Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| """gpt_dev.ipynb | |
| Automatically generated by Colab. | |
| Original file is located at | |
| https://colab.research.google.com/drive/1zxxLfIi8_EDLqYODY8TyNLpr8RTxV-Ct | |
| ## Building a GPT | |
| Companion notebook to the [Zero To Hero](https://karpathy.ai/zero-to-hero.html) video on GPT. | |
| """ | |
| # We always start with a dataset to train on. Let's download the tiny shakespeare dataset | |
| !wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt | |
| # read it in to inspect it | |
| with open('input.txt', 'r', encoding='utf-8') as f: | |
| text = f.read() | |
| print("length of dataset in characters: ", len(text)) | |
| # let's look at the first 1000 characters | |
| print(text[:1000]) | |
| # here are all the unique characters that occur in this text | |
| chars = sorted(list(set(text))) | |
| vocab_size = len(chars) | |
| print(''.join(chars)) | |
| print(vocab_size) | |
| # create a mapping from characters to integers | |
| stoi = { ch:i for i,ch in enumerate(chars) } | |
| itos = { i:ch for i,ch in enumerate(chars) } | |
| encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers | |
| decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string | |
| print(encode("hii there")) | |
| print(decode(encode("hii there"))) | |
| # let's now encode the entire text dataset and store it into a torch.Tensor | |
| import torch # we use PyTorch: https://pytorch.org | |
| data = torch.tensor(encode(text), dtype=torch.long) | |
| print(data.shape, data.dtype) | |
| print(data[:1000]) # the 1000 characters we looked at earier will to the GPT look like this | |
| # Let's now split up the data into train and validation sets | |
| n = int(0.9*len(data)) # first 90% will be train, rest val | |
| train_data = data[:n] | |
| val_data = data[n:] | |
| block_size = 8 | |
| train_data[:block_size+1] | |
| x = train_data[:block_size] | |
| y = train_data[1:block_size+1] | |
| for t in range(block_size): | |
| context = x[:t+1] | |
| target = y[t] | |
| print(f"when input is {context} the target: {target}") | |
| torch.manual_seed(1337) | |
| batch_size = 4 # how many independent sequences will we process in parallel? | |
| block_size = 8 # what is the maximum context length for predictions? | |
| def get_batch(split): | |
| # generate a small batch of data of inputs x and targets y | |
| data = train_data if split == 'train' else val_data | |
| ix = torch.randint(len(data) - block_size, (batch_size,)) | |
| x = torch.stack([data[i:i+block_size] for i in ix]) | |
| y = torch.stack([data[i+1:i+block_size+1] for i in ix]) | |
| return x, y | |
| xb, yb = get_batch('train') | |
| print('inputs:') | |
| print(xb.shape) | |
| print(xb) | |
| print('targets:') | |
| print(yb.shape) | |
| print(yb) | |
| print('----') | |
| for b in range(batch_size): # batch dimension | |
| for t in range(block_size): # time dimension | |
| context = xb[b, :t+1] | |
| target = yb[b,t] | |
| print(f"when input is {context.tolist()} the target: {target}") | |
| print(xb) # our input to the transformer | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| torch.manual_seed(1337) | |
| class BigramLanguageModel(nn.Module): | |
| def __init__(self, vocab_size): | |
| super().__init__() | |
| # each token directly reads off the logits for the next token from a lookup table | |
| self.token_embedding_table = nn.Embedding(vocab_size, vocab_size) | |
| def forward(self, idx, targets=None): | |
| # idx and targets are both (B,T) tensor of integers | |
| logits = self.token_embedding_table(idx) # (B,T,C) | |
| if targets is None: | |
| loss = None | |
| else: | |
| B, T, C = logits.shape | |
| logits = logits.view(B*T, C) | |
| targets = targets.view(B*T) | |
| loss = F.cross_entropy(logits, targets) | |
| return logits, loss | |
| def generate(self, idx, max_new_tokens): | |
| # idx is (B, T) array of indices in the current context | |
| for _ in range(max_new_tokens): | |
| # get the predictions | |
| logits, loss = self(idx) | |
| # focus only on the last time step | |
| logits = logits[:, -1, :] # becomes (B, C) | |
| # apply softmax to get probabilities | |
| probs = F.softmax(logits, dim=-1) # (B, C) | |
| # sample from the distribution | |
| idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) | |
| # append sampled index to the running sequence | |
| idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) | |
| return idx | |
| m = BigramLanguageModel(vocab_size) | |
