
+
away = (rnd in (round_up, round_ceiling)) ^ eps_sign
|
| 1143 |
+
if away:
|
| 1144 |
+
return mpf_add(x, eps, prec, rnd)
|
| 1145 |
+
else:
|
| 1146 |
+
return mpf_pos(x, prec, rnd)
|
| 1147 |
+
|
| 1148 |
+
|
| 1149 |
+
#----------------------------------------------------------------------------#
|
| 1150 |
+
# Radix conversion #
|
| 1151 |
+
#----------------------------------------------------------------------------#
|
| 1152 |
+
|
| 1153 |
+
def to_digits_exp(s, dps):
|
| 1154 |
+
"""Helper function for representing the floating-point number s as
|
| 1155 |
+
a decimal with dps digits. Returns (sign, string, exponent) where
|
| 1156 |
+
sign is '' or '-', string is the digit string, and exponent is
|
| 1157 |
+
the decimal exponent as an int.
|
| 1158 |
+
|
| 1159 |
+
If inexact, the decimal representation is rounded toward zero."""
|
| 1160 |
+
|
| 1161 |
+
# Extract sign first so it doesn't mess up the string digit count
|
| 1162 |
+
if s[0]:
|
| 1163 |
+
sign = '-'
|
| 1164 |
+
s = mpf_neg(s)
|
| 1165 |
+
else:
|
| 1166 |
+
sign = ''
|
| 1167 |
+
_sign, man, exp, bc = s
|
| 1168 |
+
|
| 1169 |
+
if not man:
|
| 1170 |
+
return '', '0', 0
|
| 1171 |
+
|
| 1172 |
+
bitprec = int(dps * math.log(10,2)) + 10
|
| 1173 |
+
|
| 1174 |
+
# Cut down to size
|
| 1175 |
+
# TODO: account for precision when doing this
|
| 1176 |
+
exp_from_1 = exp + bc
|
| 1177 |
+
if abs(exp_from_1) > 3500:
|
| 1178 |
+
from .libelefun import mpf_ln2, mpf_ln10
|
| 1179 |
+
# Set b = int(exp * log(2)/log(10))
|
| 1180 |
+
# If exp is huge, we must use high-precision arithmetic to
|
| 1181 |
+
# find the nearest power of ten
|
| 1182 |
+
expprec = bitcount(abs(exp)) + 5
|
| 1183 |
+
tmp = from_int(exp)
|
| 1184 |
+
tmp = mpf_mul(tmp, mpf_ln2(expprec))
|
| 1185 |
+
tmp = mpf_div(tmp, mpf_ln10(expprec), expprec)
|
| 1186 |
+
b = to_int(tmp)
|
| 1187 |
+
s = mpf_div(s, mpf_pow_int(ften, b, bitprec), bitprec)
|
| 1188 |
+
_sign, man, exp, bc = s
|
| 1189 |
+
exponent = b
|
| 1190 |
+
else:
|
| 1191 |
+
exponent = 0
|
| 1192 |
+
|
| 1193 |
+
# First, calculate mantissa digits by converting to a binary
|
| 1194 |
+
# fixed-point number and then converting that number to
|
| 1195 |
+
# a decimal fixed-point number.
|
| 1196 |
+
fixprec = max(bitprec - exp - bc, 0)
|
| 1197 |
+
fixdps = int(fixprec / math.log(10,2) + 0.5)
|
| 1198 |
+
sf = to_fixed(s, fixprec)
|
| 1199 |
+
sd = bin_to_radix(sf, fixprec, 10, fixdps)
|
| 1200 |
+
digits = numeral(sd, base=10, size=dps)
|
| 1201 |
+
|
| 1202 |
+
exponent += len(digits) - fixdps - 1
|
| 1203 |
+
return sign, digits, exponent
|
| 1204 |
+
|
| 1205 |
+
def to_str(s, dps, strip_zeros=True, min_fixed=None, max_fixed=None,
|
| 1206 |
+
show_zero_exponent=False):
|
| 1207 |
+
"""
|
| 1208 |
+
Convert a raw mpf to a decimal floating-point literal with at
|
| 1209 |
+
most `dps` decimal digits in the mantissa (not counting extra zeros
|
| 1210 |
+
that may be inserted for visual purposes).
