init
Browse files- .gradio/flagged/dataset1.csv +7 -0
- app.py +161 -0
- requirements.txt +3 -0
.gradio/flagged/dataset1.csv
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Initial Base Reserve (tokens),Initial Quote Reserve (SOL),Migration Quote Threshold (SOL),Trading Fee %,Creator Fee % of Trading Fees,Partner Fee % of Trading Fees,Meteora Fee % of Trading Fees,SOL Step Size Per Trade,Base Token Decimals,Quote Token Decimals,Bonding Curve,Fee Breakdown,timestamp
|
| 2 |
+
1000000,1000,5000,1,40,40,20,10,9,9,"{""type"": ""matplotlib"", ""plot"": """"}","🧾 Trading Fee Breakdown:
|
| 3 |
+
---------------------------
|
| 4 |
+
Total Trading Fees Collected: 50.0000 SOL
|
| 5 |
+
- Creator Fee: 20.0000 SOL
|
| 6 |
+
- Partner Fee: 20.0000 SOL
|
| 7 |
+
- Meteora Fee: 10.0000 SOL",2025-06-02 13:01:47.368004
|
app.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
from decimal import Decimal
|
| 5 |
+
|
| 6 |
+
def simulate_full_bonding_curve_with_fees(
|
| 7 |
+
initial_market_cap_sol, migration_market_cap_sol, total_token_supply,
|
| 8 |
+
token_decimals, quote_decimals,
|
| 9 |
+
migration_fee_percent, creator_migration_fee_percent,
|
| 10 |
+
partner_lp_percentage, creator_lp_percentage,
|
| 11 |
+
partner_locked_lp_percentage, creator_locked_lp_percentage,
|
| 12 |
+
trading_fee_bps, total_trading_volume_sol
|
| 13 |
+
):
|
| 14 |
+
total_trading_volume_sol = float(total_trading_volume_sol)
|
| 15 |
+
percentage_supply = Decimal(100)
|
| 16 |
+
|
| 17 |
+
migration_quote_amount = Decimal(initial_market_cap_sol) * percentage_supply / Decimal(100)
|
| 18 |
+
migration_quote_threshold = migration_quote_amount * Decimal(100) / (Decimal(100) - Decimal(migration_fee_percent))
|
| 19 |
+
|
| 20 |
+
circulating_supply = Decimal(total_token_supply) * percentage_supply / Decimal(100)
|
| 21 |
+
start_price = Decimal(initial_market_cap_sol) / circulating_supply
|
| 22 |
+
end_price = Decimal(migration_market_cap_sol) / circulating_supply
|
| 23 |
+
|
| 24 |
+
# Calculate k for the price formula P(x) = k / (C - x)^2
|
| 25 |
+
# S(x) = integral P(x)dx from 0 to x = k/(C-x) - k/C
|
| 26 |
+
# initial_market_cap_sol is the SOL value for 0 tokens sold (conceptually)
|
| 27 |
+
# For the purpose of plotting the amount of SOL raised against tokens sold:
|
| 28 |
+
# Let C = float(circulating_supply)
|
| 29 |
+
# The price at a given number of tokens sold 's' is P(s) = k / (C - s)^2
|
| 30 |
+
# The SOL raised to sell 's' tokens is Integral(P(x)dx) from 0 to s which is k/(C-s) - k/C
|
| 31 |
+
# We use migration_quote_amount as the SOL raised when 0 tokens are sold for the *start* of the curve for simplicity in k calc.
|
| 32 |
+
# This interpretation aligns k with the initial SOL amount rather than price directly.
|
| 33 |
+
C_float = float(circulating_supply)
|
| 34 |
+
if C_float == 0: # Avoid division by zero if circulating supply is zero
|
| 35 |
+
x = np.array([0])
|
| 36 |
+
prices = np.array([0])
|
| 37 |
+
x_end_plot = 0
|
| 38 |
+
else:
|
| 39 |
+
# k is derived from the initial state: initial_market_cap_sol is the SOL value for 0 tokens sold (conceptually)
|
| 40 |
+
# P(x) = k / (C-x)^2. SOL_raised(x) = k/(C-x) - k/C.
|
| 41 |
+
# if initial_market_cap_sol is S(0), then k = initial_market_cap_sol * C_float. This is wrong, initial_market_cap_sol is not S(0).
|
| 42 |
+
# initial_market_cap_sol is effectively the amount of SOL in the pool at the start for pricing calculations.
|
| 43 |
+
# Let's use the definition that migration_quote_amount (SOL before fees) is the target SOL to be in the curve before it migrates.