| logits, loss = m(xb, yb) | |
| print(logits.shape) | |
| print(loss) | |
| print(decode(m.generate(idx = torch.zeros((1, 1), dtype=torch.long), max_new_tokens=100)[0].tolist())) | |
| # create a PyTorch optimizer | |
| optimizer = torch.optim.AdamW(m.parameters(), lr=1e-3) | |
| batch_size = 32 | |
| for steps in range(100): # increase number of steps for good results... | |
| # sample a batch of data | |
| xb, yb = get_batch('train') | |
| # evaluate the loss | |
| logits, loss = m(xb, yb) | |
| optimizer.zero_grad(set_to_none=True) | |
| loss.backward() | |
| optimizer.step() | |
| print(loss.item()) | |
| print(decode(m.generate(idx = torch.zeros((1, 1), dtype=torch.long), max_new_tokens=500)[0].tolist())) | |
| """## The mathematical trick in self-attention""" | |
| # toy example illustrating how matrix multiplication can be used for a "weighted aggregation" | |
| torch.manual_seed(42) | |
| a = torch.tril(torch.ones(3, 3)) | |
| a = a / torch.sum(a, 1, keepdim=True) | |
| b = torch.randint(0,10,(3,2)).float() | |
| c = a @ b | |
| print('a=') | |
| print(a) | |
| print('--') | |
| print('b=') | |
| print(b) | |
| print('--') | |
| print('c=') | |
| print(c) | |
| # consider the following toy example: | |
| torch.manual_seed(1337) | |
| B,T,C = 4,8,2 # batch, time, channels | |
| x = torch.randn(B,T,C) | |
| x.shape | |
| # We want x[b,t] = mean_{i<=t} x[b,i] | |
| xbow = torch.zeros((B,T,C)) | |
| for b in range(B): | |
| for t in range(T): | |
| xprev = x[b,:t+1] # (t,C) | |
| xbow[b,t] = torch.mean(xprev, 0) | |
| # version 2: using matrix multiply for a weighted aggregation | |
| wei = torch.tril(torch.ones(T, T)) | |
| wei = wei / wei.sum(1, keepdim=True) | |
| xbow2 = wei @ x # (B, T, T) @ (B, T, C) ----> (B, T, C) | |
| torch.allclose(xbow, xbow2) | |
| # version 3: use Softmax | |
| tril = torch.tril(torch.ones(T, T)) | |
| wei = torch.zeros((T,T)) | |
| wei = wei.masked_fill(tril == 0, float('-inf')) | |
| wei = F.softmax(wei, dim=-1) | |
| xbow3 = wei @ x | |
| torch.allclose(xbow, xbow3) | |
| # version 4: self-attention! | |
| torch.manual_seed(1337) | |
| B,T,C = 4,8,32 # batch, time, channels | |
| x = torch.randn(B,T,C) | |
| # let's see a single Head perform self-attention | |
| head_size = 16 | |
| key = nn.Linear(C, head_size, bias=False) | |
| query = nn.Linear(C, head_size, bias=False) | |
| value = nn.Linear(C, head_size, bias=False) | |
| k = key(x) # (B, T, 16) | |
| q = query(x) # (B, T, 16) | |
| wei = q @ k.transpose(-2, -1) # (B, T, 16) @ (B, 16, T) ---> (B, T, T) | |
| tril = torch.tril(torch.ones(T, T)) | |
| #wei = torch.zeros((T,T)) | |
| wei = wei.masked_fill(tril == 0, float('-inf')) | |
| wei = F.softmax(wei, dim=-1) | |
| v = value(x) | |
| out = wei @ v | |
| #out = wei @ x | |
| out.shape | |
| wei[0] | |
| """Notes: | |
| - Attention is a **communication mechanism**. Can be seen as nodes in a directed graph looking at each other and aggregating information with a weighted sum from all nodes that point to them, with data-dependent weights. | |
| - There is no notion of space. Attention simply acts over a set of vectors. This is why we need to positionally encode tokens. | |
| - Each example across batch dimension is of course processed completely independently and never "talk" to each other | |
| - In an "encoder" attention block just delete the single line that does masking with `tril`, allowing all tokens to communicate. This block here is called a "decoder" attention block because it has triangular masking, and is usually used in autoregressive settings, like language modeling. | |
| - "self-attention" just means that the keys and values are produced from the same source as queries. In "cross-attention", the queries still get produced from x, but the keys and values come from some other, external source (e.g. an encoder module) | |
| - "Scaled" attention additional divides `wei` by 1/sqrt(head_size). This makes it so when input Q,K are unit variance, wei will be unit variance too and Softmax will stay diffuse and not saturate too much. Illustration below | |
| """ | |
| k = torch.randn(B,T,head_size) | |
| q = torch.randn(B,T,head_size) | |
| wei = q @ k.transpose(-2, -1) * head_size**-0.5 | |
| k.var() | |
| q.var() | |
| wei.var() | |
| torch.softmax(torch.tensor([0.1, -0.2, 0.3, -0.2, 0.5]), dim=-1) | |
| torch.softmax(torch.tensor([0.1, -0.2, 0.3, -0.2, 0.5])*8, dim=-1) # gets too peaky, converges to one-hot | |
| class LayerNorm1d: # (used to be BatchNorm1d) | |