|
| 1211 |
+
|
| 1212 |
+
The number will be printed in fixed-point format if the position
|
| 1213 |
+
of the leading digit is strictly between min_fixed
|
| 1214 |
+
(default = min(-dps/3,-5)) and max_fixed (default = dps).
|
| 1215 |
+
|
| 1216 |
+
To force fixed-point format always, set min_fixed = -inf,
|
| 1217 |
+
max_fixed = +inf. To force floating-point format, set
|
| 1218 |
+
min_fixed >= max_fixed.
|
| 1219 |
+
|
| 1220 |
+
The literal is formatted so that it can be parsed back to a number
|
| 1221 |
+
by to_str, float() or Decimal().
|
| 1222 |
+
"""
|
| 1223 |
+
|
| 1224 |
+
# Special numbers
|
| 1225 |
+
if not s[1]:
|
| 1226 |
+
if s == fzero:
|
| 1227 |
+
if dps: t = '0.0'
|
| 1228 |
+
else: t = '.0'
|
| 1229 |
+
if show_zero_exponent:
|
| 1230 |
+
t += 'e+0'
|
| 1231 |
+
return t
|
| 1232 |
+
if s == finf: return '+inf'
|
| 1233 |
+
if s == fninf: return '-inf'
|
| 1234 |
+
if s == fnan: return 'nan'
|
| 1235 |
+
raise ValueError
|
| 1236 |
+
|
| 1237 |
+
if min_fixed is None: min_fixed = min(-(dps//3), -5)
|
| 1238 |
+
if max_fixed is None: max_fixed = dps
|
| 1239 |
+
|
| 1240 |
+
# to_digits_exp rounds to floor.
|
| 1241 |
+
# This sometimes kills some instances of "...00001"
|
| 1242 |
+
sign, digits, exponent = to_digits_exp(s, dps+3)
|
| 1243 |
+
|
| 1244 |
+
# No digits: show only .0; round exponent to nearest
|
| 1245 |
+
if not dps:
|
| 1246 |
+
if digits[0] in '56789':
|
| 1247 |
+
exponent += 1
|
| 1248 |
+
digits = ".0"
|
| 1249 |
+
|
| 1250 |
+
else:
|
| 1251 |
+
# Rounding up kills some instances of "...99999"
|
| 1252 |
+
if len(digits) > dps and digits[dps] in '56789':
|
| 1253 |
+
digits = digits[:dps]
|
| 1254 |
+
i = dps - 1
|
| 1255 |
+
while i >= 0 and digits[i] == '9':
|
| 1256 |
+
i -= 1
|
| 1257 |
+
if i >= 0:
|
| 1258 |
+
digits = digits[:i] + str(int(digits[i]) + 1) + '0' * (dps - i - 1)
|
| 1259 |
+
else:
|
| 1260 |
+
digits = '1' + '0' * (dps - 1)
|
| 1261 |
+
exponent += 1
|
| 1262 |
+
else:
|
| 1263 |
+
digits = digits[:dps]
|
| 1264 |
+
|
| 1265 |
+
# Prettify numbers close to unit magnitude
|
| 1266 |
+
if min_fixed < exponent < max_fixed:
|
| 1267 |
+
if exponent < 0:
|
| 1268 |
+
digits = ("0"*int(-exponent)) + digits
|
| 1269 |
+
split = 1
|
| 1270 |
+
else:
|
| 1271 |
+
split = exponent + 1
|
| 1272 |
+
if split > dps:
|
| 1273 |
+
digits += "0"*(split-dps)
|
| 1274 |
+
exponent = 0
|
| 1275 |
+
else:
|
| 1276 |
+
split = 1
|
| 1277 |
+
|
| 1278 |
+
digits = (digits[:split] + "." + digits[split:])
|
| 1279 |
+
|
| 1280 |
+
if strip_zeros:
|
| 1281 |
+
# Clean up trailing zeros
|
| 1282 |
+
digits = digits.rstrip('0')
|
| 1283 |
+
if digits[-1] == ".":
|
| 1284 |
+
digits += "0"
|
| 1285 |
+
|
| 1286 |
+
if exponent == 0 and dps and not show_zero_exponent: return sign + digits
|
| 1287 |
+
if exponent >= 0: return sign + digits + "e+" + str(exponent)
|
| 1288 |
+
if exponent < 0: return sign + digits + "e" + str(exponent)
|
| 1289 |
+
|
| 1290 |
+
def str_to_man_exp(x, base=10):
|
| 1291 |
+
"""Helper function for from_str."""
