{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "id": "_9CjHtOBqT0t" }, "outputs": [], "source": [ "import os\n", "import cv2\n", "import random\n", "import numpy as np\n", "from glob import glob\n", "from PIL import Image, ImageOps\n", "import matplotlib.pyplot as plt\n", "\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "from tensorflow.keras import layers" ] }, { "cell_type": "code", "source": [ "def charbonnier_loss(y_true, y_pred):\n", " return tf.reduce_mean(tf.sqrt(tf.square(y_true - y_pred) + tf.square(1e-3)))\n", "\n", "\n", "def peak_signal_noise_ratio(y_true, y_pred):\n", " return tf.image.psnr(y_pred, y_true, max_val=255.0)" ], "metadata": { "id": "U_HR-mRvqmsc" }, "execution_count": 7, "outputs": [] }, { "cell_type": "code", "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "DRcAM7cnpvQW", "outputId": "aea9bc12-a331-4641-b33b-c1daff480ed6" }, "execution_count": 4, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n" ] } ] }, { "cell_type": "code", "source": [ "model = tf.keras.models.load_model('./drive/MyDrive/Models/MIRNet.h5', custom_objects={'charbonnier_loss': \n", "charbonnier_loss, \"peak_signal_noise_ratio\":peak_signal_noise_ratio})\n", "\n", "# Check its architecture\n", "model.summary()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "OB7wdmvip0Aa", "outputId": "43e39e80-69de-4baf-fb2f-5b3f9ae7991c" }, "execution_count": 8, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Model: \"model\"\n", "__________________________________________________________________________________________________\n", " Layer (type) Output Shape Param # Connected to \n", "==================================================================================================\n", " input_1 (InputLayer) [(None, None, None, 0 [] \n", " 3)] \n", " \n", " conv2d (Conv2D) (None, None, None, 1792 ['input_1[0][0]'] \n", " 64) \n", " \n", " conv2d_1 (Conv2D) (None, None, None, 36928 ['conv2d[0][0]'] \n", " 64) \n", " \n", " conv2d_10 (Conv2D) (None, None, None, 36928 ['conv2d_1[0][0]'] \n", " 64) \n", " \n", " conv2d_2 (Conv2D) (None, None, None, 4160 ['conv2d_1[0][0]'] \n", " 64) \n", " \n", " conv2d_11 (Conv2D) (None, None, None, 36928 ['conv2d_10[0][0]'] \n", " 64) \n", " \n", " conv2d_3 (Conv2D) (None, None, None, 36928 ['conv2d_2[0][0]'] \n", " 64) \n", " \n", " tf.math.reduce_max (TFOpLambda (None, None, None) 0 ['conv2d_11[0][0]'] \n", " ) \n", " \n", " tf.math.reduce_mean (TFOpLambd (None, None, None) 0 ['conv2d_11[0][0]'] \n", " a) \n", " \n", " max_pooling2d_1 (MaxPooling2D) (None, None, None, 0 ['conv2d_1[0][0]'] \n", " 64) \n", " \n", " max_pooling2d (MaxPooling2D) (None, None, None, 0 ['conv2d_3[0][0]'] \n", " 64) \n", " \n", " global_average_pooling2d (Glob (None, 64) 0 ['conv2d_11[0][0]'] \n", " alAveragePooling2D) \n", " \n", " tf.expand_dims (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_1 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean[0][0]'] \n", " 1) \n", " \n", " conv2d_5 (Conv2D) (None, None, None, 8320 ['max_pooling2d_1[0][0]'] \n", " 128) \n", " \n", " conv2d_4 (Conv2D) (None, None, None, 8320 ['max_pooling2d[0][0]'] \n", " 128) \n", " \n", " tf.reshape (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d[0][0]'\n", " ] \n", " \n", " concatenate (Concatenate) (None, None, None, 0 ['tf.expand_dims[0][0]', \n", " 2) 'tf.expand_dims_1[0][0]'] \n", " \n", " add (Add) (None, None, None, 0 ['conv2d_5[0][0]', \n", " 128) 'conv2d_4[0][0]'] \n", " \n", " conv2d_12 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape[0][0]'] \n", " \n", " conv2d_14 (Conv2D) (None, None, None, 3 ['concatenate[0][0]'] \n", " 1) \n", " \n", " conv2d_16 (Conv2D) (None, None, None, 147584 ['add[0][0]'] \n", " 128) \n", " \n", " conv2d_6 (Conv2D) (None, None, None, 16512 ['add[0][0]'] \n", " 128) \n", " \n", " conv2d_13 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_12[0][0]'] \n", " \n", " tf.math.sigmoid (TFOpLambda) (None, None, None, 0 ['conv2d_14[0][0]'] \n", " 1) \n", " \n", " conv2d_17 (Conv2D) (None, None, None, 147584 ['conv2d_16[0][0]'] \n", " 128) \n", " \n", " conv2d_7 (Conv2D) (None, None, None, 147584 ['conv2d_6[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply (TFOpLambda) (None, None, None, 0 ['conv2d_11[0][0]', \n", " 64) 'conv2d_13[0][0]'] \n", " \n", " tf.math.multiply_1 (TFOpLambda (None, None, None, 0 ['conv2d_11[0][0]', \n", " ) 64) 'tf.math.sigmoid[0][0]'] \n", " \n", " tf.math.reduce_max_1 (TFOpLamb (None, None, None) 0 ['conv2d_17[0][0]'] \n", " da) \n", " \n", " tf.math.reduce_mean_1 (TFOpLam (None, None, None) 0 ['conv2d_17[0][0]'] \n", " bda) \n", " \n", " max_pooling2d_3 (MaxPooling2D) (None, None, None, 0 ['add[0][0]'] \n", " 128) \n", " \n", " max_pooling2d_2 (MaxPooling2D) (None, None, None, 0 ['conv2d_7[0][0]'] \n", " 128) \n", " \n", " concatenate_1 (Concatenate) (None, None, None, 0 ['tf.math.multiply[0][0]', \n", " 128) 'tf.math.multiply_1[0][0]'] \n", " \n", " global_average_pooling2d_1 (Gl (None, 128) 0 ['conv2d_17[0][0]'] \n", " obalAveragePooling2D) \n", " \n", " tf.expand_dims_2 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_1[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_3 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_1[0][0]'] \n", " 1) \n", " \n", " conv2d_9 (Conv2D) (None, None, None, 33024 ['max_pooling2d_3[0][0]'] \n", " 256) \n", " \n", " conv2d_8 (Conv2D) (None, None, None, 33024 ['max_pooling2d_2[0][0]'] \n", " 256) \n", " \n", " conv2d_15 (Conv2D) (None, None, None, 8256 ['concatenate_1[0][0]'] \n", " 64) \n", " \n", " tf.reshape_1 (TFOpLambda) (None, 1, 1, 128) 0 ['global_average_pooling2d_1[0][0\n", " ]'] \n", " \n", " concatenate_2 (Concatenate) (None, None, None, 0 ['tf.expand_dims_2[0][0]', \n", " 2) 'tf.expand_dims_3[0][0]'] \n", " \n", " add_1 (Add) (None, None, None, 0 ['conv2d_9[0][0]', \n", " 256) 'conv2d_8[0][0]'] \n", " \n", " add_2 (Add) (None, None, None, 0 ['conv2d_1[0][0]', \n", " 64) 'conv2d_15[0][0]'] \n", " \n", " conv2d_18 (Conv2D) (None, 1, 1, 16) 2064 ['tf.reshape_1[0][0]'] \n", " \n", " conv2d_20 (Conv2D) (None, None, None, 3 ['concatenate_2[0][0]'] \n", " 1) \n", " \n", " conv2d_22 (Conv2D) (None, None, None, 590080 ['add_1[0][0]'] \n", " 256) \n", " \n", " conv2d_19 (Conv2D) (None, 1, 1, 128) 2176 ['conv2d_18[0][0]'] \n", " \n", " tf.math.sigmoid_1 (TFOpLambda) (None, None, None, 0 ['conv2d_20[0][0]'] \n", " 1) \n", " \n", " conv2d_23 (Conv2D) (None, None, None, 590080 ['conv2d_22[0][0]'] \n", " 256) \n", " \n", " conv2d_56 (Conv2D) (None, None, None, 4160 ['add_2[0][0]'] \n", " 64) \n", " \n", " tf.math.multiply_2 (TFOpLambda (None, None, None, 0 ['conv2d_17[0][0]', \n", " ) 128) 'conv2d_19[0][0]'] \n", " \n", " tf.math.multiply_3 (TFOpLambda (None, None, None, 0 ['conv2d_17[0][0]', \n", " ) 128) 'tf.math.sigmoid_1[0][0]'] \n", " \n", " tf.math.reduce_max_2 (TFOpLamb (None, None, None) 0 ['conv2d_23[0][0]'] \n", " da) \n", " \n", " tf.math.reduce_mean_2 (TFOpLam (None, None, None) 0 ['conv2d_23[0][0]'] \n", " bda) \n", " \n", " conv2d_57 (Conv2D) (None, None, None, 36928 ['conv2d_56[0][0]'] \n", " 64) \n", " \n", " concatenate_3 (Concatenate) (None, None, None, 0 ['tf.math.multiply_2[0][0]', \n", " 256) 'tf.math.multiply_3[0][0]'] \n", " \n", " global_average_pooling2d_2 (Gl (None, 256) 0 ['conv2d_23[0][0]'] \n", " obalAveragePooling2D) \n", " \n", " tf.expand_dims_4 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_2[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_5 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_2[0][0]'] \n", " 1) \n", " \n", " max_pooling2d_7 (MaxPooling2D) (None, None, None, 0 ['add_2[0][0]'] \n", " 64) \n", " \n", " max_pooling2d_6 (MaxPooling2D) (None, None, None, 0 ['conv2d_57[0][0]'] \n", " 64) \n", " \n", " conv2d_21 (Conv2D) (None, None, None, 32896 ['concatenate_3[0][0]'] \n", " 128) \n", " \n", " tf.reshape_2 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_2[0][0\n", " ]'] \n", " \n", " concatenate_4 (Concatenate) (None, None, None, 0 ['tf.expand_dims_4[0][0]', \n", " 2) 'tf.expand_dims_5[0][0]'] \n", " \n", " conv2d_59 (Conv2D) (None, None, None, 8320 ['max_pooling2d_7[0][0]'] \n", " 128) \n", " \n", " conv2d_58 (Conv2D) (None, None, None, 8320 ['max_pooling2d_6[0][0]'] \n", " 128) \n", " \n", " add_3 (Add) (None, None, None, 0 ['add[0][0]', \n", " 128) 'conv2d_21[0][0]'] \n", " \n", " conv2d_24 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_2[0][0]'] \n", " \n", " conv2d_26 (Conv2D) (None, None, None, 3 ['concatenate_4[0][0]'] \n", " 1) \n", " \n", " add_14 (Add) (None, None, None, 0 ['conv2d_59[0][0]', \n", " 128) 'conv2d_58[0][0]'] \n", " \n", " conv2d_25 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_24[0][0]'] \n", " \n", " tf.math.sigmoid_2 (TFOpLambda) (None, None, None, 0 ['conv2d_26[0][0]'] \n", " 1) \n", " \n", " conv2d_60 (Conv2D) (None, None, None, 16512 ['add_14[0][0]'] \n", " 128) \n", " \n", " conv2d_64 (Conv2D) (None, None, None, 16512 ['add_3[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_4 (TFOpLambda (None, None, None, 0 ['conv2d_23[0][0]', \n", " ) 256) 'conv2d_25[0][0]'] \n", " \n", " tf.math.multiply_5 (TFOpLambda (None, None, None, 0 ['conv2d_23[0][0]', \n", " ) 256) 'tf.math.sigmoid_2[0][0]'] \n", " \n", " conv2d_61 (Conv2D) (None, None, None, 147584 ['conv2d_60[0][0]'] \n", " 128) \n", " \n", " conv2d_65 (Conv2D) (None, None, None, 147584 ['conv2d_64[0][0]'] \n", " 128) \n", " \n", " concatenate_5 (Concatenate) (None, None, None, 0 ['tf.math.multiply_4[0][0]', \n", " 512) 'tf.math.multiply_5[0][0]'] \n", " \n", " max_pooling2d_9 (MaxPooling2D) (None, None, None, 0 ['add_14[0][0]'] \n", " 128) \n", " \n", " max_pooling2d_8 (MaxPooling2D) (None, None, None, 0 ['conv2d_61[0][0]'] \n", " 128) \n", " \n", " max_pooling2d_11 (MaxPooling2D (None, None, None, 0 ['add_3[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_10 (MaxPooling2D (None, None, None, 0 ['conv2d_65[0][0]'] \n", " ) 128) \n", " \n", " conv2d_27 (Conv2D) (None, None, None, 131328 ['concatenate_5[0][0]'] \n", " 256) \n", " \n", " conv2d_63 (Conv2D) (None, None, None, 33024 ['max_pooling2d_9[0][0]'] \n", " 256) \n", " \n", " conv2d_62 (Conv2D) (None, None, None, 33024 ['max_pooling2d_8[0][0]'] \n", " 256) \n", " \n", " conv2d_67 (Conv2D) (None, None, None, 33024 ['max_pooling2d_11[0][0]'] \n", " 256) \n", " \n", " conv2d_66 (Conv2D) (None, None, None, 33024 ['max_pooling2d_10[0][0]'] \n", " 256) \n", " \n", " add_4 (Add) (None, None, None, 0 ['add_1[0][0]', \n", " 256) 'conv2d_27[0][0]'] \n", " \n", " add_15 (Add) (None, None, None, 0 ['conv2d_63[0][0]', \n", " 256) 'conv2d_62[0][0]'] \n", " \n", " add_16 (Add) (None, None, None, 0 ['conv2d_67[0][0]', \n", " 256) 'conv2d_66[0][0]'] \n", " \n", " conv2d_32 (Conv2D) (None, None, None, 65792 ['add_4[0][0]'] \n", " 256) \n", " \n", " add_17 (Add) (None, None, None, 0 ['add_15[0][0]', \n", " 256) 'add_16[0][0]', \n", " 'add_4[0][0]'] \n", " \n", " conv2d_33 (Conv2D) (None, None, None, 590080 ['conv2d_32[0][0]'] \n", " 256) \n", " \n", " global_average_pooling2d_5 (Gl (None, 256) 0 ['add_17[0][0]'] \n", " obalAveragePooling2D) \n", " \n", " up_sampling2d_3 (UpSampling2D) (None, None, None, 0 ['add_4[0][0]'] \n", " 256) \n", " \n", " up_sampling2d_2 (UpSampling2D) (None, None, None, 0 ['conv2d_33[0][0]'] \n", " 256) \n", " \n", " tf.reshape_5 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_5[0][0\n", " ]'] \n", " \n", " conv2d_35 (Conv2D) (None, None, None, 32896 ['up_sampling2d_3[0][0]'] \n", " 128) \n", " \n", " conv2d_34 (Conv2D) (None, None, None, 32896 ['up_sampling2d_2[0][0]'] \n", " 128) \n", " \n", " conv2d_68 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_5[0][0]'] \n", " \n", " add_6 (Add) (None, None, None, 0 ['conv2d_35[0][0]', \n", " 128) 'conv2d_34[0][0]'] \n", " \n", " conv2d_69 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_68[0][0]'] \n", " \n", " conv2d_70 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_68[0][0]'] \n", " \n", " conv2d_71 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_68[0][0]'] \n", " \n", " conv2d_28 (Conv2D) (None, None, None, 16512 ['add_3[0][0]'] \n", " 128) \n", " \n", " conv2d_36 (Conv2D) (None, None, None, 16512 ['add_6[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_12 (TFOpLambd (None, None, None, 0 ['add_15[0][0]', \n", " a) 256) 'conv2d_69[0][0]'] \n", " \n", " tf.math.multiply_13 (TFOpLambd (None, None, None, 0 ['add_16[0][0]', \n", " a) 256) 'conv2d_70[0][0]'] \n", " \n", " tf.math.multiply_14 (TFOpLambd (None, None, None, 0 ['add_4[0][0]', \n", " a) 256) 'conv2d_71[0][0]'] \n", " \n", " conv2d_29 (Conv2D) (None, None, None, 147584 ['conv2d_28[0][0]'] \n", " 128) \n", " \n", " conv2d_37 (Conv2D) (None, None, None, 147584 ['conv2d_36[0][0]'] \n", " 128) \n", " \n", " add_18 (Add) (None, None, None, 0 ['tf.math.multiply_12[0][0]', \n", " 256) 'tf.math.multiply_13[0][0]', \n", " 'tf.math.multiply_14[0][0]'] \n", " \n", " up_sampling2d_1 (UpSampling2D) (None, None, None, 0 ['add_3[0][0]'] \n", " 128) \n", " \n", " up_sampling2d (UpSampling2D) (None, None, None, 0 ['conv2d_29[0][0]'] \n", " 128) \n", " \n", " up_sampling2d_5 (UpSampling2D) (None, None, None, 0 ['add_6[0][0]'] \n", " 128) \n", " \n", " up_sampling2d_4 (UpSampling2D) (None, None, None, 0 ['conv2d_37[0][0]'] \n", " 128) \n", " \n", " conv2d_88 (Conv2D) (None, None, None, 590080 ['add_18[0][0]'] \n", " 256) \n", " \n", " conv2d_31 (Conv2D) (None, None, None, 8256 ['up_sampling2d_1[0][0]'] \n", " 64) \n", " \n", " conv2d_30 (Conv2D) (None, None, None, 8256 ['up_sampling2d[0][0]'] \n", " 64) \n", " \n", " conv2d_39 (Conv2D) (None, None, None, 8256 ['up_sampling2d_5[0][0]'] \n", " 64) \n", " \n", " conv2d_38 (Conv2D) (None, None, None, 8256 ['up_sampling2d_4[0][0]'] \n", " 64) \n", " \n", " conv2d_89 (Conv2D) (None, None, None, 590080 ['conv2d_88[0][0]'] \n", " 256) \n", " \n", " add_5 (Add) (None, None, None, 0 ['conv2d_31[0][0]', \n", " 64) 'conv2d_30[0][0]'] \n", " \n", " add_7 (Add) (None, None, None, 0 ['conv2d_39[0][0]', \n", " 64) 'conv2d_38[0][0]'] \n", " \n", " tf.math.reduce_max_5 (TFOpLamb (None, None, None) 0 ['conv2d_89[0][0]'] \n", " da) \n", " \n", " tf.math.reduce_mean_5 (TFOpLam (None, None, None) 0 ['conv2d_89[0][0]'] \n", " bda) \n", " \n", " add_8 (Add) (None, None, None, 0 ['add_2[0][0]', \n", " 64) 'add_5[0][0]', \n", " 'add_7[0][0]'] \n", " \n", " global_average_pooling2d_8 (Gl (None, 256) 0 ['conv2d_89[0][0]'] \n", " obalAveragePooling2D) \n", " \n", " tf.expand_dims_10 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_5[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_11 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_5[0][0]'] \n", " 1) \n", " \n", " global_average_pooling2d_3 (Gl (None, 64) 0 ['add_8[0][0]'] \n", " obalAveragePooling2D) \n", " \n", " tf.reshape_8 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_8[0][0\n", " ]'] \n", " \n", " concatenate_10 (Concatenate) (None, None, None, 0 ['tf.expand_dims_10[0][0]', \n", " 2) 'tf.expand_dims_11[0][0]'] \n", " \n", " tf.reshape_3 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_3[0][0\n", " ]'] \n", " \n", " conv2d_90 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_8[0][0]'] \n", " \n", " conv2d_92 (Conv2D) (None, None, None, 3 ['concatenate_10[0][0]'] \n", " 1) \n", " \n", " conv2d_40 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_3[0][0]'] \n", " \n", " conv2d_91 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_90[0][0]'] \n", " \n", " tf.math.sigmoid_5 (TFOpLambda) (None, None, None, 0 ['conv2d_92[0][0]'] \n", " 1) \n", " \n", " conv2d_41 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_40[0][0]'] \n", " \n", " conv2d_42 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_40[0][0]'] \n", " \n", " conv2d_43 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_40[0][0]'] \n", " \n", " tf.math.multiply_19 (TFOpLambd (None, None, None, 0 ['conv2d_89[0][0]', \n", " a) 256) 'conv2d_91[0][0]'] \n", " \n", " tf.math.multiply_20 (TFOpLambd (None, None, None, 0 ['conv2d_89[0][0]', \n", " a) 256) 'tf.math.sigmoid_5[0][0]'] \n", " \n", " tf.math.multiply_6 (TFOpLambda (None, None, None, 0 ['add_2[0][0]', \n", " ) 64) 'conv2d_41[0][0]'] \n", " \n", " tf.math.multiply_7 (TFOpLambda (None, None, None, 0 ['add_5[0][0]', \n", " ) 64) 'conv2d_42[0][0]'] \n", " \n", " tf.math.multiply_8 (TFOpLambda (None, None, None, 0 ['add_7[0][0]', \n", " ) 64) 'conv2d_43[0][0]'] \n", " \n", " concatenate_11 (Concatenate) (None, None, None, 0 ['tf.math.multiply_19[0][0]', \n", " 512) 'tf.math.multiply_20[0][0]'] \n", " \n", " add_9 (Add) (None, None, None, 0 ['tf.math.multiply_6[0][0]', \n", " 64) 'tf.math.multiply_7[0][0]', \n", " 'tf.math.multiply_8[0][0]'] \n", " \n", " conv2d_93 (Conv2D) (None, None, None, 131328 ['concatenate_11[0][0]'] \n", " 256) \n", " \n", " conv2d_72 (Conv2D) (None, None, None, 36928 ['add_9[0][0]'] \n", " 64) \n", " \n", " add_22 (Add) (None, None, None, 0 ['add_18[0][0]', \n", " 256) 'conv2d_93[0][0]'] \n", " \n", " conv2d_73 (Conv2D) (None, None, None, 36928 ['conv2d_72[0][0]'] \n", " 64) \n", " \n", " conv2d_94 (Conv2D) (None, None, None, 65792 ['add_22[0][0]'] \n", " 256) \n", " \n", " tf.math.reduce_max_3 (TFOpLamb (None, None, None) 0 ['conv2d_73[0][0]'] \n", " da) \n", " \n", " tf.math.reduce_mean_3 (TFOpLam (None, None, None) 0 ['conv2d_73[0][0]'] \n", " bda) \n", " \n", " conv2d_95 (Conv2D) (None, None, None, 590080 ['conv2d_94[0][0]'] \n", " 256) \n", " \n", " global_average_pooling2d_6 (Gl (None, 64) 0 ['conv2d_73[0][0]'] \n", " obalAveragePooling2D) \n", " \n", " tf.expand_dims_6 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_3[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_7 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_3[0][0]'] \n", " 1) \n", " \n", " up_sampling2d_11 (UpSampling2D (None, None, None, 0 ['add_22[0][0]'] \n", " ) 256) \n", " \n", " up_sampling2d_10 (UpSampling2D (None, None, None, 0 ['conv2d_95[0][0]'] \n", " ) 256) \n", " \n", " tf.reshape_6 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_6[0][0\n", " ]'] \n", " \n", " concatenate_6 (Concatenate) (None, None, None, 0 ['tf.expand_dims_6[0][0]', \n", " 2) 'tf.expand_dims_7[0][0]'] \n", " \n", " conv2d_97 (Conv2D) (None, None, None, 32896 ['up_sampling2d_11[0][0]'] \n", " 128) \n", " \n", " conv2d_96 (Conv2D) (None, None, None, 32896 ['up_sampling2d_10[0][0]'] \n", " 128) \n", " \n", " conv2d_74 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_6[0][0]'] \n", " \n", " conv2d_76 (Conv2D) (None, None, None, 3 ['concatenate_6[0][0]'] \n", " 1) \n", " \n", " add_23 (Add) (None, None, None, 0 ['conv2d_97[0][0]', \n", " 128) 'conv2d_96[0][0]'] \n", " \n", " conv2d_75 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_74[0][0]'] \n", " \n", " tf.math.sigmoid_3 (TFOpLambda) (None, None, None, 0 ['conv2d_76[0][0]'] \n", " 1) \n", " \n", " conv2d_98 (Conv2D) (None, None, None, 16512 ['add_23[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_15 (TFOpLambd (None, None, None, 0 ['conv2d_73[0][0]', \n", " a) 64) 'conv2d_75[0][0]'] \n", " \n", " tf.math.multiply_16 (TFOpLambd (None, None, None, 0 ['conv2d_73[0][0]', \n", " a) 64) 'tf.math.sigmoid_3[0][0]'] \n", " \n", " conv2d_99 (Conv2D) (None, None, None, 147584 ['conv2d_98[0][0]'] \n", " 128) \n", " \n", " concatenate_7 (Concatenate) (None, None, None, 0 ['tf.math.multiply_15[0][0]', \n", " 128) 'tf.math.multiply_16[0][0]'] \n", " \n", " up_sampling2d_13 (UpSampling2D (None, None, None, 0 ['add_23[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_12 (UpSampling2D (None, None, None, 0 ['conv2d_99[0][0]'] \n", " ) 128) \n", " \n", " conv2d_77 (Conv2D) (None, None, None, 8256 ['concatenate_7[0][0]'] \n", " 64) \n", " \n", " conv2d_101 (Conv2D) (None, None, None, 8256 ['up_sampling2d_13[0][0]'] \n", " 64) \n", " \n", " conv2d_100 (Conv2D) (None, None, None, 8256 ['up_sampling2d_12[0][0]'] \n", " 64) \n", " \n", " add_19 (Add) (None, None, None, 0 ['add_9[0][0]', \n", " 64) 'conv2d_77[0][0]'] \n", " \n", " add_24 (Add) (None, None, None, 0 ['conv2d_101[0][0]', \n", " 64) 'conv2d_100[0][0]'] \n", " \n", " add_25 (Add) (None, None, None, 0 ['add_19[0][0]', \n", " 64) 'add_24[0][0]', \n", " 'add_24[0][0]'] \n", " \n", " global_average_pooling2d_9 (Gl (None, 64) 0 ['add_25[0][0]'] \n", " obalAveragePooling2D) \n", " \n", " tf.reshape_9 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_9[0][0\n", " ]'] \n", " \n", " conv2d_102 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_9[0][0]'] \n", " \n", " conv2d_103 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_102[0][0]'] \n", " \n", " conv2d_104 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_102[0][0]'] \n", " \n", " conv2d_105 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_102[0][0]'] \n", " \n", " tf.math.multiply_21 (TFOpLambd (None, None, None, 0 ['add_19[0][0]', \n", " a) 64) 'conv2d_103[0][0]'] \n", " \n", " tf.math.multiply_22 (TFOpLambd (None, None, None, 0 ['add_24[0][0]', \n", " a) 64) 'conv2d_104[0][0]'] \n", " \n", " tf.math.multiply_23 (TFOpLambd (None, None, None, 0 ['add_24[0][0]', \n", " a) 64) 'conv2d_105[0][0]'] \n", " \n", " add_26 (Add) (None, None, None, 0 ['tf.math.multiply_21[0][0]', \n", " 64) 'tf.math.multiply_22[0][0]', \n", " 'tf.math.multiply_23[0][0]'] \n", " \n", " conv2d_106 (Conv2D) (None, None, None, 36928 ['add_26[0][0]'] \n", " 64) \n", " \n", " add_27 (Add) (None, None, None, 0 ['conv2d_1[0][0]', \n", " 64) 'conv2d_106[0][0]'] \n", " \n", " conv2d_115 (Conv2D) (None, None, None, 36928 ['add_27[0][0]'] \n", " 64) \n", " \n", " conv2d_107 (Conv2D) (None, None, None, 4160 ['add_27[0][0]'] \n", " 64) \n", " \n", " conv2d_116 (Conv2D) (None, None, None, 36928 ['conv2d_115[0][0]'] \n", " 64) \n", " \n", " conv2d_108 (Conv2D) (None, None, None, 36928 ['conv2d_107[0][0]'] \n", " 64) \n", " \n", " tf.math.reduce_max_6 (TFOpLamb (None, None, None) 0 ['conv2d_116[0][0]'] \n", " da) \n", " \n", " tf.math.reduce_mean_6 (TFOpLam (None, None, None) 0 ['conv2d_116[0][0]'] \n", " bda) \n", " \n", " max_pooling2d_13 (MaxPooling2D (None, None, None, 0 ['add_27[0][0]'] \n", " ) 64) \n", " \n", " max_pooling2d_12 (MaxPooling2D (None, None, None, 0 ['conv2d_108[0][0]'] \n", " ) 64) \n", " \n", " global_average_pooling2d_10 (G (None, 64) 0 ['conv2d_116[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_12 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_6[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_13 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_6[0][0]'] \n", " 1) \n", " \n", " conv2d_110 (Conv2D) (None, None, None, 8320 ['max_pooling2d_13[0][0]'] \n", " 128) \n", " \n", " conv2d_109 (Conv2D) (None, None, None, 8320 ['max_pooling2d_12[0][0]'] \n", " 128) \n", " \n", " tf.reshape_10 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_10[0][\n", " 0]'] \n", " \n", " concatenate_12 (Concatenate) (None, None, None, 0 ['tf.expand_dims_12[0][0]', \n", " 2) 'tf.expand_dims_13[0][0]'] \n", " \n", " add_28 (Add) (None, None, None, 0 ['conv2d_110[0][0]', \n", " 128) 'conv2d_109[0][0]'] \n", " \n", " conv2d_117 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_10[0][0]'] \n", " \n", " conv2d_119 (Conv2D) (None, None, None, 3 ['concatenate_12[0][0]'] \n", " 1) \n", " \n", " conv2d_121 (Conv2D) (None, None, None, 147584 ['add_28[0][0]'] \n", " 128) \n", " \n", " conv2d_111 (Conv2D) (None, None, None, 16512 ['add_28[0][0]'] \n", " 128) \n", " \n", " conv2d_118 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_117[0][0]'] \n", " \n", " tf.math.sigmoid_6 (TFOpLambda) (None, None, None, 0 ['conv2d_119[0][0]'] \n", " 1) \n", " \n", " conv2d_122 (Conv2D) (None, None, None, 147584 ['conv2d_121[0][0]'] \n", " 128) \n", " \n", " conv2d_112 (Conv2D) (None, None, None, 147584 ['conv2d_111[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_24 (TFOpLambd (None, None, None, 0 ['conv2d_116[0][0]', \n", " a) 64) 'conv2d_118[0][0]'] \n", " \n", " tf.math.multiply_25 (TFOpLambd (None, None, None, 0 ['conv2d_116[0][0]', \n", " a) 64) 'tf.math.sigmoid_6[0][0]'] \n", " \n", " tf.math.reduce_max_7 (TFOpLamb (None, None, None) 0 ['conv2d_122[0][0]'] \n", " da) \n", " \n", " tf.math.reduce_mean_7 (TFOpLam (None, None, None) 0 ['conv2d_122[0][0]'] \n", " bda) \n", " \n", " max_pooling2d_15 (MaxPooling2D (None, None, None, 0 ['add_28[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_14 (MaxPooling2D (None, None, None, 0 ['conv2d_112[0][0]'] \n", " ) 128) \n", " \n", " concatenate_13 (Concatenate) (None, None, None, 0 ['tf.math.multiply_24[0][0]', \n", " 128) 'tf.math.multiply_25[0][0]'] \n", " \n", " global_average_pooling2d_11 (G (None, 128) 0 ['conv2d_122[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_14 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_7[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_15 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_7[0][0]'] \n", " 1) \n", " \n", " conv2d_114 (Conv2D) (None, None, None, 33024 ['max_pooling2d_15[0][0]'] \n", " 256) \n", " \n", " conv2d_113 (Conv2D) (None, None, None, 33024 ['max_pooling2d_14[0][0]'] \n", " 256) \n", " \n", " conv2d_120 (Conv2D) (None, None, None, 8256 ['concatenate_13[0][0]'] \n", " 64) \n", " \n", " tf.reshape_11 (TFOpLambda) (None, 1, 1, 128) 0 ['global_average_pooling2d_11[0][\n", " 0]'] \n", " \n", " concatenate_14 (Concatenate) (None, None, None, 0 ['tf.expand_dims_14[0][0]', \n", " 2) 'tf.expand_dims_15[0][0]'] \n", " \n", " add_29 (Add) (None, None, None, 0 ['conv2d_114[0][0]', \n", " 256) 'conv2d_113[0][0]'] \n", " \n", " add_30 (Add) (None, None, None, 0 ['add_27[0][0]', \n", " 64) 'conv2d_120[0][0]'] \n", " \n", " conv2d_123 (Conv2D) (None, 1, 1, 16) 2064 ['tf.reshape_11[0][0]'] \n", " \n", " conv2d_125 (Conv2D) (None, None, None, 3 ['concatenate_14[0][0]'] \n", " 1) \n", " \n", " conv2d_127 (Conv2D) (None, None, None, 590080 ['add_29[0][0]'] \n", " 256) \n", " \n", " conv2d_124 (Conv2D) (None, 1, 1, 128) 2176 ['conv2d_123[0][0]'] \n", " \n", " tf.math.sigmoid_7 (TFOpLambda) (None, None, None, 0 ['conv2d_125[0][0]'] \n", " 1) \n", " \n", " conv2d_128 (Conv2D) (None, None, None, 590080 ['conv2d_127[0][0]'] \n", " 256) \n", " \n", " conv2d_161 (Conv2D) (None, None, None, 4160 ['add_30[0][0]'] \n", " 64) \n", " \n", " tf.math.multiply_26 (TFOpLambd (None, None, None, 0 ['conv2d_122[0][0]', \n", " a) 128) 'conv2d_124[0][0]'] \n", " \n", " tf.math.multiply_27 (TFOpLambd (None, None, None, 0 ['conv2d_122[0][0]', \n", " a) 128) 'tf.math.sigmoid_7[0][0]'] \n", " \n", " tf.math.reduce_max_8 (TFOpLamb (None, None, None) 0 ['conv2d_128[0][0]'] \n", " da) \n", " \n", " tf.math.reduce_mean_8 (TFOpLam (None, None, None) 0 ['conv2d_128[0][0]'] \n", " bda) \n", " \n", " conv2d_162 (Conv2D) (None, None, None, 36928 ['conv2d_161[0][0]'] \n", " 64) \n", " \n", " concatenate_15 (Concatenate) (None, None, None, 0 ['tf.math.multiply_26[0][0]', \n", " 256) 'tf.math.multiply_27[0][0]'] \n", " \n", " global_average_pooling2d_12 (G (None, 256) 0 ['conv2d_128[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_16 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_8[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_17 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_8[0][0]'] \n", " 1) \n", " \n", " max_pooling2d_19 (MaxPooling2D (None, None, None, 0 ['add_30[0][0]'] \n", " ) 64) \n", " \n", " max_pooling2d_18 (MaxPooling2D (None, None, None, 0 ['conv2d_162[0][0]'] \n", " ) 64) \n", " \n", " conv2d_126 (Conv2D) (None, None, None, 32896 ['concatenate_15[0][0]'] \n", " 128) \n", " \n", " tf.reshape_12 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_12[0][\n", " 