import uuid from typing import List, Any, Optional, Dict import time import math class Atom: """ Base class for all Periodic Table Elements. Represents the fundamental unit with mass (heat/complexity) and charge (valence). """ def __init__(self, symbol: str, name: str, domain: str = "General"): self.id = str(uuid.uuid4()) self.symbol = symbol # e.g., 'Pr', 'To' self.name = name self.timestamp = time.time() self.domain = domain # e.g. "Physics", "Code", "Logic" (Video 26) self.heat = 0.0 # Dissonance/Energy self.valence = [] # Connections to other atoms (Hyper-Edges) def resonate(self) -> float: """Returns the current heat/resonance level.""" return self.heat def __repr__(self): return f"[{self.symbol}:{self.name}]" class Vector(Atom): """ Symbol: Ve Represents Semantic Gravity (Embeddings). """ def __init__(self, embedding: List[float]): super().__init__('Ve', 'Vector') self.embedding = embedding self.heat = sum(abs(x) for x in embedding) / len(embedding) if embedding else 0.0 def distance(self, other: 'Vector') -> float: """Calculates cosine distance (Heat) between two vectors.""" # Simplified for now, assuming normalized dot = sum(a*b for a, b in zip(self.embedding, other.embedding)) return 1.0 - dot class Token(Atom): """ Symbol: To The atomic unit of semantic meaning (Text, Image Patch). """ def __init__(self, content: Any, source: str = "user"): super().__init__('To', 'Token') self.content = content self.source = source # Heuristic heat: length of content self.heat = len(str(content)) * 0.01 class Actuator(Atom): """ Symbol: Ac Represents a Physical Output Device (Motor, Switch, API). """ def __init__(self, device_id: str, state: dict = None): super().__init__('Ac', device_id) self.device_id = device_id self.state = state or {"power": "off"} self.heat = 0.5 # Physical actions generate heat/friction class Audio(Atom): """ Symbol: Au Represents Sound/Voice data. Generated by TTS or captured from Microphone. """ def __init__(self, content: bytes, source: str = "TTS"): super().__init__('Au', 'Audio') self.content = content # Raw bytes or path self.source = source self.duration = 0.0 # Placeholder self.heat = len(content) * 0.001 # Density of data class Model(Atom): """ Symbol: Mo The dense compute node (LLM, Diffusion, etc.). """ def __init__(self, model_id: str, architecture: str = "Transformer", local: bool = True): super().__init__('Mo', model_id) self.local = local self.architecture = architecture # e.g. "Transformer", "Diffusion", "SSM" self.status = "idle" def process(self, input_atoms: List[Atom]) -> List[Atom]: """ Transforms input atoms (Prompt) into output atoms (Tokens). This is where the actual LLM call happens. """ # Placeholder for actual inference logic self.status = "processing" output_content = f"Processed {len(input_atoms)} atoms via {self.name}" time.sleep(0.1) # Simulate compute self.status = "idle" return [Token(output_content, source=self.name)] class Handoff(Atom): """ Symbol: Ha Represents a transfer of control to a specific Tool or Agent. Triggered when Heat > Threshold. """ def __init__(self, target_tool_name: str, reason: str): super().__init__('Ha', target_tool_name) self.target = target_tool_name self.reason = reason self.status = "pending" def resolve(self) -> Token: """ Executing the handoff means returning a Token that summarizes the action. The actual execution happens in the Router via the Tool map. """ self.status = "active" return Token(f"[HANDOFF] Transferring to {self.target} due to: {self.reason}", source="Router") class Tool(Atom): """ Symbol: Fu (Function) / Co (Code) Executable logic that binds to specific Tokens. """ def __init__(self, name: str, func: callable, description: str): super().__init__('Fu', name) self.func = func self.description = description def execute(self, *args, **kwargs) -> Atom: result = self.func(*args, **kwargs) return Token(result, source=f"Tool:{self.name}") class Tensor(Atom): """ Symbol: Te Represents a linear transformation (Matrix) or higher-order tensor. Agents apply Tensors to Vectors to change the State. """ def __init__(self, matrix: List[List[float]], name: str = "Transform"): super().__init__('Te', name) self.matrix = matrix # Heat = Frobenius norm (magnitude of change) self.heat = math.sqrt(sum(x*x for row in matrix for x in row)) def apply(self, vector: Vector) -> Vector: """ Applies the tensor (matrix multiplication) to a vector. v_new = T * v """ if not vector.embedding: return vector # Simple Matrix-Vector multiplication new_vec = [] for row in self.matrix: # Handle dimension mismatch by padding or truncating conceptually # For this prototype, we assume row len fits vector len or we dot product available dims dot = sum(a*b for a, b in zip(row, vector.embedding)) new_vec.append(dot) return Vector(new_vec) # Prime Resonance Mapping (Gödel Numbering) PRIME_DOMAINS = { "General": 2, "Physics": 3, "Code": 5, "Logic": 7, "Prompt": 11, "Inference": 13, "External_Knowledge": 17, "Audio": 19, "Vision": 23 } class ManifoldState: """ Symbol: St (State) The container for the recursive loop. Now tracks Prime Resonance (Gödel Numbering). """ def __init__(self): self.atoms: List[Atom] = [] self.stress: float = 1.0 self.deformation_gradient: List[float] = [] # Prime Resonance (The scalar product of context history) self.resonance_product: int = 1 # Context Graph (Video 15: Nodes & Edges) self.graph = { "nodes": {}, "edges": [] } def inject(self, atom: Atom, parent_id: Optional[str] = None, relation: str = "follows"): self.atoms.append(atom) # 1. Update Stress (Physics) force = atom.heat area = len(self.atoms) self.stress = force / (area + 1e-9) self.deformation_gradient.append(self.stress) # 2. Update Resonance (Number Theory) prime_val = PRIME_DOMAINS.get(atom.domain, 2) self.resonance_product *= prime_val # 3. Update Graph (Topology) self.graph["nodes"][atom.id] = { "type": atom.symbol, "name": atom.name, "heat": atom.heat, "domain": atom.domain, "prime": prime_val } if parent_id and parent_id in self.graph["nodes"]: self.graph["edges"].append({ "source": parent_id, "target": atom.id, "relation": relation, "weight": self.stress }) def stabilize(self) -> bool: """Returns True if Stress is below threshold (Equilibrium).""" return self.stress < 0.1