|
| 1292 |
+
x = x.lower().rstrip('l')
|
| 1293 |
+
# Verify that the input is a valid float literal
|
| 1294 |
+
float(x)
|
| 1295 |
+
# Split into mantissa, exponent
|
| 1296 |
+
parts = x.split('e')
|
| 1297 |
+
if len(parts) == 1:
|
| 1298 |
+
exp = 0
|
| 1299 |
+
else: # == 2
|
| 1300 |
+
x = parts[0]
|
| 1301 |
+
exp = int(parts[1])
|
| 1302 |
+
# Look for radix point in mantissa
|
| 1303 |
+
parts = x.split('.')
|
| 1304 |
+
if len(parts) == 2:
|
| 1305 |
+
a, b = parts[0], parts[1].rstrip('0')
|
| 1306 |
+
exp -= len(b)
|
| 1307 |
+
x = a + b
|
| 1308 |
+
x = MPZ(int(x, base))
|
| 1309 |
+
return x, exp
|
| 1310 |
+
|
| 1311 |
+
special_str = {'inf':finf, '+inf':finf, '-inf':fninf, 'nan':fnan}
|
| 1312 |
+
|
| 1313 |
+
def from_str(x, prec, rnd=round_fast):
|
| 1314 |
+
"""Create a raw mpf from a decimal literal, rounding in the
|
| 1315 |
+
specified direction if the input number cannot be represented
|
| 1316 |
+
exactly as a binary floating-point number with the given number of
|
| 1317 |
+
bits. The literal syntax accepted is the same as for Python
|
| 1318 |
+
floats.
|
| 1319 |
+
|
| 1320 |
+
TODO: the rounding does not work properly for large exponents.
|
| 1321 |
+
"""
|
| 1322 |
+
x = x.lower().strip()
|
| 1323 |
+
if x in special_str:
|
| 1324 |
+
return special_str[x]
|
| 1325 |
+
|
| 1326 |
+
if '/' in x:
|
| 1327 |
+
p, q = x.split('/')
|
| 1328 |
+
p, q = p.rstrip('l'), q.rstrip('l')
|
| 1329 |
+
return from_rational(int(p), int(q), prec, rnd)
|
| 1330 |
+
|
| 1331 |
+
man, exp = str_to_man_exp(x, base=10)
|
| 1332 |
+
|
| 1333 |
+
# XXX: appropriate cutoffs & track direction
|
| 1334 |
+
# note no factors of 5
|
| 1335 |
+
if abs(exp) > 400:
|
| 1336 |
+
s = from_int(man, prec+10)
|
| 1337 |
+
s = mpf_mul(s, mpf_pow_int(ften, exp, prec+10), prec, rnd)
|
| 1338 |
+
else:
|
| 1339 |
+
if exp >= 0:
|
| 1340 |
+
s = from_int(man * 10**exp, prec, rnd)
|
| 1341 |
+
else:
|
| 1342 |
+
s = from_rational(man, 10**-exp, prec, rnd)
|
| 1343 |
+
return s
|
| 1344 |
+
|
| 1345 |
+
# Binary string conversion. These are currently mainly used for debugging
|
| 1346 |
+
# and could use some improvement in the future
|
| 1347 |
+
|
| 1348 |
+
def from_bstr(x):
|
| 1349 |
+
man, exp = str_to_man_exp(x, base=2)
|
| 1350 |
+
man = MPZ(man)
|
| 1351 |
+
sign = 0
|