0]'] \n", " \n", " concatenate_16 (Concatenate) (None, None, None, 0 ['tf.expand_dims_16[0][0]', \n", " 2) 'tf.expand_dims_17[0][0]'] \n", " \n", " conv2d_164 (Conv2D) (None, None, None, 8320 ['max_pooling2d_19[0][0]'] \n", " 128) \n", " \n", " conv2d_163 (Conv2D) (None, None, None, 8320 ['max_pooling2d_18[0][0]'] \n", " 128) \n", " \n", " add_31 (Add) (None, None, None, 0 ['add_28[0][0]', \n", " 128) 'conv2d_126[0][0]'] \n", " \n", " conv2d_129 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_12[0][0]'] \n", " \n", " conv2d_131 (Conv2D) (None, None, None, 3 ['concatenate_16[0][0]'] \n", " 1) \n", " \n", " add_42 (Add) (None, None, None, 0 ['conv2d_164[0][0]', \n", " 128) 'conv2d_163[0][0]'] \n", " \n", " conv2d_130 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_129[0][0]'] \n", " \n", " tf.math.sigmoid_8 (TFOpLambda) (None, None, None, 0 ['conv2d_131[0][0]'] \n", " 1) \n", " \n", " conv2d_165 (Conv2D) (None, None, None, 16512 ['add_42[0][0]'] \n", " 128) \n", " \n", " conv2d_169 (Conv2D) (None, None, None, 16512 ['add_31[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_28 (TFOpLambd (None, None, None, 0 ['conv2d_128[0][0]', \n", " a) 256) 'conv2d_130[0][0]'] \n", " \n", " tf.math.multiply_29 (TFOpLambd (None, None, None, 0 ['conv2d_128[0][0]', \n", " a) 256) 'tf.math.sigmoid_8[0][0]'] \n", " \n", " conv2d_166 (Conv2D) (None, None, None, 147584 ['conv2d_165[0][0]'] \n", " 128) \n", " \n", " conv2d_170 (Conv2D) (None, None, None, 147584 ['conv2d_169[0][0]'] \n", " 128) \n", " \n", " concatenate_17 (Concatenate) (None, None, None, 0 ['tf.math.multiply_28[0][0]', \n", " 512) 'tf.math.multiply_29[0][0]'] \n", " \n", " max_pooling2d_21 (MaxPooling2D (None, None, None, 0 ['add_42[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_20 (MaxPooling2D (None, None, None, 0 ['conv2d_166[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_23 (MaxPooling2D (None, None, None, 0 ['add_31[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_22 (MaxPooling2D (None, None, None, 0 ['conv2d_170[0][0]'] \n", " ) 128) \n", " \n", " conv2d_132 (Conv2D) (None, None, None, 131328 ['concatenate_17[0][0]'] \n", " 256) \n", " \n", " conv2d_168 (Conv2D) (None, None, None, 33024 ['max_pooling2d_21[0][0]'] \n", " 256) \n", " \n", " conv2d_167 (Conv2D) (None, None, None, 33024 ['max_pooling2d_20[0][0]'] \n", " 256) \n", " \n", " conv2d_172 (Conv2D) (None, None, None, 33024 ['max_pooling2d_23[0][0]'] \n", " 256) \n", " \n", " conv2d_171 (Conv2D) (None, None, None, 33024 ['max_pooling2d_22[0][0]'] \n", " 256) \n", " \n", " add_32 (Add) (None, None, None, 0 ['add_29[0][0]', \n", " 256) 'conv2d_132[0][0]'] \n", " \n", " add_43 (Add) (None, None, None, 0 ['conv2d_168[0][0]', \n", " 256) 'conv2d_167[0][0]'] \n", " \n", " add_44 (Add) (None, None, None, 0 ['conv2d_172[0][0]', \n", " 256) 'conv2d_171[0][0]'] \n", " \n", " conv2d_137 (Conv2D) (None, None, None, 65792 ['add_32[0][0]'] \n", " 256) \n", " \n", " add_45 (Add) (None, None, None, 0 ['add_43[0][0]', \n", " 256) 'add_44[0][0]', \n", " 'add_32[0][0]'] \n", " \n", " conv2d_138 (Conv2D) (None, None, None, 590080 ['conv2d_137[0][0]'] \n", " 256) \n", " \n", " global_average_pooling2d_15 (G (None, 256) 0 ['add_45[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " up_sampling2d_17 (UpSampling2D (None, None, None, 0 ['add_32[0][0]'] \n", " ) 256) \n", " \n", " up_sampling2d_16 (UpSampling2D (None, None, None, 0 ['conv2d_138[0][0]'] \n", " ) 256) \n", " \n", " tf.reshape_15 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_15[0][\n", " 0]'] \n", " \n", " conv2d_140 (Conv2D) (None, None, None, 32896 ['up_sampling2d_17[0][0]'] \n", " 128) \n", " \n", " conv2d_139 (Conv2D) (None, None, None, 32896 ['up_sampling2d_16[0][0]'] \n", " 128) \n", " \n", " conv2d_173 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_15[0][0]'] \n", " \n", " add_34 (Add) (None, None, None, 0 ['conv2d_140[0][0]', \n", " 128) 'conv2d_139[0][0]'] \n", " \n", " conv2d_174 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_173[0][0]'] \n", " \n", " conv2d_175 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_173[0][0]'] \n", " \n", " conv2d_176 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_173[0][0]'] \n", " \n", " conv2d_133 (Conv2D) (None, None, None, 16512 ['add_31[0][0]'] \n", " 128) \n", " \n", " conv2d_141 (Conv2D) (None, None, None, 16512 ['add_34[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_36 (TFOpLambd (None, None, None, 0 ['add_43[0][0]', \n", " a) 256) 'conv2d_174[0][0]'] \n", " \n", " tf.math.multiply_37 (TFOpLambd (None, None, None, 0 ['add_44[0][0]', \n", " a) 256) 'conv2d_175[0][0]'] \n", " \n", " tf.math.multiply_38 (TFOpLambd (None, None, None, 0 ['add_32[0][0]', \n", " a) 256) 'conv2d_176[0][0]'] \n", " \n", " conv2d_134 (Conv2D) (None, None, None, 147584 ['conv2d_133[0][0]'] \n", " 128) \n", " \n", " conv2d_142 (Conv2D) (None, None, None, 147584 ['conv2d_141[0][0]'] \n", " 128) \n", " \n", " add_46 (Add) (None, None, None, 0 ['tf.math.multiply_36[0][0]', \n", " 256) 'tf.math.multiply_37[0][0]', \n", " 'tf.math.multiply_38[0][0]'] \n", " \n", " up_sampling2d_15 (UpSampling2D (None, None, None, 0 ['add_31[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_14 (UpSampling2D (None, None, None, 0 ['conv2d_134[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_19 (UpSampling2D (None, None, None, 0 ['add_34[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_18 (UpSampling2D (None, None, None, 0 ['conv2d_142[0][0]'] \n", " ) 128) \n", " \n", " conv2d_193 (Conv2D) (None, None, None, 590080 ['add_46[0][0]'] \n", " 256) \n", " \n", " conv2d_136 (Conv2D) (None, None, None, 8256 ['up_sampling2d_15[0][0]'] \n", " 64) \n", " \n", " conv2d_135 (Conv2D) (None, None, None, 8256 ['up_sampling2d_14[0][0]'] \n", " 64) \n", " \n", " conv2d_144 (Conv2D) (None, None, None, 8256 ['up_sampling2d_19[0][0]'] \n", " 64) \n", " \n", " conv2d_143 (Conv2D) (None, None, None, 8256 ['up_sampling2d_18[0][0]'] \n", " 64) \n", " \n", " conv2d_194 (Conv2D) (None, None, None, 590080 ['conv2d_193[0][0]'] \n", " 256) \n", " \n", " add_33 (Add) (None, None, None, 0 ['conv2d_136[0][0]', \n", " 64) 'conv2d_135[0][0]'] \n", " \n", " add_35 (Add) (None, None, None, 0 ['conv2d_144[0][0]', \n", " 64) 'conv2d_143[0][0]'] \n", " \n", " tf.math.reduce_max_11 (TFOpLam (None, None, None) 0 ['conv2d_194[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_11 (TFOpLa (None, None, None) 0 ['conv2d_194[0][0]'] \n", " mbda) \n", " \n", " add_36 (Add) (None, None, None, 0 ['add_30[0][0]', \n", " 64) 'add_33[0][0]', \n", " 'add_35[0][0]'] \n", " \n", " global_average_pooling2d_18 (G (None, 256) 0 ['conv2d_194[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_22 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_11[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_23 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_11[0][0]'] \n", " 1) \n", " \n", " global_average_pooling2d_13 (G (None, 64) 0 ['add_36[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.reshape_18 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_18[0][\n", " 0]'] \n", " \n", " concatenate_22 (Concatenate) (None, None, None, 0 ['tf.expand_dims_22[0][0]', \n", " 2) 'tf.expand_dims_23[0][0]'] \n", " \n", " tf.reshape_13 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_13[0][\n", " 0]'] \n", " \n", " conv2d_195 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_18[0][0]'] \n", " \n", " conv2d_197 (Conv2D) (None, None, None, 3 ['concatenate_22[0][0]'] \n", " 1) \n", " \n", " conv2d_145 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_13[0][0]'] \n", " \n", " conv2d_196 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_195[0][0]'] \n", " \n", " tf.math.sigmoid_11 (TFOpLambda (None, None, None, 0 ['conv2d_197[0][0]'] \n", " ) 1) \n", " \n", " conv2d_146 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_145[0][0]'] \n", " \n", " conv2d_147 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_145[0][0]'] \n", " \n", " conv2d_148 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_145[0][0]'] \n", " \n", " tf.math.multiply_43 (TFOpLambd (None, None, None, 0 ['conv2d_194[0][0]', \n", " a) 256) 'conv2d_196[0][0]'] \n", " \n", " tf.math.multiply_44 (TFOpLambd (None, None, None, 0 ['conv2d_194[0][0]', \n", " a) 256) 'tf.math.sigmoid_11[0][0]'] \n", " \n", " tf.math.multiply_30 (TFOpLambd (None, None, None, 0 ['add_30[0][0]', \n", " a) 64) 'conv2d_146[0][0]'] \n", " \n", " tf.math.multiply_31 (TFOpLambd (None, None, None, 0 ['add_33[0][0]', \n", " a) 64) 'conv2d_147[0][0]'] \n", " \n", " tf.math.multiply_32 (TFOpLambd (None, None, None, 0 ['add_35[0][0]', \n", " a) 64) 'conv2d_148[0][0]'] \n", " \n", " concatenate_23 (Concatenate) (None, None, None, 0 ['tf.math.multiply_43[0][0]', \n", " 512) 'tf.math.multiply_44[0][0]'] \n", " \n", " add_37 (Add) (None, None, None, 0 ['tf.math.multiply_30[0][0]', \n", " 64) 'tf.math.multiply_31[0][0]', \n", " 'tf.math.multiply_32[0][0]'] \n", " \n", " conv2d_198 (Conv2D) (None, None, None, 131328 ['concatenate_23[0][0]'] \n", " 256) \n", " \n", " conv2d_177 (Conv2D) (None, None, None, 36928 ['add_37[0][0]'] \n", " 64) \n", " \n", " add_50 (Add) (None, None, None, 0 ['add_46[0][0]', \n", " 256) 'conv2d_198[0][0]'] \n", " \n", " conv2d_178 (Conv2D) (None, None, None, 36928 ['conv2d_177[0][0]'] \n", " 64) \n", " \n", " conv2d_199 (Conv2D) (None, None, None, 65792 ['add_50[0][0]'] \n", " 256) \n", " \n", " tf.math.reduce_max_9 (TFOpLamb (None, None, None) 0 ['conv2d_178[0][0]'] \n", " da) \n", " \n", " tf.math.reduce_mean_9 (TFOpLam (None, None, None) 0 ['conv2d_178[0][0]'] \n", " bda) \n", " \n", " conv2d_200 (Conv2D) (None, None, None, 590080 ['conv2d_199[0][0]'] \n", " 256) \n", " \n", " global_average_pooling2d_16 (G (None, 64) 0 ['conv2d_178[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_18 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_9[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_19 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_9[0][0]'] \n", " 1) \n", " \n", " up_sampling2d_25 (UpSampling2D (None, None, None, 0 ['add_50[0][0]'] \n", " ) 256) \n", " \n", " up_sampling2d_24 (UpSampling2D (None, None, None, 0 ['conv2d_200[0][0]'] \n", " ) 256) \n", " \n", " tf.reshape_16 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_16[0][\n", " 0]'] \n", " \n", " concatenate_18 (Concatenate) (None, None, None, 0 ['tf.expand_dims_18[0][0]', \n", " 2) 'tf.expand_dims_19[0][0]'] \n", " \n", " conv2d_202 (Conv2D) (None, None, None, 32896 ['up_sampling2d_25[0][0]'] \n", " 128) \n", " \n", " conv2d_201 (Conv2D) (None, None, None, 32896 ['up_sampling2d_24[0][0]'] \n", " 128) \n", " \n", " conv2d_179 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_16[0][0]'] \n", " \n", " conv2d_181 (Conv2D) (None, None, None, 3 ['concatenate_18[0][0]'] \n", " 1) \n", " \n", " add_51 (Add) (None, None, None, 0 ['conv2d_202[0][0]', \n", " 128) 'conv2d_201[0][0]'] \n", " \n", " conv2d_180 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_179[0][0]'] \n", " \n", " tf.math.sigmoid_9 (TFOpLambda) (None, None, None, 0 ['conv2d_181[0][0]'] \n", " 1) \n", " \n", " conv2d_203 (Conv2D) (None, None, None, 16512 ['add_51[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_39 (TFOpLambd (None, None, None, 0 ['conv2d_178[0][0]', \n", " a) 64) 'conv2d_180[0][0]'] \n", " \n", " tf.math.multiply_40 (TFOpLambd (None, None, None, 0 ['conv2d_178[0][0]', \n", " a) 64) 'tf.math.sigmoid_9[0][0]'] \n", " \n", " conv2d_204 (Conv2D) (None, None, None, 147584 ['conv2d_203[0][0]'] \n", " 128) \n", " \n", " concatenate_19 (Concatenate) (None, None, None, 0 ['tf.math.multiply_39[0][0]', \n", " 128) 'tf.math.multiply_40[0][0]'] \n", " \n", " up_sampling2d_27 (UpSampling2D (None, None, None, 0 ['add_51[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_26 (UpSampling2D (None, None, None, 0 ['conv2d_204[0][0]'] \n", " ) 128) \n", " \n", " conv2d_182 (Conv2D) (None, None, None, 8256 ['concatenate_19[0][0]'] \n", " 64) \n", " \n", " conv2d_206 (Conv2D) (None, None, None, 8256 ['up_sampling2d_27[0][0]'] \n", " 64) \n", " \n", " conv2d_205 (Conv2D) (None, None, None, 8256 ['up_sampling2d_26[0][0]'] \n", " 64) \n", " \n", " add_47 (Add) (None, None, None, 0 ['add_37[0][0]', \n", " 64) 'conv2d_182[0][0]'] \n", " \n", " add_52 (Add) (None, None, None, 0 ['conv2d_206[0][0]', \n", " 64) 'conv2d_205[0][0]'] \n", " \n", " add_53 (Add) (None, None, None, 0 ['add_47[0][0]', \n", " 64) 'add_52[0][0]', \n", " 'add_52[0][0]'] \n", " \n", " global_average_pooling2d_19 (G (None, 64) 0 ['add_53[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.reshape_19 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_19[0][\n", " 0]'] \n", " \n", " conv2d_207 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_19[0][0]'] \n", " \n", " conv2d_208 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_207[0][0]'] \n", " \n", " conv2d_209 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_207[0][0]'] \n", " \n", " conv2d_210 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_207[0][0]'] \n", " \n", " tf.math.multiply_45 (TFOpLambd (None, None, None, 0 ['add_47[0][0]', \n", " a) 64) 'conv2d_208[0][0]'] \n", " \n", " tf.math.multiply_46 (TFOpLambd (None, None, None, 0 ['add_52[0][0]', \n", " a) 64) 'conv2d_209[0][0]'] \n", " \n", " tf.math.multiply_47 (TFOpLambd (None, None, None, 0 ['add_52[0][0]', \n", " a) 64) 'conv2d_210[0][0]'] \n", " \n", " add_54 (Add) (None, None, None, 0 ['tf.math.multiply_45[0][0]', \n", " 64) 'tf.math.multiply_46[0][0]', \n", " 'tf.math.multiply_47[0][0]'] \n", " \n", " conv2d_211 (Conv2D) (None, None, None, 36928 ['add_54[0][0]'] \n", " 64) \n", " \n", " add_55 (Add) (None, None, None, 0 ['add_27[0][0]', \n", " 64) 'conv2d_211[0][0]'] \n", " \n", " conv2d_212 (Conv2D) (None, None, None, 36928 ['add_55[0][0]'] \n", " 64) \n", " \n", " add_56 (Add) (None, None, None, 0 ['conv2d_212[0][0]', \n", " 64) 'conv2d[0][0]'] \n", " \n", " conv2d_213 (Conv2D) (None, None, None, 36928 ['add_56[0][0]'] \n", " 64) \n", " \n", " conv2d_222 (Conv2D) (None, None, None, 36928 ['conv2d_213[0][0]'] \n", " 64) \n", " \n", " conv2d_214 (Conv2D) (None, None, None, 4160 ['conv2d_213[0][0]'] \n", " 64) \n", " \n", " conv2d_223 (Conv2D) (None, None, None, 36928 ['conv2d_222[0][0]'] \n", " 64) \n", " \n", " conv2d_215 (Conv2D) (None, None, None, 36928 ['conv2d_214[0][0]'] \n", " 64) \n", " \n", " tf.math.reduce_max_12 (TFOpLam (None, None, None) 0 ['conv2d_223[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_12 (TFOpLa (None, None, None) 0 ['conv2d_223[0][0]'] \n", " mbda) \n", " \n", " max_pooling2d_25 (MaxPooling2D (None, None, None, 0 ['conv2d_213[0][0]'] \n", " ) 64) \n", " \n", " max_pooling2d_24 (MaxPooling2D (None, None, None, 0 ['conv2d_215[0][0]'] \n", " ) 64) \n", " \n", " global_average_pooling2d_20 (G (None, 64) 0 ['conv2d_223[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_24 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_12[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_25 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_12[0][0]'] \n", " 1) \n", " \n", " conv2d_217 (Conv2D) (None, None, None, 8320 ['max_pooling2d_25[0][0]'] \n", " 128) \n", " \n", " conv2d_216 (Conv2D) (None, None, None, 8320 ['max_pooling2d_24[0][0]'] \n", " 128) \n", " \n", " tf.reshape_20 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_20[0][\n", " 0]'] \n", " \n", " concatenate_24 (Concatenate) (None, None, None, 0 ['tf.expand_dims_24[0][0]', \n", " 2) 'tf.expand_dims_25[0][0]'] \n", " \n", " add_57 (Add) (None, None, None, 0 ['conv2d_217[0][0]', \n", " 128) 'conv2d_216[0][0]'] \n", " \n", " conv2d_224 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_20[0][0]'] \n", " \n", " conv2d_226 (Conv2D) (None, None, None, 3 ['concatenate_24[0][0]'] \n", " 1) \n", " \n", " conv2d_228 (Conv2D) (None, None, None, 147584 ['add_57[0][0]'] \n", " 128) \n", " \n", " conv2d_218 (Conv2D) (None, None, None, 16512 ['add_57[0][0]'] \n", " 128) \n", " \n", " conv2d_225 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_224[0][0]'] \n", " \n", " tf.math.sigmoid_12 (TFOpLambda (None, None, None, 0 ['conv2d_226[0][0]'] \n", " ) 1) \n", " \n", " conv2d_229 (Conv2D) (None, None, None, 147584 ['conv2d_228[0][0]'] \n", " 128) \n", " \n", " conv2d_219 (Conv2D) (None, None, None, 147584 ['conv2d_218[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_48 (TFOpLambd (None, None, None, 0 ['conv2d_223[0][0]', \n", " a) 64) 'conv2d_225[0][0]'] \n", " \n", " tf.math.multiply_49 (TFOpLambd (None, None, None, 0 ['conv2d_223[0][0]', \n", " a) 64) 'tf.math.sigmoid_12[0][0]'] \n", " \n", " tf.math.reduce_max_13 (TFOpLam (None, None, None) 0 ['conv2d_229[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_13 (TFOpLa (None, None, None) 0 ['conv2d_229[0][0]'] \n", " mbda) \n", " \n", " max_pooling2d_27 (MaxPooling2D (None, None, None, 0 ['add_57[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_26 (MaxPooling2D (None, None, None, 0 ['conv2d_219[0][0]'] \n", " ) 128) \n", " \n", " concatenate_25 (Concatenate) (None, None, None, 0 ['tf.math.multiply_48[0][0]', \n", " 128) 'tf.math.multiply_49[0][0]'] \n", " \n", " global_average_pooling2d_21 (G (None, 128) 0 ['conv2d_229[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_26 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_13[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_27 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_13[0][0]'] \n", " 1) \n", " \n", " conv2d_221 (Conv2D) (None, None, None, 33024 ['max_pooling2d_27[0][0]'] \n", " 256) \n", " \n", " conv2d_220 (Conv2D) (None, None, None, 33024 ['max_pooling2d_26[0][0]'] \n", " 256) \n", " \n", " conv2d_227 (Conv2D) (None, None, None, 8256 ['concatenate_25[0][0]'] \n", " 64) \n", " \n", " tf.reshape_21 (TFOpLambda) (None, 1, 1, 128) 0 ['global_average_pooling2d_21[0][\n", " 0]'] \n", " \n", " concatenate_26 (Concatenate) (None, None, None, 0 ['tf.expand_dims_26[0][0]', \n", " 2) 'tf.expand_dims_27[0][0]'] \n", " \n", " add_58 (Add) (None, None, None, 0 ['conv2d_221[0][0]', \n", " 256) 'conv2d_220[0][0]'] \n", " \n", " add_59 (Add) (None, None, None, 0 ['conv2d_213[0][0]', \n", " 64) 'conv2d_227[0][0]'] \n", " \n", " conv2d_230 (Conv2D) (None, 1, 1, 16) 2064 ['tf.reshape_21[0][0]'] \n", " \n", " conv2d_232 (Conv2D) (None, None, None, 3 ['concatenate_26[0][0]'] \n", " 1) \n", " \n", " conv2d_234 (Conv2D) (None, None, None, 590080 ['add_58[0][0]'] \n", " 256) \n", " \n", " conv2d_231 (Conv2D) (None, 1, 1, 128) 2176 ['conv2d_230[0][0]'] \n", " \n", " tf.math.sigmoid_13 (TFOpLambda (None, None, None, 0 ['conv2d_232[0][0]'] \n", " ) 1) \n", " \n", " conv2d_235 (Conv2D) (None, None, None, 590080 ['conv2d_234[0][0]'] \n", " 256) \n", " \n", " conv2d_268 (Conv2D) (None, None, None, 4160 ['add_59[0][0]'] \n", " 64) \n", " \n", " tf.math.multiply_50 (TFOpLambd (None, None, None, 0 ['conv2d_229[0][0]', \n", " a) 128) 'conv2d_231[0][0]'] \n", " \n", " tf.math.multiply_51 (TFOpLambd (None, None, None, 0 ['conv2d_229[0][0]', \n", " a) 128) 'tf.math.sigmoid_13[0][0]'] \n", " \n", " tf.math.reduce_max_14 (TFOpLam (None, None, None) 0 ['conv2d_235[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_14 (TFOpLa (None, None, None) 0 ['conv2d_235[0][0]'] \n", " mbda) \n", " \n", " conv2d_269 (Conv2D) (None, None, None, 36928 ['conv2d_268[0][0]'] \n", " 64) \n", " \n", " concatenate_27 (Concatenate) (None, None, None, 0 ['tf.math.multiply_50[0][0]', \n", " 256) 'tf.math.multiply_51[0][0]'] \n", " \n", " global_average_pooling2d_22 (G (None, 256) 0 ['conv2d_235[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_28 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_14[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_29 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_14[0][0]'] \n", " 1) \n", " \n", " max_pooling2d_31 (MaxPooling2D (None, None, None, 0 ['add_59[0][0]'] \n", " ) 64) \n", " \n", " max_pooling2d_30 (MaxPooling2D (None, None, None, 0 ['conv2d_269[0][0]'] \n", " ) 64) \n", " \n", " conv2d_233 (Conv2D) (None, None, None, 32896 ['concatenate_27[0][0]'] \n", " 128) \n", " \n", " tf.reshape_22 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_22[0][\n", " 0]'] \n", " \n", " concatenate_28 (Concatenate) (None, None, None, 0 ['tf.expand_dims_28[0][0]', \n", " 2) 'tf.expand_dims_29[0][0]'] \n", " \n", " conv2d_271 (Conv2D) (None, None, None, 8320 ['max_pooling2d_31[0][0]'] \n", " 128) \n", " \n", " conv2d_270 (Conv2D) (None, None, None, 8320 ['max_pooling2d_30[0][0]'] \n", " 128) \n", " \n", " add_60 (Add) (None, None, None, 0 ['add_57[0][0]', \n", " 128) 'conv2d_233[0][0]'] \n", " \n", " conv2d_236 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_22[0][0]'] \n", " \n", " conv2d_238 (Conv2D) (None, None, None, 3 ['concatenate_28[0][0]'] \n", " 1) \n", " \n", " add_71 (Add) (None, None, None, 0 ['conv2d_271[0][0]', \n", " 128) 'conv2d_270[0][0]'] \n", " \n", " conv2d_237 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_236[0][0]'] \n", " \n", " tf.math.sigmoid_14 (TFOpLambda (None, None, None, 0 ['conv2d_238[0][0]'] \n", " ) 1) \n", " \n", " conv2d_272 (Conv2D) (None, None, None, 16512 ['add_71[0][0]'] \n", " 128) \n", " \n", " conv2d_276 (Conv2D) (None, None, None, 16512 ['add_60[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_52 (TFOpLambd (None, None, None, 0 ['conv2d_235[0][0]', \n", " a) 256) 'conv2d_237[0][0]'] \n", " \n", " tf.math.multiply_53 (TFOpLambd (None, None, None, 0 ['conv2d_235[0][0]', \n", " a) 256) 'tf.math.sigmoid_14[0][0]'] \n", " \n", " conv2d_273 (Conv2D) (None, None, None, 147584 ['conv2d_272[0][0]'] \n", " 128) \n", " \n", " conv2d_277 (Conv2D) (None, None, None, 147584 ['conv2d_276[0][0]'] \n", " 128) \n", " \n", " concatenate_29 (Concatenate) (None, None, None, 0 ['tf.math.multiply_52[0][0]', \n", " 512) 'tf.math.multiply_53[0][0]'] \n", " \n", " max_pooling2d_33 (MaxPooling2D (None, None, None, 0 ['add_71[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_32 (MaxPooling2D (None, None, None, 0 ['conv2d_273[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_35 (MaxPooling2D (None, None, None, 0 ['add_60[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_34 (MaxPooling2D (None, None, None, 0 ['conv2d_277[0][0]'] \n", " ) 128) \n", " \n", " conv2d_239 (Conv2D) (None, None, None, 131328 ['concatenate_29[0][0]'] \n", " 256) \n", " \n", " conv2d_275 (Conv2D) (None, None, None, 33024 ['max_pooling2d_33[0][0]'] \n", " 256) \n", " \n", " conv2d_274 (Conv2D) (None, None, None, 33024 ['max_pooling2d_32[0][0]'] \n", " 256) \n", " \n", " conv2d_279 (Conv2D) (None, None, None, 33024 ['max_pooling2d_35[0][0]'] \n", " 256) \n", " \n", " conv2d_278 (Conv2D) (None, None, None, 33024 ['max_pooling2d_34[0][0]'] \n", " 256) \n", " \n", " add_61 (Add) (None, None, None, 0 ['add_58[0][0]', \n", " 256) 'conv2d_239[0][0]'] \n", " \n", " add_72 (Add) (None, None, None, 0 ['conv2d_275[0][0]', \n", " 256) 'conv2d_274[0][0]'] \n", " \n", " add_73 (Add) (None, None, None, 0 ['conv2d_279[0][0]', \n", " 256) 'conv2d_278[0][0]'] \n", " \n", " conv2d_244 (Conv2D) (None, None, None, 65792 ['add_61[0][0]'] \n", " 256) \n", " \n", " add_74 (Add) (None, None, None, 0 ['add_72[0][0]', \n", " 256) 'add_73[0][0]', \n", " 'add_61[0][0]'] \n", " \n", " conv2d_245 (Conv2D) (None, None, None, 590080 ['conv2d_244[0][0]'] \n", " 256) \n", " \n", " global_average_pooling2d_25 (G (None, 256) 0 ['add_74[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " up_sampling2d_31 (UpSampling2D (None, None, None, 0 ['add_61[0][0]'] \n", " ) 256) \n", " \n", " up_sampling2d_30 (UpSampling2D (None, None, None, 0 ['conv2d_245[0][0]'] \n", " ) 256) \n", " \n", " tf.reshape_25 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_25[0][\n", " 0]'] \n", " \n", " conv2d_247 (Conv2D) (None, None, None, 32896 ['up_sampling2d_31[0][0]'] \n", " 128) \n", " \n", " conv2d_246 (Conv2D) (None, None, None, 32896 ['up_sampling2d_30[0][0]'] \n", " 128) \n", " \n", " conv2d_280 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_25[0][0]'] \n", " \n", " add_63 (Add) (None, None, None, 0 ['conv2d_247[0][0]', \n", " 128) 'conv2d_246[0][0]'] \n", " \n", " conv2d_281 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_280[0][0]'] \n", " \n", " conv2d_282 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_280[0][0]'] \n", " \n", " conv2d_283 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_280[0][0]'] \n", " \n", " conv2d_240 (Conv2D) (None, None, None, 16512 ['add_60[0][0]'] \n", " 128) \n", " \n", " conv2d_248 (Conv2D) (None, None, None, 16512 ['add_63[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_60 (TFOpLambd (None, None, None, 0 ['add_72[0][0]', \n", " a) 256) 'conv2d_281[0][0]'] \n", " \n", " tf.math.multiply_61 (TFOpLambd (None, None, None, 0 ['add_73[0][0]', \n", " a) 256) 'conv2d_282[0][0]'] \n", " \n", " tf.math.multiply_62 (TFOpLambd (None, None, None, 0 ['add_61[0][0]', \n", " a) 256) 'conv2d_283[0][0]'] \n", " \n", " conv2d_241 (Conv2D) (None, None, None, 147584 ['conv2d_240[0][0]'] \n", " 128) \n", " \n", " conv2d_249 (Conv2D) (None, None, None, 147584 ['conv2d_248[0][0]'] \n", " 128) \n", " \n", " add_75 (Add) (None, None, None, 0 ['tf.math.multiply_60[0][0]', \n", " 256) 'tf.math.multiply_61[0][0]', \n", " 'tf.math.multiply_62[0][0]'] \n", " \n", " up_sampling2d_29 (UpSampling2D (None, None, None, 0 ['add_60[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_28 (UpSampling2D (None, None, None, 0 ['conv2d_241[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_33 (UpSampling2D (None, None, None, 0 ['add_63[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_32 (UpSampling2D (None, None, None, 0 ['conv2d_249[0][0]'] \n", " ) 128) \n", " \n", " conv2d_300 (Conv2D) (None, None, None, 590080 ['add_75[0][0]'] \n", " 256) \n", " \n", " conv2d_243 (Conv2D) (None, None, None, 8256 ['up_sampling2d_29[0][0]'] \n", " 64) \n", " \n", " conv2d_242 (Conv2D) (None, None, None, 8256 ['up_sampling2d_28[0][0]'] \n", " 64) \n", " \n", " conv2d_251 (Conv2D) (None, None, None, 8256 ['up_sampling2d_33[0][0]'] \n", " 64) \n", " \n", " conv2d_250 (Conv2D) (None, None, None, 8256 ['up_sampling2d_32[0][0]'] \n", " 64) \n", " \n", " conv2d_301 (Conv2D) (None, None, None, 590080 ['conv2d_300[0][0]'] \n", " 256) \n", " \n", " add_62 (Add) (None, None, None, 0 ['conv2d_243[0][0]', \n", " 64) 'conv2d_242[0][0]'] \n", " \n", " add_64 (Add) (None, None, None, 0 ['conv2d_251[0][0]', \n", " 64) 'conv2d_250[0][0]'] \n", " \n", " tf.math.reduce_max_17 (TFOpLam (None, None, None) 0 ['conv2d_301[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_17 (TFOpLa (None, None, None) 0 ['conv2d_301[0][0]'] \n", " mbda) \n", " \n", " add_65 (Add) (None, None, None, 0 ['add_59[0][0]', \n", " 64) 'add_62[0][0]', \n", " 'add_64[0][0]'] \n", " \n", " global_average_pooling2d_28 (G (None, 256) 0 ['conv2d_301[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_34 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_17[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_35 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_17[0][0]'] \n", " 1) \n", " \n", " global_average_pooling2d_23 (G (None, 64) 0 ['add_65[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.reshape_28 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_28[0][\n", " 0]'] \n", " \n", " concatenate_34 (Concatenate) (None, None, None, 0 ['tf.expand_dims_34[0][0]', \n", " 2) 'tf.expand_dims_35[0][0]'] \n", " \n", " tf.reshape_23 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_23[0][\n", " 0]'] \n", " \n", " conv2d_302 