|
| 44 |
+
# The curve starts with some implicit SOL amount that gives start_price.
|
| 45 |
+
# Price(x) = k / (C-x)^2. So, Price(0) = k / C^2 = start_price.
|
| 46 |
+
# k = start_price * C^2
|
| 47 |
+
k = float(start_price) * (C_float**2)
|
| 48 |
+
|
| 49 |
+
if k == 0 or (float(migration_quote_threshold) + k / C_float) == 0: # Handle division by zero or k=0
|
| 50 |
+
x_end_plot = C_float # Sell all tokens if k is 0 or threshold makes denominator 0
|
| 51 |
+
else:
|
| 52 |
+
# Calculate x_end_plot: number of tokens sold to reach migration_quote_threshold SOL
|
| 53 |
+
# SOL_raised(x_end_plot) = migration_quote_threshold
|
| 54 |
+
# migration_quote_threshold = k/(C_float - x_end_plot) - k/C_float
|
| 55 |
+
# k/(C_float - x_end_plot) = migration_quote_threshold + k/C_float
|
| 56 |
+
# C_float - x_end_plot = k / (migration_quote_threshold + k/C_float)
|
| 57 |
+
x_end_plot = C_float - (k / (float(migration_quote_threshold) + k / C_float))
|
| 58 |
+
# Ensure x_end_plot is not negative or greater than C_float
|
| 59 |
+
x_end_plot = max(0, min(x_end_plot, C_float * 0.9999)) # Plot up to 99.99% to avoid infinity
|
| 60 |
+
|
| 61 |
+
if x_end_plot <= 1e-9: # If effectively no tokens are sold to reach threshold (e.g. threshold is 0)
|
| 62 |
+
x_end_plot = C_float * 0.01 # Plot a small portion to show something
|
| 63 |
+
if x_end_plot <= 1e-9: # If C_float is also tiny
|
| 64 |
+
x_end_plot = 1 # Default to 1 token if supply is extremely small
|
| 65 |
+
|
| 66 |
+
num_points = 100
|
| 67 |
+
if x_end_plot == 0:
|
| 68 |
+
x = np.array([0]) # Handle case with single point
|
| 69 |
+
prices = np.array([float(start_price)])
|
| 70 |
+
else:
|
| 71 |
+
x = np.linspace(0.0, x_end_plot, num_points)
|
| 72 |
+
prices = k / (C_float - x + 1e-9)**2 # Add small epsilon to avoid division by zero if x reaches C_float
|
| 73 |
+
prices = [float(p) for p in prices]
|
| 74 |
+
|
| 75 |
+
total_fee = float(migration_quote_threshold) * float(migration_fee_percent) / 100
|
| 76 |
+
creator_migration_fee = total_fee * (creator_migration_fee_percent / 100)
|
| 77 |
+
partner_migration_fee = total_fee - creator_migration_fee
|
| 78 |
+
|
| 79 |
+
total_lp_tokens = float(migration_quote_threshold)
|
| 80 |
+
creator_lp_tokens = total_lp_tokens * (creator_lp_percentage / 100)
|
| 81 |
+
partner_lp_tokens = total_lp_tokens * (partner_lp_percentage / 100)
|
| 82 |
+
creator_locked_lp = creator_lp_tokens * (creator_locked_lp_percentage / 100)
|
| 83 |
+
partner_locked_lp = partner_lp_tokens * (partner_locked_lp_percentage / 100)
|
| 84 |
+
|
| 85 |
+
trading_fee_rate = trading_fee_bps / 10000
|
| 86 |
+
total_trading_fee = total_trading_volume_sol * trading_fee_rate
|
| 87 |
+
creator_trading_fee = total_trading_fee * (creator_lp_percentage / 100)
|
| 88 |
+
partner_trading_fee = total_trading_fee * (partner_lp_percentage / 100)
|
| 89 |
+
|
| 90 |
+
fig, ax = plt.subplots()
|
| 91 |
+
ax.plot(x, prices)
|
| 92 |
+
ax.set_xlabel("Tokens Sold")
|
| 93 |
+
ax.set_ylabel("Price (in SOL)")
|
| 94 |
+
ax.set_title("Bonding Curve Simulation (in SOL)")
|
| 95 |
+
|
| 96 |
+
note = """
|
| 97 |
+
Bonding Curve Unit: SOL
|
| 98 |
+
|
| 99 |
+
Parameter Explanations:
|
| 100 |
+
- Initial Market Cap: Total valuation (in SOL) at curve start.
|
| 101 |
+
- Migration Market Cap: Valuation (in SOL) when curve ends and migrates to AMM.
|
| 102 |
+
- Migration Quote Amount: Amount of SOL raised before fees.
|
| 103 |
+
- Migration Threshold: Total SOL needed to trigger migration (includes fees).
|
| 104 |
+
- LP Tokens: Represents user's share in the post-migration AMM liquidity pool. Approximated here as equal to the migration threshold in SOL.
|
| 105 |
+
- Trading Fee BPS: The fee rate applied to all swaps post-migration. BPS = Basis Points (e.g., 100 BPS = 1%).