| def __init__(self, dim, eps=1e-5, momentum=0.1): | |
| self.eps = eps | |
| self.gamma = torch.ones(dim) | |
| self.beta = torch.zeros(dim) | |
| def __call__(self, x): | |
| # calculate the forward pass | |
| xmean = x.mean(1, keepdim=True) # batch mean | |
| xvar = x.var(1, keepdim=True) # batch variance | |
| xhat = (x - xmean) / torch.sqrt(xvar + self.eps) # normalize to unit variance | |
| self.out = self.gamma * xhat + self.beta | |
| return self.out | |
| def parameters(self): | |
| return [self.gamma, self.beta] | |
| torch.manual_seed(1337) | |
| module = LayerNorm1d(100) | |
| x = torch.randn(32, 100) # batch size 32 of 100-dimensional vectors | |
| x = module(x) | |
| x.shape | |
| x[:,0].mean(), x[:,0].std() # mean,std of one feature across all batch inputs | |
| x[0,:].mean(), x[0,:].std() # mean,std of a single input from the batch, of its features | |
| # French to English translation example: | |
| # <--------- ENCODE ------------------><--------------- DECODE -----------------> | |
| # les réseaux de neurones sont géniaux! <START> neural networks are awesome!<END> | |
| """### Full finished code, for reference | |
| You may want to refer directly to the git repo instead though. | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| # hyperparameters | |
| batch_size = 16 # how many independent sequences will we process in parallel? | |
| block_size = 32 # what is the maximum context length for predictions? | |
| max_iters = 5000 | |
| #00 | |
| eval_interval = 100 | |
| learning_rate = 1e-3 | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| eval_iters = 200 | |
| n_embd = 64 | |
| n_head = 4 | |
| n_layer = 4 | |
| dropout = 0.0 | |
| # ------------ | |
| torch.manual_seed(1337) | |
| # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt | |
| with open('input.txt', 'r', encoding='utf-8') as f: | |
| text = f.read() | |
| # here are all the unique characters that occur in this text | |
| chars = sorted(list(set(text))) | |
| vocab_size = len(chars) | |
| # create a mapping from characters to integers | |
| stoi = { ch:i for i,ch in enumerate(chars) } | |
| itos = { i:ch for i,ch in enumerate(chars) } | |
| encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers | |
| decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string | |
| # Train and test splits | |
| data = torch.tensor(encode(text), dtype=torch.long) | |
| n = int(0.9*len(data)) # first 90% will be train, rest val | |
| train_data = data[:n] | |
| val_data = data[n:] | |
| # data loading | |
| def get_batch(split): | |
| # generate a small batch of data of inputs x and targets y | |
| data = train_data if split == 'train' else val_data | |
| ix = torch.randint(len(data) - block_size, (batch_size,)) | |
| x = torch.stack([data[i:i+block_size] for i in ix]) | |
| y = torch.stack([data[i+1:i+block_size+1] for i in ix]) | |
| x, y = x.to(device), y.to(device) | |
| return x, y | |
| def estimate_loss(): | |
| out = {} | |
| model.eval() | |
| for split in ['train', 'val']: | |
| losses = torch.zeros(eval_iters) | |
| for k in range(eval_iters): | |
| X, Y = get_batch(split) | |
| logits, loss = model(X, Y) | |
| losses[k] = loss.item() | |
| out[split] = losses.mean() | |
| model.train() | |
| return out | |
| class Head(nn.Module): | |
| """ one head of self-attention """ | |
| def __init__(self, head_size): | |
| super().__init__() | |
| self.key = nn.Linear(n_embd, head_size, bias=False) | |
| self.query = nn.Linear(n_embd, head_size, bias=False) | |
| self.value = nn.Linear(n_embd, head_size, bias=False) | |
| self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) | |
| self.dropout = nn.Dropout(dropout) | |
| def forward(self, x): | |
| B,T,C = x.shape | |
| k = self.key(x) # (B,T,C) | |
| q = self.query(x) # (B,T,C) | |
| # compute attention scores ("affinities") | |
| wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T) | |
| wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T) | |
| wei = F.softmax(wei, dim=-1) # (B, T, T) | |
| wei = self.dropout(wei) | |
| # perform the weighted aggregation of the values | |
| v = self.value(x) # (B,T,C) | |
| out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C) | |
| return out | |
| class MultiHeadAttention(nn.Module): | |
| """ multiple heads of self-attention in parallel """ | |
| def __init__(self, num_heads, head_size): | |
| super().__init__() | |
| self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) | |