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_28[0][0]'] \n", " \n", " conv2d_304 (Conv2D) (None, None, None, 3 ['concatenate_34[0][0]'] \n", " 1) \n", " \n", " conv2d_252 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_23[0][0]'] \n", " \n", " conv2d_303 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_302[0][0]'] \n", " \n", " tf.math.sigmoid_17 (TFOpLambda (None, None, None, 0 ['conv2d_304[0][0]'] \n", " ) 1) \n", " \n", " conv2d_253 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_252[0][0]'] \n", " \n", " conv2d_254 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_252[0][0]'] \n", " \n", " conv2d_255 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_252[0][0]'] \n", " \n", " tf.math.multiply_67 (TFOpLambd (None, None, None, 0 ['conv2d_301[0][0]', \n", " a) 256) 'conv2d_303[0][0]'] \n", " \n", " tf.math.multiply_68 (TFOpLambd (None, None, None, 0 ['conv2d_301[0][0]', \n", " a) 256) 'tf.math.sigmoid_17[0][0]'] \n", " \n", " tf.math.multiply_54 (TFOpLambd (None, None, None, 0 ['add_59[0][0]', \n", " a) 64) 'conv2d_253[0][0]'] \n", " \n", " tf.math.multiply_55 (TFOpLambd (None, None, None, 0 ['add_62[0][0]', \n", " a) 64) 'conv2d_254[0][0]'] \n", " \n", " tf.math.multiply_56 (TFOpLambd (None, None, None, 0 ['add_64[0][0]', \n", " a) 64) 'conv2d_255[0][0]'] \n", " \n", " concatenate_35 (Concatenate) (None, None, None, 0 ['tf.math.multiply_67[0][0]', \n", " 512) 'tf.math.multiply_68[0][0]'] \n", " \n", " add_66 (Add) (None, None, None, 0 ['tf.math.multiply_54[0][0]', \n", " 64) 'tf.math.multiply_55[0][0]', \n", " 'tf.math.multiply_56[0][0]'] \n", " \n", " conv2d_305 (Conv2D) (None, None, None, 131328 ['concatenate_35[0][0]'] \n", " 256) \n", " \n", " conv2d_284 (Conv2D) (None, None, None, 36928 ['add_66[0][0]'] \n", " 64) \n", " \n", " add_79 (Add) (None, None, None, 0 ['add_75[0][0]', \n", " 256) 'conv2d_305[0][0]'] \n", " \n", " conv2d_285 (Conv2D) (None, None, None, 36928 ['conv2d_284[0][0]'] \n", " 64) \n", " \n", " conv2d_306 (Conv2D) (None, None, None, 65792 ['add_79[0][0]'] \n", " 256) \n", " \n", " tf.math.reduce_max_15 (TFOpLam (None, None, None) 0 ['conv2d_285[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_15 (TFOpLa (None, None, None) 0 ['conv2d_285[0][0]'] \n", " mbda) \n", " \n", " conv2d_307 (Conv2D) (None, None, None, 590080 ['conv2d_306[0][0]'] \n", " 256) \n", " \n", " global_average_pooling2d_26 (G (None, 64) 0 ['conv2d_285[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_30 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_15[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_31 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_15[0][0]'] \n", " 1) \n", " \n", " up_sampling2d_39 (UpSampling2D (None, None, None, 0 ['add_79[0][0]'] \n", " ) 256) \n", " \n", " up_sampling2d_38 (UpSampling2D (None, None, None, 0 ['conv2d_307[0][0]'] \n", " ) 256) \n", " \n", " tf.reshape_26 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_26[0][\n", " 0]'] \n", " \n", " concatenate_30 (Concatenate) (None, None, None, 0 ['tf.expand_dims_30[0][0]', \n", " 2) 'tf.expand_dims_31[0][0]'] \n", " \n", " conv2d_309 (Conv2D) (None, None, None, 32896 ['up_sampling2d_39[0][0]'] \n", " 128) \n", " \n", " conv2d_308 (Conv2D) (None, None, None, 32896 ['up_sampling2d_38[0][0]'] \n", " 128) \n", " \n", " conv2d_286 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_26[0][0]'] \n", " \n", " conv2d_288 (Conv2D) (None, None, None, 3 ['concatenate_30[0][0]'] \n", " 1) \n", " \n", " add_80 (Add) (None, None, None, 0 ['conv2d_309[0][0]', \n", " 128) 'conv2d_308[0][0]'] \n", " \n", " conv2d_287 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_286[0][0]'] \n", " \n", " tf.math.sigmoid_15 (TFOpLambda (None, None, None, 0 ['conv2d_288[0][0]'] \n", " ) 1) \n", " \n", " conv2d_310 (Conv2D) (None, None, None, 16512 ['add_80[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_63 (TFOpLambd (None, None, None, 0 ['conv2d_285[0][0]', \n", " a) 64) 'conv2d_287[0][0]'] \n", " \n", " tf.math.multiply_64 (TFOpLambd (None, None, None, 0 ['conv2d_285[0][0]', \n", " a) 64) 'tf.math.sigmoid_15[0][0]'] \n", " \n", " conv2d_311 (Conv2D) (None, None, None, 147584 ['conv2d_310[0][0]'] \n", " 128) \n", " \n", " concatenate_31 (Concatenate) (None, None, None, 0 ['tf.math.multiply_63[0][0]', \n", " 128) 'tf.math.multiply_64[0][0]'] \n", " \n", " up_sampling2d_41 (UpSampling2D (None, None, None, 0 ['add_80[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_40 (UpSampling2D (None, None, None, 0 ['conv2d_311[0][0]'] \n", " ) 128) \n", " \n", " conv2d_289 (Conv2D) (None, None, None, 8256 ['concatenate_31[0][0]'] \n", " 64) \n", " \n", " conv2d_313 (Conv2D) (None, None, None, 8256 ['up_sampling2d_41[0][0]'] \n", " 64) \n", " \n", " conv2d_312 (Conv2D) (None, None, None, 8256 ['up_sampling2d_40[0][0]'] \n", " 64) \n", " \n", " add_76 (Add) (None, None, None, 0 ['add_66[0][0]', \n", " 64) 'conv2d_289[0][0]'] \n", " \n", " add_81 (Add) (None, None, None, 0 ['conv2d_313[0][0]', \n", " 64) 'conv2d_312[0][0]'] \n", " \n", " add_82 (Add) (None, None, None, 0 ['add_76[0][0]', \n", " 64) 'add_81[0][0]', \n", " 'add_81[0][0]'] \n", " \n", " global_average_pooling2d_29 (G (None, 64) 0 ['add_82[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.reshape_29 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_29[0][\n", " 0]'] \n", " \n", " conv2d_314 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_29[0][0]'] \n", " \n", " conv2d_315 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_314[0][0]'] \n", " \n", " conv2d_316 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_314[0][0]'] \n", " \n", " conv2d_317 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_314[0][0]'] \n", " \n", " tf.math.multiply_69 (TFOpLambd (None, None, None, 0 ['add_76[0][0]', \n", " a) 64) 'conv2d_315[0][0]'] \n", " \n", " tf.math.multiply_70 (TFOpLambd (None, None, None, 0 ['add_81[0][0]', \n", " a) 64) 'conv2d_316[0][0]'] \n", " \n", " tf.math.multiply_71 (TFOpLambd (None, None, None, 0 ['add_81[0][0]', \n", " a) 64) 'conv2d_317[0][0]'] \n", " \n", " add_83 (Add) (None, None, None, 0 ['tf.math.multiply_69[0][0]', \n", " 64) 'tf.math.multiply_70[0][0]', \n", " 'tf.math.multiply_71[0][0]'] \n", " \n", " conv2d_318 (Conv2D) (None, None, None, 36928 ['add_83[0][0]'] \n", " 64) \n", " \n", " add_84 (Add) (None, None, None, 0 ['conv2d_213[0][0]', \n", " 64) 'conv2d_318[0][0]'] \n", " \n", " conv2d_327 (Conv2D) (None, None, None, 36928 ['add_84[0][0]'] \n", " 64) \n", " \n", " conv2d_319 (Conv2D) (None, None, None, 4160 ['add_84[0][0]'] \n", " 64) \n", " \n", " conv2d_328 (Conv2D) (None, None, None, 36928 ['conv2d_327[0][0]'] \n", " 64) \n", " \n", " conv2d_320 (Conv2D) (None, None, None, 36928 ['conv2d_319[0][0]'] \n", " 64) \n", " \n", " tf.math.reduce_max_18 (TFOpLam (None, None, None) 0 ['conv2d_328[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_18 (TFOpLa (None, None, None) 0 ['conv2d_328[0][0]'] \n", " mbda) \n", " \n", " max_pooling2d_37 (MaxPooling2D (None, None, None, 0 ['add_84[0][0]'] \n", " ) 64) \n", " \n", " max_pooling2d_36 (MaxPooling2D (None, None, None, 0 ['conv2d_320[0][0]'] \n", " ) 64) \n", " \n", " global_average_pooling2d_30 (G (None, 64) 0 ['conv2d_328[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_36 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_18[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_37 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_18[0][0]'] \n", " 1) \n", " \n", " conv2d_322 (Conv2D) (None, None, None, 8320 ['max_pooling2d_37[0][0]'] \n", " 128) \n", " \n", " conv2d_321 (Conv2D) (None, None, None, 8320 ['max_pooling2d_36[0][0]'] \n", " 128) \n", " \n", " tf.reshape_30 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_30[0][\n", " 0]'] \n", " \n", " concatenate_36 (Concatenate) (None, None, None, 0 ['tf.expand_dims_36[0][0]', \n", " 2) 'tf.expand_dims_37[0][0]'] \n", " \n", " add_85 (Add) (None, None, None, 0 ['conv2d_322[0][0]', \n", " 128) 'conv2d_321[0][0]'] \n", " \n", " conv2d_329 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_30[0][0]'] \n", " \n", " conv2d_331 (Conv2D) (None, None, None, 3 ['concatenate_36[0][0]'] \n", " 1) \n", " \n", " conv2d_333 (Conv2D) (None, None, None, 147584 ['add_85[0][0]'] \n", " 128) \n", " \n", " conv2d_323 (Conv2D) (None, None, None, 16512 ['add_85[0][0]'] \n", " 128) \n", " \n", " conv2d_330 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_329[0][0]'] \n", " \n", " tf.math.sigmoid_18 (TFOpLambda (None, None, None, 0 ['conv2d_331[0][0]'] \n", " ) 1) \n", " \n", " conv2d_334 (Conv2D) (None, None, None, 147584 ['conv2d_333[0][0]'] \n", " 128) \n", " \n", " conv2d_324 (Conv2D) (None, None, None, 147584 ['conv2d_323[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_72 (TFOpLambd (None, None, None, 0 ['conv2d_328[0][0]', \n", " a) 64) 'conv2d_330[0][0]'] \n", " \n", " tf.math.multiply_73 (TFOpLambd (None, None, None, 0 ['conv2d_328[0][0]', \n", " a) 64) 'tf.math.sigmoid_18[0][0]'] \n", " \n", " tf.math.reduce_max_19 (TFOpLam (None, None, None) 0 ['conv2d_334[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_19 (TFOpLa (None, None, None) 0 ['conv2d_334[0][0]'] \n", " mbda) \n", " \n", " max_pooling2d_39 (MaxPooling2D (None, None, None, 0 ['add_85[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_38 (MaxPooling2D (None, None, None, 0 ['conv2d_324[0][0]'] \n", " ) 128) \n", " \n", " concatenate_37 (Concatenate) (None, None, None, 0 ['tf.math.multiply_72[0][0]', \n", " 128) 'tf.math.multiply_73[0][0]'] \n", " \n", " global_average_pooling2d_31 (G (None, 128) 0 ['conv2d_334[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_38 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_19[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_39 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_19[0][0]'] \n", " 1) \n", " \n", " conv2d_326 (Conv2D) (None, None, None, 33024 ['max_pooling2d_39[0][0]'] \n", " 256) \n", " \n", " conv2d_325 (Conv2D) (None, None, None, 33024 ['max_pooling2d_38[0][0]'] \n", " 256) \n", " \n", " conv2d_332 (Conv2D) (None, None, None, 8256 ['concatenate_37[0][0]'] \n", " 64) \n", " \n", " tf.reshape_31 (TFOpLambda) (None, 1, 1, 128) 0 ['global_average_pooling2d_31[0][\n", " 0]'] \n", " \n", " concatenate_38 (Concatenate) (None, None, None, 0 ['tf.expand_dims_38[0][0]', \n", " 2) 'tf.expand_dims_39[0][0]'] \n", " \n", " add_86 (Add) (None, None, None, 0 ['conv2d_326[0][0]', \n", " 256) 'conv2d_325[0][0]'] \n", " \n", " add_87 (Add) (None, None, None, 0 ['add_84[0][0]', \n", " 64) 'conv2d_332[0][0]'] \n", " \n", " conv2d_335 (Conv2D) (None, 1, 1, 16) 2064 ['tf.reshape_31[0][0]'] \n", " \n", " conv2d_337 (Conv2D) (None, None, None, 3 ['concatenate_38[0][0]'] \n", " 1) \n", " \n", " conv2d_339 (Conv2D) (None, None, None, 590080 ['add_86[0][0]'] \n", " 256) \n", " \n", " conv2d_336 (Conv2D) (None, 1, 1, 128) 2176 ['conv2d_335[0][0]'] \n", " \n", " tf.math.sigmoid_19 (TFOpLambda (None, None, None, 0 ['conv2d_337[0][0]'] \n", " ) 1) \n", " \n", " conv2d_340 (Conv2D) (None, None, None, 590080 ['conv2d_339[0][0]'] \n", " 256) \n", " \n", " conv2d_373 (Conv2D) (None, None, None, 4160 ['add_87[0][0]'] \n", " 64) \n", " \n", " tf.math.multiply_74 (TFOpLambd (None, None, None, 0 ['conv2d_334[0][0]', \n", " a) 128) 'conv2d_336[0][0]'] \n", " \n", " tf.math.multiply_75 (TFOpLambd (None, None, None, 0 ['conv2d_334[0][0]', \n", " a) 128) 'tf.math.sigmoid_19[0][0]'] \n", " \n", " tf.math.reduce_max_20 (TFOpLam (None, None, None) 0 ['conv2d_340[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_20 (TFOpLa (None, None, None) 0 ['conv2d_340[0][0]'] \n", " mbda) \n", " \n", " conv2d_374 (Conv2D) (None, None, None, 36928 ['conv2d_373[0][0]'] \n", " 64) \n", " \n", " concatenate_39 (Concatenate) (None, None, None, 0 ['tf.math.multiply_74[0][0]', \n", " 256) 'tf.math.multiply_75[0][0]'] \n", " \n", " global_average_pooling2d_32 (G (None, 256) 0 ['conv2d_340[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_40 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_20[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_41 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_20[0][0]'] \n", " 1) \n", " \n", " max_pooling2d_43 (MaxPooling2D (None, None, None, 0 ['add_87[0][0]'] \n", " ) 64) \n", " \n", " max_pooling2d_42 (MaxPooling2D (None, None, None, 0 ['conv2d_374[0][0]'] \n", " ) 64) \n", " \n", " conv2d_338 (Conv2D) (None, None, None, 32896 ['concatenate_39[0][0]'] \n", " 128) \n", " \n", " tf.reshape_32 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_32[0][\n", " 0]'] \n", " \n", " concatenate_40 (Concatenate) (None, None, None, 0 ['tf.expand_dims_40[0][0]', \n", " 2) 'tf.expand_dims_41[0][0]'] \n", " \n", " conv2d_376 (Conv2D) (None, None, None, 8320 ['max_pooling2d_43[0][0]'] \n", " 128) \n", " \n", " conv2d_375 (Conv2D) (None, None, None, 8320 ['max_pooling2d_42[0][0]'] \n", " 128) \n", " \n", " add_88 (Add) (None, None, None, 0 ['add_85[0][0]', \n", " 128) 'conv2d_338[0][0]'] \n", " \n", " conv2d_341 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_32[0][0]'] \n", " \n", " conv2d_343 (Conv2D) (None, None, None, 3 ['concatenate_40[0][0]'] \n", " 1) \n", " \n", " add_99 (Add) (None, None, None, 0 ['conv2d_376[0][0]', \n", " 128) 'conv2d_375[0][0]'] \n", " \n", " conv2d_342 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_341[0][0]'] \n", " \n", " tf.math.sigmoid_20 (TFOpLambda (None, None, None, 0 ['conv2d_343[0][0]'] \n", " ) 1) \n", " \n", " conv2d_377 (Conv2D) (None, None, None, 16512 ['add_99[0][0]'] \n", " 128) \n", " \n", " conv2d_381 (Conv2D) (None, None, None, 16512 ['add_88[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_76 (TFOpLambd (None, None, None, 0 ['conv2d_340[0][0]', \n", " a) 256) 'conv2d_342[0][0]'] \n", " \n", " tf.math.multiply_77 (TFOpLambd (None, None, None, 0 ['conv2d_340[0][0]', \n", " a) 256) 'tf.math.sigmoid_20[0][0]'] \n", " \n", " conv2d_378 (Conv2D) (None, None, None, 147584 ['conv2d_377[0][0]'] \n", " 128) \n", " \n", " conv2d_382 (Conv2D) (None, None, None, 147584 ['conv2d_381[0][0]'] \n", " 128) \n", " \n", " concatenate_41 (Concatenate) (None, None, None, 0 ['tf.math.multiply_76[0][0]', \n", " 512) 'tf.math.multiply_77[0][0]'] \n", " \n", " max_pooling2d_45 (MaxPooling2D (None, None, None, 0 ['add_99[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_44 (MaxPooling2D (None, None, None, 0 ['conv2d_378[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_47 (MaxPooling2D (None, None, None, 0 ['add_88[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_46 (MaxPooling2D (None, None, None, 0 ['conv2d_382[0][0]'] \n", " ) 128) \n", " \n", " conv2d_344 (Conv2D) (None, None, None, 131328 ['concatenate_41[0][0]'] \n", " 256) \n", " \n", " conv2d_380 (Conv2D) (None, None, None, 33024 ['max_pooling2d_45[0][0]'] \n", " 256) \n", " \n", " conv2d_379 (Conv2D) (None, None, None, 33024 ['max_pooling2d_44[0][0]'] \n", " 256) \n", " \n", " conv2d_384 (Conv2D) (None, None, None, 33024 ['max_pooling2d_47[0][0]'] \n", " 256) \n", " \n", " conv2d_383 (Conv2D) (None, None, None, 33024 ['max_pooling2d_46[0][0]'] \n", " 256) \n", " \n", " add_89 (Add) (None, None, None, 0 ['add_86[0][0]', \n", " 256) 'conv2d_344[0][0]'] \n", " \n", " add_100 (Add) (None, None, None, 0 ['conv2d_380[0][0]', \n", " 256) 'conv2d_379[0][0]'] \n", " \n", " add_101 (Add) (None, None, None, 0 ['conv2d_384[0][0]', \n", " 256) 'conv2d_383[0][0]'] \n", " \n", " conv2d_349 (Conv2D) (None, None, None, 65792 ['add_89[0][0]'] \n", " 256) \n", " \n", " add_102 (Add) (None, None, None, 0 ['add_100[0][0]', \n", " 256) 'add_101[0][0]', \n", " 'add_89[0][0]'] \n", " \n", " conv2d_350 (Conv2D) (None, None, None, 590080 ['conv2d_349[0][0]'] \n", " 256) \n", " \n", " global_average_pooling2d_35 (G (None, 256) 0 ['add_102[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " up_sampling2d_45 (UpSampling2D (None, None, None, 0 ['add_89[0][0]'] \n", " ) 256) \n", " \n", " up_sampling2d_44 (UpSampling2D (None, None, None, 0 ['conv2d_350[0][0]'] \n", " ) 256) \n", " \n", " tf.reshape_35 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_35[0][\n", " 0]'] \n", " \n", " conv2d_352 (Conv2D) (None, None, None, 32896 ['up_sampling2d_45[0][0]'] \n", " 128) \n", " \n", " conv2d_351 (Conv2D) (None, None, None, 32896 ['up_sampling2d_44[0][0]'] \n", " 128) \n", " \n", " conv2d_385 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_35[0][0]'] \n", " \n", " add_91 (Add) (None, None, None, 0 ['conv2d_352[0][0]', \n", " 128) 'conv2d_351[0][0]'] \n", " \n", " conv2d_386 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_385[0][0]'] \n", " \n", " conv2d_387 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_385[0][0]'] \n", " \n", " conv2d_388 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_385[0][0]'] \n", " \n", " conv2d_345 (Conv2D) (None, None, None, 16512 ['add_88[0][0]'] \n", " 128) \n", " \n", " conv2d_353 (Conv2D) (None, None, None, 16512 ['add_91[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_84 (TFOpLambd (None, None, None, 0 ['add_100[0][0]', \n", " a) 256) 'conv2d_386[0][0]'] \n", " \n", " tf.math.multiply_85 (TFOpLambd (None, None, None, 0 ['add_101[0][0]', \n", " a) 256) 'conv2d_387[0][0]'] \n", " \n", " tf.math.multiply_86 (TFOpLambd (None, None, None, 0 ['add_89[0][0]', \n", " a) 256) 'conv2d_388[0][0]'] \n", " \n", " conv2d_346 (Conv2D) (None, None, None, 147584 ['conv2d_345[0][0]'] \n", " 128) \n", " \n", " conv2d_354 (Conv2D) (None, None, None, 147584 ['conv2d_353[0][0]'] \n", " 128) \n", " \n", " add_103 (Add) (None, None, None, 0 ['tf.math.multiply_84[0][0]', \n", " 256) 'tf.math.multiply_85[0][0]', \n", " 'tf.math.multiply_86[0][0]'] \n", " \n", " up_sampling2d_43 (UpSampling2D (None, None, None, 0 ['add_88[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_42 (UpSampling2D (None, None, None, 0 ['conv2d_346[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_47 (UpSampling2D (None, None, None, 0 ['add_91[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_46 (UpSampling2D (None, None, None, 0 ['conv2d_354[0][0]'] \n", " ) 128) \n", " \n", " conv2d_405 (Conv2D) (None, None, None, 590080 ['add_103[0][0]'] \n", " 256) \n", " \n", " conv2d_348 (Conv2D) (None, None, None, 8256 ['up_sampling2d_43[0][0]'] \n", " 64) \n", " \n", " conv2d_347 (Conv2D) (None, None, None, 8256 ['up_sampling2d_42[0][0]'] \n", " 64) \n", " \n", " conv2d_356 (Conv2D) (None, None, None, 8256 ['up_sampling2d_47[0][0]'] \n", " 64) \n", " \n", " conv2d_355 (Conv2D) (None, None, None, 8256 ['up_sampling2d_46[0][0]'] \n", " 64) \n", " \n", " conv2d_406 (Conv2D) (None, None, None, 590080 ['conv2d_405[0][0]'] \n", " 256) \n", " \n", " add_90 (Add) (None, None, None, 0 ['conv2d_348[0][0]', \n", " 64) 'conv2d_347[0][0]'] \n", " \n", " add_92 (Add) (None, None, None, 0 ['conv2d_356[0][0]', \n", " 64) 'conv2d_355[0][0]'] \n", " \n", " tf.math.reduce_max_23 (TFOpLam (None, None, None) 0 ['conv2d_406[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_23 (TFOpLa (None, None, None) 0 ['conv2d_406[0][0]'] \n", " mbda) \n", " \n", " add_93 (Add) (None, None, None, 0 ['add_87[0][0]', \n", " 64) 'add_90[0][0]', \n", " 'add_92[0][0]'] \n", " \n", " global_average_pooling2d_38 (G (None, 256) 0 ['conv2d_406[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_46 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_23[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_47 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_23[0][0]'] \n", " 1) \n", " \n", " global_average_pooling2d_33 (G (None, 64) 0 ['add_93[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.reshape_38 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_38[0][\n", " 0]'] \n", " \n", " concatenate_46 (Concatenate) (None, None, None, 0 ['tf.expand_dims_46[0][0]', \n", " 2) 'tf.expand_dims_47[0][0]'] \n", " \n", " tf.reshape_33 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_33[0][\n", " 0]'] \n", " \n", " conv2d_407 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_38[0][0]'] \n", " \n", " conv2d_409 (Conv2D) (None, None, None, 3 ['concatenate_46[0][0]'] \n", " 1) \n", " \n", " conv2d_357 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_33[0][0]'] \n", " \n", " conv2d_408 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_407[0][0]'] \n", " \n", " tf.math.sigmoid_23 (TFOpLambda (None, None, None, 0 ['conv2d_409[0][0]'] \n", " ) 1) \n", " \n", " conv2d_358 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_357[0][0]'] \n", " \n", " conv2d_359 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_357[0][0]'] \n", " \n", " conv2d_360 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_357[0][0]'] \n", " \n", " tf.math.multiply_91 (TFOpLambd (None, None, None, 0 ['conv2d_406[0][0]', \n", " a) 256) 'conv2d_408[0][0]'] \n", " \n", " tf.math.multiply_92 (TFOpLambd (None, None, None, 0 ['conv2d_406[0][0]', \n", " a) 256) 'tf.math.sigmoid_23[0][0]'] \n", " \n", " tf.math.multiply_78 (TFOpLambd (None, None, None, 0 ['add_87[0][0]', \n", " a) 64) 'conv2d_358[0][0]'] \n", " \n", " tf.math.multiply_79 (TFOpLambd (None, None, None, 0 ['add_90[0][0]', \n", " a) 64) 'conv2d_359[0][0]'] \n", " \n", " tf.math.multiply_80 (TFOpLambd (None, None, None, 0 ['add_92[0][0]', \n", " a) 64) 'conv2d_360[0][0]'] \n", " \n", " concatenate_47 (Concatenate) (None, None, None, 0 ['tf.math.multiply_91[0][0]', \n", " 512) 'tf.math.multiply_92[0][0]'] \n", " \n", " add_94 (Add) (None, None, None, 0 ['tf.math.multiply_78[0][0]', \n", " 64) 'tf.math.multiply_79[0][0]', \n", " 'tf.math.multiply_80[0][0]'] \n", " \n", " conv2d_410 (Conv2D) (None, None, None, 131328 ['concatenate_47[0][0]'] \n", " 256) \n", " \n", " conv2d_389 (Conv2D) (None, None, None, 36928 ['add_94[0][0]'] \n", " 64) \n", " \n", " add_107 (Add) (None, None, None, 0 ['add_103[0][0]', \n", " 256) 'conv2d_410[0][0]'] \n", " \n", " conv2d_390 (Conv2D) (None, None, None, 36928 ['conv2d_389[0][0]'] \n", " 64) \n", " \n", " conv2d_411 (Conv2D) (None, None, None, 65792 ['add_107[0][0]'] \n", " 256) \n", " \n", " tf.math.reduce_max_21 (TFOpLam (None, None, None) 0 ['conv2d_390[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_21 (TFOpLa (None, None, None) 0 ['conv2d_390[0][0]'] \n", " mbda) \n", " \n", " conv2d_412 (Conv2D) (None, None, None, 590080 ['conv2d_411[0][0]'] \n", " 256) \n", " \n", " global_average_pooling2d_36 (G (None, 64) 0 ['conv2d_390[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_42 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_21[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_43 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_21[0][0]'] \n", " 1) \n", " \n", " up_sampling2d_53 (UpSampling2D (None, None, None, 0 ['add_107[0][0]'] \n", " ) 256) \n", " \n", " up_sampling2d_52 (UpSampling2D (None, None, None, 0 ['conv2d_412[0][0]'] \n", " ) 256) \n", " \n", " tf.reshape_36 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_36[0][\n", " 0]'] \n", " \n", " concatenate_42 (Concatenate) (None, None, None, 0 ['tf.expand_dims_42[0][0]', \n", " 2) 'tf.expand_dims_43[0][0]'] \n", " \n", " conv2d_414 (Conv2D) (None, None, None, 32896 ['up_sampling2d_53[0][0]'] \n", " 128) \n", " \n", " conv2d_413 (Conv2D) (None, None, None, 32896 ['up_sampling2d_52[0][0]'] \n", " 128) \n", " \n", " conv2d_391 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_36[0][0]'] \n", " \n", " conv2d_393 (Conv2D) (None, None, None, 3 ['concatenate_42[0][0]'] \n", " 1) \n", " \n", " add_108 (Add) (None, None, None, 0 ['conv2d_414[0][0]', \n", " 128) 'conv2d_413[0][0]'] \n", " \n", " conv2d_392 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_391[0][0]'] \n", " \n", " tf.math.sigmoid_21 (TFOpLambda (None, None, None, 0 ['conv2d_393[0][0]'] \n", " ) 1) \n", " \n", " conv2d_415 (Conv2D) (None, None, None, 16512 ['add_108[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_87 (TFOpLambd (None, None, None, 0 ['conv2d_390[0][0]', \n", " a) 64) 'conv2d_392[0][0]'] \n", " \n", " tf.math.multiply_88 (TFOpLambd (None, None, None, 0 ['conv2d_390[0][0]', \n", " a) 64) 'tf.math.sigmoid_21[0][0]'] \n", " \n", " conv2d_416 (Conv2D) (None, None, None, 147584 ['conv2d_415[0][0]'] \n", " 128) \n", " \n", " concatenate_43 (Concatenate) (None, None, None, 0 ['tf.math.multiply_87[0][0]', \n", " 128) 'tf.math.multiply_88[0][0]'] \n", " \n", " up_sampling2d_55 (UpSampling2D (None, None, None, 0 ['add_108[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_54 (UpSampling2D (None, None, None, 0 ['conv2d_416[0][0]'] \n", " ) 128) \n", " \n", " conv2d_394 (Conv2D) (None, None, None, 8256 ['concatenate_43[0][0]'] \n", " 64) \n", " \n", " conv2d_418 (Conv2D) (None, None, None, 8256 ['up_sampling2d_55[0][0]'] \n", " 64) \n", " \n", " conv2d_417 (Conv2D) (None, None, None, 8256 ['up_sampling2d_54[0][0]'] \n", " 64) \n", " \n", " add_104 (Add) (None, None, None, 0 ['add_94[0][0]', \n", " 64) 'conv2d_394[0][0]'] \n", " \n", " add_109 (Add) (None, None, None, 0 ['conv2d_418[0][0]', \n", " 64) 'conv2d_417[0][0]'] \n", " \n", " add_110 (Add) (None, None, None, 0 ['add_104[0][0]', \n", " 64) 'add_109[0][0]', \n", " 'add_109[0][0]'] \n", " \n", " global_average_pooling2d_39 (G (None, 64) 0 ['add_110[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.reshape_39 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_39[0][\n", " 0]'] \n", " \n", " conv2d_419 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_39[0][0]'] \n", " \n", " conv2d_420 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_419[0][0]'] \n", " \n", " conv2d_421 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_419[0][0]'] \n", " \n", " conv2d_422 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_419[0][0]'] \n", " \n", " tf.math.multiply_93 (TFOpLambd (None, None, None, 0 ['add_104[0][0]', \n", " a) 64) 'conv2d_420[0][0]'] \n", " \n", " tf.math.multiply_94 (TFOpLambd (None, None, None, 0 ['add_109[0][0]', \n", " a) 64) 'conv2d_421[0][0]'] \n", " \n", " tf.math.multiply_95 (TFOpLambd (None, None, None, 0 ['add_109[0][0]', \n", " a) 64) 'conv2d_422[0][0]'] \n", " \n", " add_111 (Add) (None, None, None, 0 ['tf.math.multiply_93[0][0]', \n", " 64) 'tf.math.multiply_94[0][0]', \n", " 'tf.math.multiply_95[0][0]'] \n", " \n", " conv2d_423 (Conv2D) (None, None, None, 36928 ['add_111[0][0]'] \n", " 64) \n", " \n", " add_112 (Add) (None, None, None, 0 ['add_84[0][0]', \n", " 64) 'conv2d_423[0][0]'] \n", " \n", " conv2d_424 (Conv2D) (None, None, None, 36928 ['add_112[0][0]'] \n", " 64) \n", " \n", " add_113 (Add) (None, None, None, 0 ['conv2d_424[0][0]', \n", " 64) 'add_56[0][0]'] \n", " \n", " conv2d_425 (Conv2D) (None, None, None, 36928 ['add_113[0][0]'] \n", " 64) \n", " \n", " conv2d_434 (Conv2D) (None, None, None, 36928 ['conv2d_425[0][0]'] \n", " 64) \n", " \n", " conv2d_426 (Conv2D) (None, None, None, 4160 ['conv2d_425[0][0]'] \n", " 64) \n", " \n", " conv2d_435 (Conv2D) (None, None, None, 36928 ['conv2d_434[0][0]'] \n", " 64) \n", " \n", " conv2d_427 (Conv2D) (None, None, None, 36928 ['conv2d_426[0][0]'] \n", " 64) \n", " \n", " tf.math.reduce_max_24 (TFOpLam (None, None, None) 0 ['conv2d_435[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_24 (TFOpLa (None, None, None) 0 ['conv2d_435[0][0]'] \n", " mbda) \n", " \n", " max_pooling2d_49 (MaxPooling2D (None, None, None, 0 ['conv2d_425[0][0]'] \n", " ) 64) \n", " \n", " max_pooling2d_48 (MaxPooling2D (None, None, None, 0 ['conv2d_427[0][0]'] \n", " ) 64) \n", " \n", " global_average_pooling2d_40 (G (None, 64) 0 ['conv2d_435[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_48 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_24[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_49 