| 1352 |
+
if man < 0:
|
| 1353 |
+
man = -man
|
| 1354 |
+
sign = 1
|
| 1355 |
+
bc = bitcount(man)
|
| 1356 |
+
return normalize(sign, man, exp, bc, bc, round_floor)
|
| 1357 |
+
|
| 1358 |
+
def to_bstr(x):
|
| 1359 |
+
sign, man, exp, bc = x
|
| 1360 |
+
return ['','-'][sign] + numeral(man, size=bitcount(man), base=2) + ("e%i" % exp)
|
| 1361 |
+
|
| 1362 |
+
|
| 1363 |
+
#----------------------------------------------------------------------------#
|
| 1364 |
+
# Square roots #
|
| 1365 |
+
#----------------------------------------------------------------------------#
|
| 1366 |
+
|
| 1367 |
+
|
| 1368 |
+
def mpf_sqrt(s, prec, rnd=round_fast):
|
| 1369 |
+
"""
|
| 1370 |
+
Compute the square root of a nonnegative mpf value. The
|
| 1371 |
+
result is correctly rounded.
|
| 1372 |
+
"""
|
| 1373 |
+
sign, man, exp, bc = s
|
| 1374 |
+
if sign:
|
| 1375 |
+
raise ComplexResult("square root of a negative number")
|
| 1376 |
+
if not man:
|
| 1377 |
+
return s
|
| 1378 |
+
if exp & 1:
|
| 1379 |
+
exp -= 1
|
| 1380 |
+
man <<= 1
|
| 1381 |
+
bc += 1
|
| 1382 |
+
elif man == 1:
|
| 1383 |
+
return normalize1(sign, man, exp//2, bc, prec, rnd)
|
| 1384 |
+
shift = max(4, 2*prec-bc+4)
|
| 1385 |
+
shift += shift & 1
|
| 1386 |
+
if rnd in 'fd':
|
| 1387 |
+
man = isqrt(man<<shift)
|
| 1388 |
+
else:
|
| 1389 |
+
man, rem = sqrtrem(man<<shift)
|
| 1390 |
+
# Perturb up
|
| 1391 |
+
if rem:
|
| 1392 |
+
man = (man<<1)+1
|
| 1393 |
+
shift += 2
|
| 1394 |
+
return from_man_exp(man, (exp-shift)//2, prec, rnd)
|
| 1395 |
+
|
| 1396 |
+
def mpf_hypot(x, y, prec, rnd=round_fast):
|
| 1397 |
+
"""Compute the Euclidean norm sqrt(x**2 + y**2) of two raw mpfs
|
| 1398 |
+
x and y."""
|
| 1399 |
+
if y == fzero: return mpf_abs(x, prec, rnd)
|
| 1400 |
+
if x == fzero: return mpf_abs(y, prec, rnd)
|
| 1401 |
+
hypot2 = mpf_add(mpf_mul(x,x), mpf_mul(y,y), prec+4)
|
| 1402 |
+
return mpf_sqrt(hypot2, prec, rnd)
|
| 1403 |
+
|
| 1404 |
+
|
| 1405 |
+
if BACKEND == 'sage':
|
| 1406 |
+
try:
|
| 1407 |
+
import sage.libs.mpmath.ext_libmp as ext_lib
|
| 1408 |
+
mpf_add = ext_lib.mpf_add
|
| 1409 |
+
mpf_sub = ext_lib.mpf_sub
|
| 1410 |
+
mpf_mul = ext_lib.mpf_mul
|
| 1411 |
+
mpf_div = ext_lib.mpf_div
|
| 1412 |
+
mpf_sqrt = ext_lib.mpf_sqrt
|
| 1413 |
+
except ImportError:
|
| 1414 |
+
pass
|