| self.proj = nn.Linear(n_embd, n_embd) | |
| self.dropout = nn.Dropout(dropout) | |
| def forward(self, x): | |
| out = torch.cat([h(x) for h in self.heads], dim=-1) | |
| out = self.dropout(self.proj(out)) | |
| return out | |
| class FeedFoward(nn.Module): | |
| """ a simple linear layer followed by a non-linearity """ | |
| def __init__(self, n_embd): | |
| super().__init__() | |
| self.net = nn.Sequential( | |
| nn.Linear(n_embd, 4 * n_embd), | |
| nn.ReLU(), | |
| nn.Linear(4 * n_embd, n_embd), | |
| nn.Dropout(dropout), | |
| ) | |
| def forward(self, x): | |
| return self.net(x) | |
| class Block(nn.Module): | |
| """ Transformer block: communication followed by computation """ | |
| def __init__(self, n_embd, n_head): | |
| # n_embd: embedding dimension, n_head: the number of heads we'd like | |
| super().__init__() | |
| head_size = n_embd // n_head | |
| self.sa = MultiHeadAttention(n_head, head_size) | |
| self.ffwd = FeedFoward(n_embd) | |
| self.ln1 = nn.LayerNorm(n_embd) | |
| self.ln2 = nn.LayerNorm(n_embd) | |
| def forward(self, x): | |
| x = x + self.sa(self.ln1(x)) | |
| x = x + self.ffwd(self.ln2(x)) | |
| return x | |
| # super simple bigram model | |
| class BigramLanguageModel(nn.Module): | |
| def __init__(self): | |
| #super().__init__() | |
| super(BigramLanguageModel, self).__init__() | |
| # each token directly reads off the logits for the next token from a lookup table | |
| self.token_embedding_table = nn.Embedding(vocab_size, n_embd) | |
| self.position_embedding_table = nn.Embedding(block_size, n_embd) | |
| self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]) | |
| self.ln_f = nn.LayerNorm(n_embd) # final layer norm | |
| self.lm_head = nn.Linear(n_embd, vocab_size) | |
| def forward(self, idx, targets=None): | |
| B, T = idx.shape | |
| # idx and targets are both (B,T) tensor of integers | |
| tok_emb = self.token_embedding_table(idx) # (B,T,C) | |
| pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C) | |
| x = tok_emb + pos_emb # (B,T,C) | |
| x = self.blocks(x) # (B,T,C) | |
| x = self.ln_f(x) # (B,T,C) | |
| logits = self.lm_head(x) # (B,T,vocab_size) | |
| if targets is None: | |
| loss = None | |
| else: | |
| B, T, C = logits.shape | |
| logits = logits.view(B*T, C) | |
| targets = targets.view(B*T) | |
| loss = F.cross_entropy(logits, targets) | |
| return logits, loss | |
| def generate(self, idx, max_new_tokens): | |
| # idx is (B, T) array of indices in the current context | |
| for _ in range(max_new_tokens): | |
| # crop idx to the last block_size tokens | |
| idx_cond = idx[:, -block_size:] | |
| # get the predictions | |
| logits, loss = self(idx_cond) | |
| # focus only on the last time step | |
| logits = logits[:, -1, :] # becomes (B, C) | |
| # apply softmax to get probabilities | |
| probs = F.softmax(logits, dim=-1) # (B, C) | |
| # sample from the distribution | |
| idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) | |
| # append sampled index to the running sequence | |
| idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) | |
| return idx | |
| model = BigramLanguageModel() | |
| m = model.to(device) | |
| # print the number of parameters in the model | |
| print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters') | |
| torch.save(model, 'transformer_model.pth') | |
| # create a PyTorch optimizer | |
| optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) | |
| for iter in range(max_iters): | |
| # every once in a while evaluate the loss on train and val sets | |
| if iter % eval_interval == 0 or iter == max_iters - 1: | |
| losses = estimate_loss() | |
| print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") | |
| # sample a batch of data | |
| xb, yb = get_batch('train') | |
| # evaluate the loss | |
| logits, loss = model(xb, yb) | |
| optimizer.zero_grad(set_to_none=True) | |
| loss.backward() | |
| optimizer.step() | |
| # Load the saved weights into the model | |
| #model.load_state_dict(torch.load('transformer_weights.pth')) | |
| torch.save(model.state_dict(), 'transformer_weights.pth') | |
| print("Model weights loaded successfully.") | |
| import torch | |
| # Load the entire model | |
| model = torch.load('transformer_model.pth') | |
| model.eval() # Set the model to evaluation mode | |
| print("Entire model loaded successfully.") | |
| # generate from the model | |
| context = torch.zeros((1, 1), dtype=torch.long, device=device) | |
| print(decode(m.generate(context, max_new_tokens=2000)[0].tolist())) | |