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_24[0][0]'] \n", " 1) \n", " \n", " conv2d_429 (Conv2D) (None, None, None, 8320 ['max_pooling2d_49[0][0]'] \n", " 128) \n", " \n", " conv2d_428 (Conv2D) (None, None, None, 8320 ['max_pooling2d_48[0][0]'] \n", " 128) \n", " \n", " tf.reshape_40 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_40[0][\n", " 0]'] \n", " \n", " concatenate_48 (Concatenate) (None, None, None, 0 ['tf.expand_dims_48[0][0]', \n", " 2) 'tf.expand_dims_49[0][0]'] \n", " \n", " add_114 (Add) (None, None, None, 0 ['conv2d_429[0][0]', \n", " 128) 'conv2d_428[0][0]'] \n", " \n", " conv2d_436 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_40[0][0]'] \n", " \n", " conv2d_438 (Conv2D) (None, None, None, 3 ['concatenate_48[0][0]'] \n", " 1) \n", " \n", " conv2d_440 (Conv2D) (None, None, None, 147584 ['add_114[0][0]'] \n", " 128) \n", " \n", " conv2d_430 (Conv2D) (None, None, None, 16512 ['add_114[0][0]'] \n", " 128) \n", " \n", " conv2d_437 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_436[0][0]'] \n", " \n", " tf.math.sigmoid_24 (TFOpLambda (None, None, None, 0 ['conv2d_438[0][0]'] \n", " ) 1) \n", " \n", " conv2d_441 (Conv2D) (None, None, None, 147584 ['conv2d_440[0][0]'] \n", " 128) \n", " \n", " conv2d_431 (Conv2D) (None, None, None, 147584 ['conv2d_430[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_96 (TFOpLambd (None, None, None, 0 ['conv2d_435[0][0]', \n", " a) 64) 'conv2d_437[0][0]'] \n", " \n", " tf.math.multiply_97 (TFOpLambd (None, None, None, 0 ['conv2d_435[0][0]', \n", " a) 64) 'tf.math.sigmoid_24[0][0]'] \n", " \n", " tf.math.reduce_max_25 (TFOpLam (None, None, None) 0 ['conv2d_441[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_25 (TFOpLa (None, None, None) 0 ['conv2d_441[0][0]'] \n", " mbda) \n", " \n", " max_pooling2d_51 (MaxPooling2D (None, None, None, 0 ['add_114[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_50 (MaxPooling2D (None, None, None, 0 ['conv2d_431[0][0]'] \n", " ) 128) \n", " \n", " concatenate_49 (Concatenate) (None, None, None, 0 ['tf.math.multiply_96[0][0]', \n", " 128) 'tf.math.multiply_97[0][0]'] \n", " \n", " global_average_pooling2d_41 (G (None, 128) 0 ['conv2d_441[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_50 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_25[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_51 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_25[0][0]'] \n", " 1) \n", " \n", " conv2d_433 (Conv2D) (None, None, None, 33024 ['max_pooling2d_51[0][0]'] \n", " 256) \n", " \n", " conv2d_432 (Conv2D) (None, None, None, 33024 ['max_pooling2d_50[0][0]'] \n", " 256) \n", " \n", " conv2d_439 (Conv2D) (None, None, None, 8256 ['concatenate_49[0][0]'] \n", " 64) \n", " \n", " tf.reshape_41 (TFOpLambda) (None, 1, 1, 128) 0 ['global_average_pooling2d_41[0][\n", " 0]'] \n", " \n", " concatenate_50 (Concatenate) (None, None, None, 0 ['tf.expand_dims_50[0][0]', \n", " 2) 'tf.expand_dims_51[0][0]'] \n", " \n", " add_115 (Add) (None, None, None, 0 ['conv2d_433[0][0]', \n", " 256) 'conv2d_432[0][0]'] \n", " \n", " add_116 (Add) (None, None, None, 0 ['conv2d_425[0][0]', \n", " 64) 'conv2d_439[0][0]'] \n", " \n", " conv2d_442 (Conv2D) (None, 1, 1, 16) 2064 ['tf.reshape_41[0][0]'] \n", " \n", " conv2d_444 (Conv2D) (None, None, None, 3 ['concatenate_50[0][0]'] \n", " 1) \n", " \n", " conv2d_446 (Conv2D) (None, None, None, 590080 ['add_115[0][0]'] \n", " 256) \n", " \n", " conv2d_443 (Conv2D) (None, 1, 1, 128) 2176 ['conv2d_442[0][0]'] \n", " \n", " tf.math.sigmoid_25 (TFOpLambda (None, None, None, 0 ['conv2d_444[0][0]'] \n", " ) 1) \n", " \n", " conv2d_447 (Conv2D) (None, None, None, 590080 ['conv2d_446[0][0]'] \n", " 256) \n", " \n", " conv2d_480 (Conv2D) (None, None, None, 4160 ['add_116[0][0]'] \n", " 64) \n", " \n", " tf.math.multiply_98 (TFOpLambd (None, None, None, 0 ['conv2d_441[0][0]', \n", " a) 128) 'conv2d_443[0][0]'] \n", " \n", " tf.math.multiply_99 (TFOpLambd (None, None, None, 0 ['conv2d_441[0][0]', \n", " a) 128) 'tf.math.sigmoid_25[0][0]'] \n", " \n", " tf.math.reduce_max_26 (TFOpLam (None, None, None) 0 ['conv2d_447[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_26 (TFOpLa (None, None, None) 0 ['conv2d_447[0][0]'] \n", " mbda) \n", " \n", " conv2d_481 (Conv2D) (None, None, None, 36928 ['conv2d_480[0][0]'] \n", " 64) \n", " \n", " concatenate_51 (Concatenate) (None, None, None, 0 ['tf.math.multiply_98[0][0]', \n", " 256) 'tf.math.multiply_99[0][0]'] \n", " \n", " global_average_pooling2d_42 (G (None, 256) 0 ['conv2d_447[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_52 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_26[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_53 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_26[0][0]'] \n", " 1) \n", " \n", " max_pooling2d_55 (MaxPooling2D (None, None, None, 0 ['add_116[0][0]'] \n", " ) 64) \n", " \n", " max_pooling2d_54 (MaxPooling2D (None, None, None, 0 ['conv2d_481[0][0]'] \n", " ) 64) \n", " \n", " conv2d_445 (Conv2D) (None, None, None, 32896 ['concatenate_51[0][0]'] \n", " 128) \n", " \n", " tf.reshape_42 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_42[0][\n", " 0]'] \n", " \n", " concatenate_52 (Concatenate) (None, None, None, 0 ['tf.expand_dims_52[0][0]', \n", " 2) 'tf.expand_dims_53[0][0]'] \n", " \n", " conv2d_483 (Conv2D) (None, None, None, 8320 ['max_pooling2d_55[0][0]'] \n", " 128) \n", " \n", " conv2d_482 (Conv2D) (None, None, None, 8320 ['max_pooling2d_54[0][0]'] \n", " 128) \n", " \n", " add_117 (Add) (None, None, None, 0 ['add_114[0][0]', \n", " 128) 'conv2d_445[0][0]'] \n", " \n", " conv2d_448 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_42[0][0]'] \n", " \n", " conv2d_450 (Conv2D) (None, None, None, 3 ['concatenate_52[0][0]'] \n", " 1) \n", " \n", " add_128 (Add) (None, None, None, 0 ['conv2d_483[0][0]', \n", " 128) 'conv2d_482[0][0]'] \n", " \n", " conv2d_449 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_448[0][0]'] \n", " \n", " tf.math.sigmoid_26 (TFOpLambda (None, None, None, 0 ['conv2d_450[0][0]'] \n", " ) 1) \n", " \n", " conv2d_484 (Conv2D) (None, None, None, 16512 ['add_128[0][0]'] \n", " 128) \n", " \n", " conv2d_488 (Conv2D) (None, None, None, 16512 ['add_117[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_100 (TFOpLamb (None, None, None, 0 ['conv2d_447[0][0]', \n", " da) 256) 'conv2d_449[0][0]'] \n", " \n", " tf.math.multiply_101 (TFOpLamb (None, None, None, 0 ['conv2d_447[0][0]', \n", " da) 256) 'tf.math.sigmoid_26[0][0]'] \n", " \n", " conv2d_485 (Conv2D) (None, None, None, 147584 ['conv2d_484[0][0]'] \n", " 128) \n", " \n", " conv2d_489 (Conv2D) (None, None, None, 147584 ['conv2d_488[0][0]'] \n", " 128) \n", " \n", " concatenate_53 (Concatenate) (None, None, None, 0 ['tf.math.multiply_100[0][0]', \n", " 512) 'tf.math.multiply_101[0][0]'] \n", " \n", " max_pooling2d_57 (MaxPooling2D (None, None, None, 0 ['add_128[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_56 (MaxPooling2D (None, None, None, 0 ['conv2d_485[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_59 (MaxPooling2D (None, None, None, 0 ['add_117[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_58 (MaxPooling2D (None, None, None, 0 ['conv2d_489[0][0]'] \n", " ) 128) \n", " \n", " conv2d_451 (Conv2D) (None, None, None, 131328 ['concatenate_53[0][0]'] \n", " 256) \n", " \n", " conv2d_487 (Conv2D) (None, None, None, 33024 ['max_pooling2d_57[0][0]'] \n", " 256) \n", " \n", " conv2d_486 (Conv2D) (None, None, None, 33024 ['max_pooling2d_56[0][0]'] \n", " 256) \n", " \n", " conv2d_491 (Conv2D) (None, None, None, 33024 ['max_pooling2d_59[0][0]'] \n", " 256) \n", " \n", " conv2d_490 (Conv2D) (None, None, None, 33024 ['max_pooling2d_58[0][0]'] \n", " 256) \n", " \n", " add_118 (Add) (None, None, None, 0 ['add_115[0][0]', \n", " 256) 'conv2d_451[0][0]'] \n", " \n", " add_129 (Add) (None, None, None, 0 ['conv2d_487[0][0]', \n", " 256) 'conv2d_486[0][0]'] \n", " \n", " add_130 (Add) (None, None, None, 0 ['conv2d_491[0][0]', \n", " 256) 'conv2d_490[0][0]'] \n", " \n", " conv2d_456 (Conv2D) (None, None, None, 65792 ['add_118[0][0]'] \n", " 256) \n", " \n", " add_131 (Add) (None, None, None, 0 ['add_129[0][0]', \n", " 256) 'add_130[0][0]', \n", " 'add_118[0][0]'] \n", " \n", " conv2d_457 (Conv2D) (None, None, None, 590080 ['conv2d_456[0][0]'] \n", " 256) \n", " \n", " global_average_pooling2d_45 (G (None, 256) 0 ['add_131[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " up_sampling2d_59 (UpSampling2D (None, None, None, 0 ['add_118[0][0]'] \n", " ) 256) \n", " \n", " up_sampling2d_58 (UpSampling2D (None, None, None, 0 ['conv2d_457[0][0]'] \n", " ) 256) \n", " \n", " tf.reshape_45 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_45[0][\n", " 0]'] \n", " \n", " conv2d_459 (Conv2D) (None, None, None, 32896 ['up_sampling2d_59[0][0]'] \n", " 128) \n", " \n", " conv2d_458 (Conv2D) (None, None, None, 32896 ['up_sampling2d_58[0][0]'] \n", " 128) \n", " \n", " conv2d_492 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_45[0][0]'] \n", " \n", " add_120 (Add) (None, None, None, 0 ['conv2d_459[0][0]', \n", " 128) 'conv2d_458[0][0]'] \n", " \n", " conv2d_493 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_492[0][0]'] \n", " \n", " conv2d_494 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_492[0][0]'] \n", " \n", " conv2d_495 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_492[0][0]'] \n", " \n", " conv2d_452 (Conv2D) (None, None, None, 16512 ['add_117[0][0]'] \n", " 128) \n", " \n", " conv2d_460 (Conv2D) (None, None, None, 16512 ['add_120[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_108 (TFOpLamb (None, None, None, 0 ['add_129[0][0]', \n", " da) 256) 'conv2d_493[0][0]'] \n", " \n", " tf.math.multiply_109 (TFOpLamb (None, None, None, 0 ['add_130[0][0]', \n", " da) 256) 'conv2d_494[0][0]'] \n", " \n", " tf.math.multiply_110 (TFOpLamb (None, None, None, 0 ['add_118[0][0]', \n", " da) 256) 'conv2d_495[0][0]'] \n", " \n", " conv2d_453 (Conv2D) (None, None, None, 147584 ['conv2d_452[0][0]'] \n", " 128) \n", " \n", " conv2d_461 (Conv2D) (None, None, None, 147584 ['conv2d_460[0][0]'] \n", " 128) \n", " \n", " add_132 (Add) (None, None, None, 0 ['tf.math.multiply_108[0][0]', \n", " 256) 'tf.math.multiply_109[0][0]', \n", " 'tf.math.multiply_110[0][0]'] \n", " \n", " up_sampling2d_57 (UpSampling2D (None, None, None, 0 ['add_117[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_56 (UpSampling2D (None, None, None, 0 ['conv2d_453[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_61 (UpSampling2D (None, None, None, 0 ['add_120[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_60 (UpSampling2D (None, None, None, 0 ['conv2d_461[0][0]'] \n", " ) 128) \n", " \n", " conv2d_512 (Conv2D) (None, None, None, 590080 ['add_132[0][0]'] \n", " 256) \n", " \n", " conv2d_455 (Conv2D) (None, None, None, 8256 ['up_sampling2d_57[0][0]'] \n", " 64) \n", " \n", " conv2d_454 (Conv2D) (None, None, None, 8256 ['up_sampling2d_56[0][0]'] \n", " 64) \n", " \n", " conv2d_463 (Conv2D) (None, None, None, 8256 ['up_sampling2d_61[0][0]'] \n", " 64) \n", " \n", " conv2d_462 (Conv2D) (None, None, None, 8256 ['up_sampling2d_60[0][0]'] \n", " 64) \n", " \n", " conv2d_513 (Conv2D) (None, None, None, 590080 ['conv2d_512[0][0]'] \n", " 256) \n", " \n", " add_119 (Add) (None, None, None, 0 ['conv2d_455[0][0]', \n", " 64) 'conv2d_454[0][0]'] \n", " \n", " add_121 (Add) (None, None, None, 0 ['conv2d_463[0][0]', \n", " 64) 'conv2d_462[0][0]'] \n", " \n", " tf.math.reduce_max_29 (TFOpLam (None, None, None) 0 ['conv2d_513[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_29 (TFOpLa (None, None, None) 0 ['conv2d_513[0][0]'] \n", " mbda) \n", " \n", " add_122 (Add) (None, None, None, 0 ['add_116[0][0]', \n", " 64) 'add_119[0][0]', \n", " 'add_121[0][0]'] \n", " \n", " global_average_pooling2d_48 (G (None, 256) 0 ['conv2d_513[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_58 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_29[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_59 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_29[0][0]'] \n", " 1) \n", " \n", " global_average_pooling2d_43 (G (None, 64) 0 ['add_122[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.reshape_48 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_48[0][\n", " 0]'] \n", " \n", " concatenate_58 (Concatenate) (None, None, None, 0 ['tf.expand_dims_58[0][0]', \n", " 2) 'tf.expand_dims_59[0][0]'] \n", " \n", " tf.reshape_43 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_43[0][\n", " 0]'] \n", " \n", " conv2d_514 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_48[0][0]'] \n", " \n", " conv2d_516 (Conv2D) (None, None, None, 3 ['concatenate_58[0][0]'] \n", " 1) \n", " \n", " conv2d_464 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_43[0][0]'] \n", " \n", " conv2d_515 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_514[0][0]'] \n", " \n", " tf.math.sigmoid_29 (TFOpLambda (None, None, None, 0 ['conv2d_516[0][0]'] \n", " ) 1) \n", " \n", " conv2d_465 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_464[0][0]'] \n", " \n", " conv2d_466 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_464[0][0]'] \n", " \n", " conv2d_467 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_464[0][0]'] \n", " \n", " tf.math.multiply_115 (TFOpLamb (None, None, None, 0 ['conv2d_513[0][0]', \n", " da) 256) 'conv2d_515[0][0]'] \n", " \n", " tf.math.multiply_116 (TFOpLamb (None, None, None, 0 ['conv2d_513[0][0]', \n", " da) 256) 'tf.math.sigmoid_29[0][0]'] \n", " \n", " tf.math.multiply_102 (TFOpLamb (None, None, None, 0 ['add_116[0][0]', \n", " da) 64) 'conv2d_465[0][0]'] \n", " \n", " tf.math.multiply_103 (TFOpLamb (None, None, None, 0 ['add_119[0][0]', \n", " da) 64) 'conv2d_466[0][0]'] \n", " \n", " tf.math.multiply_104 (TFOpLamb (None, None, None, 0 ['add_121[0][0]', \n", " da) 64) 'conv2d_467[0][0]'] \n", " \n", " concatenate_59 (Concatenate) (None, None, None, 0 ['tf.math.multiply_115[0][0]', \n", " 512) 'tf.math.multiply_116[0][0]'] \n", " \n", " add_123 (Add) (None, None, None, 0 ['tf.math.multiply_102[0][0]', \n", " 64) 'tf.math.multiply_103[0][0]', \n", " 'tf.math.multiply_104[0][0]'] \n", " \n", " conv2d_517 (Conv2D) (None, None, None, 131328 ['concatenate_59[0][0]'] \n", " 256) \n", " \n", " conv2d_496 (Conv2D) (None, None, None, 36928 ['add_123[0][0]'] \n", " 64) \n", " \n", " add_136 (Add) (None, None, None, 0 ['add_132[0][0]', \n", " 256) 'conv2d_517[0][0]'] \n", " \n", " conv2d_497 (Conv2D) (None, None, None, 36928 ['conv2d_496[0][0]'] \n", " 64) \n", " \n", " conv2d_518 (Conv2D) (None, None, None, 65792 ['add_136[0][0]'] \n", " 256) \n", " \n", " tf.math.reduce_max_27 (TFOpLam (None, None, None) 0 ['conv2d_497[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_27 (TFOpLa (None, None, None) 0 ['conv2d_497[0][0]'] \n", " mbda) \n", " \n", " conv2d_519 (Conv2D) (None, None, None, 590080 ['conv2d_518[0][0]'] \n", " 256) \n", " \n", " global_average_pooling2d_46 (G (None, 64) 0 ['conv2d_497[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_54 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_27[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_55 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_27[0][0]'] \n", " 1) \n", " \n", " up_sampling2d_67 (UpSampling2D (None, None, None, 0 ['add_136[0][0]'] \n", " ) 256) \n", " \n", " up_sampling2d_66 (UpSampling2D (None, None, None, 0 ['conv2d_519[0][0]'] \n", " ) 256) \n", " \n", " tf.reshape_46 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_46[0][\n", " 0]'] \n", " \n", " concatenate_54 (Concatenate) (None, None, None, 0 ['tf.expand_dims_54[0][0]', \n", " 2) 'tf.expand_dims_55[0][0]'] \n", " \n", " conv2d_521 (Conv2D) (None, None, None, 32896 ['up_sampling2d_67[0][0]'] \n", " 128) \n", " \n", " conv2d_520 (Conv2D) (None, None, None, 32896 ['up_sampling2d_66[0][0]'] \n", " 128) \n", " \n", " conv2d_498 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_46[0][0]'] \n", " \n", " conv2d_500 (Conv2D) (None, None, None, 3 ['concatenate_54[0][0]'] \n", " 1) \n", " \n", " add_137 (Add) (None, None, None, 0 ['conv2d_521[0][0]', \n", " 128) 'conv2d_520[0][0]'] \n", " \n", " conv2d_499 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_498[0][0]'] \n", " \n", " tf.math.sigmoid_27 (TFOpLambda (None, None, None, 0 ['conv2d_500[0][0]'] \n", " ) 1) \n", " \n", " conv2d_522 (Conv2D) (None, None, None, 16512 ['add_137[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_111 (TFOpLamb (None, None, None, 0 ['conv2d_497[0][0]', \n", " da) 64) 'conv2d_499[0][0]'] \n", " \n", " tf.math.multiply_112 (TFOpLamb (None, None, None, 0 ['conv2d_497[0][0]', \n", " da) 64) 'tf.math.sigmoid_27[0][0]'] \n", " \n", " conv2d_523 (Conv2D) (None, None, None, 147584 ['conv2d_522[0][0]'] \n", " 128) \n", " \n", " concatenate_55 (Concatenate) (None, None, None, 0 ['tf.math.multiply_111[0][0]', \n", " 128) 'tf.math.multiply_112[0][0]'] \n", " \n", " up_sampling2d_69 (UpSampling2D (None, None, None, 0 ['add_137[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_68 (UpSampling2D (None, None, None, 0 ['conv2d_523[0][0]'] \n", " ) 128) \n", " \n", " conv2d_501 (Conv2D) (None, None, None, 8256 ['concatenate_55[0][0]'] \n", " 64) \n", " \n", " conv2d_525 (Conv2D) (None, None, None, 8256 ['up_sampling2d_69[0][0]'] \n", " 64) \n", " \n", " conv2d_524 (Conv2D) (None, None, None, 8256 ['up_sampling2d_68[0][0]'] \n", " 64) \n", " \n", " add_133 (Add) (None, None, None, 0 ['add_123[0][0]', \n", " 64) 'conv2d_501[0][0]'] \n", " \n", " add_138 (Add) (None, None, None, 0 ['conv2d_525[0][0]', \n", " 64) 'conv2d_524[0][0]'] \n", " \n", " add_139 (Add) (None, None, None, 0 ['add_133[0][0]', \n", " 64) 'add_138[0][0]', \n", " 'add_138[0][0]'] \n", " \n", " global_average_pooling2d_49 (G (None, 64) 0 ['add_139[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.reshape_49 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_49[0][\n", " 0]'] \n", " \n", " conv2d_526 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_49[0][0]'] \n", " \n", " conv2d_527 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_526[0][0]'] \n", " \n", " conv2d_528 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_526[0][0]'] \n", " \n", " conv2d_529 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_526[0][0]'] \n", " \n", " tf.math.multiply_117 (TFOpLamb (None, None, None, 0 ['add_133[0][0]', \n", " da) 64) 'conv2d_527[0][0]'] \n", " \n", " tf.math.multiply_118 (TFOpLamb (None, None, None, 0 ['add_138[0][0]', \n", " da) 64) 'conv2d_528[0][0]'] \n", " \n", " tf.math.multiply_119 (TFOpLamb (None, None, None, 0 ['add_138[0][0]', \n", " da) 64) 'conv2d_529[0][0]'] \n", " \n", " add_140 (Add) (None, None, None, 0 ['tf.math.multiply_117[0][0]', \n", " 64) 'tf.math.multiply_118[0][0]', \n", " 'tf.math.multiply_119[0][0]'] \n", " \n", " conv2d_530 (Conv2D) (None, None, None, 36928 ['add_140[0][0]'] \n", " 64) \n", " \n", " add_141 (Add) (None, None, None, 0 ['conv2d_425[0][0]', \n", " 64) 'conv2d_530[0][0]'] \n", " \n", " conv2d_539 (Conv2D) (None, None, None, 36928 ['add_141[0][0]'] \n", " 64) \n", " \n", " conv2d_531 (Conv2D) (None, None, None, 4160 ['add_141[0][0]'] \n", " 64) \n", " \n", " conv2d_540 (Conv2D) (None, None, None, 36928 ['conv2d_539[0][0]'] \n", " 64) \n", " \n", " conv2d_532 (Conv2D) (None, None, None, 36928 ['conv2d_531[0][0]'] \n", " 64) \n", " \n", " tf.math.reduce_max_30 (TFOpLam (None, None, None) 0 ['conv2d_540[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_30 (TFOpLa (None, None, None) 0 ['conv2d_540[0][0]'] \n", " mbda) \n", " \n", " max_pooling2d_61 (MaxPooling2D (None, None, None, 0 ['add_141[0][0]'] \n", " ) 64) \n", " \n", " max_pooling2d_60 (MaxPooling2D (None, None, None, 0 ['conv2d_532[0][0]'] \n", " ) 64) \n", " \n", " global_average_pooling2d_50 (G (None, 64) 0 ['conv2d_540[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_60 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_30[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_61 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_30[0][0]'] \n", " 1) \n", " \n", " conv2d_534 (Conv2D) (None, None, None, 8320 ['max_pooling2d_61[0][0]'] \n", " 128) \n", " \n", " conv2d_533 (Conv2D) (None, None, None, 8320 ['max_pooling2d_60[0][0]'] \n", " 128) \n", " \n", " tf.reshape_50 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_50[0][\n", " 0]'] \n", " \n", " concatenate_60 (Concatenate) (None, None, None, 0 ['tf.expand_dims_60[0][0]', \n", " 2) 'tf.expand_dims_61[0][0]'] \n", " \n", " add_142 (Add) (None, None, None, 0 ['conv2d_534[0][0]', \n", " 128) 'conv2d_533[0][0]'] \n", " \n", " conv2d_541 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_50[0][0]'] \n", " \n", " conv2d_543 (Conv2D) (None, None, None, 3 ['concatenate_60[0][0]'] \n", " 1) \n", " \n", " conv2d_545 (Conv2D) (None, None, None, 147584 ['add_142[0][0]'] \n", " 128) \n", " \n", " conv2d_535 (Conv2D) (None, None, None, 16512 ['add_142[0][0]'] \n", " 128) \n", " \n", " conv2d_542 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_541[0][0]'] \n", " \n", " tf.math.sigmoid_30 (TFOpLambda (None, None, None, 0 ['conv2d_543[0][0]'] \n", " ) 1) \n", " \n", " conv2d_546 (Conv2D) (None, None, None, 147584 ['conv2d_545[0][0]'] \n", " 128) \n", " \n", " conv2d_536 (Conv2D) (None, None, None, 147584 ['conv2d_535[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_120 (TFOpLamb (None, None, None, 0 ['conv2d_540[0][0]', \n", " da) 64) 'conv2d_542[0][0]'] \n", " \n", " tf.math.multiply_121 (TFOpLamb (None, None, None, 0 ['conv2d_540[0][0]', \n", " da) 64) 'tf.math.sigmoid_30[0][0]'] \n", " \n", " tf.math.reduce_max_31 (TFOpLam (None, None, None) 0 ['conv2d_546[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_31 (TFOpLa (None, None, None) 0 ['conv2d_546[0][0]'] \n", " mbda) \n", " \n", " max_pooling2d_63 (MaxPooling2D (None, None, None, 0 ['add_142[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_62 (MaxPooling2D (None, None, None, 0 ['conv2d_536[0][0]'] \n", " ) 128) \n", " \n", " concatenate_61 (Concatenate) (None, None, None, 0 ['tf.math.multiply_120[0][0]', \n", " 128) 'tf.math.multiply_121[0][0]'] \n", " \n", " global_average_pooling2d_51 (G (None, 128) 0 ['conv2d_546[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_62 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_31[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_63 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_31[0][0]'] \n", " 1) \n", " \n", " conv2d_538 (Conv2D) (None, None, None, 33024 ['max_pooling2d_63[0][0]'] \n", " 256) \n", " \n", " conv2d_537 (Conv2D) (None, None, None, 33024 ['max_pooling2d_62[0][0]'] \n", " 256) \n", " \n", " conv2d_544 (Conv2D) (None, None, None, 8256 ['concatenate_61[0][0]'] \n", " 64) \n", " \n", " tf.reshape_51 (TFOpLambda) (None, 1, 1, 128) 0 ['global_average_pooling2d_51[0][\n", " 0]'] \n", " \n", " concatenate_62 (Concatenate) (None, None, None, 0 ['tf.expand_dims_62[0][0]', \n", " 2) 'tf.expand_dims_63[0][0]'] \n", " \n", " add_143 (Add) (None, None, None, 0 ['conv2d_538[0][0]', \n", " 256) 'conv2d_537[0][0]'] \n", " \n", " add_144 (Add) (None, None, None, 0 ['add_141[0][0]', \n", " 64) 'conv2d_544[0][0]'] \n", " \n", " conv2d_547 (Conv2D) (None, 1, 1, 16) 2064 ['tf.reshape_51[0][0]'] \n", " \n", " conv2d_549 (Conv2D) (None, None, None, 3 ['concatenate_62[0][0]'] \n", " 1) \n", " \n", " conv2d_551 (Conv2D) (None, None, None, 590080 ['add_143[0][0]'] \n", " 256) \n", " \n", " conv2d_548 (Conv2D) (None, 1, 1, 128) 2176 ['conv2d_547[0][0]'] \n", " \n", " tf.math.sigmoid_31 (TFOpLambda (None, None, None, 0 ['conv2d_549[0][0]'] \n", " ) 1) \n", " \n", " conv2d_552 (Conv2D) (None, None, None, 590080 ['conv2d_551[0][0]'] \n", " 256) \n", " \n", " conv2d_585 (Conv2D) (None, None, None, 4160 ['add_144[0][0]'] \n", " 64) \n", " \n", " tf.math.multiply_122 (TFOpLamb (None, None, None, 0 ['conv2d_546[0][0]', \n", " da) 128) 'conv2d_548[0][0]'] \n", " \n", " tf.math.multiply_123 (TFOpLamb (None, None, None, 0 ['conv2d_546[0][0]', \n", " da) 128) 'tf.math.sigmoid_31[0][0]'] \n", " \n", " tf.math.reduce_max_32 (TFOpLam (None, None, None) 0 ['conv2d_552[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_32 (TFOpLa (None, None, None) 0 ['conv2d_552[0][0]'] \n", " mbda) \n", " \n", " conv2d_586 (Conv2D) (None, None, None, 36928 ['conv2d_585[0][0]'] \n", " 64) \n", " \n", " concatenate_63 (Concatenate) (None, None, None, 0 ['tf.math.multiply_122[0][0]', \n", " 256) 'tf.math.multiply_123[0][0]'] \n", " \n", " global_average_pooling2d_52 (G (None, 256) 0 ['conv2d_552[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_64 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_32[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_65 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_32[0][0]'] \n", " 1) \n", " \n", " max_pooling2d_67 (MaxPooling2D (None, None, None, 0 ['add_144[0][0]'] \n", " ) 64) \n", " \n", " max_pooling2d_66 (MaxPooling2D (None, None, None, 0 ['conv2d_586[0][0]'] \n", " ) 64) \n", " \n", " conv2d_550 (Conv2D) (None, None, None, 32896 ['concatenate_63[0][0]'] \n", " 128) \n", " \n", " tf.reshape_52 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_52[0][\n", " 0]'] \n", " \n", " concatenate_64 (Concatenate) (None, None, None, 0 ['tf.expand_dims_64[0][0]', \n", " 2) 'tf.expand_dims_65[0][0]'] \n", " \n", " conv2d_588 (Conv2D) (None, None, None, 8320 ['max_pooling2d_67[0][0]'] \n", " 128) \n", " \n", " conv2d_587 (Conv2D) (None, None, None, 8320 ['max_pooling2d_66[0][0]'] \n", " 128) \n", " \n", " add_145 (Add) (None, None, None, 0 ['add_142[0][0]', \n", " 128) 'conv2d_550[0][0]'] \n", " \n", " conv2d_553 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_52[0][0]'] \n", " \n", " conv2d_555 (Conv2D) (None, None, None, 3 ['concatenate_64[0][0]'] \n", " 1) \n", " \n", " add_156 (Add) (None, None, None, 0 ['conv2d_588[0][0]', \n", " 128) 'conv2d_587[0][0]'] \n", " \n", " conv2d_554 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_553[0][0]'] \n", " \n", " tf.math.sigmoid_32 (TFOpLambda (None, None, None, 0 ['conv2d_555[0][0]'] \n", " ) 1) \n", " \n", " conv2d_589 (Conv2D) (None, None, None, 16512 ['add_156[0][0]'] \n", " 128) \n", " \n", " conv2d_593 (Conv2D) (None, None, None, 16512 ['add_145[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_124 (TFOpLamb (None, None, None, 0 ['conv2d_552[0][0]', \n", " da) 256) 'conv2d_554[0][0]'] \n", " \n", " tf.math.multiply_125 (TFOpLamb (None, None, None, 0 ['conv2d_552[0][0]', \n", " da) 256) 'tf.math.sigmoid_32[0][0]'] \n", " \n", " conv2d_590 (Conv2D) (None, None, None, 147584 ['conv2d_589[0][0]'] \n", " 128) \n", " \n", " conv2d_594 (Conv2D) (None, None, None, 147584 ['conv2d_593[0][0]'] \n", " 128) \n", " \n", " concatenate_65 (Concatenate) (None, None, None, 0 ['tf.math.multiply_124[0][0]', \n", " 512) 'tf.math.multiply_125[0][0]'] \n", " \n", " max_pooling2d_69 (MaxPooling2D (None, None, None, 0 ['add_156[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_68 (MaxPooling2D (None, None, None, 0 ['conv2d_590[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_71 (MaxPooling2D (None, None, None, 0 ['add_145[0][0]'] \n", " ) 128) \n", " \n", " max_pooling2d_70 (MaxPooling2D (None, None, None, 0 ['conv2d_594[0][0]'] \n", " ) 128) \n", " \n", " conv2d_556 (Conv2D) (None, None, None, 131328 ['concatenate_65[0][0]'] \n", " 256) \n", " \n", " conv2d_592 (Conv2D) (None, None, None, 33024 ['max_pooling2d_69[0][0]'] \n", " 256) \n", " \n", " conv2d_591 (Conv2D) (None, None, None, 33024 ['max_pooling2d_68[0][0]'] \n", " 256) \n", " \n", " conv2d_596 (Conv2D) (None, None, None, 33024 ['max_pooling2d_71[0][0]'] \n", " 256) \n", " \n", " conv2d_595 (Conv2D) (None, None, None, 33024 ['max_pooling2d_70[0][0]'] \n", " 256) \n", " \n", " add_146 (Add) (None, None, None, 0 ['add_143[0][0]', \n", " 256) 'conv2d_556[0][0]'] \n", " \n", " add_157 (Add) (None, None, None, 0 ['conv2d_592[0][0]', \n", " 256) 'conv2d_591[0][0]'] \n", " \n", " add_158 (Add) (None, None, None, 0 ['conv2d_596[0][0]', \n", " 256) 'conv2d_595[0][0]'] \n", " \n", " conv2d_561 (Conv2D) (None, None, None, 65792 ['add_146[0][0]'] \n", " 256) \n", " \n", " add_159 (Add) (None, None, None, 0 ['add_157[0][0]', \n", " 256) 'add_158[0][0]', \n", " 'add_146[0][0]'] \n", " \n", " conv2d_562 (Conv2D) (None, None, None, 590080 ['conv2d_561[0][0]'] \n", " 256) \n", " \n", " global_average_pooling2d_55 (G (None, 256) 0 ['add_159[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " up_sampling2d_73 (UpSampling2D (None, None, None, 0 ['add_146[0][0]'] \n", " ) 256) \n", " \n", " up_sampling2d_72 (UpSampling2D (None, None, None, 0 ['conv2d_562[0][0]'] \n", " ) 256) \n", " \n", " tf.reshape_55 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_55[0][\n", " 0]'] \n", " \n", " conv2d_564 (Conv2D) (None, None, None, 32896 ['up_sampling2d_73[0][0]'] \n", " 128) \n", " \n", " conv2d_563 (Conv2D) (None, None, None, 32896 ['up_sampling2d_72[0][0]'] \n", " 128) \n", " \n", " conv2d_597 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_55[0][0]'] \n", " \n", " add_148 (Add) (None, None, None, 0 ['conv2d_564[0][0]', \n", " 128) 'conv2d_563[0][0]'] \n", " \n", " conv2d_598 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_597[0][0]'] \n", " \n", " conv2d_599 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_597[0][0]'] \n", " \n", " conv2d_600 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_597[0][0]'] \n", " \n", " conv2d_557 (Conv2D) (None, None, None, 16512 ['add_145[0][0]'] \n", " 128) \n", " \n", " conv2d_565 (Conv2D) (None, None, None, 16512 ['add_148[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_132 (TFOpLamb (None, None, None, 0 ['add_157[0][0]', \n", " da) 256) 'conv2d_598[0][0]'] \n", " \n", " tf.math.multiply_133 (TFOpLamb (None, None, None, 0 ['add_158[0][0]', \n", " da) 256) 'conv2d_599[0][0]'] \n", " \n", " tf.math.multiply_134 (TFOpLamb (None, None, None, 0 ['add_146[0][0]', \n", " da) 256) 'conv2d_600[0][0]'] \n", " \n", " conv2d_558 (Conv2D) (None, None, None, 147584 ['conv2d_557[0][0]'] \n", " 128) \n", " \n", " conv2d_566 (Conv2D) (None, None, None, 147584 ['conv2d_565[0][0]'] \n", " 128) \n", " \n", " add_160 (Add) (None, None, None, 0 ['tf.math.multiply_132[0][0]', \n", " 256) 'tf.math.multiply_133[0][0]', \n", " 'tf.math.multiply_134[0][0]'] \n", " \n", " up_sampling2d_71 (UpSampling2D (None, None, None, 0 ['add_145[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_70 (UpSampling2D (None, None, None, 0 ['conv2d_558[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_75 (UpSampling2D (None, None, None, 0 ['add_148[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_74 (UpSampling2D (None, None, None, 0 ['conv2d_566[0][0]'] \n", " ) 128) \n", " \n", " conv2d_617 (Conv2D) (None, None, None, 590080 ['add_160[0][0]'] \n", " 256) \n", " \n", " conv2d_560 (Conv2D) (None, None, None, 8256 ['up_sampling2d_71[0][0]'] \n", " 64) \n", " \n", " conv2d_559 (Conv2D) (None, None, None, 8256 ['up_sampling2d_70[0][0]'] \n", " 64) \n", " \n", " conv2d_568 (Conv2D) (None, None, None, 8256 ['up_sampling2d_75[0][0]'] \n", " 64) \n", " \n", " conv2d_567 (Conv2D) (None, None, None, 8256 ['up_sampling2d_74[0][0]'] \n", " 64) \n", " \n", " conv2d_618 (Conv2D) (None, None, None, 590080 ['conv2d_617[0][0]'] \n", " 256) \n", " \n", " add_147 (Add) (None, None, None, 0 ['conv2d_560[0][0]', \n", " 64) 'conv2d_559[0][0]'] \n", " \n", " add_149 (Add) (None, None, None, 0 ['conv2d_568[0][0]', \n", " 64) 'conv2d_567[0][0]'] \n", " \n", " tf.math.reduce_max_35 (TFOpLam (None, None, None) 0 ['conv2d_618[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_35 (TFOpLa (None, None, None) 0 ['conv2d_618[0][0]'] \n", " mbda) \n", " \n", " add_150 (Add) (None, None, None, 0 ['add_144[0][0]', \n", " 64) 'add_147[0][0]', \n", " 'add_149[0][0]'] \n", " \n", " global_average_pooling2d_58 (G (None, 256) 0 ['conv2d_618[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_70 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_35[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_71 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_35[0][0]'] \n", " 1) \n", " \n", " global_average_pooling2d_53 (G (None, 64) 0 ['add_150[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.reshape_58 (TFOpLambda) (None, 1, 1, 256) 0 ['global_average_pooling2d_58[0][\n", " 0]'] \n", " \n", " concatenate_70 (Concatenate) (None, None, None, 0 ['tf.expand_dims_70[0][0]', \n", " 2) 'tf.expand_dims_71[0][0]'] \n", " \n", " tf.reshape_53 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_53[0][\n", " 0]'] \n", " \n", " conv2d_619 (Conv2D) (None, 1, 1, 32) 8224 ['tf.reshape_58[0][0]'] \n", " \n", " conv2d_621 (Conv2D) (None, None, None, 3 ['concatenate_70[0][0]'] \n", " 1) \n", " \n", " conv2d_569 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_53[0][0]'] \n", " \n", " conv2d_620 (Conv2D) (None, 1, 1, 256) 8448 ['conv2d_619[0][0]'] \n", " \n", " tf.math.sigmoid_35 (TFOpLambda (None, None, None, 0 ['conv2d_621[0][0]'] \n", " ) 1) \n", " \n", " conv2d_570 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_569[0][0]'] \n", " \n", " conv2d_571 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_569[0][0]'] \n", " \n", " conv2d_572 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_569[0][0]'] \n", " \n", " tf.math.multiply_139 (TFOpLamb (None, None, None, 0 ['conv2d_618[0][0]', \n", " da) 256) 'conv2d_620[0][0]'] \n", " \n", " tf.math.multiply_140 (TFOpLamb (None, None, None, 0 ['conv2d_618[0][0]', \n", " da) 256) 'tf.math.sigmoid_35[0][0]'] \n", " \n", " tf.math.multiply_126 (TFOpLamb (None, None, None, 0 ['add_144[0][0]', \n", " da) 64) 'conv2d_570[0][0]'] \n", " \n", " tf.math.multiply_127 (TFOpLamb (None, None, None, 0 ['add_147[0][0]', \n", " da) 64) 'conv2d_571[0][0]'] \n", " \n", " tf.math.multiply_128 (TFOpLamb (None, None, None, 0 ['add_149[0][0]', \n", " da) 64) 'conv2d_572[0][0]'] \n", " \n", " concatenate_71 (Concatenate) (None, None, None, 0 ['tf.math.multiply_139[0][0]', \n", " 512) 'tf.math.multiply_140[0][0]'] \n", " \n", " add_151 (Add) (None, None, None, 0 ['tf.math.multiply_126[0][0]', \n", " 64) 'tf.math.multiply_127[0][0]', \n", " 'tf.math.multiply_128[0][0]'] \n", " \n", " conv2d_622 (Conv2D) (None, None, None, 131328 ['concatenate_71[0][0]'] \n", " 256) \n", " \n", " conv2d_601 (Conv2D) (None, None, None, 36928 ['add_151[0][0]'] \n", " 64) \n", " \n", " add_164 (Add) (None, None, None, 0 ['add_160[0][0]', \n", " 256) 'conv2d_622[0][0]'] \n", " \n", " conv2d_602 (Conv2D) (None, None, None, 36928 ['conv2d_601[0][0]'] \n", " 64) \n", " \n", " conv2d_623 (Conv2D) (None, None, None, 65792 ['add_164[0][0]'] \n", " 256) \n", " \n", " tf.math.reduce_max_33 (TFOpLam (None, None, None) 0 ['conv2d_602[0][0]'] \n", " bda) \n", " \n", " tf.math.reduce_mean_33 (TFOpLa (None, None, None) 0 ['conv2d_602[0][0]'] \n", " mbda) \n", " \n", " conv2d_624 (Conv2D) (None, None, None, 590080 ['conv2d_623[0][0]'] \n", " 256) \n", " \n", " global_average_pooling2d_56 (G (None, 64) 0 ['conv2d_602[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.expand_dims_66 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_max_33[0][0]'] \n", " 1) \n", " \n", " tf.expand_dims_67 (TFOpLambda) (None, None, None, 0 ['tf.math.reduce_mean_33[0][0]'] \n", " 1) \n", " \n", " up_sampling2d_81 (UpSampling2D (None, None, None, 0 ['add_164[0][0]'] \n", " ) 256) \n", " \n", " up_sampling2d_80 (UpSampling2D (None, None, None, 0 ['conv2d_624[0][0]'] \n", " ) 256) \n", " \n", " tf.reshape_56 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_56[0][\n", " 0]'] \n", " \n", " concatenate_66 (Concatenate) (None, None, None, 0 ['tf.expand_dims_66[0][0]', \n", " 2) 'tf.expand_dims_67[0][0]'] \n", " \n", " conv2d_626 (Conv2D) (None, None, None, 32896 ['up_sampling2d_81[0][0]'] \n", " 128) \n", " \n", " conv2d_625 (Conv2D) (None, None, None, 32896 ['up_sampling2d_80[0][0]'] \n", " 128) \n", " \n", " conv2d_603 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_56[0][0]'] \n", " \n", " conv2d_605 (Conv2D) (None, None, None, 3 ['concatenate_66[0][0]'] \n", " 1) \n", " \n", " add_165 (Add) (None, None, None, 0 ['conv2d_626[0][0]', \n", " 128) 'conv2d_625[0][0]'] \n", " \n", " conv2d_604 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_603[0][0]'] \n", " \n", " tf.math.sigmoid_33 (TFOpLambda (None, None, None, 0 ['conv2d_605[0][0]'] \n", " ) 1) \n", " \n", " conv2d_627 (Conv2D) (None, None, None, 16512 ['add_165[0][0]'] \n", " 128) \n", " \n", " tf.math.multiply_135 (TFOpLamb (None, None, None, 0 ['conv2d_602[0][0]', \n", " da) 64) 'conv2d_604[0][0]'] \n", " \n", " tf.math.multiply_136 (TFOpLamb (None, None, None, 0 ['conv2d_602[0][0]', \n", " da) 64) 'tf.math.sigmoid_33[0][0]'] \n", " \n", " conv2d_628 (Conv2D) (None, None, None, 147584 ['conv2d_627[0][0]'] \n", " 128) \n", " \n", " concatenate_67 (Concatenate) (None, None, None, 0 ['tf.math.multiply_135[0][0]', \n", " 128) 'tf.math.multiply_136[0][0]'] \n", " \n", " up_sampling2d_83 (UpSampling2D (None, None, None, 0 ['add_165[0][0]'] \n", " ) 128) \n", " \n", " up_sampling2d_82 (UpSampling2D (None, None, None, 0 ['conv2d_628[0][0]'] \n", " ) 128) \n", " \n", " conv2d_606 (Conv2D) (None, None, None, 8256 ['concatenate_67[0][0]'] \n", " 64) \n", " \n", " conv2d_630 (Conv2D) (None, None, None, 8256 ['up_sampling2d_83[0][0]'] \n", " 64) \n", " \n", " conv2d_629 (Conv2D) (None, None, None, 8256 ['up_sampling2d_82[0][0]'] \n", " 64) \n", " \n", " add_161 (Add) (None, None, None, 0 ['add_151[0][0]', \n", " 64) 'conv2d_606[0][0]'] \n", " \n", " add_166 (Add) (None, None, None, 0 ['conv2d_630[0][0]', \n", " 64) 'conv2d_629[0][0]'] \n", " \n", " add_167 (Add) (None, None, None, 0 ['add_161[0][0]', \n", " 64) 'add_166[0][0]', \n", " 'add_166[0][0]'] \n", " \n", " global_average_pooling2d_59 (G (None, 64) 0 ['add_167[0][0]'] \n", " lobalAveragePooling2D) \n", " \n", " tf.reshape_59 (TFOpLambda) (None, 1, 1, 64) 0 ['global_average_pooling2d_59[0][\n", " 0]'] \n", " \n", " conv2d_631 (Conv2D) (None, 1, 1, 8) 520 ['tf.reshape_59[0][0]'] \n", " \n", " conv2d_632 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_631[0][0]'] \n", " \n", " conv2d_633 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_631[0][0]'] \n", " \n", " conv2d_634 (Conv2D) (None, 1, 1, 64) 576 ['conv2d_631[0][0]'] \n", " \n", " tf.math.multiply_141 (TFOpLamb (None, None, None, 0 ['add_161[0][0]', \n", " da) 64) 'conv2d_632[0][0]'] \n", " \n", " tf.math.multiply_142 (TFOpLamb (None, None, None, 0 ['add_166[0][0]', \n", " da) 64) 'conv2d_633[0][0]'] \n", " \n", " tf.math.multiply_143 (TFOpLamb (None, None, None, 0 ['add_166[0][0]', \n", " da) 64) 'conv2d_634[0][0]'] \n", " \n", " add_168 (Add) (None, None, None, 0 ['tf.math.multiply_141[0][0]', \n", " 64) 'tf.math.multiply_142[0][0]', \n", " 'tf.math.multiply_143[0][0]'] \n", " \n", " conv2d_635 (Conv2D) (None, None, None, 36928 ['add_168[0][0]'] \n", " 64) \n", " \n", " add_169 (Add) (None, None, None, 0 ['add_141[0][0]', \n", " 64) 'conv2d_635[0][0]'] \n", " \n", " conv2d_636 (Conv2D) (None, None, None, 36928 ['add_169[0][0]'] \n", " 64) \n", " \n", " add_170 (Add) (None, None, None, 0 ['conv2d_636[0][0]', \n", " 64) 'add_113[0][0]'] \n", " \n", " conv2d_637 (Conv2D) (None, None, None, 1731 ['add_170[0][0]'] \n", " 3) \n", " \n", " add_171 (Add) (None, None, None, 0 ['input_1[0][0]', \n", " 3) 'conv2d_637[0][0]'] \n", " \n", "==================================================================================================\n", "Total params: 36,351,613\n", "Trainable params: 36,351,613\n", "Non-trainable params: 0\n", "__________________________________________________________________________________________________\n" ] } ] }, { "cell_type": "code", "source": [ "def plot_results(images, titles, figure_size=(12, 12)):\n", " fig = plt.figure(figsize=figure_size)\n", " for i in range(len(images)):\n", " fig.add_subplot(1, len(images), i + 1).set_title(titles[i])\n", " _ = plt.imshow(images[i])\n", " plt.axis(\"off\")\n", " plt.show()\n", "\n", "\n", "def infer(original_image):\n", " image = keras.preprocessing.image.img_to_array(original_image)\n", " image = image.astype(\"float32\") / 255.0\n", " image = np.expand_dims(image, axis=0)\n", " output = model.predict(image)\n", " output_image = output[0] * 255.0\n", " output_image = output_image.clip(0, 255)\n", " output_image = output_image.reshape(\n", " (np.shape(output_image)[0], np.shape(output_image)[1], 3)\n", " )\n", " output_image = Image.fromarray(np.uint8(output_image))\n", " original_image = Image.fromarray(np.uint8(original_image))\n", " return output_image\n" ], "metadata": { "id": "yGPWZqlRqky_" }, "execution_count": 9, "outputs": [] }, { "cell_type": "code", "source": [ "!wget https://www.myclickmagazine.com/wp-content/uploads/2017/11/How-to-take-pictures-in-low-light-inside-your-home-by-Celeste-Pavlik-10.jpg" ], "metadata": { "id": "iOc2qZMGrRI0", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "0bcf57cd-983c-48fe-b472-7e27863eaf1b" }, "execution_count": 10, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "--2022-10-14 18:07:43-- https://www.myclickmagazine.com/wp-content/uploads/2017/11/How-to-take-pictures-in-low-light-inside-your-home-by-Celeste-Pavlik-10.jpg\n", "Resolving www.myclickmagazine.com (www.myclickmagazine.com)... 107.155.77.186\n", "Connecting to www.myclickmagazine.com (www.myclickmagazine.com)|107.155.77.186|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 325618 (318K) [image/jpeg]\n", "Saving to: ‘How-to-take-pictures-in-low-light-inside-your-home-by-Celeste-Pavlik-10.jpg’\n", "\n", "How-to-take-picture 100%[===================>] 317.99K 379KB/s in 0.8s \n", "\n", "2022-10-14 18:07:45 (379 KB/s) - ‘How-to-take-pictures-in-low-light-inside-your-home-by-Celeste-Pavlik-10.jpg’ saved [325618/325618]\n", "\n" ] } ] }, { "cell_type": "code", "source": [ "original_image = Image.open(\"How-to-take-pictures-in-low-light-inside-your-home-by-Celeste-Pavlik-10.jpg\")" ], "metadata": { "id": "Dx6mpy87rkAY" }, "execution_count": 11, "outputs": [] }, { "cell_type": "code", "source": [ "original_image = original_image.resize((256,256),Image.NEAREST) " ], "metadata": { "id": "0ukLuMdTrmfR" }, "execution_count": 12, "outputs": [] }, { "cell_type": "code", "source": [ "enhanced_image = infer(original_image)" ], "metadata": { "id": "k_0orzLHrmaW", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "c9bf6507-4067-4dd4-ffc3-d744c2925304" }, "execution_count": 13, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "1/1 [==============================] - 13s 13s/step\n" ] } ] }, { "cell_type": "code", "source": [ "plot_results(\n", " [original_image, enhanced_image],\n", " [\"Original\", \"MIRNet Enhanced\"],\n", " (20, 12),\n", " )" ], "metadata": { "id": "BbLn7fPLrmWX", "colab": { "base_uri": "https://localhost:8080/", "height": 554 }, "outputId": "a62e5e84-ad9a-48d9-b7b1-33afebbe0c57" }, "execution_count": 14, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAAIZCAYAAAD+0dlTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9faxtX3cW9Iwx1z7393s/oNiWBJC2Kq1QP9oYFCREE6FajZXEYIOoUBVJMKmEtCCpoRY/CGADRAj4mRooaptiiK1ALJJq0NaEChUaldjQUm0LtqXQt+/73nv2GsM/xhhzjjX32ufs83HvPefe8dycu/dea6655pprfozxzDHGJFVFoVAoFAqFQqFQKBQKhULh7YPfdgEKhUKhUCgUCoVCoVAoFAqGImoKhUKhUCgUCoVCoVAoFJ4IiqgpFAqFQqFQKBQKhUKhUHgiKKKmUCgUCoVCoVAoFAqFQuGJoIiaQqFQKBQKhUKhUCgUCoUngiJqCoVCoVAoFAqFQqFQKBSeCIqoKRTeIxDR1xDRf/bYaS/IS4no5z1GXoVCoVAoFArvK4jo+4nol7/tctyEkvsKhYejiJpC4RmDiL6CiP4iEX2SiH6EiP4QEX3GufSq+jtU9dddkvdd0hYKhUKhUCi8SThh8YqIPms6/uedKPg8//1fENG/598/z899wv++n4h+606+f52IPpqO/Toi+o4Ly9Xvd0MaJaKfSuX4BBH9losevFAovBcooqZQeKYgoq8C8LsA/GYAPx3ALwbwuQC+nYiudtIvb7aEhUKhUCgUCq8VfwXAPx8/iOjvA/CRC677DFX9GIBfCeC3EdGXTOcbgN/4aKXcxxep6sfS3+9+zfcrFArPCEXUFArPEET00wD8dgBfqap/SlWvVfX7AXw5gM8D8C8S0dcR0bcQ0TcS0d8C8BV+7BtTPr+GiH6AiH6MiH5bNqfNadMK1K8lor9KRD9KRP9WyucfIqLvJKKfIKIfJqI/sEcWFQqFQqFQKDwi/giAX5N+/1oAf/jSi1X1zwH4XgBfPJ36DwB89TkrZSL6+UT07UT040T0fxHRl/vxXw/gXwDwW9xK5lvv8CyR99cR0TcT0R8mop8kou8lol84JftiIvrfiehvEtE3EdEHfu3PIKJvI6L/j4j+hn//21Pe30FE/y4R/c+e93+fLZKI6JcS0f/i8twPEtFX+PEXRPT1LgP+NSL6j4jow3Tdb3b574eI6F+56zMXCoVTFFFTKDxP/BIAHwD4b/JBVf0EgD8BIFaGfgWAbwHwGQD+aE5LRF8I4A/CBIqfBbPK+Tm33PeXAvi7AfwyAF9LRL/Aj68AfhOAzwLwD/v5f/0ez1UoFAqFQqFwKb4LwE8jol9ARA3ArwLwjbdc00FEvxjA3wvg/55O/TkA3wHgq3eu+SiAbwfwXwL4mX7PP0hEX6iq/wlM3vrdbiXzZXd/JADAPwPgv4bJb/8tgD8wnf9yAF8K4O8A8PcD+Ao/zgC+AWZh/TkAPrVz7a8G8C972a/iGYnocwH8SQC/H8Bnw8irv+DX/E4AX+DHfh5MXvxav+5LPY8vAfD5AJ50/JxC4bmgiJpC4XniswD8qKoed879sJ8HgO9U1T+uqqKqn5rS/UoA36qqf1ZVX8EmXL3lvr9dVT+lqt8D4HsAfBEAqOp3q+p3qerRLXv+YwD/6P0erVAoFAqFQuFihFXNlwD4PwD8vxdc86NE9CkA3wlbtPrjO2m+FsBXEtFnT8f/aQDfr6rf4HLPnwfwxwD8c3cs9//mlivx90+kc39WVf+Eqq6w5/ui6dr/UFV/SFV/HMC3wi2CVPXHVPWPqeonVfUnAfz7OJXHvkFV/7LLhd+MYU30qwH8aVX9r9xS+8dU9S8QEQH49QB+k6r+uOf7O2AEFWCk0Teo6l9S1Z8C8HV3rIdCobCDillRKDxP/CiAzyKiZYes+Vl+HgB+8IY8fnY+r6qfJKIfu+W+P5K+fxLAxwCAiL4AwO8B8AthvuELgO++7SEKhUKhUCgUHog/AuB/glmXXOr29FmwxanfCCMoDgBe5QSq+peI6NsA/FYYART4XAC/iIh+Ih1bvBx3wT+gqrMlT2CWtz6YZL75/M8GACL6CIDfC7O2+Rl+/uNE1Jz02bv2Y/795wL4vp2yfDZMtvtu42wAAASL4wO/d5b5fuDMMxUKhTugLGoKheeJ7wTwEsA/mw8S0ccA/JMA/gc/dJOFzA8DyH7LHwL4zHuW5w8B+D8BfL6q/jQAXwObxAuFQqFQKBReG1T1B2BBhf8pTC7ht1y3qurvAfBpnHfX/rcB/GvYuob/IID/UVU/I/19TFV/Q2R954d4PHwVzEX9F7k89o/48Utksh8E8HftHP9RmAvV35Oe96d7MGbA5Mmfm9J/zv2KXigUMoqoKRSeIVT1b8KCCf9+IvpSIjqQbUP5zQD+H1y2qvMtAL6MiH6JB/79OtyfXPk4gL8F4BNE9PMB/IZb0hcKhUKhUCg8Fv5VAP+Yu97cFb8TFvz3g/mEW7x8E4B/Ix3+NgBfQET/kstfByL6B1Pcvr8G4O+8RzkeAx+HkSo/QUR/G4xouhR/FMAvJ6IvJ6KFiD6TiL5YVQXAfwrg9xLRzwQAIvo5yVXrm2EbVnyhW/Tc5Z6FQuEMiqgpFJ4pfBvHrwHw9TCS5H+FrYb8MlV9ecH13wvgK2HB6n4YwCcA/HWYpc5d8dUw0+GfhE3m33SPPAqFQqFQKBTuDFX9Pt/B6T747wD8DZjlzB7+HQAfTff6SQD/OCxGyw/BXIl+F4AXnuQ/B/CFHndmL/ZN4Ht8Z6j4+333LH/G7wPwIcwK5rsA/KlLL1TVvwqzSvoqAD8OCyQcsXH+TVjA5e/ynUT/NMxyB6r6J/2+f8bT/JlHeI5C4b0Hqb5N67xCofBU4G5TPwFzX/orb7s8hUKhUCgUCoVCofA+oixqCoX3GET0ZUT0Ed9q8usB/EUA3/92S1UoFAqFQqFQKBQK7y+KqCkU3m/8CpjZ7g8B+HwAv0rLzK5QKBQKhUKhUCgU3hrK9alQKBQKhUKhUCgUCoVC4YmgLGoKhUKhUCgUCoVCoVAoFJ4IiqgpFAqFQqFQKBQKhUKhUHgiWG46SUTlF/UegABo+n7362+7SkE7eev0d/f7GtNI01/kx/6nANY4T6fn4+abMp55pOgR6nnl58h5ENJ/aqkEIz0ANLUkMpJYvn5ePO3Rv8f1hfsh2kv8bd6VI9dzbpMNg9XOx/fa7d75+TMQ5Yj7zu0o2lZuE/m6vfwfMmjf1pN5k0ovapNzefbGgcLbh6reZ/gvvEZ85ud8njIBH10IDMX6UgFVCASqChHrgebCXj3pTWKMgpemnI764Xm1lMhGf8oCBhQactR8Pu5AIYkRiLayjM19o6QKazOiwCqW++phEPL/81MQAUwMJkJj+zswoRGwMKEx48ALiAnMjEaEhQEBYYVf09ie3c81GnOz5W/PRvEcROOZXdpUtfZPzc7Z8wDcn5tGXXX5SiH+zPFEJAKo4lqAVYF1XSGqWFdAVPHqKFhF8VPHI65F8enjilUF6ypQEYiXw8oT/XB8viu47Wmsmud3BsDfZ2PCVWu4WhpeNMaLA+OwMA4LoRGD2aQyArkcRL3BRT5ZBgPU69v/MD6jr4gfi15hY6a91/E81naJgONqbUOIoASw2pVr5Cd2z6N4vt52VhGIAtdHgYjgerXPVUbbMNl+lM7uTKnuAGYGkfUhiv4dOkRUB4BGzdu0PfAK8fY98ov8tc8V9txZULTr1cqIUS8qGglSadF/F05xrlZoetcxtjW2MfTFB1cAAdf0aSgE3/eXf2R3sriRqCm8+zinND1UYr9ciHn4PWZkgiaXgdJxgQ38C4wo6QpnKnCkF/gYqNskmtL0dLkgU2UyYuIwxD0lETRZ+c7lOHeu8LjIbSR+75GMwPZdzGTdCnu/C6ydnSMlafpO0/FMyOwRgo+lnu09Xy7PXtkvve9t7bbadaGwDzooGgFXLxhNCbIKVAniyrXTNLhVLzxZgTg301dPvB2U/s+qzBlCxlNR/zZOEIz4ALbKPYHAFOkzVZ+IGv8/CJuuoDlhw0xpwSgTNdZeBARRU1AVhKNaaxL1+yVBpyuTRGACGhOWZcFCwIGBhYywWZhxaIylMa4aG3PSCKsqjqI4LITDYnkQAQciXDGNGiSASDtp05op+UoE8TJRkEsKgAFiYCFX4ju5lWuNQBwLIjHbWJ2vQhBRvDoqVgFECaJkSrsAr64JqwB8zXglAro2Rf36COuDKxlBIIzcDzXV3Q1N4/lAz//sMksn1xJZA2srjYAXTPiQGR8sDR85NLxYjLBpzci7IT9bHkKAcMghCk6ysxEUcNLNjh7Vx0OFt2fFqsDBSR5Rhvqx3NfY73EtIYtbf2BK/U7J24f2dKzWHl+tjFUVCxNEGHwUiBCOR28HQk6KeH+edQxX3g9O1HBzooa5E5fW9KOf0yiWP2vmYGLcCKJGwUY+ToxWED1wEufohJKQAEpGMJ00XMLJZPPc2/ZjYNINZz2SfLxhtne9MKMx4YO2gBrh+grQG+xiiqgp3BnnRTydju/34PsoezNmhfZcmjxf7k0uJ/en7Vcn9W3ST+d2Jyr/Xzei2/YOm7qhCwTswqOApr98bCbZsk5Dut/Goj09hEC7y/yWy/YmmsysimzLcXsJzvWvmtMLhcuhqr5I4MK1KlQUqqt/t5Grr+Sfm52r4z0qbBw+pWrmiibMclEia0LfcgFd+4p1ECwjr5yHugIc1A8R+/HteQrpg7blGESNr6ILIIiVdT0lGWIhySe7sGCBiK9quMzjirAzF+M5FKCw+FIFq7qCGjYUUQWDoIkFigVGAglRst60SVl0FI6JsPTJPRTjrTwa+Q6SCziSL9R5Qa0+1W0UFAyBqIJUQCqAmiWNyuh/9rjZsi1/7jaL54dLiBp4WwyShsgXvQjKAIRB/v6bGnnSCGggWzCNfL29Cnmb1pQ/tLdHDeLBC9CgoHSO1dpytCWO8VOzhA4ngAhN7fpYmI02Gfe3duCEUTLlsbahgIiNzfmzj9Gj0jJJZM9rxGV83ygdXn9BPlmBafsCOjuISUBMbTEse+xB+nXWj6NeZNRPPN/JO1fMbeHZt+3HgE5fN6S7tVuzFhsWgAIGVPvrvikQTRE17znOqVx7A/FemnNK7CX3neWBuyAr3Dm/PUUcsMG3H9cxnh1THmFa6UQ5uPOgSEIVsOoQdBTWiZRitYl8tUdP6iY6ZHcV89kgrC+AU7J671kL90MmZuK7CQu++pLSZTenvXY+H58tuDidW9N16875uB6w9jj3vWir83VZBnyoW1x+ltze7tpH57km9/Ob7l0oFE5xPApAwFHNlP76U0c3q18hKpBQGFVx6m7xALKmOuU9J92bJKIt/b1NOjSsSNUtZfoxJ3Ey8wCzyKHxs6eJlfhMfgBwlyezLDDXJ3VLg4nsmyYi8ns1ZizMuFrGJxO5mxPjwA3Lwrg6LH6McATwCoKVG3Dd0BhoDCgxVjYFnkS7RY6ZKRNYGE3ieYxQEgXkKDiuJtUpAGrmQ7U0AjMgR+eKYtmMzNqiudsWR72sxjcdw5VJnAg9HiGr4PhyxfUqeHW94pUoXr56hVer4HpdrR+uK1SsTHM/fPKLcLMAfQaXPEYQi2YdwiC3HGBiLGxucTgcsKjggAOECUIKZQUxwGvzN6VdRl4agRp7/QYxkgjFcEHyApATKMYJGqnSVCEErCEkuZxndibkhJA71ImRMitGqAQjJsxiZdVUDijWo5F4x6NgVcGnjyuOonh5fW0uUMejtSW/H7xsm/4VbZEIB25mbdEa2F0HyVX8foH36WxJF+b+4RoZ4wEQljJWZ0dZN689yibizyHi9RqfE6HU6+OCBnFRgznJ/M3j3HB9x/Jt5OSdjs/k1lJuNXVYmrm4NYCFIE2gfP5GRdQUbsXtita2Qw+RIwseEwl8Yd53xV6+M/l8E/HkY7z9dkYfmK7xhBRp/FisaM1PtSc/UzoXeWRhK1/z1Of75wTaaY22kuHnd9pHFrPvSjpsRfTTz3Nk50355nLMZXpoW5lUiXvmGb2gWm6h8BCIm/OvYorsUVbIqljVFMUganqsmtsyvJR8qK57QV1NkzVdVrmnRM02n+HKNBM12BwPDZVJxryWPkasFyuaueAGmQAnatSIGgyiJjCIvygPwBTXC4ha/2SQKd+iQDNCBWTEiDBhBXCEghm4bpZOGVA2hXtroQBQI7CGWzm7LOYxdaCQVSBrtHnLn5TMoqIRdDWrhqgqiedhSw82BVhWi0Fjn0bUiI7813XFehQcjyuuxT6PIjgej1Z3x+h/ofS6Wt5JryeOPeF8B7c9h7UxJ2lIQBqE2BBwj8w4tub1LBAxkkzU2k4QNT0ujVWoW6cMKw9xokacaIz+Id6e47MTZy7HUxB3zjVIUCBuKqaSLM161ThRA/g7Vm+rTnCIYpUVqyhWb0PHdbXPaBuhDUXbiPr0soc7DNT7LMz9rqlJh+Il4VHRVudh4tZfjrohTpJtE8EUrk2UyhNEzdqJnIjFk4n/qS0/FgN5Ydt7rbhJ2M+/b0GvKZ2OunLBbG2ttdatzRTAKgK4++VN8nIRNYUHYa9p7SmrN60zPeS+WfG1wTcN3Cl9rCbl83OZTJgY+bGz7gzzR12hbv6Ibqq5sXAQxREjcHIw9qsL20EINM83uuZRzcxzwdYyIzAHmi3cHZr+MszPWbfkWboovs/1P7efOH/uHVl7OH2/WSjYa5PxO9pv8/a4YhvI9xIS6RLMdRCfuf/chMckjQqF9x1HrFAFXjlR86nj6krltSkJayZqLqBG78oKv++4D4t+aZa0+dXzyZYxeV4aR/PxnaDC/knsCl5Y3vhNQlFVuHLrLhqSH0SjNQXzQ538WYjRGuPVejQLmLWZ+wqbRcXCzWLYXDdX1rlbSVw3wvVyBJNicSJn4darIqwwGikWBq6WA66WBY3s3ter4CjmggR1ByUChBjXzD32TQQVDqLquBohRX5i8WCe19cWGPjTYlYRoaC+Ol7juAo++XLFq6PgE6+OeCkrfur6iGsZFjXHjUWN11m4lOgF/fFt446Cw03yDU0WNRZ0mrE0i18UcZcWsng1BAaDsNLR3h08dpGbW8l1tvgwOXrtgpyedJ9r8cC+IFeYpb8DhRGVQehkedCCaaO7Uq0h9/G25wXh0YJ4Wi2w9MvrI1ZRvHQy71OvXg2iRqxfjfxTm/DuFRY1a1vAZEo7ESOsZ8KVsXmn197/aZNRDiIMYBBS3rfXsKiJOvF+b88luJYIOuz1ptLz2bSBxyRqnkIHya95HsvvSNScU36DNGcRMDFWBRZpeLGuaMTQo5brU+Ht47H7Y1Ykoz/NSuJen5mR+2Jck/MzRp56BPm+eLaTaVjf5DzO3VehW+V+KyMVXgNiXWCXRNfT8Xr+m3GO1Ni/76Xl2+Yd329q23H+IfPezUTqZcsLp7u/PYUlk0Lh+UK7ojFWOcVX8CXiZXST/NTTzhEG1RXvhrvW1wXpaTMsnl7QY0p6wI15XKU+WUUUmq6hbYgaqCnPsRAQgXRDhgmZRmLHoqksm9+qfdV/ZYumSh4EmVaPIaNuQaNkga8JpoyT9nglohbSuJG5oywECA/iyVabFY3d4gcrBASGuVZd+2468AUzJStlYwWL9pXrCBAbAW6Pq1lwhAmGsClPr45G/LxaxS2KrD9dHxXHVXG92i4+x1VwFCN7wnoi+mEnahBK7KjjJ9/d7lvA1OzGT8uMICBhKAnAHowZZj1gfzGGCVTY4gOpQC24jVltUezQFW56bk2ViRpKfQVuGSJpUXR6F4CX44SoGeSl5TO+564aZYnVqngeEe1/6p+rDMsUCXJ0j/iIeiQP4kuMldSskoi8TpIhjaJvbDL4WXsS0kjrmeY2mS1ksrWRJlenNLcAYcG0o0c9VqN+Kp3joYL7bWk1WW+JAixu8ZViAt1ysyJqCs8WMdDGwJzFmTWlCYRVw55CnC0a+oAdeUk3ygQwgs/m+0beG5KnT1xTuXWUMVvlzFtw13bcj4tMcOzt1KXYvos8mc+UA+0cO3fPfO+IUXOO5Mn329O11jN3m2Pq3BePMWfN2KNv4lgoEU9lzi4UnhJkBYjc5F4EugqwrpB1tZgaq+z3+epQTxa3KTqnp7dHaDpOpyfs5+BvuvWN3V83uZ4jFXQ+6nFeVICVCUexeDXH1Wcst5C5Yts2m1c2dyS3+iHfFerKLV9sNyBFIzVLCrZ4cc3TojEOtGLhoTDGrjw9RocXr7GAWczah0OTjYcj60hQuwmZuxgT4dNHi0GDvvWyKVHX1yvWVfApj1Hz6aO4JY0RO+saCnoQpVaO90pmmxqMari8BdHgwaXFdjC6JsIrJlw3xnFtOBLjyMMSJKymFlU00W7BflTbMUwzAUYEFiNqwprp2t34VgqLplEu1WFR02PNOCLuUeyLFrJfk22Xuva2oau3lfVoFilx/Ch9TBbxMVqTS2EiiDZwVlVAAHusRLdMAiy+iRXPpFMip1yDKO2vQ7A5EL3emR1OhA17xWy25HYCFG5Zk0mamk4eBqt61wDc1U+oQWS1oNdnV1YMRdQUnjXywBcK7kxYA5ev7c+LXXngDmTlcu9em+M6nddUTvI/3eZ3qaVG4XFxjlC4qQ3tvaO8UwF20s73eMz3+9C8cvs7nTpit5H9uwxiMqsF49vpdTfnVyi878hxAlTT56MtaxaeG86++RuaxIZ00dvnsLOZuLwCCVepzTYNAANHODmjMYe62b9aHBA0teDDYjFvGhtRw2LbODcigBkkipUVC8d2wTZXSMqTVEFQD74KHEnsekoFBvVdm5QUEfSWAbx04sUUVeBaLUj3tbsYXq9rd6npsVVUNnE8no31zBuAohuCwcYq7buLiUr/XFWwqm3bTqoe48gCAogARNJJuV7XMfa50BRhCJxnG5Y6ZAGEWSOdk3vqwYNVhoUDxlAq3rKCbIs0YbemKj2wcSjeW6sId3JKhMi5wNIbmVJdD0DEyImdptQfVQCyrba3klTuezoytCY+uoAXIFyeYg4ZYYrTCLDTnqtdPyLiHXQrGu3j2k0ooqbwrHGuee8dzwTKrICHdQWm49K/u/tTyjkr8sbUbxVdnvKYiZxuleOK/bwj0Hxd4eHQ/JcaAU3nA5wmPHs3PtlDN7s5bfLE1nprnvDiXMbe9uC5LV3yTA/Bpfe6FCdWZK/xXoXCu4sRRBOuFMAVguw+W3h/cVYGeg0NQ11OgcLIjxU40tpjwQgxhCO+RljTxI6YDGbCSw6ihMFshgIRz4Q9kCw7EdM43JgYRNwDyQJwXsiJGmIQc58MG4ULlMVLCd8W9esi1tsrFRwVZgmhiut1tVgo17Zjz8trc6d5pRaPJCxuRNduSfMY8++7BOcYnHhwWk2pB9p9tTJerkcQK0iApsCi9q60MVYltwIBjE4IhdbqmxUgMne27kolFr9mVViAajKLmBaFwYhvo2rjZ8SB6fKWDMsoBbCG25ETjrbTnrsGKcxqJqx4FDjqEcdoG3I6Pu8RH6EHsHogalLfrS0JkprolKRwRP8egcStXByWOJEe/cGdIJB+3bDl0E07LvLx9UDUxqwIhG2/cWtFF1FTeOdwU5sPJXFv8LyJQdYpzbl7RpogWs5ZYczBZ8/dv1jtx0fUf/4NJKumZBFz+s5PaYZNmjMsxPz+zpEVDyEwHqON7Nm+7O2UdZeSnO831aoLhZugYW45jtScUHgSyNYNGjFDYNYnsZMOXOe07bvVXb0jkKyAfacmJkWDBr/jMW3IiRxbJpuJmrifbT8u3VXElFU/59vhblgrJ4IY7i6jEe9J8SqsZjxI8LUTAatbgWytaYqkuQ0R47GTWk5sHEVwLYQWrptqrk8qMGJNqMsdQUtHjBglazMRF8bez1B+NeIQ+cuJ6wdfMeJ+UXqHsWNUL7tfE8OvRGDgFFekx3XJMV+CpOp1EPndUE+Ia0bUqV5mGrbHPR/dy8/jSKXr8rP0AA5RnltMZ6pdvx6c6gK313QRNYV3CrcRKXtpFNhYR+yn2/7KFi+Xog/4kaNuf0ea20ihwv0R79pMYMfxiFmzYrDcEXhO0vlhYbWNcbNxF9p5r/n+57DnBnWO0HkdUGxj3WTclaoJnOsjeaer++RbKLwvCMUCGAJ9KAaFwttEkBX2w9xHjmky7DtUkVsKk+3sA+LhEsXJlQmmqPfffYvxaY+bMDpQdNW2B1dNW5KT35x0uLr046DhjtO3KBeoCuRoxM3RgwyLu/CsYsRC7BRUuAEuvKgqxF2ZViG8Wld88kg4qgVpbm5hdVDGgRnKDHFXOVbGCnsHFDSGtwff29usopyA6EMiuYU6oVu3hLNPhGJpPb9MlCTZW8aoa+88yCYPvh0xaILMi7hFOtyjRG9vJ3E+NpuHph093YXL5E2fByiuGUQW4JY/asJrl1V1Sy5l9igs4/q1PcfC68Zob5eNIkXUFAr3wH0m6b1r9hTzwuvBnjtOFv5mM9W935bRdqXl3OR2yfu+BE+tTdyFXJnJpyJmCoXHwB6tWyi8XcRqf7e0gfbFi9WVTiWzgAFMQVfFIGkoYtt4sODY7nm6T1jdhGZO/T/7EmQM+QmCx/3oHiWmlkaMkQiqKrpacFkRC5qcLCb6zp+onncxFABFTBf0ul7DsoaMQGhMnWgJKxxWBjnRsKpg7CrlbUPEzqf4NdoboJM0QLKAsXe+9pg3mybT7VXCqiXaVqjT47oUoyZ2fMoxae5JoGeSKBy+oLCdn7zf9IPJSCx1t35A54wTegyhk8A5F7BKhUfC3Sq6iJpC4Q2jxsK3h+2qgU1vMcmt2BIJ8w5cgliNGxY1s2UN0vV7yEIeYVueLIyeJzT2z+iNZy/HOQuY++RndbNd9SkUCg+BjRihgNZsUnhqSLqy/U7fBcNFimDkTQ982i1naMyzOV5HV0mH9QzFDSjPnikGXI9BEp8+A0dMHdPkg07qRI2uChXfuhzDuKJiQt0d2S7FYrqsuF6HO9RCigYAxFDYjmDMgKrb0Dj5EdbNza2yGMkSRAlHeIDrtC22hJWMm6JYsF6P9QVga/0AACAASURBVOVtgOHkYAh0IUV5w13dOmZ1S5poanK0GDxhdXV0yxqogi4xpZnqKHgSI6UihPGwnlljU6coY9+xIrtLmYsWw7agJ7XdrnTT+tNCo45j/VzhyaGImkKh8N5hno7mYL4zodJ/p2WYmZi5D1lyE6FzTg2jKd2bm1pp99e5yX179Caj2hIOCoXbcJsFX6Hw1DGTOPEz1Mi+eJEUYtq7kHJ/0A0ZtJk3afOBmDEp6eIRXwfwYLQ6LCbEL9HN1YW7opM0TrgcY09tFSdfXI6IrdolrsOWqFH4LmFOsuhoL6vv2xQ7LnWXH3jL6lZT4ULk27x74+Ek2427w93iwt1tuNBJ39I9AsNGLJ37t5PNddEH1K2Dglzyco50g9DpZA0B8F2uov36pt6dEJrl3MIbxB0n8SJqCoXCewGbrPLkdEol7E1aeTILeXGe4OJ7rOTNxM/euKzT51yWvbRjfWXc503iEhJqj7Q6l0+hULgdW6uAQuH5YlZGA2Eg0OfL0DKz8cAZsmY7IyWbWYr5UnsyTcfHb48QImGBkS0xbp6rCzfDrFicnCHFehRcK4FJbdcu8uDONOIYdYYCABDuaWZlQ6zDtS38gVwwy6RbxIkZTJ8TL84RxfGI9dXHWJresgbRJBvXKhGz11n7TmC+TXi6213ay2hjuVVHqUZcvznG5fZ69Vg1BOJhcYS4TvfmkuTuVXhzOKcY7KCImkKh8N5gj1wBbncimK/bSz8TOnO6c2PyJRPknMebmlT3y3ypgewwyc1XJTH6IUUrFN4TvOleXyi8QSQyxNf8x86LoYfr/myx3yPG0cijq7vdmiATNdnNZFgchAXG+fsULkJa2BJRrLBdwYyccasW2M5f8XvjghSWMfGudJB3nW7QbWBWc2vLpN6wHxFJZEhYqniroJRB/x4WKeH61AkfcZeosfvTfQia0+pSM6GZ+wBhdATNG1sQthKZx9+RYaE2jqIzPL1GOvm0JUHj2QuPiA0Lfbn8W0RNoVB4r7A399x1PjqXfrZwiXn2rpYvt5Xndc2fmVjZTvLj8xKLmUvv8VChplB4r0DYdMySpwvvEoYy6YppmAHsgNQV1FtWWYbynWarjalM1/qHlUJ1qMdBqk8hBXSFCLCu6wggHTQaWXBp2rynKRvN8olu0mm3nJmlC055