File size: 7,754 Bytes
d670799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple, Union
import numpy as np
import torch
def k_adjacency(A: Union[torch.Tensor, np.ndarray],
k: int,
with_self: bool = False,
self_factor: float = 1) -> np.ndarray:
"""Construct k-adjacency matrix.
Args:
A (torch.Tensor or np.ndarray): The adjacency matrix.
k (int): The number of hops.
with_self (bool): Whether to add self-loops to the
k-adjacency matrix. The self-loops is critical
for learning the relationships between the current
joint and its k-hop neighbors. Defaults to False.
self_factor (float): The scale factor to the added
identity matrix. Defaults to 1.
Returns:
np.ndarray: The k-adjacency matrix.
"""
# A is a 2D square array
if isinstance(A, torch.Tensor):
A = A.data.cpu().numpy()
assert isinstance(A, np.ndarray)
Iden = np.eye(len(A), dtype=A.dtype)
if k == 0:
return Iden
Ak = np.minimum(np.linalg.matrix_power(A + Iden, k), 1) - np.minimum(
np.linalg.matrix_power(A + Iden, k - 1), 1)
if with_self:
Ak += (self_factor * Iden)
return Ak
def edge2mat(edges: List[Tuple[int, int]], num_node: int) -> np.ndarray:
"""Get adjacency matrix from edges.
Args:
edges (list[tuple[int, int]]): The edges of the graph.
num_node (int): The number of nodes of the graph.
Returns:
np.ndarray: The adjacency matrix.
"""
A = np.zeros((num_node, num_node))
for i, j in edges:
A[j, i] = 1
return A
def normalize_digraph(A: np.ndarray, dim: int = 0) -> np.ndarray:
"""Normalize the digraph according to the given dimension.
Args:
A (np.ndarray): The adjacency matrix.
dim (int): The dimension to perform normalization.
Defaults to 0.
Returns:
np.ndarray: The normalized adjacency matrix.
"""
# A is a 2D square array
Dl = np.sum(A, dim)
h, w = A.shape
Dn = np.zeros((w, w))
for i in range(w):
if Dl[i] > 0:
Dn[i, i] = Dl[i]**(-1)
AD = np.dot(A, Dn)
return AD
def get_hop_distance(num_node: int,
edges: List[Tuple[int, int]],
max_hop: int = 1) -> np.ndarray:
"""Get n-hop distance matrix by edges.
Args:
num_node (int): The number of nodes of the graph.
edges (list[tuple[int, int]]): The edges of the graph.
max_hop (int): The maximal distance between two connected nodes.
Defaults to 1.
Returns:
np.ndarray: The n-hop distance matrix.
"""
A = np.eye(num_node)
for i, j in edges:
A[i, j] = 1
A[j, i] = 1
# compute hop steps
hop_dis = np.zeros((num_node, num_node)) + np.inf
transfer_mat = [np.linalg.matrix_power(A, d) for d in range(max_hop + 1)]
arrive_mat = (np.stack(transfer_mat) > 0)
for d in range(max_hop, -1, -1):
hop_dis[arrive_mat[d]] = d
return hop_dis
class Graph:
"""The Graph to model the skeletons.
Args:
layout (str or dict): must be one of the following candidates:
'openpose', 'nturgb+d', 'coco', or a dict with the following
keys: 'num_node', 'inward', and 'center'.
Defaults to ``'coco'``.
mode (str): must be one of the following candidates:
'stgcn_spatial', 'spatial'. Defaults to ``'spatial'``.
max_hop (int): the maximal distance between two connected
nodes. Defaults to 1.
"""
def __init__(self,
layout: Union[str, dict] = 'coco',
mode: str = 'spatial',
max_hop: int = 1) -> None:
self.max_hop = max_hop
self.layout = layout
self.mode = mode
if isinstance(layout, dict):
assert 'num_node' in layout
assert 'inward' in layout
assert 'center' in layout
else:
assert layout in ['openpose', 'nturgb+d', 'coco']
self.set_layout(layout)
self.hop_dis = get_hop_distance(self.num_node, self.inward, max_hop)
assert hasattr(self, mode), f'Do Not Exist This Mode: {mode}'
self.A = getattr(self, mode)()
def __str__(self):
return self.A
def set_layout(self, layout: str) -> None:
"""Initialize the layout of candidates."""
if layout == 'openpose':
self.num_node = 18
self.inward = [(4, 3), (3, 2), (7, 6), (6, 5), (13, 12), (12, 11),
(10, 9), (9, 8), (11, 5), (8, 2), (5, 1), (2, 1),
(0, 1), (15, 0), (14, 0), (17, 15), (16, 14)]
self.center = 1
elif layout == 'nturgb+d':
self.num_node = 25
neighbor_base = [(1, 2), (2, 21), (3, 21), (4, 3), (5, 21), (6, 5),
(7, 6), (8, 7), (9, 21), (10, 9), (11, 10),
(12, 11), (13, 1), (14, 13), (15, 14), (16, 15),
(17, 1), (18, 17), (19, 18), (20, 19), (22, 8),
(23, 8), (24, 12), (25, 12)]
self.inward = [(i - 1, j - 1) for (i, j) in neighbor_base]
self.center = 21 - 1
elif layout == 'coco':
self.num_node = 17
self.inward = [(15, 13), (13, 11), (16, 14), (14, 12), (11, 5),
(12, 6), (9, 7), (7, 5), (10, 8), (8, 6), (5, 0),
(6, 0), (1, 0), (3, 1), (2, 0), (4, 2)]
self.center = 0
elif isinstance(layout, dict):
self.num_node = layout['num_node']
self.inward = layout['inward']
self.center = layout['center']
else:
raise ValueError(f'Do Not Exist This Layout: {layout}')
self.self_link = [(i, i) for i in range(self.num_node)]
self.outward = [(j, i) for (i, j) in self.inward]
self.neighbor = self.inward + self.outward
def stgcn_spatial(self) -> np.ndarray:
"""ST-GCN spatial mode."""
adj = np.zeros((self.num_node, self.num_node))
adj[self.hop_dis <= self.max_hop] = 1
normalize_adj = normalize_digraph(adj)
hop_dis = self.hop_dis
center = self.center
A = []
for hop in range(self.max_hop + 1):
a_close = np.zeros((self.num_node, self.num_node))
a_further = np.zeros((self.num_node, self.num_node))
for i in range(self.num_node):
for j in range(self.num_node):
if hop_dis[j, i] == hop:
if hop_dis[j, center] >= hop_dis[i, center]:
a_close[j, i] = normalize_adj[j, i]
else:
a_further[j, i] = normalize_adj[j, i]
A.append(a_close)
if hop > 0:
A.append(a_further)
return np.stack(A)
def spatial(self) -> np.ndarray:
"""Standard spatial mode."""
Iden = edge2mat(self.self_link, self.num_node)
In = normalize_digraph(edge2mat(self.inward, self.num_node))
Out = normalize_digraph(edge2mat(self.outward, self.num_node))
A = np.stack((Iden, In, Out))
return A
def binary_adj(self) -> np.ndarray:
"""Construct an adjacency matrix for an undirected graph."""
A = edge2mat(self.neighbor, self.num_node)
return A[None]
|