|
| 106 |
+
- Creator/Partner Trading Fee: Earnings from swap volume based on LP share.
|
| 107 |
+
- All SOL values are approximated assuming quote token = SOL.
|
| 108 |
+
"""
|
| 109 |
+
|
| 110 |
+
return (
|
| 111 |
+
fig,
|
| 112 |
+
f"Initial Price: {start_price:.8f} SOL",
|
| 113 |
+
f"Migration Price: {end_price:.8f} SOL",
|
| 114 |
+
f"Migration Quote Amount: {migration_quote_amount:.2f} SOL",
|
| 115 |
+
f"Migration Threshold (after fee): {migration_quote_threshold:.2f} SOL",
|
| 116 |
+
f"Bonding Curve Unit: SOL",
|
| 117 |
+
f"Creator Migration Fee: {creator_migration_fee:.2f} SOL",
|
| 118 |
+
f"Partner Migration Fee: {partner_migration_fee:.2f} SOL",
|
| 119 |
+
f"Total LP Tokens: {total_lp_tokens:.2f}",
|
| 120 |
+
f"Creator LP: {creator_lp_tokens:.2f} (Locked: {creator_locked_lp:.2f})",
|
| 121 |
+
f"Partner LP: {partner_lp_tokens:.2f} (Locked: {partner_locked_lp:.2f})",
|
| 122 |
+
f"Creator Trading Fee: {creator_trading_fee:.2f} SOL",
|
| 123 |
+
f"Partner Trading Fee: {partner_trading_fee:.2f} SOL",
|
| 124 |
+
note.strip()
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
gr.Interface(
|
| 128 |
+
fn=simulate_full_bonding_curve_with_fees,
|
| 129 |
+
inputs=[
|
| 130 |
+
gr.Textbox(label="Initial Market Cap (SOL)", value="1000"),
|
| 131 |
+
gr.Textbox(label="Migration Market Cap (SOL)", value="10000"),
|
| 132 |
+
gr.Textbox(label="Total Token Supply", value="1000000"),
|
| 133 |
+
gr.Textbox(label="Token Decimals", value="6"),
|
| 134 |
+
gr.Textbox(label="Quote Token Decimals", value="9"),
|
| 135 |
+
gr.Slider(label="Migration Fee Percent (%)", minimum=0, maximum=50, step=0.5, value=10),
|
| 136 |
+
gr.Slider(label="Creator Fee Share of Migration Fee (%)", minimum=0, maximum=100, step=1, value=50),
|
| 137 |
+
gr.Slider(label="Partner LP %", minimum=0, maximum=100, step=1, value=50),
|
| 138 |
+
gr.Slider(label="Creator LP %", minimum=0, maximum=100, step=1, value=50),
|
| 139 |
+
gr.Slider(label="Partner Locked LP %", minimum=0, maximum=100, step=1, value=100),
|
| 140 |
+
gr.Slider(label="Creator Locked LP %", minimum=0, maximum=100, step=1, value=100),
|
| 141 |
+
gr.Slider(label="Post-Migration Trading Fee (bps)", minimum=0, maximum=1000, step=5, value=30),
|
| 142 |
+
gr.Textbox(label="Total Trading Volume (SOL)", value="1000"),
|
| 143 |
+
],
|
| 144 |
+
outputs=[
|
| 145 |
+
gr.Plot(label="Bonding Curve"),
|
| 146 |
+
gr.Textbox(label="Initial Price", lines=1, interactive=False),
|
| 147 |
+
gr.Textbox(label="Migration Price", lines=1, interactive=False),
|
| 148 |
+
gr.Textbox(label="Migration Quote Amount", lines=1, interactive=False),
|
| 149 |
+
gr.Textbox(label="Migration Threshold", lines=1, interactive=False),
|
| 150 |
+
gr.Textbox(label="Bonding Curve Unit", lines=1, interactive=False),
|
| 151 |
+
gr.Textbox(label="Creator Migration Fee", lines=1, interactive=False),
|
| 152 |
+
gr.Textbox(label="Partner Migration Fee", lines=1, interactive=False),
|
| 153 |
+
gr.Textbox(label="Total LP Tokens", lines=1, interactive=False),
|
| 154 |
+
gr.Textbox(label="Creator LP", lines=1, interactive=False),
|
| 155 |
+
gr.Textbox(label="Partner LP", lines=1, interactive=False),
|
| 156 |
+
gr.Textbox(label="Creator Trading Fee", lines=1, interactive=False),
|
| 157 |
+
gr.Textbox(label="Partner Trading Fee", lines=1, interactive=False),
|
| 158 |
+
gr.Textbox(label="Explanation", lines=12, interactive=False),
|
| 159 |
+
],
|
| 160 |
+
title="Dynamic Bonding Curve Simulator (with Full Fee + LP Breakdown)"
|
| 161 |
+
).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
numpy
|
| 3 |
+
matplotlib
|