DLe2bVwjPRFqaBpkw/KGw01OIn5REDcYn3r3JuS7itsOZaRgJ2vi2Tqh4sJkxP1j4k4s5Z0A2a3EaOofNMW2WSOvvcnkthXMwj1wd6m5iJpCoVB4jXhu89ypxdDlIea2so5ujhUKhUKh8BjQWYs/m+702/bnzAY8tGSFXSTyQqApDtGIFaOx01dcctO72PH9yRIHpbvFUc2F0DPkROd63LpHtxJQ3FZ0a4GVSb6HWdRgY0Ej3bsrkZhhNQNAyPaKn+tMo/zYug5Svw59p6weMghIu0s5Jj6r8OZRRE2hUCg8E7ypefJSmfXc+Zuuq0WaQqFQeAO43F/o9dz3oUreTYvPNYk8K3QyY0OEjLMEI25yiJhzpEEnM3AP+4TJmGrGjfntGGWd+30fmIWO3ScsdWiHkNqURewLzwtjGpZK46C5mPl34l6Hefv5TR6FJ4EiagqFQqHwxnB2hbNQKFyAWBO9Y/+pkFBPFw8ZCm97r7edf6xhuCuA6F9yqJFtnBm6pQmf97/Q7g9yS3nOWQWcOxbxSvLtXscU9Vz74WPWxR4hkF/rbNar0/k4/IAy9ftciqm9PgYxs4dby3VyTs+415+zOAKAsduVEWhj57Rd97+HjjHvIl7nmD2hiJpCoVAovFEURVMo3Ac0fa+e9F5iz2LlXLrZvWMO4XHfQEc5VpLzLuQxRuJvE501F3cnDsm5A7ec7nE5ZuuKcBWZAxHfpgObe8zYDeiEtKku91qgOlXtXM9n6v2xX8dF3OHrxJlmF6Ap3UxeTV3ujOXP2OdJU5rkIVV43bgDWVNETaFQKBQKhcIzQVE07xjusyI9kzXh3jBxeRGcdexknDS7fO1dGhX5fSiTNPbHM1GTChR0DYWpTdIMT2+9rZStpcHQLMPCJs6PXXBo+6w3wJ1MELE/1DYm2sT72Lng/cJ9Cb3Cw6G7XwE87LVkMuii699Hy5kngCJqCoVCoVAoFJ4RultJKU7vHyY3o2gLw+0ozg+rlq6UKZmrg+B+bScIGR7kTOzYw0RgJjAxmO3ktkzkxA6Nptu5lOF7kaOXnHgizeROul73yJ+0zfaJUtuJGOouIBbANW0JHdsuh+WOwvxMqt8VngDOGh7NJmY3XFdN+WmjiJpCoVAoFAqFdxG1Cvpm8Zrre3ZtyGQNxQEnQ8KiZhjMaHIF2tAjl9+ftn9GzAxypjE7YcNGFDFtyhwkDRENd5cUGCO7YdB04236majJbh46rId2nnGXqFFAVZyIEdsSWRT5n/jWyfo+W5fM7ft9rIPXhTfgx1Wv6/mhiJrCO4lzstKpH/Pt/suX+jcXCoVCoVB4T0E7VhuPmf3sTdRJmkF+WBBfdzLasaghNmsaJUmWIpeVlgjg+HTrmcYMZkbzv6X5JzcjaZyoSXRNJ3hiW2AAILVtmyOGRk8LBYhBIIgOKxk4cWK71dCGmIl9hzXcvuJwj9uxPRAEkIhAVbGu6rvu2G/xT4j044VCofAmUERN4Y3gdS9AzCEWz1mEZ/nmFsvAk3znY3vizV0t0ctyvVAoFAqFdwc3zevdTcl/77rl6PQ7pe+uQ9OuSmFNw8Se7tTkxqxpFMoKUYZAQUFoXLCNTZBEDLOiacRYmMcnMw7c0JjQGoPYfKQIRuwE2IkehW9H7ASNEUcIR6RUL9Tdk7I1Td5WeN+ahnqePWZNXB0EEQZhJExuNSMQ0W5VQwooeQQbAYQuj39TKBQKD0ERNYU741LL3jdhnUI7fxmyc2zPclPIVnTOET46HSPPW1IevJP+krLvpa/5v1AoFAqF54V5MWg+Fp/nLHtnYibyYKBbyxARWt5VqXMyhIUa8tbY4scjqbg7z9GtRI6AW6oMV6JzzxUWNY2Bxa1mrrhhaYwXzaxprlpDa4zWLIgNsRE2jaOMTvRgEDMCQCjMWgCQ0TLkFi9BxmyhLoMpRO0ZQoYzIsUIGKiRUvFGCApRAVS9XsivB1ZVrKq4Pq4QERxXgYpi7ZY0gJBghUIklbnw+LiPC2G9i8I7iCJq3lPcuJpzw+9tHuHpvD86ZquVPYLmodYkeyRNTP4BTonJbz5b3AiGOW+ed88RPPHJKU/dOe/WuDcLPjv5n6uTmoMKhUKhUHiCoNOvJxYvGJYuwbOIhr3IVuJg/ynO3LBnFqQLuaVKJmmICI1bt2DpMggleYzH1tMi2gmOVSzFDh/SSZrIl2m4OR1aw6ExDgvjwIwPlgZuDG4McrcoZoAaOfkCt8ahbgkjUEhatSJYLBj7TXYeW5lJKVyWnKgBOpsj6kRNt7whqBIorHE0JEV7KBX7dfT6aASsq1kNiSp4tU8hMYsatdwprHcuXZ17l/AazePnANR3QlhTPaR8t5nb57xvE9zfBdykCBZeO4qoeY9wSR97jH64mUynfGfiRtPffcDpO6XfeVJXsj/ScQ27ACOxAhPHPaMgWKJsAqBN+TE8TxrPIjrKsMIsdeACBd9A2ORnyffMx2ujgUKhUCgUnhbmgL5heQIEUUK+sEOnLkkuaOT0OZ07/KCBuxJLRGBwcoOCxYIhwtIWMAGLMz3igk/wIEcPmCvH1QiHI2EVga5GQMAtbmZhI0gaI2garpYFV0vDRw8Hs6hZGq4a4yNLAzUGLxGrhoFG4AOBRMGrgN3iRgXQ1UgaISOrugxKsTOVYoVCScHqljjmO2UCl1pdKhnRsqpCxYS4lU0GWwVQVdAKkLs0mbVREDee3omal6+OOK6CV2Ik0PVxNauaawXJatcJQKtCPU0na0pIux962x6kYyZqZiIz/1SPkN3l9r5DV7yM+H1hWc4RNedWsqfyVBsoPCaKqHlHcZNFzG2WMJdivr4HsENYtpzmn4nyh1rTdGLFkV2PZkubvfG0l5O2AlZOxOpuUTl/SvcIkiZIoIkQyvemqSDzu4nPmaApFAqFQqHwtHCyPTbSfJ5isqArn0Pt7JYwmn8OlyVOUhul38SWipN7U/xmJixshMpVc6KGMeK/wAQaVYUwYZUsAymYgJWS3JIskH0DJw8gTDg0wlVjXC2MQyO8WOyeh4XBjdAWtlg1i+0AxYsRNcRwVygaQpwTLQNqN1Q1ixoyaZK9ftTTkxMjIUsd3XUpSJM1LciJEqj583tdmCxHvW67RQ0YxxVoq2IVI5COK2FZfdHNK038xVEQA9EYbhJuyzphi5C1+3bv1pb71u6UNYtT6PzpbUZTMOmedn4v5wxvKOc4tKlN2tvInIdijwzKx1/XfW9Ctd23giJqnjHmvrLXT2/rT7fNKXftj0FoNAyrkPiMcxn3GVsySRNkyEZAmvLdECx6mk8eDwXjQMgRnZjpOwhot8CZn0NT+iUfyzf1H+JpF0z3gVv6pHS1x0ChUCgUCm8fQVzkMDH9BAapMY6Hy9Kpyslp3idnXnJMmYahtHa3J6Kev3oeCxtR8+JAWIjwQTMLnJUVAsVRnPcQ+zsqWawVBkjc+kQVyqcKLWGQNAsDLxrho1eMFwfGx18wDo3x4UJY2Iib1hiHA5tlzYE8lg2b8iwmzZAqGltZCaal942wydRiVoChUCYowykVgrgJiyniBBV7MAsuPGLXhFDlBjbQqIOwhHGz6EMzUumVKI6q+KlPK66PhFevLE7NT75ivFyBazeRXlfC6lYcYZUN2O3KmuICJIG9u9Tx2EmMibqFWO4L/QLH2Mp9WNCoW9TElus9XRL0x65fm4+dQubzTv6k+762d01nvl96TbXBdwpF1DxjnCN0b79utoTB9PvSXLc5KbSvTNx2j3PHLsVMztg9J+uUzY9xLAbaELQAX7yZLhmrVfFpKYjc19knkPysMU9nq54s9MSKi60ODSFruFwZm9TLqptHKLwFlOxVKBQKhRkba1lMcgeoyxX9bCd2hpQV0WkGUcOdjOlXJssCds2WzbQmpBKLB+OuSabwsmfq8gRH0F2BkngMG7fEiSDFtkwUdiub+4fSbDFnyNyX0rbczAxuDdwaWiMwj6DCkQaSdphSxcJmjRM1EG7l8ODGtpA2zHqIGEQ8XFv8hKi4km75CtlThClRyGQ9Jo6okT2dqGlgIizuOgUhvGIB64prFnxajub+zg2NASZxt3bxunFV/pyFxo2N59ILnggeKgz1d2k/2dtWi7brbcvIGm/baZGUgpyDW0X5ix3v2AJA9/cdDSD6YrK4AmmX1feeUU8OUr8ujp1Y2TwUk95yZ1yiGD60nM+17T5TFFHzzHEfK5rHQCKnd/us7qTFTlrG48Re6e5C6WZD8DnFELCSuBTmlmo7A+gY34flTSdufLKIRRvSboYL9tCA2z0j7S40VncCrd/DVotWlR5cT3zFxhdvijB4jchteibsslVYpCkUCoXC+wGafoTL9EamoZA7cowZYFjUpLTM/fv48/+TW1O+e1jSkCu1XW/sBApjaQsaEdhdnxi2qCQwi5lXWCEQLHQECFjILFiYFgCy67YeblvNd3palgWHw4LDsuBqWbA0I2na4n+NsSyM5dBwdVjMXYrITFrESRVRvFgWfHAw+2t1nyJlNhcpEZOX/BkYgsbNCCg2i4uIRXMkt6BZBSTq5hkMFYGqJMsae65jWEWT+lbhDUQEcdemD+gVXh1X/GRb8WpdcY2XYDrik9eCozKYFSwChkB2iK3CDUhEDQFgZoutxA0HZm9DRtgQxw5h5Dt/DVrTXr26hZh2i3QR31o9iDu/DsT2hrz9AdkSB/4bmy9jO/dB8pDnDb8/ISx4Njk8qG42v++CmaSpJvlOoIiaQsd5S5rttH0inEzfbyKP9sje+xBL58az28jkOU7MuGr/JjeWNZEnWUjTdJ9B6owMzM1JN3lQmhiy+WyQREC5P70JZKE5HwPGe4jXM7ea3LRqfiwUCoV3C/PCz8lCkE4Hs1WM/0/nfhOSVQsmsoa6nNHTOHnCTgItbO473Ike2ggmzWeoRmIkR1jS0Ih3k52zdBTSFetBIoXy3AjdVWUhQgOMJAriyPNjPw6wC0AWHNisU9CfTPs9AGKGUixkCQhGRAVBFXVg6RUSzxy7RXgcG9VksePyFWtYNSuYRs2KW9scGkMVuGo2k19xgzRg4Ws0Uq+3Qch1Ui4U+BIA9tGJTGzaHnvbXTz49NLcsobt3XG8uzCFx7CosRACw6ImtnofVjXajxtMkhtkDfw3xnECBg2DkY+754XFl6ZYOBJkzX1XVfeHjVPFiuYTGUlX24xFmpPsl+8mBa7wVlFETeFGRN+V9Dv34xzjxXBqLJjz2SM+HjCe9d9deXYLlxif+pi7I2ARzeXVoM27sGK/8uA30mdBq/P8XhgTcrb0lgliaia5IFvpSvdXFSiS+a/nHnW81gj62pGJscAQ47bpgGENNhM8M5FzF0vResuFQqHwtLCZA3YWcbbpsgThBIgmhZ62aYf1zYhB08kIR8TPizgtQZ4c2Nx2Du4uwhQpgrig4WaiCkLDCjL5hAiNfbdKMimPwZBkKRDlGISOEzMIdxXgwMAVocec6S5RRGA1kmhhqwMIuavQigOTEzGDVNL0/LG5k6JBoGjhEgP4Ihe5dRFBWcGtgUAW04Zg2z2JgLiZy5TLZqtdjqYKUsXqrlNHNaujq+UAZoEosLDg5UHBuuKqHXHdgEYMIYFQIoTihdYEfhaE8U6DqAm3uavWcMWt7x7WiZog44KaCeFdAYjiyLZbF2DiuTBDVSC+01fEK1r93TIjey5tLfoVgxDyDOPdhoWOxXCKnb4ieLWapQ7cauu+bYC21vvjcDBc44jmBH1ll0KF2bRF782mydzWRqsNPzkUUfOMsEd4niVbd68fxMNdcI6AncswX3NT2odYHmj6m/OmnCidoO4srpsCb5RwDeFoW9Y4ZccobfmXM9EuNGgqXZDaNOUzE9w5Hc2jdEpbY+jrwUy0zOdu+q07x+b0M6GjJynQj+5Mvyepy3KnUChchLuwxIV90LYaT0n7PCq7YkmddtmQLjNZM2U0cuwJRnqTD3hjkUDuOkJj2xyACMLsivEgdaACklyuPWknFykEH+oF6DqyK4vdqsQtaxrTiLsHIGLuMZldBHGqq1jZAvVyZhbLrIMAIOLVmPKOMKxQU7ojILPVCbuLk3ZmIOoq3M470eO3DNcaZju7qNVlWwQNhMZHcKPwqNrsUNRd5hE00zs6Lz/woSgRNNZGhoUU+5bvh9awNPtu9U1dru7URLw0X5ldBB5E2nf3EoEqufuTLXAqgNXJlU6EaOd60qNZH+kPrBZ+AH59J2t0/O6uUPBg3EH0pGwurR8AY1e3CFzp+kCP/0mR7b7mJdG1NOkWUF+0pmExpJP1Tf5eisaTQhE1hRuxRwrt/x6/sgVKVkyzgJOJlruOB7EiAphZbC6BW9Vu3YSyrKHkQoZPqGT/DbJmmz6XLwtag6yxJ6F03QYbvkVPnrvPN5kgShKcetSzGjMfH7ktzm0zn8/g6VwEhN4jDvfSZULoHNm4dz/ZOZ+b3GO3j3N1Ue2wUCi879jKRdyVKSKPNUdji+FEd/RFmLx445lsvlK6Nq6L40yev++S05oTNUsbQVeJsHJzwsQVs0YgZTTf9Wlr/tsL18tLupU8zNrXCqJEOIIg4QTFtsNTa4xD7Naj5mIEVxAtYCzbMShUu0MLuoMLwaxtCIMEAgGw7ZrCwiJImi6reUBB9tg18Dh/ykBs6h1zcDxhECt2TwapYiHpVhlNgGsFQILlcI0mkgIjG9lw5Hi+8e5086UAdL4MTOjWVktrm2DUHyxmTXNYjKxpsc07zCqrk2puIUZO1IgTI9fqsYdWtmDRim5RoxgWNY29RflW7KLkm4uYtMU0YlQC4e4EXHt6dWLmGJ+rx1wigGw7NSeO5JT0ONcmKHapH1ZEjXwnNCcEF29l5uqV9a1of4MsyrfauoBFwG14vB9/Tmd1dM602vCTQBE1zwh7fea21fxt2v1eN5TGDa989p6XlCvncUnauyIr1pt73TK4RPyXHvxNk2C0KeBpbakvwYToNe4f/tzTE29+5239dJtGx1eKMqInHkJdDZqPhkyW5GPz+fmaOd3e75n4iWORNguMdk57+nP9bq9Z7+X/OnBTueayVBMtFArvKvblraTVhNIDYBA0iexwhdPSBWGTJImwzEXsbjPiZGSDEyLthMVYZEqCBNKiACXZIpEvnQvKaafnynNeP+/37fFlQoHu5/2Z1WJ49AdPWxsTbOvtqDbisAxSj+GXq3RYMZji7cp7J7uS61Gu7r5DEDofFffu1gTJPd3mZSOPmC19owhkPL4TxvvNdVNz3z5yu21sBGPzv8W3RW+NcFgIVwvh0IBlISyLHedM1DhpMYia2PGLQCpgBVbj6ZyoIduYQwnsbah5PkLWHsKihlM5CRFzhoZrFLnFDo1+HMYposCqhFXM7Q4y9Idb20W/r7XpHuMpdkMLooa2RE04gw3ha8TNCSg8Xg/U3cPIgi+PUaBTpX13rKlsG5wqRfvpCo+KImreAej0/ba+ldHOpLlE8dJNuu2dz5E0uV93eSV9vwRZKJiVYh+7dyvlRCnXMQAHYRLbLOayxvcQHhpsdSZWhsRZ771xbhRhVqvHQBkDdS9YLpyO540rC4+DvTYex3g6f46kmbHbHtOx05hO9rvtXJPb300ETnw+RtvYK1t+ntue/9z5areFQuE5Y0+22lIpcVBTwkTS9NOek7MajabzTtI0N9OVlIcpckHSqCuXKZ4MQokDOOxdsgVKkB7QSfG1dArt3MXpnNIlFjABiyvb8SiLKBrPM5fAg3q48qpYATR1mUZ11FdjsKpHyFFXMONSI1dWVbdainmTwQBWZqwEQKgHjw0xKuJ2bImc1dVcs1oIyoVdDmwQgAQNigWKxRXlMX9Tum5ndqsJz5CEB2u7TtI0GDHTyLdwJ3ywED5c7PhhAQ6NbOv2WByN9pp7mwKqDBXFtRKOqljFQhMB1naOaqSLxawJwg2Q5m3LyY2FdcQ/ghEvRsBY+1uaEzJhibO6RQ1RJ4VWIujq6gQN7vRsc4i2TEF8ksXnIQIvPORGshhPoEzUjF3f7Fldr5huFuW99t2xpNfbNhCyeEkrEPbTQxE1zwy3ESh7itI5Je5c2kvy3b//ZT08K37BVt91bDilPabjaZAkmCww4sxs66Qr0+HU6QLULISZ0JCZ6HFHwjbTKY7wyX1PT2emZ5BFIO3bhE+3KDwSOP0FchvNv3fb2oRz5zNpk/O9tP3PZZrPzfd/COZx5hxRk/vx6fmRy5xPteFCofAsQWm+B5J7zv7Ifzpm++JMXBefLrAwh4LG417wGC8U2xmj5+FBLUasmI3bVHw3+UY1xZTBsAsOQmReJRiySUrdr+V+zimZLL4AUAug7FwM+2YJQx4aO/moqG2lnVenIq8IFAt3UVkFAu478ESeBOouIbR5DoE2qyP2sgmGS4kRP64Er66ohklGn7vGu93W3EQc7L7vZ477TtZJYOmEIDOYGI2b/bUFh2aEzdWy4OrQcGiMpREOreGwjJoOixfxzMcOW0bqsQDs5AM4WcS7G9RK5qLEveXau47YLy27VPlzMwByoifcrJrnI7Bg0wSzVml+T2YellsUsWF2qjEJVUTw3a+o76LWiHu9Mcz6iIh6UHFw69lEUOPxvrzVRvnUXL+UAVIPeqwywjgQQbVTNafv8rY2cJtQXHgQiqh5priMONlX4PaUrtsUsdv6363EyZTXbbE9br9XCBh2tWAQMnvpdxXEGKSgvsuBDrcUH1lDmMgX51gz5BN+vhm5ec2IYxOCRCpIqpnYwlKc7VYnleIextZfVjeFy5BJkyBpchshoJu2AqMNCSw+0mwZs9eW917ZXnuf73sOUdbb8rsPzvX7mVzi6djBv786k0/kcdt9q3kXCoUnDxpzAxCKvm/325N44E+3iImYoF3B9Ot6rJlOpNgs0/pON0YuNL++efrmW093csaJm06bBFkTJFBykWLWfs9G3AOtxmJQjOt5Eer0m5WN1P6gZNYEsF2UsKpxR0zwjaRAouZ6Qmp2PklzVVWssgJrKKzo7hvUV6l8YcwJHSFg5daLo4IwjoEygVavcHd3IbIgxp2+8h2gOgXl5NM1jhBZfbcoJ5FIPUitvU2i1qkajvgmqWZqLtuiW8Kw9RVuCxo3LMsBy+GADxrhw0b44GrBB4fFXKGIcHVgLMuQeIw0UawgHNXaGqtaW4BiBYNE0Jq1N7DvILZam2EwVtUuQzFMyO79j6nfB6poIA8+bMRL09V2jSITyFcWiCpekuAoimsxwuOagxBVqErWIM7XDRkREzGnmKj/hvfXq6X1soII6hY3i3OKn/K+Qp1xtf9XMSJJwB6vRiEiyIGFyWPsCGQoUdWQnwyKqHlm2E6kdyMwT9Oeu3oeWOgWJXJOva905mOxAvNQ0PSXT2RmPL6EABI0T4x7osk3+uQeNP0eGOmzKOODXwgXlJ46VcKs6PedqciOsPYNCWvMfGTM5AzBBOJNm9Qzbf6MNHbbO5oFuUv77k0kyt6x+wqLe+U56VfY1lne2vI0re5esz1TKBQKTxTzXJ0HWNqXcyyZjh2LwnUjSP9ugRNpaZIFgrjx3MMdgxLxApj7Q7duidMjdstw4xgzQhAgtgC0L1ecVypTIF8aqqDdy2Jr5H8WPFZHXBcRD0Yczlzs17viKysimKoVkDp71OeWYJxolHQr06HXBZjtXAQUiWqI2DWKFJzYMmVigM3tRaFgsl2fIlZIz39TnjTz3UUgf4/g1J5t3e4kxIEZHzbGi8XcfV60hg8iMDbbtt0LcX/XlAi7hcyihtzSxbznKcYOoAAAIABJREFUIsIQIpKB3ZusryA1gyiVtZXxGXqDWZp4H1K3vgJDdLRXiLXgIwFKalu2+3NGDJmwWOmLfkk4iybcSVR43bhVzeIxapiduPHg4FFOZQ9+DMv84P2Zk2WNOrHEpFjZSEeFQDpJ6+VTQNRKIV3rKDwVFFHzDHFTB5oFh9tW6ee8blqhV+yv6GfMCtm5fLKCdx8ItMf1YEyxdmIu90HRBkQ3aeVIRf3a1fPrc38e5VMh+7aa84k438UiP8fJtDgirY/bdwGru424qWMXPfxlrPqwuiqcIoiZqNfchtadtMC2bfXf6ftNfe0S+W3ut7f13XPpHtJWYvU318umD0yfedvxGbTz/dz4UAROoVB4DtA04A2ZIY9pQ74gYKzUr3FFsngZ0kKc2eQC0r6LlCbLGUSMikEZOKdDRowQulJnZaReeHMZIhzFVttPl9l2RmOiKYUpfK6+oqF1JTySN/9jUpAI5MimKHqgXnUBhwlYIVhXdNcYFrhlst9TrW7i2cOyQEc1ellgCjyRB35LM46anCcA3GcFDAYz9Z19uDUQMRYSkAgWEnvKTuREvfZbopNnZfZ8gpCxKUgIIhwa47A0fHhgfGwhXB0arpaGjywNH2kMYYIQ4cANCzGIFUQCFTKrpmg/YltwG2EjbpmuvY0E3cBknF+QOFlmyiRN9FPTGyJA9ZDhV3i8KDJXPXYLlZUBIsWBV6gCCzdACUyrW9YMrnCPrIl+b0QN44UHWI5d3A5OIB6WZdP/1YU1YXMvvFLfGc3rXl3REgiOJNYFRNzQTHBkI55WJdtqHIRVxOPYWF7Vop8Giqh5xxEDwf7KyR7ZcJp+Eh121slvJ2YeS5GM63n6fc46Z/M86cEimF5Pkwup2GyXPVLFldgQLaMUGC5KffUMyQUqiqCDENrIRKMQ5os6RvMo47l3WbgMG7kOJssxWd2eIw9znZP6ThfT8f3+cjOygB6/byMw9mLBPGabiHa2nmFO5u3CN2Wh6Rmma3O97wXHrnZdKBTeKM6tNN18aHucTo+ZEr+1eJHNQJ01NkrXhmo4mIAe7BdO5PTdwE0gIA+CGrvZhJWH+u+ulPpNIphwv/7kGV2V3QzOaWRPsk3IQ+IxMIbbxWAzbLvtdAfxAKYugw3Zxq6N7YVZZdzSr5dY/fdniZgzcd/uKaWDBMrrbnArjEijze19wn+pk2i9snwbY4A5iAfdvDGrg5q9NkhkVlhJxZbcL1rDh4cFL5aGq0PDB4eGDw9GyoDDvc/rmyM2jZE3sRtXkDAgDwYM+KIsdSMndfJBgiRJgr033V5WxG8naYDh5t0tWDy9hCBO8JgvDBYxklFPg3ST7dt9Stak28c1ZpnG7uboxCw5eclO5jhBs3K/2vqOM6DxbOqBulUZTQkL4P0ORiBJBOkGIIKVtBuHWUgHjV27H1eBK9wZRdS8w7BJ5e7XBPaUz3N9NO4zWyPEtXvXx/GHWNdEbJosjNA0EM7fNQ1m3Sy5T75jIgBigA8Rqk8PcJFp82w9FJ5nQD23LboLKJ3sFwG48BJ3Ei8Do8tVRdbcEwQnZvy3AlgIeEHANYBX0yoHps/erHTbnmfS4iFzWk6/Fwcn+sre7lEPQTxb5BtbVmbE+dw/8jlM5dvr6/kvP0+150Kh8NRwSmKkc0GM9DQemDaIlYhBk4maE2qatvMNmQvRyHgQNUsogEHUuKzAbITE0l0iTNdUsvgdJ+NukA9+jkOu6Fqk/c1yhgX89dh76hsXu2uH7SojIGKoyFjNiPtOQqDt6kS+Rbcpmq2fi/knCJK8a5PFGwExyF0/wpqFIDiqBQrGahYBtsuQxxHMZJE/g9sOGAQY9h/U60pEev3GjkGdifB8YmvkwkC8cnYLqMZmFfLh1YKPXy14cdXw4tDw0auGjx8ajkpYdexSxkygNuReBll7diE7Qt8CGOQeRr8MAk7jGvQvo4DxhYLgm8tu/c00BGucKwHCo6uwEpQaWlshCjQ6QmgQRtGRsmVNJol63yRrywdqaBbkyUmrcH2yzyu3AHsF6+fsz9qsWiIGNgCzjgEAUsVByQJ2s3+KWdKQ2M5VYVVjW2LZczvXs42RWQrIG0cRNc8Us/BwTpi4b386d92WcNGdY+ev2xAg9yzXfC3vfMY9MhNM83eMRErDumZWGvuznUgtXgNE/nVsexeDruJ0qzvyazZ1p4kE2NxmhDLOz1Rj5N2RBVVO71I1XN+2aePLbdbM930fuR/M/WKSaTfluqnfPHT+3Gv7cb9sSXP2Hnq+fDPhVG24UCg8ZQyLgOl4/7QRsq9C7wxqma5g6NiVyJWyWK2PtD1OBraLRUQRBFi7MtqJISc0ohwhS7R+vd9TdbeMvYSa3L93iPrgJvIzhUsLUyyCKCK48tBKcxaxT1OP4GfkT59s1OMFanc3ihg+XeYMjXoVCDOOvnsNYZrH/darJKGsU1za3xkLNjuCmtHFVjsNMsoWF6iXdV6uq3nNEX0iSBey7aeXBixs225fse32xIiNvdwCij0uC1Pn+9SF69jVKTYBQXrrsdgaLn8RzqC/fsS27cMCx3lCu4cfb8N2DZkiDLeqCLkgTpAw2ZUMd/NL/aS3jCBpIrfcLdI4Q+miRkaWHBo5UeN6BQeJmWJVIXZxChcv7y3sxIvarljKZmEEzkGwtbv0RXwrnTtTRjXyN44iap4oHot4uUv628iTWYGclc29vGZiZo8EuS+64j2VDTgdY84JWzpJLjNJkhN3RjyU/GDz/boQdMgnmL3dmvrWegjfcTs+7zqkGyHBV5lQY+RDkCdOSoL1tebJMyTdIOKwWWXZkIAY/SC3Q0xpzv3OiHcbQsCcfo+InJ/tMdpGfp64X36m4y3X77k07eU/jwt7z1woFApvA92KdZYbuixA3TUhD3rbcLoxriVyJmXUA/N6kgg+urXSMZLGXJuMvFjiXFYKncwBDReppk7VcCJggixK/kCbMXfjl3F+NM6yV8SiaRBwjhYoJiwJGUkVIz9hEE9Qs9KJyjb9W9MmDTEDRRBXr2dX1FdVCHEvKcOsaLgxiMktgJA08kSOeWwPEnufg6yRHvfE6st35BTbcUhou3zWixoE1/s+iSV5eePSw8DCwNUCvPC/D9jazqojrhK3IGvs2rDu5e4Jl6yXerMaJE1stx2yEmsQG7ohaUZht3I8O+lC6bzCdy1TRevBi/3W/ryNrY1wem5Kt9iV0XJdIcmmDLRmz3O1GFFzaJb4mMqpmMYLNbIIZISiKIBFQU5Gqsd+ElGIKymN7fjC7JZ2lNwDp/K+7237LaGImieKPF3eli4wp8953Db1ztdu028ddGYla+86mo7NCuBjKWbdWjfnT9v7ENDdoWy+pj78hv/q9lm0s+2mqE9GrT4ZDBPiEMRGYWKb7XztuG/mAqKG8wMNISg293vvJ//XAJp+hBBwIp07zhEkc9/IbW/un+deI6c0N937dfWjfJ+5794nj/n3bflm8qZQKBReC+ZB5tIBjsblnfRw12VyEoBS4hy/bihhNrcLbUdvyiRNpOyEzXAFse2N0z0I3bXKU/ZcCeTbUSdCxkkE9s957rqLkLGhKZLlS2RB8BgjZAFS2UunXi5bvTcixfmcYe2zGnGjpH1lv8fUCVm0148CsvoW5VEX4TRF46H98SJgrAVadZsLFrOSSe9EffMJUYKKeVIdxbboDuJnktwKCdF2e1uOgDNkjoAWd4XQ2ugpEdCX4O546oTeRjhQJ2XGXmlm1eWWThgNKdq3RP9CEHy9lE54bPtCO9EH/M7e+ZSCKPHrSXwBt2sbydWKelDsiIt5StbkPh9uk8OqqHldkROSaQiwp/Jy2bb3vhOWl6HvZMtsx2PMILOEI2KvH/GuQp2EijqsFv72UUTNE8ZtHeSSDrSnEN2UbiZhZgXqpnvepLTKDWnuCsVULgrTyUTMUPrez9EQitTKJFCwDneYQfakeDM9Z/sRPugAeqC5MXjSxgVqBhG5CW2YYY5UxtuMSQbYD95auDt0+utyRJw8SW3owdTOIAi1uY/kNnEbWRN57Jdge2y2vMn966RfPAJu66vzM567d5RrL7bO6yh3oVAoPAR7slD8jnGcgA05ceLS5HoU91xcPqCt1U2PZRPL6WQKY5j2MJFZGnQyZFjOdBLI/4/jfXvuTjpMRE0il1STjQilJ54GZfW0ri/7YpapzWH5YKSKEyeuZDJMYTXLFVdE4W7HuoLFLQEU6LFFGFi1R/4DYHFL2N05iKkzJ+Q7YwWJo4BbD8CsCaL0Uacq7nJlJE3IbHBiS9RjDjpZcy2EV6sRNqtgM99p+leYEe052raRAxYUl8HNW24EY4x+oQCpGNmg5FtHA50eTAJDxGgBhRxkjXOQPSkOpU6Lpd4O2fPJhKu17e3TWCSk2Lo9ZD8GyNugAqRHjB6Za4I6hbhL1qT6IWJwa2hMaNw6UdPLThHzasRMii3nndlE7HIfZklMgJKASKHeP1e3eDM3rnAhM9Ipu1CNmi+8DRRR88RxVpfEVunbIwVm5MnltvQ0fV6CnO+5ct+lvDchC0v590m+evo1osH363ZGzlx+Slf39NPNaXMVbpy0Rx3R/qDtuFZbXDp2UqnwEGj6EnL02CUCu432pskpEydzk8i4qQ+fLSNudnM6d784fte2cipUGDLBqti/523PlYmoc89UKBQKTwEnsg9tx0bAFKXulBOKYFi+xF/61y9CGkud1OmECo37MoYlTViPbKx0oOl+NJTRNLc1H2hPCKdpsO9lx+lzbjIARhwbjE+klfooO6XJts+xsJ1kVNWtH9x5w6/1p0p5aVc248nZXWKaf3ZVmc0aw4geJ3zSi4wykBeZ/D4R6LZLbBQO7wJVxctV8Kmj4NW64noV275YZbhTJTxUpn3nsGlQ9oO78OJ9QRPVGMQKYGSCGtlm1k3ea2iQLIKxq1OQFk0tNo3tsBb9TZBvO2xxvGTdOiv6prdBUMTVxSBe1GNNAc3JkVXFgu96PtGmRr+MnjJImjzGZIuifF2DkSWrt81OzPaybhsgTd+iCowgVet7zOb2RBZGm0h7GUZZbtJKCm8DRdQ8YVwy8N+UJp+7adX6nMIH3H3XqMgnhJh5F6hZaLjPkJDHf9ERAKsPMacLQYipOLtJORfeh7VYHcmWyV3J1DRA+myfhaj8gCEM7CFiz/TVM3iBgfHb071SHfFTCo+LHTKGUtvQ02QbwiXMXwXWBhf0YPln2t4+ZuE47h0WMzf1y+hfu4GQ74koT/T7iEkzu2bt1c9eXnO+gSIdC4XCU0RW6oYLR1KMPEEmSLolQFbQiJOi1mmNkUVyc8j3HLvkDMucbCHcSxTbaxOfjPsMoHkw39UvCBJHKRQ4jDKPXLFdR0/QMeoHzUJQIy7cCogIICGguTylbrUM29bY3Cs8To67IUXwV8S+4wTbltnrQ+BKMXwnIIZv3+yqJQHM3HepkdDaJSiXEX8mGJa+K5e7k42dOGmQAaL41FHwiesVn3ayZlXxHYa2wsJtlrfvPRSbNo7oV7nSPAYNuXATFmDqcQTIhXtJFmKrKlYoVgwZTJ1gAY0mO3Z1HaRo9MGw7kpFhYKwIKxKnFzx9+yhYrA4vXEdBI2nN7cisxoSjMVYSuUZiP4du8Sxx+cxoobUdmMSAEsiYeN+c0/dPGPKX7yPiwiEgSMERzE2M9wSMzGclZo+BFYbf2soouYJY2ZeL+0k2XhvT9Ec30e6cwrYOUUxEzJZsb3tfISaeyzMpIj6wbkcwJiMbX7QMQBtrqM+EPbI6QDCO3S2vsmrXOHXvC3glr1Ptxxlpu25IHMWHzhX0drG+BFx0/vYq9/cD2fCM/yAbyJI5ve2l3Y+rzecy8eCVJEz6e+LOY9sWXNT2rkuz/3eI2z37lsoFAoPxjlB5oLLBkFiI/NYe6Z+5OY8thYxQf6YW9BQkCLX/iPypbEoEON9HOt3ToIQuatJkA4tyujXHGAE/0onGaSn3tPKTp9TlczaQQEK6sYVak6asoQy3DdcAJBW8+O+TLSJYWPPrOO6qMWokAh+7PUVW4jHSzMXsLHdN3sMFPiW3+NRx2+KcpLig4WwHhifXAirWMyQJPB1ZT8Lhhc2rfcE1GXr+G1ydKdtAKIRekBtq+2wBhsvKck6OrbjJoxFrb41t+cTcSlHO94uqo4SeKjhiGUUF1EKMJ06G0f7g7epKEPPkKYb0JDrb1DkRnc0q7OjqJGPbq1jBKORlLk8sWNWHOKNv5ZpL+H+2InFfkOrf/KtvzNp3As1XkHhLaGImieOmay567WB2TLmtrwuJWri2KzIZWJGYYJBDKrA4+5gNCvR4XMac3lONw9ApMmSBuEnnp9g+rohadAFMDs3ggtn65g4twcFNpPBmCyAKxcmXkLNNxo1Xj4UeR7NZIFib7UD3XIm2o75rvt1uu1Xe206H8stIvLTG9Lsveu9tk7p92OReTmf/H0OvDePE+fGlXPEU6DkgUKh8JQwZC9fpEGQINjM8fl/++rKj/9T14p6zBlXThvz5CYV18LivvSB1jSrVcPaBp10sZIlKTHxCEKmVC5wIsIVPBazAnjpDH8nKfIq1BnBbzPPBMnhmnjIQSsEDQxyc+eQr1YVc+cIXoNtN5ocbJXJghAzW9BZ230pgsfCv1OE4UAY4kQhRW3nHfJAxhx163Ualk55AU2EoExuZRSkkP195EBoYHziZcOqivaSesDbIf9t/2oOQw9MG1tYh5y7qRs/F1tyQ42U6NF+psCWOcit+k1IgeZkiR3XfpzSjTKxE31ks9Oq6thdynWBeQHVPodFTizMsj8UEYbc7/3c2khyUtrjapJANXqC4qjWPyw7gYCH9wDlsuexIHZYO8UsG/axxwMNM1ufHWPbJJWVkPbWUETNM8dNCtJWMRwiR3zSlHL0P92cuU0J2zsX+c9BhGfl77GUyjwAxzHgPEGllBXzFBCYgrRJgzONdPOTBrFyjpghGkx9F8SmMm7eRMpms4MC+W6XqHHyIYjJN7fpCGqo0X5SPYe5uC8ADhegM3NXzje3+Zv6zm45d/K4KV3gvnPpzrR8Qsbu3fMcEXrb/Wn6rDZdKBTeGG4Qak5O5TnZlbgYBLMSluO8dGWK3F0HEQtlbHygkSjdY1yfdotU35MofHv6pDLUOtr8jsL61tLkwU9BfaEhFF3oaRDczYLFJDDm53PmBBSRXb1o7EzMCvhGDa7ehszlvldBnljRw5U8SCB1pdi22x5GRjreQS+vDmuFoIUU0NUIAKs2K58Frx1blGuvwfES7Bl8pyoy8mhhwsLk25CPKukkV1x514n+ncbUeKLda/oDABAavF3Gzh4umJGM9hYyWAMGEUKAqAyiRS0O0hqWVo5saeO3PJGtTq3lw8WPevHF27k6U9l1hm7xNYIMj9Z0Khttmol1Rh8ztNeNBElJJnWyjrY9Smhbx8cD9N2w8uCVyE5gyGxBMFn/myW8na+PpbAV7owiat5x+HC2e+7SPrdHwuylmY8PlndLmMxywH36fiZ6sjIc443ovmVNVhA1kR/sk7xu0tjAN2uTe/Wh7g9O8R1bkuYcZO/VdMLAGfup7IWHIUzIZ6E6kyPx2mZiZliUjEYxiSMn7fmS93aOjMnCxLm+Mh+/TzuZ3bcu6ZP5vufcv2ahZCaycj4lAxQKhaeCDSmRsce8h+LXrTYoNruxwLc0iBpdxzWR3XzfcSaULPs9K5O5PGHBI6ou99iJ1bdEDsVTnLBRCYV57Fl0fgze0BHT4wugBBUBuHXy6ijAgV0h7BMZwc0s0BVNsrgfnOpDXXlld48C5zkiyWld+Ve7v8troUivpGDf0qnXoRNJ6gSWFSVTNQA3xsJA4yBqGAszWo9nEmp5zVvnoP3//kL6PxGBKDsZQZ0MEUJ/P7YTlBGMvc2RBck2QsSOCgECgQiwrgqBk4dOCg55beukGP1hWIRhw5uGXtCtll0VkLCc79eiN8YsT3ZrqyASb6ipCPgLABCvIxL0oNqAdVjvu5FvPwzbNY2CkdoMLmt/Xg19RlMcRMryZ5ZmUwmrkb9VFFHzhHGT4rRHFpyqjnskTVqpOZP3Xv5zOeL8OYuZc+TOY/X3PpCm7052b+7pY7Vdkxjkbq1Co47yFosjvF4iW0LQmgkbJ2lG4bwmaLoec53bSli38hiXnVRUkTQPQyZgbAXBjgeJNwt+AQV6oEBKec15z9gT4M69wz3ZeyY2zwXfnct0X8FxE//gzD0uuf98/CZy6ba8C4VC4UF4FIHjnBQ15II8ho+trrOSSJuyxLyCsCTZyCDjvsBwwWC/sLtSheLoFitL5Ey8uR46rD5CyTSFzUvpyUbA1UtrBV2JHEquxYhRDxiiZG5F4RbSrWYU0FVd3hnxfgC4FUHIX9ytDGzVyu/qBBPcDUn/f/bebc1xXGcSDVCuXnMx7/+ie2b+7kqL2BdAACBNOY/Vlb2aqC/Ltg4URfEAhICAG/Xq5fltB+cNAsOJgDTXA80bg6FPnfU7Ae0GkrVyr2GEo/yFArqlytAspft3dY4kGPfiCxJsgD8qy3htZ3RMLytlHI+RKQrG36LdiF2YdjpIigfvtdToiG10ELQQB2nq67jMvDpMKQLPXKWZIGTg30Eqm72UVhUg/9l7Jdwe264YGwlOQso8YtfhrCTOEUX/s6qHsTi7H0luTUW9UJyxMZrfLxuo+YdKNRzrNkzbx2H3LGn09XVqOfxN7pm77zum/a38/lVvHWT6GwAY/6/XV1ACMOZJ67kPE7j/LNZ8uNYKtQwdFbQBzFEsTd4pPMqAI58MxSdeEXNx1PG4jWh/Xtj6HWN/7hUgW8g41qg4O6A3DRAqDVd8QkNfxeO4qsfU4+rxq/Fd7+2jQE0tZ65zldWiX/cBOR/MWd/me3pvVrktW7Zs+VtEMLzIScPFOSzysPh/0Hc0jTZxcIG6B4DkWwkEJq9SgQtM1yI5MUMXuiZvRp6SXgg1WirChKqiJOV8egqs2sNvLMM+0oOA0SqqwHl2CI7wgjnFQofIJ8PwEdydc6dVkMYBkVKwwLx1DIwx4lPtHb13NGmANLunrmkoC8KzqUk1VJOMmJ4OHRqcxJ3HWkqhvDfR4XkM9vjQQFtGce8QggXe3i9Q3ADcYVmc7u5VcyuABEPNVTSyJ5EoNzVv03j4nFQsRTekORDBp87+wNEkwUnDvs9RFqAiMj23WncwbxaNE6JsgjT0Xcu546E5lr+tfEXTDHl6OLiEc6m3LPXWGu4UpgrMRpkTkYSuKBIZtAKkUbbto2Z6OS9s+eWygZpvKvMAvxok83Caz+vIeN6rQXZloD47ZgZkWL+rslbbrwzVt0g9bzWtZHuUzAJEcqbKhOrkk1RbTbCxf6yDSAI/dgyVhQfcJ8CdWoDUCZIeO5zhu8Wldl5sz5KfktpXVE2BrOAeuH/6Xc83TTVXaK07ZX3eqpwZqHkct9djo95Hn475zHiqf69lkXqt/JUH0ArQmQGq3cW3bNnyHSQgFlpyhr4Ub496TG6jsRZzsa/hI6+ZkdoSCLJLVI8NKccWQxP0Ik4lpaGGh4hvS1Wjkg2LCA73dAkgo5Q9UeaM87TkJ9yQHYGRNHJVjDOkqXo8C4wvhmCP0ISHebW4QXnAjPEmAjma85JQh3UDthtnj7QJiGHIeVGzaJwzE1VN+MAKN3VTv1tKdAjw0kpYvHsnEFCKkBNhf8BevC4lxwJhle4vIs+u+KvDvT80Mn3d1FJRN7GQOPvOwaMWsucDKt6bAkAFN8Se2w0ZacdxnKF+1m8YcsdU3Oz9Hd04bwBodXePZy2uK2nwTnEcELiRJpAu4wu9RT/hvMFU9fa+1+vTFV0UvbVRT+Q49PtvYZ+ot7VElSsNRNgxnv+8Q6FTBrYrO27L75EN1PwDhI6az4ywq4EVyCtQpsv8fnUej5RhCxf98biVsXlVRx5T3+B/ZH2LtijGMickuig25OQ1ObOUtkxY3RB0ifSXACIWNW+M6SWLLwBXC7x9ggvHG7H0lqw7BLhLTrwsdHvUfE64hNcsSV1LuLyLAJEqMha4h07qitoKQSnl1L5Q+/1bQIzap2tZFSAVjB4rRR1HJaN8i7C8GXhdyVy/q2OwOGYuN4jtnlxvy5YtW/4ueQRgCKQUz48B6GhlewI1lK46llmNOJFM7es8FdRXGKLjL8YjFKPygdn11Q2xUr/hXnJmbQAOEXT3RAkDkQfrYIeaaPmQx7mf2anEiYWpa53a0brP7CKQoxaoXpbGW/0mLdquiafCjlhl6nBqmWlaQ2uHeeR4iV2yfCvjMWSNYA3Cu8IKFn8bRo+NnwL0g88TaUCzHBrJrNMTXfpfJxdvdizldI/MXC8d6Kd7zqj1nXY0/FDBH+phTAfBu+wvqop+OiDYaN8owtMdAMSzQXU4h01qUeHtXLhcDLNr8eJOVXFOr9MYIsUnTUc4I+hOfYv9pTXODe5PVAcWOQ9Kp2mCkhUt4VUSYXeCgg0xHwGlGCKLfonkYtSoVxKJI0DTPhzL2W6Ami8f65a/RzZQ8w+Q2eR6z4IwHsspZoZfxr2PV7Rtz8p/NoivjNDPyIOhyFmNk+GkXDxUZFmO/QpX4oeDp3aRPHMGc/AwzU3fK0Gg//8QfkJlTR8Bsi0fE8XYBx8VuQT5AqgpfYlASwU1atkreTZeKxhaQYy5y87j5goI/eiSqtPnylNnBTy9NhfVEEh+CjJ0cr7uli1btvxtsloIynfzvqDpbzv5Zr4VsCbCHViA0GPGPFjCK4fQCA1/NxBrZXSaXGPtn7yBaUoJ83XTwBJk+cPtNHv7b74CSILXNN4GTWOalIV18HZR/nagRQlqlZgghRnGosDRCTqxrezcDksZrrBsTL2pE3a0JFIO4lQPW3cmZG0NKrkSV/2q924ph0VAU1rRoNqDkEQij7PVt/udNhiAdm8NOMwDpymibdOix5YricVhgdelAAAgAElEQVTdQAnrbvbZ4eAMHNRwIlxR6wOnOgcT2zy0ZOO2OR2clKqrK4dIZpFC0+JpYtKL4mFhdvR4SYLgR66o4uXsfSZe1LlLi2N3ORIZwsQ+FsiLX6nOF7BQLIZXxYtf1oueb2UmCk+gGLwFQCrSxNr8pIXnYOrNK8zMbP54xtDIxePc8vfLBmq+qVQD7plkWJM+/J6NK5Zbz15d9/kRb5P5vAk/+bQk2pzlVv2G16uock1BR5+D2B/GOCdhiUm3XpOfynhRTszFq8YO8hWm1CW255WGSlcFiSz4AILQbsvnpfaJeHZln/1JgAkN+tAHTiQHSz13OM6fZ3V3v+r/87l1TV+BfYKvG0e1DvPnfM3V91nm+s73naZKPgvFddts2bJly98uQh1KAqypAU3BYSHNgJYAVYrHjDR/s069rARiB0gjDrSguFpqgjUINSLBCq+faCkD6dPRireIDIuILUqnp7jmpJt2oc/WkyoTUg1vIEhI1S3fWmceS+JYUcX9rgacNIkXIDS6oQ7WCEO9zWq1rDseqqK9qE+K7vfTjwzfSkyLVru4Ae+rjQLmhnHa8+Bi5Cm6IkwG5t0gR4N09zrSfI5je2zM5lJULXzIG8hAGgnuGKhl4WocQt4nT5gOflRwzBV+BftwZi5qAXDkE/Is8IN+D6Q+lwCo6/HTQwz8zr+YE0ye3zXtLoIfEZIY1y0K4ATWjFcyoIZ/BGji1XqAquJDVOJlYgzbhT5Lj7BermneecYbBVXcIUYDIOV+MBa0+/bvlQ3U/INldLCVh33z8Mo5oqYUlof9j9d5XWZDbN5WPyNc6QtGfw1leZz8UrFRZKxxrR3dGYfTuDJUxejhEHESOk1FyVHpB7JhoaKwaEtOghOwI7XuMuhwWz4pGb+e/dVipxHawqm27eZ/CZpNfc5l7uvVC4d7TCccvbJmkGgeK/W4OrZm0uCvAjpYxhyK9JY5YCUrkuINymzZsuVbyTyBlx2zLkW9qzF0yYlyyVNBFcJABnLeib8gqCS8qY3ZN5vVGVLhWYrjZUFdGwQS6b95vbDWkCAO743XaqIW+uRZjh6MM+XxU7uAF0ntJLIl0kvCQ1rUF0mFJ0ZwL5izAVDFDUmW2gCgIfUyi8iimwW0e2hU3LudR34fhaKfd8hxhKcOYOCRMkTK294MYAV6t9TObCDlUzBf2rLZdcDuHCFsq2yUBLge9e1/rdTOGtskPhqAmzQcTfDjZp9Ha1AVA99gz+kE8KdjaxDjqxFnkjlA7iEdFIqaJuQQA9s6PAsZt3uKqbALJDCgBHaA9AwTG7E3aOiIOl429X9mUiuoyJVOl+L2AgjG2IzAe4TXhW1nXTe1xQBrSl0ABABMMmQBwVSrXfXeCceyWlDh/Nm9+/fKBmr+4TKDIrNnDYb9NtzqoOuJ2T4c+dbrjxPWI+CjKNwX8sjT8dEJYAkKrcAagiHyeF8xyRWCWAjdd9XfFk1AVPHM0aGgaaO7cc7tU7896EHc4xMo4O2VuNGWT0gsmt4X6iJdwZiasvuQ8fwjf5Zxl1I5BDInQe6r/YHjonLNzH00VY9HoKb+Xp37VuGor554q7Le2gVX80ItY3flLVu2fFcZ578MNzC7LcOeWhMch+/tqTtlaNOjZ27ygNHq6z4n9sBa7I25ltCPrEfUjXZkGIVIXaasZeqKRXMF4miC091KtfzLe6+viXIrXxqFSUm+F7czz949S48Y2sJju6VKVuU9lWuJcebMDS+NBrKBP2n8EuiytlOlb0YrjWwVYv06/9zQFig6juCes/tiyvLiHaUaIVZdMvnAUFdItbG3VJkQCvG+GqTBR8PtMJDmEMEJT3LduztUdXte3UBRVedzUhJiK5O4ZvMXHZqcTXfJkDbA+r90z0Ql6Zky6GAOCgUPjP9n+pv1yztyZiAHTSR6i7Fqe1fcniERHmUgJ9/zkncq5hxk2TG4qs2AfGksfhM0I5T3xFOFnk3lAJZTJ6yiwInuLv67ZAM1/3CpxlpdbOfQJ52OeDTCVkvz264PPBqgjwBSfhFYx1M8pu99q6zWxtBT/AjON0MbSdYBdZ8frLAFmqRldHSZDU3Ol/N9znVM0IWTbFm1dEqFScK0MiGqrxBEvIfjt7xfpLL8wxQ1X1xvOvZf9q+fmoDOPCYEI0kb+/RRyujQwQun9ttK4rYSnb7Pz57nHdMxz/rlStIQeL0eb5Vn/XUeT1u2bNnyXaTOowRc5v3zgaFrCJL7hKCLpMdNVQHqZ3e0/VTj7HjgmgC9MlvMrQEKeT0BEqyWNaC+hbAFCU2BH6jmZNWcVitNMQ6hGcKinvUGmUWHbcF7k2ZeKoevL9qaAyCleAFUGlSAUwV6dhwK9PN0AEjRtEOaQIN0GBmyTk+e6Q5UjXw4cjEfdp122DPV+kAA8/4Rxb0r+qn4eXa8nCf62YGzjw9eV+20pcrMk2ThgOaFdsDsgANwUmjBDfDsYGo0Rd28m/+nK36I4IfIoAtHRq4A3QQnLKTuUOpm7itVgLyl/VD086qqJwhk93KqB0X6GNUmEBXc5IQK8BekhB/ade14L3vmumT56vdWwyFLvcPbRyTIinMeYL29LYQ2oLVrECqL9VvjfrJsWzFP8W/Vp3c3/62ygZpvLs8NroAkXj3/te0r0OPq+CtjUfDoGVBJSXkcU8V1fA6omY3c0IMmYOUBZBFkuj1wEq33pZBui7yRnqUyFQi7TkDY7O5SjkviYIntAtibJ4I1RHSUroo0nZFAzwZrPi0yfdbt9Q0b+y77aFNy1oxkbZV0mMdr2X6l8j4DL2Zwpu6rnmhVWedxHx1P9RqrOaNmZ5qPB677I+s3h2o9A3B2396yZcvfKqtJL1CQR6AGwIxdgOZSGDzuDsPQp/ACCYMo9YoEDDR1pvJyJ8N0y7+iDxgQYj/C88MBmoQvEHpEU8EPWD6aVgNdZ6LUB9g/AYruusqpiqYaWEi9I0gLZxcav0rDNQ7VaBCmb751QPqJe+849cRBHUoE0iw7T71/qEJ7ro6aip5t91TEeni2K2meudM5VFjjbi/pzrPj3hX3fuKld+hpf9kxdPgbfZL+5bJsiMINIwQcgcP5F5n5LDJsquDFAY17V3I/uweWWkYnTQ4jgpQnzHvKGIiyOnxKAjzwCQUI84jalOdKG6EQ8wr1IfEwefP1smxjzF/GUTu9lJ2uX+cQOvJE5BXyZlRKBjKfVxpGoCYiFF0ajRsxLZUkx42bOb/4nJVzzdbFvotsoOYfLLPhUwdWXUauYZx1Wat9LGe+zmzccX9bnFMnzhNj3d4zIVRDuJa7NL6BMapJx/12L/poAZfz6cZMcCiI6y7qTtCGqPpJ3QbmpdOY2rty4JTGSCKxx/u+MvK3vC7EwiiVaG5YLBcNPK19WUb5fABsfKDMgEbt9xXIqOVd2Q3Ptq0Ano/Ias5YkVnP98HjOL7rfa3OrZ88/+r4LVu2bPn9IsPkqAg8pMyBFU5BvAiyl9maRlydPEM/IBdHgjihI/E3jbTgrbDyGj1q1FP9Mt0w+Pa8oTd/CQXFC0jkO/HmxJqVs/T4MlCG+hqBK8O8xEAQL+sA8KMZrwg5d8Q5MerdaQe091wHGr0SjI+kuZuAOrfOAVqyGh5DvdRbnZhDbs29mRQn0+poj7JNBfNVpwOd4ScO7hiBcQ+voY6O7qTG/NsyiWTftZ/5j6TM9HaBeNah7jiCjxN0ZNif2P4mgDTN/iMSXmqNI83LJd/MKaCj+qTYOPyizndE8EY1eJsy3X2OhlHf4RhOgHZU7KQQbM8W0IUoLFW8EB5ySJP1HK9uOufQ1p7BSbxXKz2A0i5R1HoBfFl8CHB/k7W45e+WDdR8c3ltHbDJI49aTQXz92EoSlE28NwgVYz8HPWas+F5BeAAo+dB3ffeNe8ZSDPWZXbm02gIToJdqyoisdjYfDvOhDHx1xLnMCZeZziGugW/jKpQPZyHzTe0FYMvkGkQBFAjeOj/tY9egRVVoi/7QikyEgvX4+fyFljhw+/VOCEgMoMcH+kqbJp5nrhSMVagE7crHtvzSrZ6sGXLli+VT6yV47wlgZIEB4TIco40r4D2qDN4faiPBCgiuaMmHIhjyprUIQl2CHWUYgBHebamtYiZ4IujsT6n4xYgSCMS6bBXTVd1j2r4kZV4rLf4NZ1XxCsugMd4saI8H+gO1LBt9XAASRStHVUhc+4/GerTO7cQRYFz2IgTHQPiXjFHP4Lvg6nG6RfT1QCaAGpAoCaPqVFPyVFT3/j8F8gn72Olw8Sflj4HA24IuAlDgJCeKAZAONinhEaymtV+af4YKo9fjOeqZmt6j9jPpJRGnCtDYoUsr8wODKGjt7wUPY1I06C4jyPsQUdS9bTjYTBEPfK6NmYStC33bwFNuCP9gXrhkqohijb11DTpnA1K5WpDb/ktsoGabywPoMpCVobRqow6Neh0HpBGI8uZjcgrQ23etjIi6+fVue+dAzgR04Ce6z9cv1jbcxtxkb4CYHiMnT8uDr7z4XrjPZUtEjpJTNzDhF4m82V77Iny08IFKd5Ieps2V774hFs5ngDlsz48E9KtAIqqMJxILpu2OGcGMd8yD8yZmj4jHwFXFM/njzo2NzCzZcuWXyafnAjT+HMTXmRY24FiJIFASp5o4RwSPGiT0gEgPWq4m+lyGQJiYR3FCBO+LbeLHjTQSKBWwI/6dp/hGSINcHJcaEAO8VIhQ5dGLSrWRck9HYITDacK7gLcaI/6PlE3+tw4lFIGAY/GdoDxiOSiwVqIG9YKPbuBP94owu1xL96OLYPMotHQAOkWitbcKwcGwogg+EAI6BhYA5zoOLvgPMX4UlTRu9QmzL/SclsQD7uhBeeKZUhrOFrD7Xbgx9Hwn+PAAcGhEmnsNcgDgdbtmYsAtwM43KOm6s8CRHhdg+GAScvkyA61EhUw4O+EEVXfGjOraZQR8IUkiW9XcY/6AmW4gdHFdLmbFDAVGBGk+CDCl3WvNyMl3JKgUHqrZfmtIcLGgAocW/k375Wn+CijR42I99vxdXmM1d2Xv51soOabyzOwphpwNBDr8Suj72Hw6fWxr12/7p8Bl/cYZB+ZEFZcHYoChExXEOTkHXUerOGsqZT4qNDVykTLCZj7SpKFSSSukZea3sQN9bW7qAbv9qD5NRLgXgB0gyYd356BM/P+CqrIw3PP6/LZnhjBlVQSMjRwBiGv6lNDjn6VzIDkqsUqeKp4HItX3Xl17JYtW7b8bqk6TtWtavgRwXcFIqvRDfSsMR6UABB0tX6oZRcsb+WZpRrDtVJ/MANScyFjmQ7cZF2Hlal4wthHh1zoG6nZ8d28ATH+qZap58Soj51qIFL4t/iJqVMWWINhLESluBZLHtk7wOTmTZqXqW6Q0wfCgS/N9No01NleAWodBtSgXDfuvzso4+Z8VyRIE9/FeW1o3KrfCj+xBRi9yvy3wLJ8HU3w4zjwx2GBexYKZSmpu3ToIcCZfCwMVWue6SlDg8rYKL8BhkM96hZ8QdcVuKt54DSWJzxPcEpmhapDjNwuXhq0WS87xPoMvV+SDKdaRVnvsXGKTvUwdku9HXRhV26lvt3PVdiYOoDI7lQBHGUcJrfQu7/GQ1Wjastvlw3U/ENlHkfzmKopgmfwZHX+vH11vbkMipadt4vjvpp7gpMnQ7FW5QearOM2vt15uBcpx2Cc4ANpnhozDNQ60U4F6zwLq8U7C19BKeEZTMCNl+2LykzIuuX9UsEQLW2f48X+ZygRPV6GvnBV3uJ6PI/lV3fcK2JelGtWUuI41r2v5rG6hpreJ6vU41d1fCZVV6ZyD4z3PCtQu29v2bLlO8jjXKdpDEbY0agXVZ6X4vyBAEhG885DpMrZRXkIg1OyvKNJfE/gyL1CRS37DEwHC7OV4AEsgOdUxV095CkAFI06GajEtTH1nTCCY90xQtcbFD8wrpFGSGoeEmhAv7GNSvtEHXM9zOxannqZ4AgyBXa7dzQHScIYBqCHecrEOu4N1JhJi1CPCtppXDQvUFdeBad7S9z9mveXE+fZ8T8/O/566fifn4o/XxQvveOuHWdw1YwZQvcaVm0IzXHif60ZkHg044WRnrpXa/DsT844o9ZnbxAH/gBLn97Nw80bm+m+h4QeCs8CJp6RLPuuUv/2PtzMrQpNMumHiHuJwTzdGhBKzO1oyYek1pdE09MFQHr0LJSmB9sjBg4AUdwcyCLHZRblGa5a4agqF+E3Zn0SJ8m+wcb73S93ONWD+tyihZdn1m3neWvL75EN1PxDZWWUzUZbnRAeUOWLclY8HFfXw7RNxGJNgZEs+FcNcyl/ffpd9BAQJ+E5cb6DH6vJlGRkALMwOdfIjI6Baz3daStzvcZBK9fpUDI06zmsNa4wbZDmF4g/H7Z7+QiwrAI10f7TQ6gZzOozuhp3dU2ew6mk7COQM3fNSPG42Fev8V6p1+V4qmWtrlX3rfbPc0Y9bvflLVu2fEeR4U8mwIQgTXLIzHNk5YsQRw3G+Y5JsRm1ZAu/yjg7Vk+BBsFBw6xMrBmeZeCGQHCDAJHJyPx4VBFAzQkpCQ5Y11ypdJql43KaX6xOZugesDS/XfnCSRF8NA3oTUOPOdTTdEt6GKlaKIq1b77S6NpjXTVvFsUNgHYz6rt4GIrY996cXFY1ALKuAE5L+X2KeW70Xm7GiZW7e9LcYRl9zpeOfnb8+dLx173jz7vir3sCNb0QDAdIU/62UFIHHsYFYbrTFGtpzrMkJOMG7iShhoEmHYLT4/A4DqgnhQ5WADOGpNWebS9J4S9K1bNNSYTMVR3wBgNLDu/Lp1BfbBnSSB0e5cVZGSdjKqlJhvaw4zknHEhvOp3KbyUsKuGUgb3G5yzj+0G0g404ZlDrIuH9pwCppnzscnxec1Zt+ftkAzX/UHnLwHl2zGvnz/tXIE/dyf01BKsee+VR8xHDjZPzvO3BqIVN+iSCqxMZJ+8kWNdhOys1G5c6bUNB9jNdJcr65CR0msoZkf9wVRyOz2vBr0cAYE+WXyjemHNfoFQg5QrkRNl3CV5Ox1/196GP4ZG3hsBnrfdct7mO7x1TtYzXxuXUXS9lvp9nwM+z623ZsmXL3yk1u1KSvpC6F1BpJaxAEkQXegQM72piUpaW+XfTTEI5qM6PEkbXvI8GWxAdu1vvGYvEmKupB5CgA5hQeXAQ9Xl8j55NIMnt0gB10OSEoilw11ZCgwQ/uhnYp9qaesBeegmMI+TsitY75BQ06REuZumpHHTyxnzxOPPDiYOliWULehHgboTEXTuCfqOdgAhO5y1pjdmx3IAX82Q6VZyXxo67v5zo947/7887ft47/ufnHX/eO85Ts+yCyux1axbvLNFpnApX2J/JCcNE7QZ68bmwf/yQ0VsroMMCgPBFqv3JAM5w/LWisRgAIiXlt5MKK9BU0Nn9nL+6tcl7yy/NrFW9d0i3+p8VGKLHnAykOXEX3ELOKQLBYQ4oYmDGHBBz0gjO2DFWDj2DBKnTigA/moNdzvF0nKmbNdi9N13rZtQnRbCByN8gG6j5xvLMEFobjjkRrMbSbGA+nrU+/mrg1rIqILMCTFbyFkPvmSzPL5VpcDZ5EZxw9Jygkk5AjabCwu01BTgcXeb2WgOBnUCQprrAxqTtCw8nvPDAqI0+PYA9H/4aWYEM0ReoCrhSCXn0ZpoBmPlZPwN1Vr9Xdan7RtDlMeTp6tofkQqkPKt73XZ1v3N5uDh29/MtW7Z8iXzFZFJszBbGUb5lznfv9qclBCFgG4bwKI0w2wshACRhjC1hGskt0hY6VQ0TYnpBN0BPuPEZoL6dbV4tTGedOmKGcNlsPs/pWa+8BxAgaYCKG6nuyVJ1IFHg6Jb292fvCdR4mWdX3O89wjyO5hwgYiElTT1Exlc385pR3NSN+Zu1QVNAuuKuHfd+JqGsp/OmId9EBo6RLqYf3v2euwM295/mUfN/f574eT/x58uJl7MH4BMv14ChPb9iDf6vkUsDorSU8LdBKWcBQwTm1QJoPMNaOLkk6UUFzWeTm4y02oaG+YcE3wzHoI+vwH6K8iUteWCE4VUcV8O4VOcx0uhTQQr8cPcZTpS3VMZzQE2jbVdhrZwextLrLCSwcXb6kL01s4N6M6W2QQvxcZ3X1rJBmt8nG6j5pvKM9+ItMhtIuPj9mlwdPy9KR9n+1vI+s7DxHLo8vqAYtZpzbXNwhVl2mo5lzO1EFDsMU83Z+1Gh0lxrpn3NTzUFzw6qBLNH6lWxLSdJO/Cv/mvJYf+d4rHEU68b1mh97JszYBKKXi15peEua1DKkgQLKzCzGncEk1SAHzp6lX11aNxcVh1vz6T2YI6Duq22Z00p/t55acuWLVu+WjhnWbiFZJalwYzxt/4Iey/szZy7FaenrGY4eBhP5HlZoN9cE+yEBHnqSyPu7poXNeLhYmYVXYPZk4zqNHUmkSTrDWN3XvmGNS3hnGoUQxvuKngR4EUtPKidwNEbDlEcR3eQqAdBcpahnlbbOTnc2SgN0DN1LAG6nrFGWwryVsJAABFbCRvEPAQIsvkJXPdpoB6HeT30W0NvQO8N2oG/GnA/gT9fgJfTnninCa2xEod+uO3XUbKfOpCGwPfQWsNxNLSjGd+K9086nQwvQzWzktlzpR4kAZD17l5OknoFFOEN1zR1Onb+RsAGZcyJcSExm1odZzE8YCFQdg3rd11h2cHU/hIl0ggtQrnWqOUjtyjhmPFYgsUJHFmf5vZWS3IgspZ/81KDM0sUJ4Eo1NGe4FCdgliRDdL8PtlAzTeUcZJLWfnJXBl08/63GkJXAM/qOC5XXPyBa2BBpu/V4H3v+J+N6A6LLRaffPvUUmMs9vPrUYGwKbNOgIuJSsfy+KaIITM1irQBSbrs5R0s17UQLlgs/EU8jGrLl8ig/4nEE56fa+1b/D54Y5V94WE9LY683lU9+DmHBM7nzI//9C5yw2NdfgVQswKnuP2qjnV7JScelYLH62zZsmXL75IKhDQ3hFprZh4GN1iZqVTDMJr1G6DoRjQap2s8zJzFiqOuYOd7uAM0wqvsHZEzSDjKz3KvXjrA7b1WjDmghESV43jxjNiQqbqFm8VfKL1AcZeOs59oTSw8qQnaKQ6sOAdHQxK/0qCF89O4slQ5MipopF2LV4NA0D2Uye7tdiiOBvzw8qiPMUMOr3u4wftHA45DoH8I+tHQT/NQukHxcrfjREi2Cr9nXr+gYY9Pc8tkxQRHjeT4GlzYXflWOLG28gk78W3RtwmQdO0GNHZ4CvDEGwn6idZRwW3jOCWEZ+OZBMO2fwgXVAvxI5jUNIEc88bKTK9SwBrJgp60lz50IuqWDBdD1DHDyGYvGLY6x/KBfPEs0tClA2KeNdLLJcs14CBXgjSbq+Z3ygZq/gvkmdEUA3TaP3tvzGW91YBi2VccNLNxx8E+v0n/zATQAPyYftey5+vH9WTcl/Ok+qIy1krlsT3z/JzGqLjVN2380OncnLe1tMle+b9a4pm95bUAQTR/Er28b6hvYYY+f1Hsqn8PfUBH5X0oRvjWNLdXgEanv3rNj46ruV/zfp95vtTxz+tR7yJwu8qcdTWWtmzZsuV3SRIFM722RIaU8PxA4aRBWeuzlDT0UOY6gfGiADjIdeM5aKiAxFog6XUYxq5O16GuoWNCBR6b19eoa80kaGBOuS4NzRprorAsTJLZlypWYeui4j+w7Dw/mgEct0MDIBEx/prWBLfG0Aw3yqNlrVbmiUzwSQcDv6uR/lYdC3AyWPcuEFHcjgNHa/jRGo6WbXs6mSyJmaVZa7RuzEM/u5EWW8OnN0by+GRgimpdubcMIsOHCftuV+ipUOkWOqfWlhGC4x33Js1SXosTN4uia7c09s3C5gw4cS8cRxVDW/NBx7FJTxsScIeNQ44n72gGulgmJ4jxzpiXvdcL5J0E7iq4dxh3kRobpiemAuBkvg+aXQGN5kabQCwRwa2EXjaReMF7+ABgKB91MN5n1cm4P/kuE1A6YOFaV31Zp88tf79soOZbi5b/18bXOKxyMZ4H12hwjW5/VwOwKhgzwFCvP09DtZ7Pyq7nvxetrQaqgAZslrAK0ahhGASLlQt+URJ4Bc5dPIfIuUgangPkVfaHslf2VWN3XsAgiLc9dd9722XL68L4ZwAPYF0+Q/E3ERqLfBcE2dpr6eYfgbz1Ui3TZz1B+al5TE0i8CtIpuc5ZhWC+Uwtne9xVbe6vV0cs2XLli2/XKb5PzxfItzA8wdVjhppka2JuoNtR07agS4A4CriF7BDBkgFVXuxNSaDc6kVrObJOhdbymAt2QTH2Tx0Lf9iYEMtJzW9qM0E9ihQyHRz+wEJ/plbA25NDbCBorUWXkW2z7wWjmZaVpeW6xrL9lAlAj18BmdX6EGvB9fS3POpSYOqrczH7cBxNPzRLGsP+XnuamCPgTreEGLGujiTcAWqDBPQIHCd17QPrV3/7biOPGkX90jqZ4eaa1UAJ6LNCKr97NYEN2kGzqHjDssCxtD1BBeKnTR26FGX1qzXrH/N9kKMgsielmfSjniBvcQ7uzovU+kdC26aWnaFagrRQs4pkuPVwrTsV/N5JkIIfR5iem0gX+7ltQiIjhaiN3t6BMaclHPTBmm+h2yg5pvJbCitBghjjK/2r4zC8Th9KH+euOb68Jh5/9V587aVAVjr9e6JwG9yZUCugJ8K6qwkQBdJhaRO9rNaxfIr6XB43HDhmeqxuvZ8nSp/iA3Q00GeyPyz5d1Sgb0qthDmMZQeaI7Gc+6+6ZjOrX04+nnp8OwDzxTtuY/c1cq4+fVWHiu83mvzwXtkHiPvLW8GXvL+8i1qbY/adrtvb9my5bdJAQQqrSbNGjPugaMZBwoXeOOAyVktfUPMeOsQiCrO5iFAbmCdzRPmkudE8mUBMILy0KJfeMgDxt0xd2vZaF4jfi/qa5naNeid04WJDSWUwwoAACAASURBVFzzeRaiEVakQBv5exLMak1wuBfL4dlyGmNNAM9w0yz+qZUWJmbSELwe5PZDS94gEXrcSIBeltzbkzoLSZotrIMPsb4Ek5Krq7lxSpLkw43tEx0qiv/9Q3DgwN2f//+jJwdbfKVsbgEwrvHUoU44oXWxQQg8BD+R6/UniWdc2zGyXtvvOaTQmnNACV+peb/xgju7nmYfGP6nFxaQqamdDfsuDdosNXhDetUpSYN7d2qC5D6y8etglFJ7XIynwTCQuL69EHRgpnDTqBQvMjDsKXz8hjq0Un7oi2J2hOmv9uXm449z0pKjasu3kA3UfFO5GiZXQAnliuwzpxH7NYMYn6nXDILMRueqzvXYD08JgtE74nH30hgcDNFS2ZXyswKbxrrnAlFR6JlEbJbL51t2cHC+IN079/T5cYkXgTI+W3EluPIQmUKbnWu1hL0KaISS+PbnxjLppnpb6IK1HjXMb7X/rXI1H3ykv1VQcy6njpTan7dqsGXLlt8mAdIQi5CH3fSUbVVXIMmcpFaVRKj8MEuou0HUyhpDvhMDgkaQxdYoif0JUKCgMjQ7Jc650gkbjO+jgvyCNPE0iyuyWu18a1nfaiySfTQwTbmQNVnsJHVEhpmvDIQyo5sZnozXw8Kt4NsbuA2A0LxmDXMlFHGwLBrD26jEa2X+HMeLyP8ByxJ0iEJF8b8OC1/5P3fBXcU5a2pr6ISobaky6k0OcCCzj6mSHNfHhuS4cHjGyHK12/G99vHy/JpnG/OLJvDBfhADBo8jxEWyxgJ/QaoWYtTiAA0cszsRdvYpPyZwGV1iNEtgz8eC6aaVUjh105yDakEyHCRsD42qxINgGLqFIaqHlSXvVYBKVwbVlt8mG6j5ZjKDA5TZWHvNSKxr+dUx3D4u2o/l42L76vvqmtWg/CppQLwRogSxKx5JTCn1Pgaj29nl52OiTZTbpCwipXDJ9boa2/U6q/lahl+PT+kjRveWa1G8wrdSHkM8d3+27FNDpqep7CpdM1RqHitzH5s9Ym4yjp9nz38F0rxXWL/Tv8/cNHOo5NWYup5vdNhe9wse22HLli1b/k6RspZzgwC05HFI88xEDETwWUt4UgELSrn29j/JSJUpIXUykJyng8XEeQQkHMRo3a7ZCIC4IapMV+wgRPOz+dYfTFntBrKBNm4EI30ccm7Ob7VpWMUDbsQmB7DpUV6mqIEmxqlBAIeexuYHQ0Am2pPgUzVMwcw2Gh4wp1oeJvE6SFNAmvOUeLOIOCDgRjU0wtctpbri5ou6KLNHdfvUbpw6MIArFAdX+lToTbTlQQo6UKE0emx11cjCGrwxsOxEBu6RFdBQGXqmqHHgQmFJFaA6Pe/MXqZqBMPqJ6RuMqBsANIjvmt60qtYmB4TfTDLFMcgib2bp4s3PhvrINWOGEeQ12D27HFeKAKLp4+JP6AJXCHHUI/70VJq0aMIvGiG7RPoNU8fMbCs97hug42jc6Js2PI9ZAM1/xAZDaCRY+ZqUM2p3lZyBczM22bDavW9HrsCbr5UFjek0x/weA86b5wKiGIn3MRCnCQmvl7OqShUoTLjHHxpPEc1SGY21bXWaQM1XyNDHxGM/C+4fgYynf/qeClgz6z/42JbPb7W5SqsabWgfqavVFBxBUrN13g2D8yw42oe0nJcm35v2bJly98tK7CGpJ5G8hn5o9Pwm2ZsAXLNkEeQ211jApDgweZJImE5ssQKoKhW9hrXN3oCHAmEu5+MYAj7USUslBkPtYQ6rTKLLtsJc8rwvLIBP2JgjZBTQ3GIz/Ki6TljJnAamFruXWqrmgdGE9PCDGBiWWURB8s1aIeGewVpADOua7aofAzW4nlfkvvLRQgvsS23TKLjl+gdBazpWlLMK6BM1Q3P96XZR5M7SENvEzVsRCJLmHtc8XrhQSWlb+T/KLsEDpQ4wMf+mKAHSl2yfwLinmHJYzTc/pP24fxQqhLjPcqL349N21UzbAwZvseb4nivZxLeDFBKy/1Ltv41w05UcsvfKBuo+WZSja/V4FzxaWBx3FuvdWA07uZQimfeB1dlrn7r4vOzY31uq6fZnkQibXdORkkMFhKKQs5GrGsvNR44dno5rizqUsqb6wNgMRlKCb9JMuM9KX6dDCr1AkzhMfPYq+DE6pHIdPwKiLkaz1R663nRt/xiPJ7Hru6pfq/eXO+RWhbrN9RncTzKMfTIWc1hz665u/iWLVt+twgsI9AhmQKX/CcMO7oJ59iympQJbMjShKrz0Kynr4s478pgReIYDMFHD84AtP1C1Thc6Rb0QuALpq7d0lx3DcNZ3TC2ghK4oVS7e14rM2+TrRc3WGacxjAhB7iOJmGkM36soUG0o5Kv2r2r8ThrL+Eu6sZp0q9G/c8OPQF1F1bTB5tnBjLiWRIPK4Bba5FZR10TNENXgwsn4a5gMfGMXa3c9wjubCkyKf2hRw0gjhP2qmXb6l0DeDDemXq+Z2BSPnvf3l0v4riUCkgSu5DIbkawjt4yjV5eobvb/539DQ1Q4A6FNkBOMsNYSXa9RHzIp5QcM6HUl/JLo4wpzB50vAZBU/IxWXartGESYGF5p9+5eLgXOakIyA7gjXj5AU5N+qRgngq2/AbZQM03Ew7A0XjUYf+4BeWocevjwvF4FgflWX7XfZeZihYlX+2/Amu+Wq7qWJFiHdpyWmD10Rinh3IFYRhyNaw3yONYdrwJq1a2S1vUVIaWKt/3ZPmlIovOOnjWTO3NcVCJo1+9RjnuAXyZPq9AnRXYMh8712VQ5N9Qz9eE5b8lJIntpBhDD2eZ72d37S1btvxOGY0TA2r4Rt0Am4bgwQXforuprlUXyIWEZlc1Nm0jw5lspnZ7MQ9RSULQ+VTktsmRpCD7WV6lT1GQSJjADNJTIMrU6zm5KDyC4SS/bIuQqHhp5gsq02dH20SMV7ewo+kezb4lKWvxrHBCuabi4SZerW4rpgLQAxaCpQrV7vcpWXhjli4Gl01w06AgjFolwZ653fc6diEDSKOpV3nfoZdMV6cU6D0AUurPVX/qAvOiQQFdtDwlPmYpur0A1dMmqhDIjD3zOI/9yikO6C3WXS9sYkTVBGoU9LrKsKEAUkp43PM+kv1N4m6tFGZM6+rjKsbbeCZ8X/fz49i4g3LvVb91D8EydYDdfNsd30M2UPMPkrcYiMBz0GQ+bh6Hs5H3Vm6Z1663giD4+6NS6z8DTFV6mW0ENg+fXkJVojjBMqYzJv+LBuWEVs+3zzXkYjvlgXuOCHd4MLPevMey2G35vIyqFwYlGUAs/FWq8lnLKacsJeKf8QjKrACV6DcFNJy9WlYcOaux/B6pCgYwvhW+OpbXxeLYKx6fVVm1nC1btmz5O+UR7HYzSzwxrht0mcaWx7n5SYOPnh8+eR9u7PFtNYXmnWpzaMEWoPCMcaMMJwGLrOe8bkHHF0TjNab7UiSvXywYRGsStell10NDTZVQmLeK3aNVVqVZ+IiDWSfS6GVBLxDcAWg3bwqcVreb2J8Rtdp2S1djZXuC4tDPgDbwylH74nMbvJOBAIws63qHEQYBwdLj3h13VdwBvHTg5x24d8HJmBslF8letd4qgux71GmiG0kCZRGtBID5jADlIZYBsyVPC4fPCJqN2hV5hu7+jAkLar084B42PjC6E2+LZXkjYGJeXXbU3YfMqeYJFGTHRXerANKo7Ei9dSP4FTHOJyGImPqewDh8GowXx449xvvo1TuO/D/WBqN+6PNWGfcWdmnHR8ZSzlu60lS3/J2ygZp/iIzr42oFXe95TVbHv6eM2fh8dv6vMMpW15/31+OqIQqMIAjfBnFyXIWZDcALFagK1tB7R8djdaqhjv95XZjRwDYTpPmsEb4l5SmgWPrCrBTXfvMaEFrVhAflGuv+OgMeMwjJ8nrZNy+dXwHU1Out9tVtz655BeBs2bJly3eTNKbEDSc39wtHTRqYkueAZlCSjVZPWvHX0tX4pMeGEm7wcJ7gyCiGHAGcgTtHywokQHBYJOYD0ZowuN7nNGNXBemZMviwABCkmrP3jdcN4Cqq54TJDohYyEu5vwa0JjghuCvMe6I7wILkB5pKBNz7hp469BKoIexWfD5LyQcIlW5gjQq0m/F9B3DvwNkNGOhRloE0Cgx/Wx5Fpy+lV4wHEmxUFODReWd8cDL70l0dHHXPEpZpOrc9owrWNAd8OMYHj3gZr29jB6BnSmwTAhkO1iA5dqxvFG+helOsoI7bJUA+cutkKvvgphGJLFChSwr/kpMmxwLrhwnwGsfgqpbDCcg5Tyuf1pbfJhuo+WayMthWMq+bq/V0NvaeYaJvKa/+JqfGibXhusoW86z890wDVJjmcvh9DtfihMz26GpxnIwl7TBvlh+HQG4C6QrpitPR8UMcwNF1PYlAVzfHNbdPncwzHIsHkkOHv3/qOiRty8ek9rU5/KlmEKtACM/jsxXVh3F1JXMfWAEecyFdx83PyleMIUar8fje5XWeP1YhTKuyV+PwWfl1rL5mK2zZsmXLl8uEmM8QQGvAYdZTknYK0shSvnGWmHvrGt/dKOQ6cABmAGpLLxlxDgxJPeKsUJCYkk5aFwXCQ+dwLagLuVMSHKprWOhK6imM3YslUnVrzr1h5M26jmb7CCzs6IDdH4/tYp4wp5r1Kl0hzTwF+OLLDFrFvXe8qHhmJWtcAXD8cQP+1w36coe+3HGXAycEf6jgD/KMWNJlbx5NY7KRU6hWmKmuAHRFd6+c5MhJImMRwcvZcVfFn2fHy6n4P2fH/5wdL8Hp489NpaT/3vKaCKzJm9Swf4191k8TYCk+UICDe3IomgId3dJii5Z+yv7gfRIVSONztz7L8TxUThCeMtRJODbAcMDumaTiojqML94f762JFv6brF+8xcXKPlADJgWeEU1wNLGymzh/VnPvPgY5IT1oyj3pIknJMOX52H1RxV1RuGz8j/1dd0f/3bKBmm8q7wFqng0h7ntLCNOqzJWhWA3Iq2u/xVj86NBfXX9lNA4nIOZWnADusM5PN9oTwO2AATWnMhQad6Sbpi7KjHLLIlFDp4Y6eqPYR2nhUr96jbvX9Sj3vKfLj8vcv1vppLV9VcZzFGOfqzI/j/kZzYDPqlLz8Vdj761zwbP6vlfeW8azMT+3QzUOtmzZsuXD8hllon6W7eLGEb+bwcWLkfifYA2CF4UFVO8aIL1xUh+oqwNi8bA1KLfHS20/H4ADEgRkZDyOOBLP93KNSLh4ssDrVxeNqR0H/bGgN9R1AqgRGseC3hUiirNbemGoZWsKUEgNpPnztHCOG4zDBhCcrUF/HEYODPOqeVHBLTyV3YRurpVp4RYpnk/2Xwd3abe6BXeNPx9bfzOn5wnz2Hjpipfe8VdX/EWenPJsc+HSaPC9jj0ThqSx74hjaQ6zCMEyO7oj+1rzvmHeJpYZrXVPzu79CygjSXycaeRPirErMFBQhePVTuHj7GpgZrwwK1QF1nfVH/lIHk3AhkTUcT3eF8GeZctkHeZtbBvLOBd4pN/LOH9oObvgRUNXZdnVbmKa9ARoq9/dG3v1VyibWy5lAzXfTDjlp7vbOGTeC7y8ZuytwJmrycSXyIe6rGSu3zOw5iMLHKeoZ2/847qaE6kgvQ7sM1Wpl7vi7D2Q5Blhr2Wv6l3Z1HNhSP0mdLyhfhoKAxeEn0hPmpomeSsCHxeZ/mZS4CsQJnQxjAvtM6B0Ve4qe1I9j4slyvErAGa+l7kceoi9t68UvSSU8NW1r3h63nK9lSJS22L37y1btvzdMs9Biskgc+vRtgNE8s0gI6+JxItnGojNEYPDPmDanEL1tOOcoPjW/MWQKwJMPS3NX/y4B8DNgYlT3DOGK4Z62SWWh2scAPe2UZxnt5AeNa+R7twap3aczARFIAR1Pq7hTBlUwqxXNyAITzOMS9FUgVPi7bw084gQVbw4mcddBae2SLOsXfHzrxPnyx39JUxI9FuDyoHI1Mkw8XiI1vjdn5t0GYzaFzFvn4Pb/HhmB3pRe1n38mKeNP/v3vHXHUZu2zs6gNM5d4aYmC2vStVVWvk7xL2yKhAKH14OyEAR3jO9uye/5Vw3D7MAFnQAfngtIPJ5xXhg9tbTgYnuHnE/VX2b1fYm5uWjasgO+wpg4AvH9T36gs8LaO51J8g4LiHKG6BrGgUEFx1sbA3SmnvSkOsJxn/T9EEZqxlovVcH6EKxEMMO1bRxeu8GQHYbN3wxrD425+Q0W36fbKDm28p6mFSl4nUQU4ZJspZYz38KPkzH0ZhcZYFZGWLz9nnbR9Y7nhNp8PBIfsq6zvWvBnAFnqDAeQJncW+drzcYlwRX6u9yL0O7+4JyBZxRATQFJD1+6Emz9YKvkxnkmPet+v+8Q54cX7fP4BAw9nsgF1NmlaJUQGT17Gu/r3Wq139Pf1mBTfObF34+u/+ra17NDVu2bNnyvWSc9Wh+cZ3nnF1DipSeGsXAoYcLALSB1NP3swQqB+pGFtRDHxC2Xp1tOeefQITgCOxiVXexzFF5TePW6IU4l1wb1Vtk/vTrRh0eW6nqYTyML6UsO08L/p7ICuWAkGoLDxx6ONzvCr2f6GfH0bqRuSoAaeaZEIubNVDAaK5IaWyT8GhgOyQooNHeUAuFN06ajrMrXk7gLw93Eu2mw03tu+V14XMIYtry//inMVZSf+E4sf/Ce6t4s4iIhdoVJVzgYIgy1TcJhDV1ds2x1NVSWL+o81azB5V+jPoZdU7ghfWX2ueQGcXGjuN+dcOY8l7Myou4F03uD7Jrr1/289pqFBokDIn08d417J7BBlO2hdazt83xTWQDNd9MVkbMFdDxkUF0ZVxeXb+CInX/awbalTFWjcjPgg8D0LK47sogFwA/gFCEVoBSl9HQJmDycA0drzMDOjGVqy72jddVAH9pkhj/ByPQVEGyPXm+X9hX+Bd9Q5Fp1/HYZ6R+mZRgQXo+AWOfahgXu/n7CixkmXWflH21PvM5X+ZxVfp0+RnbZm6o4GfS8T5rvVdzxTz2J7Ngy5YtW36LZNZGSWCGRptPbOpGHQKkIRiC4lHj54vEW/w0PwFoh6igO7EFgRnxuGt6yHS1kI97d2O2m6vN2dJTQNVBGyC8E8JWq0aa309XK+/0vx7hPcBo95ZViDanb+3OPXP3/QfgGbDcMBdAmliUks/sxhDT8L9aQ5PuxDa+ggnMi+jo6IcBWQeAA4r/tBah6uIPxdJza4AAAgkHBi3PyVEWAAZMVa+L0zlH/uqW4en/vih+OkPsf9SqdraGdp44OnlU3OB3Y7xiWVf68RbzwLJEXhZi1jssgVZVLOKRyhiaN3RBicFCL64OZJ8j8tAaguib/UKR48DHufV9mBcYzNMnMrxZMWY3NM4FVtiLl3c4eCjs98gX5EOmuJ5REqnvaPwfzmyqUZd8YacRGkYvmybMWAZAFO30oeSFtzJ+CcJ00ItOA5jqnfw0vbQxvs5Q2/Jp2UDNN5SKk4745rUB9Uzms69Lf15GBSSu9j+T1/a/R1bzxwqUweK4BuenubiZjmK86wVHzcU1h31PGlanLwrPRAngD2T2qXrYNmI/L3O/iQWyiK/94Jo8ywzk8LgK9FyNkRVoUctckW/X61VPGsWjh9hHZT73aiytgM23nHN13yvZ/XzLli2/R1xHKh4ACgRnXRUCGwHmgGBNWdRl0rF4IL0zxD1dwtAvFikAhnXQaya8Z/wAdYS8iXkFVBJSGls9kBeEJwHBGnrTVK6O+oW1J7yhIBDlYA3sug8pwstttHIsoZYbvQXoVETAoxlY08WM60MbDqjx2DgBDx2Q4hqS4FqtL+BhKxjrpolCRdae8wTu3UCav07FjQa4405Nk2ckgLCxqbasJPoxP8VBPuKAxVMN+WAfOF10bPPwXIEYUTD7vo83EQGcR7qXOjA7UyZtGPuUATWVFNjGW/7OHXcfB/Ta8QsPuiBPiUxTOpdShPs002UTiKphU+ztBCbjMu6VVsufbQhOBelBk2OaRyVQ/UZdbKUcXskeLB+SDdT8g+Qzi8PV8bOhOP++GntXRtmz674FzHmrsJzqHbEyHBtG/o958ucWerIIyAvD9Jlj/es9PLSBBnDux87c9aOwvJ+lfpWTpt6XYvPUfIXMIAullw1NC/O/L/RNX+GF0vEZPwP2Klg09935N7256Lkze1XV88hPI+Wzevw8k7l/rrOWWUgerxUgFVIZf507S6ZR9TXyFWDVli1btgATqF6NqwJIaAE51K0f++4cLwKoSnLcDOi7h2WI4NTiCQBFay1IU5m2m+s/IGhujB7MftRcV2m9eIfmxZippquF9ZznaXwVXaE0ZtU4K7SgTloXl+B06eg4DOA5u3mcdANd1Bg9/FrwTDsa69GJBFTYikbY3NAhUFHPbAOQGFjdB1bR0MXKt1+e+Upacni4BS6q6N4Wh4NWXLA851MAbEy//dfZ8eLgwB/uQSEi+KObd8XL4XrATyZ7tmdoWJNEuu69AD2XGcAIIMfBvoLXhW5B/f2mipsjKgn5JajQZgCPl2HZExiZHutM/e3gIOsg7GPs3wQbvQ6nPX+VBihwE4WK4taMV+pocPBUAt1LfUqGAWb1LgeoheMBwOE9jh5cL07S/Z8ZvYJ73Pj8Q+8aVQ2voa6Cuwq6dnTtxa5IzZVQz6CXyjx/lQf0WPVr3fdNyM+WWTZQ8w+ROsHN/fza8NEnv1CmuNXex+vNIM53kiugCWV7Kjt54IPhnOD1Mh453KBfsQwHJU/WbaZwz1/N7E7V0B3P2aboV8oMqNTPeVQ8fQuC633PntgKVLz65B/Bl6tFEHi8n4/IvB7X+2AdwuNLx2Mrsd112Y+1m7fs9XzLli2/XBZvj56+XNIyGzqmQd4MGkUGaPBcDXLSWEs8PKLyZFjYkl/NwYXedXiz3+1UdGUIFMrCIFkHTIaTElQq4FIJg9I6YU+fnOMNdCqhXWqgjaq4V46MPD1q4V6H30+kD4fBLuEhJC0AFBrNto7Yty5G1IxiKHdvpiYITx67V1qmbpwC6clQyo5HqYB2D/+AhYPQIKZ+d3MErbVMz36p0G0ZZVZmVvaGu7WHp5f/bxnFHjOnRpGC8Fg37xod9j/oQJrjL7u7IMPmfBtBoALWRPhSPHfr66wDvcGaSIA6RmIt0ZdY3qD/SJQKgiy1j4ZNUu4ZUnhkNO8y5ywZtwjDmqye6tBnZIp70LoQYy10P1a3HKK1YvVsWbR93a8brPmIbKDmm8pr/fgtfX1WOK7K4f46Ga6ADiy2P1zzwjpdXYfbPzNmn73BV2SGpzl8KQGadOOthih5ZYBrA5nnWCypv1V5S6MjJzUB8B8ZJ1fLjJDl358XteUdMj/TynFUOYs4Bg7kJLkCLYB1Rqer69bFVxbnVE8WwaMnDeOWV+V8he5Yy1yVx22zp04dQ6wn22jcl6rKQm37EnBpy5YtW16V5aSZs9TjfJ4Ai6V3lpHzQjtI0GvRChlGIIBnq0G8YW/aDIg5nOrUEZNDLRsUmu8PI0ki20wT4JTm1bc3+kekgTFDlwad6TKmUHT3IDkLaEPwgV4NozH72DwKQVfzBOruBqFeNjngmlgb3XXWHTXCtcxfhsSoIEYF7YIusCxQhrqYgVnAKJbaneTEvA4cDJKqy5F82K/eSSoskJbe0//71kzXctBGXhToij9h3DX/0zvunUZ3SQnOG9P6oK4a718mq0Wdz0bZV1KzJmBIoIQEwH94mzYZdTT2VYIi9OSyPqqOw2SHTi4p9lHXAQUDECmA8x/5OPBxe8K8tG5wLy5PO0WS40ifDat7g0ZfEQDSPETrrBw13DnqcgBwqNsCzTlp2IebQgW4h6ce7Q47++Q8Y10YL93CtP46u/HT3JOzilmfbO7y+SvIg1JXswpyPkGM1dXjnqXe4w4L+JhsoOYfIVziVltnVPQRjHi95EdS3rfIs7LHxfnq2ld38LZrV6N6tf2t9ZjPXdVFfZKJGg8HyXjcK2UPizycLwe2aCnyrU4Y48Mrry0flVmH0lVHmY5fARbRR6inFWV01d8qIPPamFmN3Xn7FYDylT3kGUjDOtVtta4zoLW69yvgc8uWLVu+g8R8xFfiyLAAvsipXinke+mwHeRCaZPSEAaZG6vNL0RyYl6uuzFUOWsFGeLaHDQJ4KGkvgzgR7PWtFI7qnEXR4MkqauZOO6TuzXf1LOxDATRBHu8jU5JzhGUe9JaWIAdXu/CQm9v72mhKz/i2h2Kgy+7isFtdZDyMMm1w5TrSXR88DfBo24a8f2w4C0SuKbRWRp6y7UMi77GJvtzjpXwJuNehwaEnlXpWcNxgNC5Mvzs7p5b8JAee0zW99jFE4TMawy6VrjMO3GBqoFJkuxTHIPhAaN0amMfGTlernTISyldK72G8jsLrNEBGv2bIXgax5+wuen0EKiTXm/IcY1ol/y/VkiYNe3BkEm5sk9l3rgVvXfLBmq+mcyDejYA3yOLsTTt90loIc+yKc3X4H5OJoops850XP39EWH5wBjLuirzyuCs9aiTKZWg2nbx6Rer1wfKmys/WLFu+yFTj/JtjuYbIB3r8xbjfsvbZFgwZdGmXMhR2pwKJ8b+8tDnyz5+Moytpt1+BkysyIHr9ajsn3XhvqjXZ4QcSSeKQjLtr+Ptan5avThZKSzzOP4IYLxly5YtH5UwhgiGSHoutjLLxdrghk7wtjDhtW9TJ37pcZ7zrYRHDfxFjCEW5LSh+XiXw8J60AoxqeBo5tFxtoYGsTfn4t4nEKh72LTugIXX+GA9erdUxt1ZP6RDpUNjtu7Dfc5Cw65rx107Xs6OownO3s3Tp1laHOkdEEHrFi90FO3MruJGcm17IMJXAPOM0O6GMNIryQhEuF/RnCdGtZtHDY1T0TSe48qCOzybjqp7PUjhMfSL0ohtadT3bp4G5Pp4fHemD2vbllEqwBFKsP9uzjUEWN/tp5h2CAAAIABJREFUMH27iUC7ea3BT/HESDCOINOaJEA3Re/mXXN4KJI2CQD1jqLTiYGYCVSQHNh5jTR1cyggh4U00XOsqQN7oYRZ/yEIMmg8BcAh6DH3H4/3woFm5OBexM1xJrTkshIkV9UZ8w+9ijpUYVw0cM+ZYA4u49yzP/EvMppljYbPhyq/QWJMbEPmU7KBmm8pE+P50yM/e6XHEtIQnZeeXGzHPWv45bW6fZRUtE4gr4FRb5EV8jsAS/kfVlSoFZjiTs1ThvLqljq/z4atTne257ivEz6beDFQnxml7K99Yehz/oXeT7Mv6Apwudp/Vc96jiD7yZwy/ivWwToOdNr22nFV3lqXrxq/W7Zs2fIZken7Q+YW0JBPoCaCprWCNPlJTYHgToh/7WpkwKfyWg7coBuYoR1QhIetqIf3uNEZpKGFdFjK2+7uYRcNPM5BJEz1J6gzW49a1gF55KHhG/reFdqMq0acs6arwPEapNlawsl1yMiMSvqnIPGpvaAw+1vyYH8DQi+mps4zoxrGvoXWKKRppgdXQEWd5NjPRQI58Zw066nxV7wQasfZitkbxTMZAQkGCMeZe80I4lkwzK9J0hcwxIjPY9DbCYSUcZbjV+KM4HdBeXQB1JQTwzvHL+yAXvr+qPff0i+HQoo8MPE+FwKzmUntUa/kXyVuoJdcj88EtWL+Ud5eet/UF9OC8YvSC+oN1S9BAg/1jbvY4+VDsoGabybVQLoEDhbbr35/lcwG4wzNXBlnbzXYPiJzW8yG9eqY4h1cJruxHvMnZzEtxw+TpSDSa16Vw8mXk+uD0S6lrlyQpC5HX2OM/9tlWJBQ+GVSdxj6x8yxMo/LK9CCC+D8R2l47Ier/jz0CSRAswJ9BMln9JFQ4Nq/uDDMHi5zG6zmqPn7ai7jOHwLv8+WLVu2fLn4pFSjY8xY53qeb5jTmNfB8wP+BrtrxxkgQ49j7agWKz/gfHbwVLrM+OTGIRRoYgjH4SwdAssCdcKOPVQtM5LPnqeH7dwnQtXW7B4678ONuDs6TnScnX9nAi6shq7m8wqiqHs+KE4oRLtx66jidAuTYEjv1gIHSxALy2hwIEYEchYjHQCch4MRT4cKjk5vByBz1ZBk2IG0TsOyGtApDQ1NGVau6HL3q7qGRi+FbvU+z47z3qFnh/ZuXjW9D0DcIHsRCx0hN9gWgm+qEl4h1p/dA5mhgQ7QNB85BCyqDhahRwLnfAKke38Re46nGl/Lz644O/CiDAPyOol5e0mUKRkWKJ6SXTL0yh1e8MO5p1QkgBGohqeQiqBDcCI9oAOVmhsq98Iykjk4IhrZnphpU0/3XPN+aiCKDsCMKkFLeBa32aZkz9fYf8DmQPUG5X0CBUQr5ay6+Hxrs468h8XnZAM131wqMPBMfsVAeM3j5TXQaFX3rwKWrtpjBlPq9Z9NNEMZftIwweg4WVXjuoa2XBmripHQ+KGtLiuqb673lueyBBl03I+670LGhefxSO5/JNJ97BMz4LEChOo57EMzEDMvpB8FPngOAZSrsK2V1L69ure5HI6Jt5a/ZcuWLV8qD5OUPK7N0x6+bOFMl94WEQQ1etD4UQH2zIoEGH5hx5wOQIQxS0NJSU7sBLpOpNsN78ma0wjtXEd6XGo06rLe9Y37cjJWRArqvDd/I6+5vfufKLl6AHSNtOH+M+pytJJhRrNUQW4w3UijekbSmtcXb4MzHknegHHOYETj+DVC12xbtamZGYvhTulpk888GybrNn75h8tKAXmj1LaIPqOh0gYYEHo0gY66Lfp+GWfAkB1JgDyh1DtDpNQJtD3Ruz8u1iM6RLn2bLMQUKKOToAxX75lf1jWB5WDBw9jLO91PHfQ9dQ9xICcF9jvNIus98hxyQLnasUUJKz3eATB5VdtUGKik+dQ0jhNAVX/LePjb5QN1HwzWRlq3I6y7a19/Urp+Kysrs86z8bYfN3PjtNA1BfX6ng0ZhlvPtcjNlwoJjVjFMt0ovdLY1imMgCULATpH1OzVVUdCQTe9bH8jUx/XgRGwti4KPuCOw8sVVy6cnJdF1cK63Oq4F0FaihzlrJ5AeTxR9lW9zPbEt+2nIsecQXyPBMbUxLE1lSNZmBxbpKqIGA4N8fOqg5zO3xCJ3z1/M+WvWXLlv9+yXmLXjLGrnIAaYEZkgIAfkyGxPROjxM33HwNFz3D6AEALaS09B6wHWmIqhs9Fspz2vzc4dmKDqgI7j6LdqIgrQ1z/+n8Lem92NE7cD/NU8S8QzL7i/PnXmI1VkUavAo9T3QBXpp5F6ArWlPcDjMslJ4OAhxQ/KDBK84PI7Z+9QaIdiNHFv87CaSYR8WPfuLWLF02uXDCq0WdNwZM9+1tB7tXI1nuYUg2r4+tTVbB3j11sajzetizPXvHPTyPFMUt5AF82DKKOmAYv8G20kQUuo83P6bBQ9iC5FKCu3GQqkB4jJ2q8y358zlhQ/VFu4fpWWVaS64Y1gveN+15kj+K4GdNHW+cUKbbMANbc0+v9NcXKKQBomJ9mUhgVSwrmCtpZ/yBAzdPW88KivdNA2g8v1m3ep0eBvjTuWn0NE+ZM65JwKrnOFcYf4+3kajiUPe+83ZP5KiCMJrPlbfi81lzj5zaqjy3FXvmLOdveZtsoOabylv68Ef6+Wz4/wpZAShfaSxdgT5aPnlMNSBX8poB+qC06OMx9fwrwzv+dG2kaj1hfbktn5D5uTxIeYBxrI67+IMABB/cVT9Y9p9FPV57xqvxI+VvDuf7SJ+p59cy3jpHXCr2WI/9VbnP6v3W+1q103vL2LJly79EFgtDBWziEEdQBDrN+5UYtHqoZGG27rs5KAhgJ+eqSYspdgyNIq5HIoIuHvLEN+pOKlwNRZQsLQneJCCjkVKcn+O9PzTTcMzIxdNpFPMNvhtsrefFFYKm6gSxfk9uFIswDCyvH3UU98bx46VZgAo9kCpQBsBSk/v9qsekB3mtMmQl7VB7bOLPUQKo0XJvAWSxrUpDKT/rs160379OHJCInl76F/ezTytSh2HGsK4aGRSszcsLManDNgZYAGfcxnKr54udLpGaO6pTShTvr8kZBU/XzSsSjJlkyvgUnfxSJA8rW+qLZS3/A+ynVld6zBA7PH08P/TD0m8rNkTCYsNaqoeShwA6ckVi5QRhrKDwmJFsUz961PUkwatTA0e9NuTm37/KUP0HyQZqvrlcGUw6fX6m7FX5r8lbs7PMgEm99kfrXsEXvrGfVJ2YnM9y7KpeVIokJsEsrxrDvG5flDVn7JnrEt81j1+192pOD4UNn3vW/3aZn2VsnH6ynedsR8DY/h3js+bxJ54/p9fKbdP2+twFwM0XwmfcOR9Z1+x+LAucTNsBf0O6+KNcja/Vvb63fp8Foeq1t2zZsgXA42QURl5BJUIr8DTaQkBCoeSmcdCj99EY0knpEd/HjHp2kHmhAAmqmH1HQyituBZ2n+27K2drDxEh300pW4DIDkMuvXvvOLXj3gvfzBtABjMKje/j3hV/nuYlTD6RO4CjKW4dOE7FvVvslTbghwjuYinEGxSHKG7NwBzbZt4JHUAXBABDD5y7gz+ndvzshTTWP+5+Xju7e+sUo1n8YYhlwmnO89F8QRFoZnjyhnh5MX6TlxfFy6l4OYGX0wmUe2Z+ijbbi8sgtS9VUlspMdvm/9KdLLqEWSt1HQUaxqyq0OSDHMA2hC5/V8EdHu6kBE2N+8VelGpw09j1snyBZynLnWFP0HHt5v3r9OdPUu3wogHZZrqNyblFSqhcePE40HKq4qV38yI7xYFZu+4PYTAYHER0UIv3iQq61jmM7Y0kKHYwpvnzqXw/nFHgAIwQQSMA1s3TL0MxEVFT1EM5DzJdeR+gsFdkj6UH2UDNP0iegQCfFQ6ilfE1g0WP19Vh/7NrfJU8A2D5+8qopKzqe2WAavl8MPifXONqEV9d47p999z1lbICFZ6Fsw1SBsN83BUo+dq4mo+dgZjFpZM88YvlipeK9TrjuMd61WOfX+MCqMTnwZhVmXvsbNmy5f2iw6dMk35yvFSeFu4bPx90N4IEDkoM86HCwqMUcLcTn/PFj7eDpOecGVmfyptu9OR6URiQoappwGI0Ul9tDYITbiRaWl8ziMe108GtU+PNgwjJjZ00tgmkW2rjFguCOFCTXi2Wxdnu6RS7B3Ey4mC3UcEptjYdgIXAyGEAVbgMeDuIpTVWD8cQvzELgbLjVRV35zU5nYg2wRn6NGT76fTst6QM48D/qneHhQqOoTHsQwxRz2PLGOKjlfjJRwyFOHgCB0tLOE6EDwHDqORY8zFGDpr6XI26wC7IM0PXK0pNgB7FUnjQdxyNSgYeK0TVASxV8wijRlaAR/WtHI+DVxlBIC3XKe3GstKlRQvQwrraWBAptWbbKBKkqS41QPGcAYhqxdwEHebCWqdXpSq+/1LZQM03k9loB6yfMtvLa2/sP3vdZ3JlYM3HrD5/hbw24A39fjxmBbKcSGXjCsChrMKp6NlT9YJ6ruLR46bOP4MRTH1Qx+O2fFz4bGrWpHM+wGW5f1WgH2xkhub+zTeCKIvSDEDo4js9aeY+MoM//aKfrsp79R6KDG9CMHqqrYDJXykrQPoj16/13mNoy5Ytz4TeKCLNuU7GIOU0lJgdRgK4CHACxTgt59Y5X3xD2EtT6jvyrpi9lDNfZrixk5sUThoBmrZpUZhhd7N2u5Kb5kxvB7xhjlSCNB29C/rZcULw0k7ziFGEh86Bho4DrQO3w0CWn2qeMA2Kswt6a2EUl+rBuGboHWTGNfNmxbFhAI8a810AFbtGE8/aQ8sZgls7cTQLcaLHEj04ALunroq/zhNnV/zP2fFydvzs6lw1Grw+DB+rz3qvM4gFm9mTzEvJwJOfeuLeD5zniZe74M9mHizm4eTZnhzUu6txB9WCiacEua9yTMDBNeCuilN79G0gdYGH5AWl/xvvn+AmFhZ0VwNHm7BfGqhydw8aKunEOFQzNElhffAGK4uZ2QY0j0o+471cSz21QxQ46Y0jHOPkwuKRGkANeaPGDpgAYqFWCk+/8NjzgWfjq6FJ80eYcxrFOLUO57whnw3nxqhohDOaR44A2tDflZpiS5UN1HxDWRlgdftXd/MrI2h1nWdG03z8/Pvqvj4jszI0X++Zgbc6dzaQr9pgdZ2rlMha/uo5V2VGOTmHbvkiGdpZr435uR9g8dvGgsR3upZenf8aACjT3+qYZ33h2Xh7TSpQMwMln5X3lPXatd9at78bXNqyZct/gdD1X+q7c1wrBG5saby5vgZr6inix4iMR1VdQRy0qfYUAHQPUKXhaN/EDKGioKkvcLEWeaV6d/6VUt+3CoGp5HDp6B43ZF4K3e7JiY/RzDDsTdzDx9uqNbTeIRFyhARqVNGaODmpOuBk7cAwkMJE49+S6LWLh2OpGpglCnXQzerm1/drKcy7B4IIbbrzT3sY5vQAIZAWAN2TZ/2vlQrWqCTfj4Mo9Fa6ezr16OOOpkTWJoy6SSKc9UIAJNNhE7CoOncAO5QoMEuO7E68poiRAcsw/GLsTEPXd3LWyB7K679VLCRsBEm8p/n1hwv6FMR+OHnnoSS2UC3n5oQ23K970ogSYAl4bDge3lbzvQ3AKQEcb3yJdHdfrWH+98sGar65sEu/+a3HB+S9ZT4Da56V+dVDdFWPtwJJV+fOx9SFgiIXx6+uU39n9oX1fpk27Kns60UBvGB8DuyTz4DGsvwsF+1ZkW+o/SYTFCYQU82AR0V9ltBNpr4x98vq2fWZ/lM9ahTpyZdZp0xmrp4rqeFgV+BY3Y8n+6+OXckeQ1u2bFmKPP40gyXnaBoaAjMEIf5mupuBr9IwB/5QnoXCaDmmTdw2w+QuaRAKDGyxLEmKo+VhpqiMN6TKtNySgI1fiKFLfNv+VlE4z40qWrfg2yanM3IADYeHICnQFNpJxqoWiuTXv7WOe3POGtEwcJnhp3V1TwarXKynYn/0sFH4qepPzBopvDPMY0fAOLG7P88/TucpcYIUFcufeN7NE+PPlxPnqfjzfuJ+Ku79dBCnJycIw2tWz25L0feN+478Rn91xf89O3o7oS+WyeuHOHeQNAt56gpIK2ORXEiC1jSyr7JTK3p4NJNn6IB55gR4otYXD+8XdM86ou+og0s5JqpO1Zp5CMG9fJJTR3J8gh5CDUCHisOprKyMelXVPQP87JbhKUKuTgMfCYKaziU4hLOUE273EXZNonBxkMybqyVhsTpYpeKcOmwWESiahSHqBBtp0Z/FvJBWYvMO69jQ0KEiE+fQlrfIBmq+tSQ6+5279u+o2zPQ5wqEqZ9XZc6fV8dfGZPVAL0CgmbgZ2V073X/1whBDC6+M0gzA3VVrvrULIL6jOv/jzJ5vT993s9Aifqu4ldIdVod3hRh3f+vZO77z4777P3kuEq/pz2etmzZEjIh3VInNkGANCIMd/L900Sii29vlcEjY/G2YJgHxU9wnog4hdt5pNpsR0N5fCVwBS29tb4lI5IblgSUVC0kSFoaZEaoWrLy+I3Sy6ELj0NkbTaQJWvHdSPAF5gh3t2wVm9I7od76jSYsSpM0+jXJvdJg12H4SP0qDlLqNNZ7lXLQ3rwntqLy4PQF8qgFJJRK+6qeOmKH55auzUDBgCFdkCNcCn6VYMC4ZmR4FiJQErKAHhvZ58UDpkRUOFQISCrolHfegdRkKDs4cgaNZS57Ot2yc9Z/4x74335dbqHkDli6zX3eulYcp1Top/Wtonv7kXEMCUks07wXg2eNUU3Y3giGZFneZhbBaCnjldyD5m3yQZqvqHUhXn+/C4d+yP1uDLuPluH1Zx4BeDUc0ZDMGtFY/6qrDlzT72f2WjN55aLFZBgwYCoT9eprp9bPi8VKKPMMcz1uPqM5uMfQDfNclDOu/szr+Wwl9XxwGfdy/lVqJy0cvwsAsRbpfcK74eeMlfZ0livuR1mAGc1/ur+FZdTLfcz8mxe2LJly5aV1NS6FdxoEQ5lm+4CSKvBR3o9Kb9B3mXgs1qqOJFhCFCrE6CDkRf1nrgxRtDk/ddn2NOpwL03T7ktkN4tzOg0Q7uJkcVa02lc7/D02xB6Pdh9sNwwjAn2+I00/86sTVxD1F0vjChWnIBYcGvdvC/Ow97mn2b2vghwiOCHmmfC6UDNy90Iku/3jvO0jE93tRAdhuswdIxAwbuf4b9FlBwpHV0F53niZ7NsRj/v5jlzdMUpgrMJfkjHj9aCV0hbhzbLBtaguB0NNxF4MjEwRTyJdvMRWIdi+NFP7TgDiID7jciUur5wuIAAEcfXgSQg1sgoZhw8irO1IC0GFCfEvVdI8nsx0Aq4ojCOHRHj2RFR/OyWwUzEQh17vwVICRWc9AZzz7bu9a1e1ayV33GOw3m/j4feBCoSIfzkebIMT909fngOwTOWTpDIPwuwFSFkQ9jalrfKBmq+kTziuPqwnb+1fP5bZQZF5m2PpvF4zGP7reizrq87PJenSJoMu14Lgdry98jc3jNQU4+Zx+azZyXlb3WdWs5VuTNYOx97NfY/2odq+a/d27My3nPeR0HIt56Tc+Rj3PaWLVu2PIosfzKLixHdPu5LS/0LtbKrCVIRWaO4QUTK2qEjcKC1GP00qBAYT4ROWUU7wiciPFAA538B9VmCSpZVSZzDJu6L/DcEahzcIc+F2oeDRdSjBMoU5yCAZmDNCUCbBHB1UsMTCy9pMALmU83QvSvco8a9P8KbZszsNeBeGtXfQqkghLdX99Cx08PHTrE/enS01nCgw3NcxzOm8DlEH/Lt5HKaB4vE9cknJH6qjPUjHxWBGsnzo1Q/PjzsMI1BKbe98BS57hvZeTKUzsDNrnZzbVBGHZqV6TocDKynnyAYzwm9lOfyXsPTReJAcfJim1tKxitvkDHrkwZ4VeeiEJ8/Z8U4vr5F+fwXywZqvqnQaHt4sz4d80+SX1nfK+N5NriBR91nPvc9huDV+Ybcz0eO554Y5qxBVob+P+15f0dZASHzfu6beVoEydVSPWQqf9TskQKMbzjmUKcgpcMjwLOqF96w/6NS6zP3vRkkeq85cjWm9JXvz8biXI8rUO0j9d2yZcu/Qyq1i/oGMqDQqAfE7UfnhmiKswlUG6SfbrhNluUXyrxu8WV2bFc8JZuJ9SFAls95XppRaSDMKQhDuIniaN1CkrrxfjTwbbsZc42/BBBfcOz8HmVHCBPGdVFFLVSJXk5h0fsB6BAxLwwR4/8x+9BXaR7unjYCD6GCZX+6e6jTvXf0kxmegLMLTm0TYLNXlLeIqmUqOsXSnr+cwJ9329GUgI2gN0U/HExpxiXD8LY7gPM0AI3wxNEm+8hRlkM6mihemB3Jn1f3TnJoR4PrcgIjtdYkxw3+o5gXrO+qtMELRZneM1zYjLaXqeVtsziHjQxlQfM+mNTihEK0495t3rk14/YhOHmw+7YMAeSY7kIvsmwOhkPR6eXg/DCBOgoLPzxhHkLNx0h3vEw516iBNsdhLUDglQCPqnooIj17ZFDG6MEUF93yZtlAzTeSK+Oxygzi7v5+3Qav+cbk3tEMHd/Ar6GUB6NyutTVld8LAr1W3pb3y2sgzbxfL/5k+j2XXcdpx/Oyn4E0j/J85H+kr7w296z2fwQ0fmv/f8v15/2vHbfnyy1btqyEoTWIN+b+Vhn+V2yOgWxY6iz/a2eXWHP8i6wWk8XkN3NUfLoetE3d84WZkyz6w9LyNvdEMYrSXCWDwF/LS4oAjxgkYjVtCkAys1XTBGoi4oLtTkAmLEr48b4dHqbWLISFfCbk0QnwqnDRMMwjPWpKHae6blmI5pdsX/NeOrviLvYX3DPwZ+oEQqSpoQgRi1CwpHSgkYeOSR4qKTCf16DHueeKpY3nmEaE6uSNrLSfa1/dp575s8Gg2f/YJ5uWUTtcvni2RFWsz0fgpjyeZ82sSWNVwJeoSQVGJfcHaiXVQ8dBGuSYUweL7LEUZkCx9o35VPHYNm8ZRvMxH1Um/4GygZpvKIZGvn7MP1HWsMfH5S3g1uqcWhd+r8beqtz5vKvr6vQ5Hz8b5XNbrNMSbvkqUTxmRap8QcCYzUhhb1/uGJ9J9YiqfeGtbypr+TMXDso+7qciUffN9b97IR952VevR8+gt/Tx1Xj6iFyVdQXCKB7HWj2O86jisb22bNmyZZaYNzwTza0Z0akkMsADIJ6pJhkyJkDkGy3eD9Vwm1c/WMcwvHvHHYID3j69oTVYVqze0Z1UQ3gCLDSiq+BOL4AsMbwQ7pohMWEc0oWgA4eQK6S7HekgGx+TIIEjILI/NYWTpLph6+4CvSdhq6ql5T75GYTCCeQMlvXHmvDfIYEXqHHVdMH9PPHX2aI/3GDeM38cihM3J58GTgha6aDG12Jj8iYw3htxviIkuPD/s/euS47cSprg545gVkmne6ZtbWze/xXXbLbnqJIB3x9+BYhgkpVZUkoZXkqRjEAACFzdP/ilS7doRQZrVDUTKIiifcg2B8ywR/x5TUfGyIkJY2xjshHrmLHxouG0lTdjYhAziHWgujZPBZcSv/L1Qh0Z7yKqoWZYVBeLTEYmD7KCIf78Tj4HHb7RO+R5TkDSUI+4UKpiCTrp80wc9cq+nOKVujZNALZcMlY/Uo0JOwT7XvXHD+icSEs6gZpPTJ9on3+a/sy6/wxYMz63rqlvMHOKIxDnnlA7gzQzHYE2f9f+/6x0BCqsQLpZwK/P1u+r/nwLvLg3P1bXV+XMeczA3s+MnUfm0jwXvOxny3H6CIBnde0eGHrSSSedtKJ0vZChuY+Pddb0NADy6CK4ZB7Gc+6Hs/wAJi33mtQAcA0blNP1WWQcTvIld1oplVrqJJjQqOYitsqbwCoiYJ41AaAAzlADR6gGrCWc01Ztmeo02K9H3U6Q5jGquJa1b/ioCVREcCV1Ss1k2lQC81+kPzopsMKUfFk3kCb9pIzay26St4xMVBil9EszoZcEe14dGrvGjd8a+YvqdHzhp2VRtH4XiNA0J/JezJtS4IovHWZ8UbdbarB4uTeSSU4cdSKc62G83yw1DQ6CS7mkQA2TAlGdvO3+zpLtX0MnUPNJ6WgYf0RUlI+iI2G33j8Son5F+av795gXXehvr89s2aP1nctbCdY1v1XEIUJOyusTZZ/0PM2gxltgHCE1W+b0DR5RQJZmTv7sqg73xtoqwlit/bxhkyDsr3+Gqg+de2PZ08xRqh4Zr7XOj8gnlX04un9U9ltr1EknnXRSEJn2BUOFCxNlCICfhvu615EOc+PBP0F6j/pYkdXo44jnurkugXn8dB20/Cp81bVd2yX2S3dISraHsp69d9ToVXkwxiTD3qen/On7guqGWt6DIabdMwrVjcl8b2hij8zDFmHHG9UBBbbavGI03UpIikyb4KRHSODOmTuufQd3AoPRhNGJ1AeN7Ng70DqBO6E1RvPoagI07uofStVarBdIkRsGGjj8H3UIXkWBoAZLQurXJoBXmxRs3eifoeli4/pimnOOwlQejPzlxMayALQDvEuUSTbZBLqmZJtUeMeRKTFtrwwVvsPmUJcy7ilM8ZzXYy78TgG0dsua8tWKD52J0xP1hSOiWjBcasfENu8pHTRXh8LE8KhtPs8bETYDvMGC3m0egrReFRCbmc6Tgk6g5hPTLJzM4/fvMJ7nefcr6nxPUJvrcNSes1A95/nMlvxI2reE1RXo83fo778jrQDGen0NlNRrtLw3P/8zY2o1FldlzGvFW3PirTJXz66u3wNQatqjMT7n9xYYc28e3ANlz/lz0kknPUx0sF7cWUR+9X494wI0/XC9kWXNyon3cMjw3kqm/JqVCtkthTgyoY4MrPFnaFG+3+fygoSMzuMmKt7IQmNnUcmn5kfTJqKC8/hM0Jzfvc3ln07vYSacDBQYtGpEzWrEQIW9C9gRBaL0RQTtcy7MxsB3GGAYWlIGrnX6EepfAAAgAElEQVRBmCS5gkk42HVIkMr48Hed3lNNmmgAWVZ47Dw8HNRYp6iX3+KiDqjU4YFSsHo5veLQagJHQmJ+eiQcLcfaRgmG2YV4LkzAgNCmYSLTpnHTRM0s85QTpHmDTqDmk9EsoNcT6yq0fSbNmhX9GfPtkeXt3t46R+DxNPfypPI3+zk5Iu+7QSWzXHfquI0C9JavopN+jrytgWOB3sfXPCbqbwdpXJPG+3i37w33x1P1jXPAYtvJo9cptrbhbzW26/1nqfJmq/p7nm+NzzmKlOfdyn3BY+uZt8Wj6X/23U866aSvQ8P65qfPPdfZ5MF0NfSTYgjKqXTmFXvIRy0+LkiGrwyXZdc7y9GBwCAHvVMoqkCPm4WwmToQA8QEDmkNQCewaJpGGkHLzZSaqClT757cQjWbrxt3DlwBHLbINx0p57pADTKfJRD1F2Kn+lYN6+Lp5U1bahfgKhqBp4dPEmCD+h0hcp2NPVrhlC8fI3fWvHfBde/oAly7+ptpIPSmbb6R+aAhbeWNTFCdGtnHkvuJuho4c+3mXwikfm4mFIbAFhlMHVM3H0uiEZqETZeFLB0TGunYEIjGdRLC3sWcI/e4JxA4StEI2EjCv1X4RLqBcynBjsIsuTYas/nBEk2XTo69HYYsAveIMW3gV8gtknl3pOZ+F8W6qGlZZM7AyTVorH5sr7EH0uU1IbB0dNE5onPZ3x0WlUodVhF3oJsG4Dl53qQTqPkb0181vu8Jbm+l/5V1vicQP4tZlyV0eP4IyDl6R3rj/lzH+lnLOgHnj6O5f7Rtye7dqo/P/b0aSzNwcq/cFehz1L+1/+fTmzm/o2ffQ/O4fWvsv0V1Hj0ylo/S1ev3QKVn5/1JJ5309Wje1xPQoBSCBAjntNPzvzz6D5WPUrifbr9VgyJLfSiIpICR76B+al6c+loi1Z5Jc6TUcrFELiRSTZMn+UwYosk4BpQHFdorUXbUCEN9bvcTfVqG3+kA1oGhYh112wAnU/YYObBZHTIj59MusGhh5tBXgDQZsoYWfUK8g5C8m0Z5sue7+kQRBzZIy5IYQYgx5iZKYwSnMpbnd4CDMskvVizI8x7m6fS54gZnvrDSDSa7yDtzTpC5TnYCMgITDMiEXawcZQF16lzskiCpmw2C0gSQJNsw2ndYE3wtpQB4q/XUCdgc0wnUfDKap+8cjcbTfJYx/VfWY17YjoTrCoAcCW0rYe9ZAa8KoDWfqr0BpFZArZtfX5X5Wfr6n0TTlhzfZwBkJfjXPHzrXwE1jPHkwjVs5npU7ZfZ7N6vz897vWp+/rwgT0keHTuPjvWq0VLft75DbbdZ48br86gPHc/L58+RJs0RWHXSSSed9AyJiTAshCZ6os+s17sA6KSaHpYasL3gFy0+BNyaCFUgBOt1r/IxqX1DMA+t76oPA+b7QzUG2MCT5n+kfzCtGVcDYqs30wgeNTb+x4Q5z4dSHUKFOmOS3HcGsWltWrKNyh5a0gkJ9jDRyPbwT2+/zeqyNUYn4Ipdo/EAQCcDbmyETMLyufc8QAbUuONmkAr9VwDUVQsDvUMI2MzvSQN02IoBMV37kk0FizuBiNGlY0fHVTJSEVGOR0BNc9z/EAzAC/9FYuY8Hrvd+reToIPS1wu536WEdjYCxAJZbVQ1oAvp4AF1M8VC1lGnCtl49cnNBpo4CCqmzWcjnHSderXSuBeeTxBlcAA3zrFq+quhTj6f2d6Hxd6Z9ffmpk6FyfI5XJrS1kALd+4AjyScJgLzOWQOhmXRRict6QRqPiFVYWcGDc5BfUx1s1wBNf79CJw+attnAJtH067qNwM1Z1//GroFX+o5wNt0CwjO53H3n12VcgQ0rgA9T0vT7/nZZ2kGPudy6717ANZbYOdqjta8V/fvlaf3b3OLE6OTTjrppANarcmrk2FgBEf+FJoZgieYl6xrBWnKUbbfeoLRMHk3gBHyBoq7k1ZNuS323SPwDPUzoc43l8r/1leMcq1H2B83BIhBaFCh8mYPine13qT8dE0J16AQxQiwd0S4aHKpdsj05NMeptJQrlmTIartTywCUiTXQSEWQczvOdcWkbn8iVn4jy/ZYWJP33JvJa0lJ9L6OFKqhlOA+11yMLCHlsrb/NGKymqTQyzWHZoTxtj1MVsjknmJlY+yVjQQR4Y0XoJrqHVyIMoBHNdKUhBLSp6+CLjGmggBvY9zXzQPn1t+beTZpPz/pJlOoOakX0J1c10Jbh85IReHTQP/EQh6SXkEiAxMweL6XA7gEX80f4HEiY5rQcw+alYMSG0nT39GffpzqYZiv2EQp7TeX+6DZtY0cfKTFY8KdSXBK9Qu36Mz1fPNma/wPXUV/cnLK8lv5tujVN/H8/MxW/OfT4qe9aF0NI82jHXvw32a3k+m58f7tf5PyiEnnXTSFyYygYRI1FdDy52AYIohRRgcOAqPgztLSD9dmfw6rOkh7dCQVOpDJkDqs/m0mg2JmYTIz2kBlcVVAjkx3VFmIHx7tKirRqRRjYkG0x4ID69aeTHTKNg9Nzlif11U4VUr4nvB1hqY1TcGwUAAADshhGkGoTd1bMpd8ybz/7G71oB14UVUPWGnppoT1HNPHlCqk54mKQMICSKsB6NYZDDTcAPgTok8KpI6+VWntxyxxIwTE2AXBVcuMF8zENXgkQ4S4BWMK1FongAIpk7BIVEfSz7MfZQxg0Rw7YLeEeG1rwJcM6b7OF8rQDq8JYaymVSThTlNj9wXTy+h5QFBM4BFLZgkK0I29wsTRxZVKsoMv1eES9c8dlJ/PRD1j8MWTqqRFuKaTYp5kvltUl8+3czaCKnJAwFo39UHFavmjnjdqHb7yakd0QnUfCJaLfty595JSSuwxa8/0nardn7k2QpA/YyAfNJfQ8eAIQWz92xfvvXMUZmpjnub/pH5X8fdKDz8PL1V3irdM/Nlda0KG8f5vPV2y/OxkwU46aSTljSvNePqo6t6QgiyfOan15c3FsxHsACVn2jaL+Z3qL+OokM9QDSu11Szr2DKgKxQAEduXqGgTQFcqp8bUJpIeTmZTbxbaDcgHcvW6rjwurvfG5CZaY15+bUBYzOtI3L7jXjXBMKiNX8W8PqCNMjkcTJTOIdJM2V+Lh6bMBX/RtmB5Qm64aNGPy5Vs0SGSTfwDgdzsb6Ka/es+bb5Lco73Jnny7aQ2zR+WdcDuUkTWkwlJ8L4rlEeZbk+qwynAVBMl4r/GTeB1HwVqPH1oXcBUw/nxD7vwkdNqdc5lW7pBGo+Ka0Ygc8CAsRi8EC6X03zBguMPmFCfa8sBPOiF/sFbtt5focV+yMQ7EW4r0L37Jvm6B0qffaIXv8UmoETGbaq+6PXfc+srgO32lNqGayMxFbS1a17GFvl4GUe3/XaR46VFeji1/ZFmkfzATL60/ze9fsRyJTX82718+TnZ7W+M6P0M8DbSSed9NUoxPcbuNjO7SNdXVNuBLp3MD9uznMPpHdTkLmOBfrAaiWueboQ9RTIICnEAX7yn6BKY0FrArBghwIeZEf+BANUWKPJsJ3Oa4Qd0khQcHCmaNyYRgQDQNN0aY5UQaESeUo0F4ZoWGdzinOxepCrwpp2x0b6cldRp7a7nfqDpUTecc2cEoO1Mo2nhPkQzbxM3bProdXMlznwJjYmmjAuNo5AyuMLVGOr8vUeeEwg6rAYYhGfdOBWsEa71IJMW4FMDGHn4jytQHpPPowA1f2pnJPmTwLTZNF5SZa3h/umtOcbxrOb7xGUH3QfMeRR0PTh0pJqclQstbT1bI5fd03HUoBai2zmWjgOkxFSC5wtXZhbcdYJ5kfI+4dIVFucCMQNcehpINHeBZdd4jeoq9kYI11nnfPohk6g5hPSCjAAPtf4fbYuq8X5o96n5lW/z5+rOt0DYt4qc87nWSH2Hq3e56SPp1vdjePWXoF09Ymjvs3r932mHI2ho3L9968aH6v5c1THozb4ufq9/cQMyBylOcGZk0466YiofqHpzsAg1JVvtar92l36/jo2adOEBkgKoas6u68IeXKRjghI5Nov7iAUqflCSETHfVOIP2zATamAy6oB1FDqMFVQzAEdDR/sDk3NDCbKTpitC0XEKK2HAjfutNhFZweFyBwHWxULf7DmFAPr+QpM2iOb7gNZUP1C2sbRH2TjlwxAIL552FvegbOYqzSOzYQdbnkwBznENafgYSEy73jKtEUKknEsw1Sv37T8eqdtfOLoL7dgSgBpyozqW2Vl0ieUxI3Ixx0521UaMsiVhKxAD3Pvc0dQfE95fWkCgMlMpsIvjWC332rKVf7sn0jRTPsq8+kJOoGakwZ6Zi1eCavP3v+I+UhI3xpVuAzAS/KaX58j7dSJMPsZ8TJW5VJJP4NR1UfNKq9hccOxdkQ9HTjp4+gIDHtkU/Vx5H3fDmbOzP8f5T0DIFk3Zxlkmf5ojs1j8y2a86qHGz6/HhmD1VeP51vr9xawcnR9jiqFxadANX88+sghM3XSSSeddEi60nioXy4i3M1CWSXOD1ppHjJ3oioIUdQa8ChIboYA9UcDQLr6WRE/kTdNhPCj8UD1c80lNGI0ZmzcVLOGVfugkfqqoUbqA4YUCGlU9jMXqpkgrP5DPGITUfqK0bQCJjazCWttF/jEYBoycdTCQqkWhXkqIYDNbw6LO0h1kMWlf1UT2NHRu/Y3W5Sd0HAi1SYwuTUdG8u5xzxDRKblYg1IZrbWKENlN3LQLn0+MhEaVNhvDSUimAE75iOJu/phYQN5NhZsLKEhE3MmBrM5mGHT5TKNEf2t5VY/l+q3RseOapHpGHjV0HBguqKRqFNr1OXCOZke48YbZAhpb+OpB6CimmHfLCaUmh+VOd+V2+o2jdleZ+8GfMgoQXT7Ta5FxJSudOpaB6TbKZipImV969Ln7dlFfehsBLwYcuugTAfwKgLed9N8I42gJ+Y/qp9mhEd0AjWfiGZhbabPLHSs6pYMxK+rdRXWavvFGnhQ9D3BfCW4PyK8H+Xvv58BAOa0n7Xf/66UQEiemx21/YrmcbfO+35eM6h4hLq8VZ8joOlnx8y99znK8974nl/rrTXumXtHQNV8/zQnPOmkk2aK9WhGgY/SDUTl/0/SW4tlkSPnBd2jp8TtCdkJ+aleFwntAUMo8LM7RGrNFN8UJng7eAQHVUwAVZClKwASdaQI361OhsnlwHxdEwIjbzhwopXg2jP+Yaf4Xpb7rh1lS9PiSUkz71i9Uervu99bvOJJb9DYVYMGVh0vVPpr6LsC5vhfzTvSgwKMqwBIzOQjwYGmCiLz0HQeVlpNp+pBsKceQJd5Ht8dLPpA5QtXh7Q0XVMsRtKHsH8Xk73iYQd+xB9CqI7V/BNBgoehZ2tPlPcaQBvkukQgNHbzJ1sf2IG4AjAXoFkC/JHHGdjKmP7D6QRq/ib0Z43Fj9h03qrrR21stPi8d2q/Epzn3/5s1dBZrRu1rFkw999+sl+1Glb1u1ffk/4MSrDmiOreBKSKtsDHyuhArmHUpPLoTq3kAbodO0757Hp00PTNS68+cn6G3tr7Zl5jL99vgdqkZ6NDrfJ4a93wdve0q3c4GeuTTjrpiCaZS9doSWGdygm1+1/4SJrlxlqAC0oOWFRhBygyZgF09KVUIIvw0t1O7FFOrx9dFDWoE5gJG6sWzdaARoQtQBuVoIVUM6IBoVGjn2nK5ILbBvcTo3VprtWgdhShWRGirEnCXRDRokg08gwZOiNQAWeDYLcTfRfeEzCw/dOFblatG2qMTsDWAZKu71FAghDET3qcvM3jM9Q4bFyrv6M2aZiEY2kba5dGuDTgQvrniF63Pnce68I6jhxl2aFeZDZIidRKMbFCN83qx66horZywbvvkppYDMDjWkvvkO6Oqyc/RrOwctsslr+gk/GLUupIRdelqCt3qF+lCsr0DriJkyvT+JqS19LfTh3HRDqv9UfXfrDIU+wRogCE3WHMg7JGGqijc1j7UoSwC+OlM16uyjl3c0ojxkSO2kcnVTqBmk9O9wSnP1PouA9yGqNwpzbPCFzP1OeRdDT9ntv0UQD3hol6Z7q38ljledKvord77N7dGYCrQM5hflZkTXM035f5TJPqvWPuEVrV9Wefn2kGOp+lc5M/6aSTfo5mTgH5m4DqMWWJorx3g6bD0kOzZCx6TJ3aM+U0nByjoRTIhDKML6ZHHqvmeBruwNH0B0IKeFSiOLngbf/C5MXeqUbsTs2WdCbs4qqGFy+HK4L0Q1Paxr+Ze1jANAQcBHLOFVYn91XTSQV0r4e+Y+6wfzU//nelBGkMHCmgF5Ufo2ZN1c5KrY1hxBfGqfaZ+rF2/zNTNE/C0Kd+LRmpUbOkkwEdMDMjexmh9CeD+ti9RljY96zG1JxnvCtJKMV4ncQcFrtHGnEHweJtkJo2YyE+6RIA9mo6jhXtj1GjLYHiMoeQgKbmyWpGSD2A2Wq2OY+B0/zplk6g5pPSDGzMQthfAdLM9GcIho/Q6iTf61YX5vnTN//d/urC78/z4pm5P+qh1FzmI300s4iVuZjLPNevjyHv27FNHz8hdS2pWVuKsB4DrmEzX/dTGx+DnsZPF/x06DqVF4elB7NwrtujdG+ur8bfvfF+ww88UJ95Lsh0r15/NB2QmjanCdRJJ500UGEM1BLARDpB8SOBAoYTyHyeEDFA+7s25uFEG7droAumXK8ulv08fc/KUDBDBBJG6H26NsOT9U7ghdF4Uw0WawuQa9oQqDH40orQxgbICDZJZ6MbqVZOF0FX6Xd8d04zCuXXGETADlKeTVVqsMfm6v1ir2caBNoy6X+DyQIJG4MXEW6sLntTzYQrq6ZGYxWWGhO4e1wqGvrr5M3uUwIk+q0x4dISfJljsROTjRPXysoWF+gYABAgif8xMzYibE3H1y4dXTo273tmqDsZfZAt107ALoLNUQJDKNg0tl6hPqteu35S6xAQrtKNfzOtHdG/XUz7RggR13pqA38Bd1ZM4PCj5GZDAn28Wz26r0WG1JA1ADmKY9o0+56+azTqqFi7ZX/UtcZDZ7svKC6qY+pHSOdWY5tj7K6cfR1kuKlUgwKwnRjCTdvgKti549+tYe+i/UEM8QhrBIB+hmv959MJ1HxS8n347zBkj0CJP8M3zRFYNAMsj+R17/oMzMzhgGs6f/bo7ef2WuUz53fSn0dHY+ro+tzXK5DVrz8KBB2BEOvxcHv1PeNmBby8NZb/bJrLXf2mxfeTTjrpJCeqi8Tt19t1j/x/91bE51ffIzOam3XNT7vtu5sW+D0H7oc1TxGLuA5MDkOfquOt9kzVrIk/80kR2ijwwxEHUSg1beDCXn53qr5p5vuxH1s5cYAxdIELwCmQR11MCAYlUJP7nbUX5bvPgNptA+GfzbB9wLtFH06aMVT7mDCOLYzX8qmSaYSspnBIHSmCCaNSB+9YGdRW/Dl3IA1KjRRNkb5gdEpJgLpelt+b5R96c3yMi1Ed8/4aN680f1rhVcsmgayprlAAKNeJXEd83vr19EWV2jB+f9SKMUCV1Jyxk/5tROhcnUYfrCO+np1aNQOdQM0npAEdxl8vZFQB9SPq8t79bCV41d/eZg6oOMki7XyNFn+hxWBpOlTDYfZD4vlVkE1KPl4WT/c3pGbP6sT/EU2Ek36ejsZD3SDrdTuLgyAZvA6JCF/et96ffr2OFZny5vJXx1z1AVPHkWvssoz5+Ph5r+bIs/N8PqX5mfzvXatzqZJfm6O4rYBa16o5mmcnnXTS16UKAhD0NJyk7PPuuTTklyJc3OzyD/I5i0VvxacAiHLcpIBNOkqBaQQ5PKfIzwQpdEYX0ahIJJAnwhb5WzYiXFgFsM2EuotFgbo0xsaMC7NqrFigG4ivywbkcL4jl5N8PZXX7y7UqZZTvpd4mGEXKmXcPwEUk4/0TSMWFWpjrbeY1sJmAuYfe8fuKjiQ0DKAaUWkIFlMPiD/fJDmI8iBlCKoA+aoFurTpDFADUCDaWboNWZkeiJs4OJQ2LTFGBBy8yaBCGMH4SpARzq8vpmtBsY0u7+ZyZ5qwwA/rF8juqs4D6bcR+sd1P23+l7ZpStPSBbhyQssc2EGSObGGnhCMmfgU1LX/lOFFa0odZ0b3T89epSDR5zSBxm66WZijd1M0T+td0i1ZhoRLr4OWd0JHPPZ69usHX3e/mDGtjXs+44frwRphGvXhhHj3jSS1hhx9CSlE6j55DQLjJ+J5lOZ+fdKo+aj9rNHBcmj8ur1WQD8mTafnz/6LtP3e4DTZ+33vzMdgTKPtPG9NL4HL5+xAlb97Q+HA8iaxhiIud5x+6BCFSh8L83z5Bn62fQrMGau05x+NX9Xc+tRIOmkk076mlS1KIAH+QFbwysoEkFVnlwIafhCixv5NT5p0jKo9TXTCtavFglJ5iwfqldqNoy+aarPiapZE3WwxhlMK4qmjd8jkgBDyAoUlfBz/RZC9TcSZiPiQu3U5pR96S/M8R5Va8OAInFQzCLelLIXXXFiNQ9StDGy3V1lJENmUwx7v+0ADwDITU8k+OPmM+6jheBjLifmLS+Rk3zwpQTCDvfsQkUrhQL883E7ZzoNvak0eWCsaKbiX4sfHcmvMcYVPHKfNJq/lL9eE5bJoe284Ih8HkTbODCT8yQ13bTBGhBgJwPhaDyAJAZ2OtaowfSpr/krbTL+XnQCNZ+Q6tSZN9K/6iT4UMh8gn4l6LQS8lZgiP/2eysTJv/ufkMM4I/rDNeCIQPIZdCamOuyl3Lrab+nDaR+eqc6Bs4F6+NpNTZWaepnL7+0X/S79+srVNvKtaTqCUEtc2TGx3EhUHvp6gX/WbDEy3hv9KdH0xytDa5pw9OnP1/HfZ2X/ul+e2YQbPYVVdvUo6353PLnrxg1lE466aSvS3V/Hf5IHcm6sMHug8VFF198iqDiUqI/X0GaGTiYD9BXvMfi8Fz3GnJhVbJeVGo/IQhhwoEU/4Q60BlX6ZD+mEDk9SHAIrqQ/TGYW9SDG+e9gZEl1ZKAa094lCcCRDUm8gQ/AZwduZ9uJbvNwSJuYGKI7BDpISxKM98enVSrwAR5phQkBwCGNCqUg0VsL9rMRw0zKUDkzW2bewI746HMSbcUgJj5niFTiQlhnRtAbBozOibACT86EKMa7ZbGxhCBcGGASfBDVBuGIRm+28GaArg0OBikql2baZWQjUkxvv4qXQEPsPFzZUJBfcD0ioxoleCejILzlz1BmkOBqtRTJHlAUWfGBMCCJelcFsFumjPo6oVmN79NfdfrV68SAySCLRagFqBOB+k4lgTDHA7tILRob5/bhIv1KaBtd4G230bA1hgvmz67E3AhwiaEH1fVtmvEYNeKagCjq98fY9qIERGrTjqBmk9NK7DmM+0DNzaYjvoeXK9P/gparXsrkMav3xM05zan6Qm9ljkOPAnWbzgLorWcz9KnX4Fo9eOgA+7NtyOg53bsjOnjuWnQvTUG7gFJq7I+C63WsUfSv5XPLGj59wqYEm7b5TO1zUknnfTX0bBWFw2PAAvI/4y3EQdzaLmG+wK/BGtKmmFfKXkMJ/WExWK42mXyJwVYI9Mt+78APTRXSi4PbBwB1tTP8ucgSL1WKgbA1+b0T+NOMoZoUCF8q2AZfRKNKPE71nrSq1oHmpzu63Xx9FGv5FhrezpY401ZgaME2Ur/fyam/JNS1VKLvvQxYn+hvRTjwUAc8X29AGXeZ1LH2u1+79d0TGgnBWBp4ET281jhWWNZnQ8XSUDyegUVMq9nB8Y4DsPPjFXQc6uHdjI9rY6Lq1+aVfYHKBFJ0Y7zeVAATrvnB9fN6sSEBGgIuDDhQsALkYUa1wx2A2/rmhr/QrPNAaJzQlU6gZpPQj5tVuYTlfz+3/lk+FfsbYtl57BcKr9Xz859EV7hcauBI5CbfKv2xZGwOPszOXqPR97rpMdpHntHWhm3G/26L/zerL3hebuPA9eqqmBN3dh9PjfjOJpINWceypvrV397XTxK1EfSvbHaF9eA9AvzaP6uCePlVE02b2sg27Gul/XUtf7VeXtu/yeddFKlaq7TmLFRw0Z26ksUAIQljugxekKdwqcvMEcaNZ6GLLMj1zAViqHpOw0pRjGN0AZNHPHy7NNNn9AV2PB3iigyj7RVEc42Uq2HZoLaCwOtqbZKs+shdQMgSGpLkEbm0Y1TEqihhE8A90ciqoVBZFoCWocNML8gHY0FxOqrprZr7COhzcGlfaTsx/rNtWy6R4NiQhetbwirTLE33wj4J91QjF1rKAfYGtLxr8ryons4E7am/lDcR02DAgAvzOZLRseT5t/BYEBMA14079CiEo3cdCVSn0zw6Eeq8bF1rUNn8ztoWjwMHaudVCuEpEOML9Ny7YVM4wZwEJINmO2pfVNm1+hvKe8Of4VB7O4bqedIc2DS04o4EJWmWpYo/EJJzA2LbmoImEdm2xi4MPBCMJ8zZvIkqUmzEfANqq20gdBYcGmERoKNCd8Y+FdzHzXWuQz8HyHQRvg/pj3DprUWfnjK93NO3dIJ1HwiOhLCqiD5ZwsaHzNh/pxaH7Wf1+BIuF2BLPU6LZ4+ahfvo/nci6b7q/q9BdKd9HE0gyXzvbdotdH65wrQOOr3I/DnKO3R2PkrN7ajtnB6q25Hc2R1fS24KM3OJGdg56STTjopiGYBMv/iVBkqkLlmhiAfoLrSlBN4WazUg0YNbte4qVrTbxqu+6mzX3FwI6M/ZR30/Ubtn5VZ1SPkAjVRNtyAxRCFtkz4G6GsF5BaEe4jxpGteT2PFiYZ+N81D2d+bex9mdQcJfbd0qcAoj6ab/aWEIr2xvoAJ3rjlCSfJm23cRCmz5qcizHnUP0H+V/VqilzqkRfqvMl+XAbH0RIgAfZl0N/lvk1aMnYAIl5bp/iQB/S+qk8V/O/z4dMOjBelD8bYbxvkhkvm/5zIolPgNoeknOitmmN5hRab8goTm7+tJE5E3hDmt0AACAASURBVCd1wn3hBGa+sQG2BANqADDhwmpypWHWfR0oGjW+fkXnZj+dvNsJ1PxtyNeRv+ug/dX7mm+qDeMJevVlcU+IXuVFqBMkF/cjqiYXDrwQxrKBkQnAlJ6R2hfA37e/Pyu91fdzGk9Xx4SnscPJ5fPBIDhfAjvtK3nO9/UzQ6cegTJAju+++D2DHI+MIU/zDLCxAiTn/B6d97N2mWvizMyyz3Gfl/U9fb7PefrfFcd9ftJJJ31dCqe4rD5W2HzTMDOINeyMh3OmHYB0qL8VLmDEuLIcAdZki/XRmqn1QfjkyLDS47+bELexcxRh157X/1KM63CBVp5iMgahjtUnzdY4IlAREzZikIXucQ0a3StVM4Ya4o0YBGIBR9Qcbxsa1m+xejIJhAXdqk2MFOZF/WZsQGwErmETobs6UrsJCIfG2taCjVK2DVDOkIIwC2FOwXLuuJNuaR7o1m5M6q8kzGmYdUyBqv/cNHEr4A5nNmZeM/L7FSBxPzVNCAyxUZf8QWvuI8nqBRszMvF3dr8bMKOgh2AXYO/qF6cD4diXBaGNEuCmIyWz2pdr+gTKo1GbiIBGqvLTm76U64SJFq/18ZDchs4IAZ0NuBocZOW4Jqp9QbgwYzPNsY0ILzCNQtNieoGCNN9YzZp+Z0ZrhJeNQqNuY8K3zbSjCOgk6Axcd8If0Oc2YjSWBHRB2gHdVBRPuqETqPlEdO9kfBbsP4Lemx8d1PZIOPxV9V/luWrL1e9VXWdh+l76RwXho7quWvBeOz1a3knHVEG0n3n2aNzUNDOtxtTqmp8hHOX9TLnPgjWex6qO7xlz8kYuR/O0ij6Vaa/mZav7NR+ikTE/QZqTTvoH0c8zL4MwB5S1gZCnzQBmrZDMIwXH8Odgx9UBLtwWu/x9yxMUnRmqKWudx5SuWbOqp0cwimdCi+WBFbG2hT9TTsMzyhMSsKI4yC+HEelTpgrKbI+E/x+kLxtYvb09q2ZSas24Rk2pr+c/tIn5JSm7nO8RTCrwE6mpTNXQqU1eNTxq45CIvu/JnN2lOcJWjJsYS54mhXgdI1TmpABDP6zGcM7DOr/9GQKZ9pREWe7gtxu4oaDLUfbkpQz+YKqp+jh+bjORch9CQz7z4W7kOZ2A1eEWuI9jQAE2jUd/UuZ+tkedezqfN8qw3Rup3xn1PaOgjAIzCtxsTPH70sy0jdQB8pUJG0lgpUPkr9rT9Xpl5s45dQI1n4WO1oM6Vv9swb3W51FwYZX+Xt7vrXuN7gIost7L70fMiQRjdKd7ZXn0mBqRx/ugLq5H5XpdO9KfxqxhU9POWgvnmvUxREjtq3ttuupL76vqP2V+piau/TdrrLiq9Q6E6jVwHK2p1qUeyHwESFPzmoGsVT712lH5K0ai7sFz+9X3q21cGfj5N8M2MmO4IwCDM9/A0yFyTzrppH8+VeFNFyOJ6CdM5oMF+ntHnl6TGIBgmje61vQQAJ9dbua1NgSoOHVWcpMF+D1S+IOgwpQLsAIPyzsKQQp8iH0yiATEqmayXCNp/mkCtX02IrwUIVoP8VPAjnDbllUToO3uwyb9++0Q7GQOSeE+SMbyw1kwM167RrcJS4lyhFL9/9XNRkJrR0MvOw+2QTUQtG3Z3qNPPjQswhWRRazJNlDgSsboTyfdUPimMf8nF2a8cHZQo3RSa0psqlHCZBGZKKM4IfkD5RHSVCZ4C0dZJAEesvKJCL1L+GxCB3bjF9B3i6Zk84gYHbDoSjmkXPkloi+hYydRNRpLSASNFiY5PvQhP5LzPx2PXYCrMTAtHFq7xli8zvCnPKz55IFHoNL0Iun/0KeJ+qciNNE+2awN0VW76Du0vb83/fyG0X/Nb41waYTvm177rQEvDfhtA1pjbM3fV/CDgH8z8MdV0Khr36JqCSZ4M3TeSQOdQM0nprfAjI/aFOZ87s2VEbyR6drRk78eGp0ZnZWgOX9fMkfl2qq29/qi3j8SclcC55z+rbxPeh/da8+jOTX3z6qfj8DWe3nQdOHwAAcjgPLIOPzI8fLMXHgkr6O56b8rCLMCZmpoVf8NIE6HBMhwnrIu56STTvqaNIIAaw4mBDJgWHTrSf+wpsRm7siATM+N6TK5i2/zrlKlUoqyZ/DGEJGsU6St9R0rEJoIT5kaUNTX6xE+aUwoVVMmd8xM5vjVNY0QLUewNdybyATQCtDUfW44lPD2dE2hsXr6dXitzIn8K8Gi1ZA5nk1NAxeOw5E0qXDP5kh2GCOUzSgl75NZG4mmTpr9HPk1sgHgY4zLWHMgcMWrp86IBE+QXSAJ1tSpMDEEGb1JYs6n/xkDQWDOhAOkQWqwIMfdqMNSy6gFjwyfGAgch3v2sI+rcDBsamVi/psyMjgFeJQFU2Qm3g9F6620fvxrpE6DX0yL5jup6dM3FlyYDKgBvtvnbw36+0JghgI10RaEHWR+bZyfm9aRsm65tp6nOqeR0gnUfBIirBcg91dyBDz8yoH8KHizSvdnTLIjAc9VbH1hXT1XF/JUxc1WrU9V5LqWc69eVRgVZz4s0zkyjUzpnaq/G+BYy+Kk58jbfJ/41KOx631T+6Nq4jBu58CjY1+miew/GelKTZCaYlXDpJY3a/28lro+XBfcAohzHq7BVqPO3ZsL98paPStWxsXq0nwTNwbMIz608jAZEzBXyO23d0qw5qSTTjrpllwgZPVP4z5qiCFMoZnnp79s2hWqWSHqfwUFM7F04ifrAS5EcS6uBLBSo8lQue+k0WRSaHUgWshMglyjxoTf9E1jFIuuOmvR0McpvZIcm9zWVgrTCE5tB5evtsb41pp+bvpGGjFY0Pee0bUIGs3J352ATUTb3BpMgNhog//qJoyHwH6w25paE7sZGlNEuiLRk39mishe3SL6iGklNGvfi2l8vIhAiMGvBHMZEmAXeTufIM1DxFCfNEQEYW2yJgRuADUDa2BaTEWLxp/zMSRQ7RGOyaJ9xVDNrZ0SuCFgAIE8tR/odOCWWaqnPhDV+kLGbCJHF+2PbZyyUGjN7yLo0nV8zWU4EBOAj6CLrRldIGzjXm2xDGghNNLV5mrv33sBjAwc8chP1dFxgCGmNZYrjETbbmTaMUz4rwZciPFb23BhwW9NcGnA75vgZSP8flFQ5mWzz4v699osfBsx8O8rY7sCf/xQzbuIvuZ9UNbKUqWfYyr/wXQCNZ+IVuv7atz+6r3gZ/JOzDlptsuUm9n3c2+xElSPQKWje0eC4kwrRHwWZOd6jXaq67qvhOG5r2fwxvM+6WNpNQaOxkUF1+79Bo7H5ExvjUXPs5pNrWbSqlx//iPWi+N59diueptqPHcipHlh/UsByVSikUCNAHHqORcW5ol0208nnXTSSQURWd+OZBSLbJ7KFw0MyqzyVN3yd7CmFLn6TE2RLHwlvLh4VU2KcC8daeZ+KHAD3j+I5ntUFgpNk+JTxN6/+qtx56xCKlBGGxGp+RUTIHaoJuVAK15DxqpJevUglK4LgMRD/pIdJJRdUVIYDC0ZZDju1bvme9Z39b2Esm1JhXYx8ycv+ZBWG/Q/nIoCTWzG+dWByao9Q6igSskJ9SBWApjU3d3BDNXukvDPQmXkhI8iM0cKwFOyjPpNh1Zq6uShT0o9MU4DhJGbeXXP/Hoc5xjMquDgi9S0MpU3tpFDVBmCPheHXDeozEeEX5pvzPjWCN+agivfGXhphN82wksT/HYBXjbC94uCtS8N2DbVqmHzUwMGiAm7mKmjzyN/H5GsRQF6y/A4Zmi/IJ1AzSehFRg/C2dz+o+kjxJijvL4qPpWobUu4SufMJVvmQXZTmbfKtWnzeDe6yavuW9W+61HbbqiOD2V+3txjVI1Miprofyk95G3KT8xKAWp0eJjLyNnJFMZm7k/Z53nJ3kziHfDG5Tduvb7i926lrrU+zeHQdO999JcvWBgDu6/VeY41jUnBvANBsSQfRrzfbETUbCkTxogTjErP+cCwVWAvo/Ohx+p20knnfR1KIR+l/rtKNqFuw22rzOhiwvuesoNSo1KNukinegO0t/S7KLiRGnWIWNiq5uHtvY0EfUJeS3xJBqEYRdEBQqaVN2ZR+Qhbx8Nw0vYmHFpZubQXNvBfIk0dS7ayrvtDLyS+8bQzHoTXITw0gmdutbLpU91KDPuaZR7DqP6/MgXaaJ7xy6q/SDo6UtG1BwrQBoB2Pp5l24CuGne2Ol/M62GRqw+NryfqJjpOIN3bixL8qHMnP5nwAAVB7PVHxDB7tuP1KBVTZWLABehISqazkH917ipH5pd+7db5uTOhSduyZ/rDIR6jSQE48DGxZaGP0Q19XcDHNxvlY+56y7Yd4F082UFBMgpswo1bmUTN4HqIlZnyfoQcC0aQZETeZ2dE1UZx0OWZyzRqnGnbafzGdio4zdm/D+XDb9twH99U9On3yD4vhH+81vDtgm+feu4MPC9mQYOq2+b7aJ9yiQaGc3UnP+4ioXnNqCm74iwbT5GnhxTX41OoOaT0jxwVwP52X3h3mQ4ErjeR7/26OAIxMjrqfZ4SLHAeW2lXl4mn8GUVZoKJK2eeaR/az2Wwv1JP01H/TYDHrUfBbd9QYejcKTYTIcLN18fnn+PzOWPonttdb/E51YTQgJhjVQOCiYupZH0SeOM+jSh4uS2yjuW/pw7J510EjADxfXb7BfDT+j1XvhlqSgKAZDUDNCUYsJZ8hQOnszlDvUytQOxB0bfDf5RFr1alxAr05TbovQqvbEArlZsqhUn5PuCpv0wtRfqQUOYrSLDKtfT88qDzRtjip1egiQ4NQM14uu+hNalV9eF+QQFrH4O9Md75ju7Rg3RvNFkJ5In/id7q//Ikx7KMZnj2hOQzqFhNDs/kLPKq+Rt7/3ab+/GE1LuzNWq2in6SWY5ZwAOyMAYjOmM/HkFWQQjDIoh5chB5uGe+CQoz/fQ4jENtMjX1pMopPimueFg8z1D+ws0jHWvg4OwL00dCf++uY8a4FuDOg/eNBz3hYFvmwI1FzKgppW5bQVuJBaK2wCcw9rVFW1i6E46gZrPQvOw9KEq028/kV8P+Mfzr3QESLyH5qkm0+d7ac6v+g/hqRQXAP0+IbUp7vnamNu8OnKdUfBKm/25X5G6kYwLfOZby5/zeysy0UmP02pceh+tyBk+78vap5nPnd6xgeLj7KacFUpTLs9jz5Nxuf8r6NnxFvPKfh/Va257fS7Virfy54xFs4gDoFSfZ5c+ahiGUoKIMtgEZQq9PudcOumkr01pflERAwotCWYGMZvWSAM3BrFqgogAV1YOw818HB5hYjPx6VaOCfC2Vh2ImrVmEKgPiRSoyHzT5O8AB4ggRGBweSkAQqGFQAY06Mm6A0bTLpjOLe63WSEBoXdCNy2jFLgFkK7aKvGmVCJqCoQETQTbrnXrIaTe8lj+2301aj4y8MEr06kX+9aZ0UG4EA3+3dj9+tirq+NjNdUQseg/MG0O9ncGQAxQi/ECGkGFk+6QzTUmQgOjkc4zQKN+Ne9NIVA3wKZpNLMXUn82Yn22C0xDQ8eDRxESKFAHSQ6EBKBuY4aU908NOoA8uhO6gaOa29V8Nv3oOkYdcN0t6zg8EkC6QMzPEawcjzoZ9UD6t6lgj1gdFZjp6H0Hifqgca05gFKDOyJGmYZO/JYoZ+ByyApgyjWrMJPdEK7LRqo5c2H8jxfG//6NsbHghTu+N8J/XNTE6eUF2DbCt40C9GyNsG3adg64iQA/GvDSBC8suFCxEKn8Wjh3As5ZtKYTqPlE9NYQ/VUCxlugz62vmWO8uKY/NiR6Px3It4cAUQVBaPq9ygPT71U+q/Qz+0UHf0dU1v6h3FO4/Diq/VDPOO7Ng1WfrcYJcH9szOOv3pv31hnUm9MfjfO35vM9mp9b1vPdNK8nI1hJZHbORswAscS9qiVTGY6on3E+4QYBeZL6M6FzTzrppH8WvcWXDHs4qejWy28HZzK1rrq6RhkgY6Gpu/kvqSlBxWvGtHGk7xsrhRwI8vS+AGJYE2lxf/Wu7wUV5r3K6xiOgpFmXMOL2Ttp2pQf1bdLmppFy7oj4MJxuokMoEKwK7sM70OmeeP/Jxcoi+lYQZ6irSlNaJjcBMrMT4pgWfs++8l/yfs24H8aTWMwnWEnaODnLaExhtRa8yhB1QFw1cYKDS1I8hA0foJ8ZurmL6Wb8i8BFJjZUZJrzCTzsOzet3gLSR7w9lZeFRF0UiflWh2Tp6Smc4ZHAmMt8E3kSuTXq9nXUKW45JHaXjbCtw34/aJhuF+a+qj5thG2po6EXYOmEcJEcOMir4haN22kh2wOhHqUNQbgKkE5h8v6Rf6O50QCTqDm05Kr8b11Qr0axivh6kh4fJRWQug9WgmWP5PPKt8jfy48fV+9d/Ux4nl5vkft4vmtNGNqPWrdVhoazT7n6FH1N0rdT8fBv47qGAFGEGVO55/t4DownhR4Piz5+6gO/nz6ScqbwciWOqJ8r/VdAY4/Q3O+tLiHxf353lG97gGjbl6wsaraUplIoUkTZUmYSI31U6eZUhYJYmV2mgAXEVyhvn5OOumkr0s0/5Fqs1TVfRTBoptQiZLOBckCr6CZhKjpdRO43QMSjCkYQAAycZJOeareqkjpaxupdmEFabw2Q5kiAVg01pP40M55gisTiEWwEc3THlchj3Ex04nGjIZ6tq/Hdswq1LFouGsBbhkgIPyJRP6Wz2YC39V8gjj4Hjwd6R+ZcOv7skeaaqz9FpqqLu/an+8nYvtG64SdzEkxS3EsnH2UvZ9aOifdkvsxaqyCfmPCBRpRbY85p32ykfo72ljTwwFAUV8njdMkOsM+az/0pnmy6NjYnQcrEcQE6s9I66XP7kLmJ8ljxVKMPw/ZXR309kCYJLTWwiF4KciTBShyAOh4misELD3msAOY3VRfqt/D+mxGrur2XF0D3KeTvqOuZ4V/JTdnIvzrO+F/fmf8r/9s+NaA319s3how88Ku2SzYmj7D0PklEHTSSFW9M64d+HEFfmuMl43xrV3xnQj/zVCtqWmyVED0pKQTqPlEdCQgrX77tXnCf9TwPtrA39qDyFKtgY+P28FqOx2981Fp9wTy+f4sUM5/9d5DwrIlnMsIB4Sl4ith9qSPpxlUOwIn5nv3rs03AgCRdX4rMCY20cX1e2P7I2ieI/fzvV0ntI6364AzHv49QC0UZovchh0hjMQhi6XpGK8NjWKZel7Rh+Ks18lJn3TSSU508+tmjycCh/CvPiNCS48cIHGuybggU+mnssH7muR56keiBaPGIJW8Szpb3GoUJi/ftX/qe0Rebia6qMNBU9wnezbNMzKTmX8SFG2WuE4REvyGn6LMKfVq3NcMoZEMZdw+TyGMqj+asonYphB7U9ljPEc3a2FKsxp/9LaJqL7oucNU8j0c0zj1MUIZeauZaQ4xlbGf4JsjlERQE0WqGjV11I0ciWMBXdQJMMVcHDX+3c+L+7mtimkxo0h5uARu8pDNzeg6Rl+5VRNm5iclkR0EZ2QDMwJHGdModcBCbg5ys/4JjZZg4nZoKNEmbjXlskcD0Ehw4dSg+bYB3y+sjqA3BWq2WH9EHRE3jrWwp4dnwNsw1jeHj8g06FZrz8TonRMJwAnUfBqqm9W8yc2b0BoEGdPWBeGZvbfm42U9knYuowphnmYljP4M1TxDk2G695YvikfaprZlJRcq772jp6saO56w2wKZpwAHzKE9V/M56edpblf3NdPK75ncrnl2XDj6qLkl33BjM6fRX9FuHd36OF+9Dn7aU30r+VjAdG2u71yPZ+bbvfl0836F3mqLue3nPDwCWyP7blEfiPPUTKCnXkRIRl0Kgy1A72SBG5IB0uduGZuTTjrp65KLDYhPAx5gWjTk/mFUuNhMo2Y3Kb4xYbdIQqE5IwCXHUVP6O1kvEp+/lFNcAIwMA2aZuKsCboeVaqbFNm4adqm0EyjUVwV89PhvwPw9y8zo7nYKIZ13TaTeo2I0IitbpnpvMa7YK5aDinFjnyPPVtAGI22RNihmjwNqqmjUYC6CsUeFts2XY/8w8ToEBXO4121kVVYdfDHvZIQ4NEF9469q1AqJBrNyjWQqPbV0IUnVfJxTr6PU/SnAiw6tl17hpr6rGkZ/gyAQIjQGaBuviXJfEYRsBnYoiCkgxLdoiYpRNfN8dCVVJuWRcACdHNa1Gw8dtFITu4PiXuO22bv08scUXBGcBX1maNzXXDtmk/v9mfXU3nEHAanB2DNz9WAhYEOdHOkmcCL6e+xv6syN4ySjfM5IgGC7kRmupn2GWFoSDp/AHUK/J2Bf12A/3gB/ud3BWt+f1GQ5uWlzmaAuBtwquuPapMx9p0MFFOzddXCK5GwANWYEwfN8i9a45xTA51AzSelee+cx60LdzM4sAJMVtePyls//egz9+Gdj557K/Bq1j44eqYCY5VuQDDK63PGq/ep4Iv/XtVBpo5bCbJ+fVXPk36OVmNmdQ8/kW7O/AgkeQtondOu5rBM9z9qfByBKvV7ES0O83jr+nKMk27szMkAh2aNkZ901ukTNtqLNpfFHDvn0kknfXEKwEFAHs/J15pYYxLGSbC+alfQ8Kc+JdTgYFh3ysLjwIv91BqU35lvromo3/05yvIzgs6Yb5QPj52UvmCivIPFcHV5eF//He3hGhASdZeCojtvphoqMtU1nckPfBmZjxjU8spJvHi+tWGklEXD71om2f35sMzz9YQcf6Op001L1dOCk4Iq+Aj/jmz71Egr/eLXgdjQa8yATCvDWIkP64IehzMS0ZiccehioCEAmZkGkKaxZ7vNGNeSkZq/zJ8rLid93MyjI/gtKakl5QMRd7Zt981nkuHCWX/PQxKApK4gl0LGpu1CpM+Tmj+KzVc9DCNsjfByIVwuhMvGuGzAZQNaEzWxdHjb5iUE6kjZu6p39M7mo4YgOyC71oVEwOImWNUn1TRevJ9RdekW9IUYuROo+STkg9OHZPV235GhBlfPrehGYLmT9l6etT73aBbi7pVV3/NZGjbUUnatpy9Mq+eOyp438RXN4MpMc/SmQZisZVFhHEoCf27u8xtG4qR30Ty+3xyLsn7u0blHQDi29ftuPx15OaMhYx6zP6N6fXX/veyi5z/7xjrKb+VDawUu3dNmceasEbBdzP7ctWlKxA1C8SEAxKmN9PGkK6jnX2UCz3l00klfmKSst7YwVP8txAxhPbUnR40x+oGpfkoacQhRbqZA9tvCz2XZVHmpFF4BhJaB+5zhamdDuRZaYVpXInCLJLHGASooDc52bY1shBDQPP2j2oYE9zPCYI8iIxjycj+Aml4CxNJIUBLaCSpg6m7h4bNnPsdFVLYX0fewdgWVyFL6zyPauPbL5qIeiUX8Ua2FrZ4AlPqTSeOvtreovxRgY8YmpmHFY01nHu2EajB0ZGhTke/pFFqzG9/6lswxRIXJ0XHUGAH0hX+TaHgdE/6I+zGinukZiFDbdIWZVtkzVpx34G5Z7ubzpRtjs3cFQ1676qa8WjlXEdOKcVgmeSGpXxx8Qvks4NBVVJuH0VWbqIxxwLWKkGCJ0b4jnPi6Bg+R2MEXQbqZKUL9NIGBBjOXZPUh8/2F8a//3PAf3xv+9VvDtyb47SJRPjGBm0S/7Lvg+irYu+B1ByAE6T6hGNcfgPwbwKugoWMTwQWCNrTOSW/RCdR8clqBEvVzpiMB8jnhpHqRWJe3LkOWG9XRO7yH5s18FmRnQXF+bk4z1zvSSQIrg/OuB+pVfxPdllfzken6bfu+VwQ/adW/8/2jeTL3Dc03ffMtN9zUKfpWEmCZx+ccXrTer2NkmP9U+JMPpLfWinXd3leJOofd7nzgpQ+yL1r0U1SE0t805n/SSSedNIA1SIFyXCdu15NYhwmZ0r/LmJYIdoJd8qRx7cw6jIJ/rWDesXoWDQ+PZpTP6o8Q6KxCqs0zcxq1ElOl4vLsV8SrRYPGTyOAzF5VwX6J6D1kjn/D6W+AWZaXZPtDXAj1ehvIgtwbhrXeNXxARUODikYNQ4qKkn7VfwLfd71XOfYedmE4NHkwtfPUTycd0sw7MbmvIe2HACnrn4MISC2bcAptPqJ8OIcGSpcwd+sGWmiZBockxoAO13zT2vnBj2vOdPdDE596b3cNGk8zzBk3g/TfcrMmrFmZ5D69rbq/HxyAUmGkuwNjsRFs86F3iXpD1JRK/cFoHvWfl5I8ZcBF5nRbQ3CrCXoJde7v062tu+C6C3YhBbC6oO9dQW0G9k4hQ7Xar4I4lPTPW6b6YEH6gnQCNZ+EqpAC5ASqw3U10Weh7y1h9BFaTY05X5p+Y/r96PT62alYNWcadCDrb99y5U3/IyuahXVCqkj6fT+ovyf43YR/RPrI8FOu2Y+O59ew7uNzyXo/HYFltW2PzNUAZHhQ33xpet6+1ChO1VGup/Xx43m7MzpgnBOMcazMY2ZW6X4vHfmoqdfy9zE88+waEOuf2CnmrELogE0pMw5WLYHATrsK8wIgTqm5u+r/SSed9GWpLP7ukBfsTi45BEggRST18SDm/8r/9Nlws+B7gvmqcWMo5gJM1DoYmeGVAQFpXiQUnlP09wAiEBo1MBG2uplFvmYyYeUqGMGg0C70yC0JkEQ44DvNVtvNBS9AhbALk/mFaWjUQSRorL4v1KeGgIuWT+XJiFhDNRchNPY2Mg0MggIuMI0XSa0g4hFka95uzADB/GiorxMhwWZXrhDsJnxGPkRorJykhlZ3fs6EWRr7aQBtTjqkOkSZGBszLi64g8LuuRFhg+3ZrLx9A3AxjZrLpiGfyRiiXV26qOZLl9BIv3aN7ujh4qtvyQ7gDx/o6vQpTZvs8m7mUtS11ruBND96D3OngDcc8HHACO6XxnI08MS1yCR/BImMZnpuRpUrkcKO/hwFYtkHXkh8HnnRYBAEGwPgrn56DB7TthDjP5W7vMCcCX8jbOT+nQQkHaZipADNfOg9qwAAIABJREFUteP1Kvj3q/oD2oWxvwquP3ZQU02/16v6xiFibBth44YG1pJlIZXdR7O+LJ1AzSehWyEoiQ7SPJrXjNQ+fvp945f7zu/nZtZ75mFd8NeglTy0cdZ87qXN+2kzudqcB6FWZABran1X5VVgruY1Yt8nvZdW/Tz3YR1XN/0rGDRf/Dcw7jEzwzvfo8W1Oe38fQaXSMZ7lT5itNTxOO+fjzCljzKuAjP3I4TQ4zbtMjAr+UAvfzFDxNKX/nF15Y8Es0466aR/HvkBT1DIX5Qn9khw3p/RJSs1NCqFVwdCuTutquSmIZXLmH3huOksTUABTIul5Ge1cmAlTsHz6l2a+SqY1kMqpYx+adxvWLajPq3CMQXIkfuV/q4mYK45IVZpD7vt+Td3Mmt16xYOuUa7gptheRFUy4MBNhVsQZzse5/S1Mbh19bT12au2bvKNOGBFv4alGO3+nFC0Zop38GRxkOwu9UhE8y5d/odcm0TAoV2lQMwCqgUjRhS8DT91aT5k/8G0r+Me3Hq7tfGJr+bFFXQJWZcBWcChJFyD2VirSW64BsDwLEB6gCMgTQRTS4WpNv6eLlELot4G40Sm0fC6tCw4N1bkgA2J+WQPSNddYH0jn0XvL52vF6B16uafO0CyK7tyFW13Crms5fSDqyMlKkhhkF001Rfjk6g5pOQD9vZh8IsxPm14TSiXMfi+iM0a/L480cC4FsC25+1WYVABtc2UAZgHtizL436bvWTSmP61wg/aYsVRT6pvVPzrAuunoShMEq56fvGPgjsUydWVdvCb530E3QPpLk3XgnpL8g3t9U8BW41X+Yt6ehzVYc6z7286iz73liYy32W6vvM1+bv753rO4AfpL4AIrpjI4vcoLxKzF+bL3t3oIaCQUmNJGX++tAKJ/t80kknrSnWdlSBCwCRRk2xU2pxZ1hs7jBN8KoQTQh0kXcFYObrFMJ9s/L8H4sJt+ZjoiHRAnYtQSJwc0deKXQCov68TKhT+ZJMyLM3FttNnBlZbBY0bZABDll45AY1RWFSDR5Ch1hkvgsx2KRtd2IsIAuZTepYFLmvMRDCufNWzQT6rTVsrdmi31XzUgB10EMAq4jZoGBNCJxiAJq9dxONfUObIgB01Xx2JvNVQsH7EbSdNwDMYtF2ZkZuHESnTJkUwJ79NSL19cOsYZ3tsxFrNC/TpmEmi/wkFnHL/QQpgNOhZj7cLZqRmfzsIOwM/HEVXHuCN2Qd07vzDhKOhgXpgwbSjbdXbstBl92d5drzyRSRgT4Sa4N/av75FyZHB2xI5VTcXCsPnXwO59hT7EiBGxoGHMF99QAFjIJpoAUYpXNkB3Dtgh8i+DcDP7hrFCgGeNvAfQder2bzBQVp+o4fr4L/7/92vO7Av18Zgq6mVs4bcwK02vBkkZ46SO2m8NRM+eIT6wRqPhE9Kkr4wrdymLsGUBxHXZdQMAP7nSqw43MyPTeis0d5z2mOBL5HqdZtrtl78161UFn2Yh0M0yeaypoKjcV2sdAUPuq4ztP9L75e/TTRnb9V2rqN1Dav17n+JiRggDqXlAYwDrfz4nju3j5f81nVfVXuo/RXjK3KqHsd4uDKKuRtq0xauT8sghL5kX8Z7p0z56STvjrNa2TsBeTRZijAAphsTuQ+IuwhB0Sm/T95AvfNMOovO89UD2S8vFt+a1rRQvCtWiQoaTNNPE3zbjJJz1NrDLwg1TuY8nJtBdccJm8uE0ktNLKkE/1RA9SivlDhIym9Z2g7OpTlOg65hgs0oo2nA0j9yYS6axbmsbgqmFZ5Xd9/IrLXKPlGH2TbD60yfS+Xzu2mjFUDHw30bB5em1XLxnAzMMOAvzy08ebdgxfQceDaU64dE1q5lqbySumzRszHzOzst/rXlCF6koMcbp5ey6u8Sh4W13d3h7+PD4bwcWOPyc0c9lsypvcHwiSqyh1HunT6hgSA7cW6KDi1X3eI7KBd44z3q6Dvgtdrx49XweuPjmsH9mu2dWj/AWgQNBI07mgOKpPP+xUnDJOVytr2VgSXL0InUPNJ6Mjjvf/2BaD6rABuhbv1ZDwW3KqmiWAUlvx6rceYv8T/7wmZlR71FXOPXGBzHzQDUVk8x8t38/M0Irf+RGYhbyf1zL45z1N4AznI1+u1WnOOtJkiuZxL1UdQBQRmoEamNPM24mOubu51Y+Yp7conDconlfv+zNEYrc/X9aC+l+fj82E1ph6h6jtnpvn6R41JBnARIIIJCLBfewpB4qrM+jmANM6Qcc4zZwIIAIUtu7y9OJ100klfgnz9jb2A8sRfoy5xLJ6ppeFCfwobRB1CemruDmyqBo3pkMTvoQL22dzMU4vTSEVCqvBCqjXIILiFU7P6uuNc6R1wbZAAPhR1qAEemBndIsmgmE6pFo+CHG4cITTWk6Z6C4CduvrRseJUW0bz1JN6/d7gEZ8S4iCY9kzpExc4BeaDxzld6arNQC6kA1cSXGE8GAHsIYWEIR0g81boorYKiWzlaGOzSOz1FxOGO3XbKrzdRnjHgaEAbebIWicVsv4mCqfSTIwLM16Y8a0xXgyYCe0vQoA4nVT7CnCTJsGrQDf+dECH3rW33NF076mJS0iT6r13iAj23nVG2titgIwDIIIEc9zE+hXjQdHuUIlV5VqfE5dPzNzLxsrNCVQl0bJ3UWe8rlF3X5ARBGTjZuKGcOk1B531RQjWIOzZKXdJQti6gHbgVQR/XHf83/9+RcOO1q8K0PxQvzT//qPj+trx449debIO1aBpqt3HG6NRx4YdFxa8vAhednNO3Lqtm1LKz5XxnENrOoGaT0Sz4Cjl2jyQZ0HviEZB8NY7zSwgPiN8/cyk+tmyHiEXaKl8n4Vor8O8sc4Ay3xvlvMWIHdmXp53O9Hh2qIuURaV33Lb7ye9j1K3TALUkINP/74CO+r1uuf61xnw8DE5gzP1/pyHXzd2dTlfjsrA4vsj9Mw4W9X5ueezdt6Ok++9ZIQktN6zPHvhOI0uwgsBA1pVzdXOuXTSSSf5xjz7XvFTf/eT5ffc6W+sdtPmIAvhi+B+tATui6aaMKSokpSm1IVxoHhg5BFQH/b3yR0mHpUEppoJrkwqs9U9qWr2RC1uGCYa8h32M5GASDRKrwqtm1Xc2zqiKnlObrblsuzEMwEezSY1YDLCU1aApEc7h5BuL0bkQqwll1oXMrBJzbjEnBO71kZo0kxaRTeVPDcXnTPef/kFFRxkM2O6MEckJwHURM2cE7lmhsAOaADAzGt8fIr9TyDJ+8c1xDh0cK4yDmrimD5uhlDvocpb5AUbe164WL6VX4ckuJdzSk3/VgLbfb6perXKVcL98syZ3f6KWFfDHB2jiwbsnBpHu4bdft3VnOm6dwNqujoQ/mPHvqvWDeB+qDRS1KUB318IWyO8XATCwE6Elyvwsun9CwvajhsrAyr/f1zC/Rp0AjWfjHx4Xn3TKBvsPGSfEZRWAudqGswn96t87t2/R3N46yetFINW7+35VZ8eO7QdNwAvdcFd5FOpAj5u3uIaPNVEw58Ps/Upf6FkOOp990pP5dqwj3glnJH0DQLnsvWzNI/9MVLY6FsGyL65kvaXb9gNObaqttkM7lSQsPqX2S3NHPUpGMup3rOGm4+TwVR+8a7DM38izULHo8/EWtCVud7tBLVTJpBuQI29tDPZsHQbW7Qoz1eAzgDZCdjWtc9f3/2WJ5100t+afNMljUhCrkljPjQuzGCLU8vMaPAoTLYAmW8IdnsIQ5g7yum8gw6B5PRhHxrW7rJYd5NE2WGMusmQatoMvjqXrzcGVCBSMxMC4VvT0/qrJXi1zcQP/KOog4ZzWTpMT7oCMkwdYHdnwerwV6QIhhR+aFTToEL1rv/ivn/sl7VDF0B6N19xGgXKtShJBCLuo8YAHNZ+7aRmL76POjgU5uukUbOYHUgwExfbiBmE1n0ft/qyt69EI6324S9NOrUMtEkRnKBtvTHwrTF+35qxuW6apI67dd9WTaxX0uhN0tUxnUcA27v3bVdwzcztXI9qh/uh0fnpY8ejJanGTEfpRgN60jExoOOrCSIwwW71c2bOsSg2h8XBz1CCIkzTQJH1vK2JKo8ocTXbMrEaB54wpU7gynlLgoJh3eqj8aCaagwJ8LoDr6+CP34I/vuPHSwdeN2xXzt+/Lujv+7Y/32NPmpEuBjv9bIB378R/vUvRmuE7QK87IzLlfAHBP/vD8FvG/CdNBLcOWcepxOo+UQ0gCg21+pA9sn2FtjyDPl0nqd6XsXizm19jzb2e4LbR0/S2IwLcNKAIbz2XLZMi+YM5PgJ0NzmrkTr5dy0z1SgC9ZSCggmDFMZB4v4ChQ46XEaQcZsyQqUzMRlANexHEwHFmMGOSZqnvX3EWi6ujbU6yeQkF8xZo4A26OqrdLPq8r4/iY12I3ZlNGJrQPcvp1LAWILpp+6zr4fTzrppJNy/c4VyLXzYj0hUrBY0s9FXZNU+0YMBHCzmZFDkmn1obpz+Kl7uTPXT5d+AQkjghR46iIMj47z0oTHhebqMyT/lfc8Wt1rWyCDJBAoDiTYQJQLUuMFUHMuP3mniFqT1XSBeX7n8BkUtUqtJ2QtNI+QZpOpIviJv2lEzffq3kAwh8jrfdu1eNTEprxcfP+HcWbveB1tw6KVFto0ZgLFDCoDJKJrRdGJGPrZi2tqxdgnBUubaeR0oJityXDIld6PEOX1Mn9rGgVaBJAxiluYvg/8iM9rmkJ2Z/vZ0vDwENF5JcXsyQUYN0301WotCQpo8AdlFpnGk654rgSmOnRt2zuw74B0Ae2CvrtJmYQwwyLYmPGyKSjz/YXw8kJom4bmpmYHokLYGtCamrWFBqOzd9FmlYs+5sm/Ip1AzSehumAQdICvzBj9JL9qpzwymI/WB5ruHwleVVNlzm+u+1F+Kxmz+gN5lATjM4PQnLIdCMC2AGkiH0rkGzIuE27vqr/J/cAP5c3vNNcJ5fs9U9PKV9U+72VZrcL/z2oinXTbd3P7Onkb60aT7Y4p/WZpllpSJZ+5nB1jH84+bOa6OEn8b7w2z4Vaz2doNUePxi0euP7IOJ3HtKsju/AyON70udINmOEEaIjzfi27gm3n5n/SSV+bQoj0f1RABRZbR8jABU2bIXuB173jj71bOFvAVWfYBKnqhsIdn9Z10PP0WjjoIAaA+P0MaZxAhcAOnjog7L45ONc0yrzVOW+NrGQmPaQaCO4zhKlBoL4jwueXZzfZbVPJX9dl9d/D1l4XMF6gkXw2VtCmQdLUqQIksAg+Xia5kA1zNFsxEDf+0J2xkaAVUdnrKMQlr6y6atqY35/oAzGwwP0SEagwhCQZvafu9xdCtJ2by3lJ6UD26/Jotd21r0l9mNgfM2PjlhHBMPJMPuZcI/4C4MW+7yXaGtuMeGE1ofrRBVfJCEtsNbhCTPlFbL5oz3RCaFYlD9WxW7xIsoHUY+4bgCFj3zrQsAtKoIOUUpz/R/lcUfA57i+h+k2AgZlIBxYzXzb6s6FI48BxJ4OKAyDxKFW7hekmXEXw2tXs6fUPQRMBX4HrLrheJXxANHQ0Ebww8Pt3BWh+/43AF0L7jjgl33bt85cL4bJ1tFbA7wHUoucFwS9EJ1DzSYjKX6U6dmeA4l5env7oXs0/F9YRqa1nQOv1xZHP52fXo+9yVOpRW82bxKrcGxDFv0i5Ngh8anc9+7pB/U3T71UZpfyjdHM9VoLzSe8nt2nW7yMQNo+jFbByNHaPrs1jYKaj+/Nm/Mx8uVfeW8+8de1XkYs13TdulD4pjL7PUQdpuDD1UjJzs4FTo+akk/5B9B6G/oapoTio4Tmp6HokZCfNfmoutwD5UKXwS0GAOZwdtF4coKl1mT341leV1DqoDIp/jc95nRPKZ6Cn4HRTjAxNUeuo/696NxRlNAeRHLBwQZwyxDKDwOastO5Hrv2igry/j/VD3TApgfwuCtCEE+RsbMQuS0jwJPYKNWkjHp2WUmkYTScBmnWrGItFF6r7DuZ8rEF8EJ3CZprr1UE5774y7dXQcaMZlLzscy/t6jiGPRqARECT3rdSU1DAHAKJUNJxoONVIQqTvRr+Wl/HQLgbxmwlGdjY0kWkgCRWv9VJ/JwFPKoaUijxz+5hxSkbIj58Eklm5e1hKFT47alNJALpHb0zrt1szS3qE1EHN8EWJk8K0Hz7RrhcFKThDcFvgQChBGndSTRDAmTLuttvGloON2Pmi9IJ1HwSWjEJwBjdaQZtfBjfE/z28vuI7i0Xc9SnVTmPXK+/V+/yDBEs8sGiALfHnOtcy+z+vG3AfmLVi/BeqUPtXWue90CwmYELxkFkSIey2QCl/ynXraOyTnofCRLEr0z6rDVT59jsk6b6LroH3AjSV80YvjFpjho1R2E7mud/xtiYx/0KSJrnxWpdmOfjUd4dwGuXsU0IoBIhotlNd4rZaMy7e+bTenBu/SeddFKVtNUlDGvUJyIMZi3Qk2hBx4+ujjWvbvoEZPRYB3QMHaYwXRB04eTXiOLTweWxSgmJuMAlllfVxAFS/nXwgguAofwGhWBZ3zkAbRrly5sIM0N9aHDg2xi4MGl4ZfPvw81AGmj0rMvG2rY9+Z/qs6Y5/0UAUwMTmdZCN/8m6uwVgIYLxhhpU4mjlopmxctom5vgz03BJDZhlKaGd32dCA3dCJ3U6ekuiKhF1WTMTaACi3C79urt9itSzC2yPdq0YBwn8HGQI9wOYlQTy1Xjqx9BgajfTsns3aeSR4N0ALVyaaHhhvQveIXlI2YeRclrkfV1t3S9AB3uD2/fE28JUKTYGg3mXpLPPs573CwKNr/1wsCD+bojPgcQ7aqp7VplYEUg5vxP2IAogQbT6kDfd1yvwB+vQJeOb1fVF2+8qwbNBlwa4/sLoW2Ml28E2hi4cPS5M7wuYzVW06eNVEOq1be4AblOmukEaj4RrYS9pf+TO+nrvSO6nRZrHzRzfqvnVvnOQMW9ejwbrpvK/4HRye5DYRIp1ipjHso6UWB6GR+5BcWmQgaBcipSyr2acewpU7qaxtvoI8Kan1SYAiRI4zSDNPlMXvO/6pumgoBHY4+mz6nom3RH837m/+r4/5X0TP6rNnjr2uyke+NsZxcowg8NzDeN3ZvNneo8ciY6zKOeeI+TTjrpH0yzQOmCXokuFGs8JUjigp+H7fUVJx19Jj8llr2vRVocDXl7Nbo/EYKegxImbNVNxOWhEbUYXstrxcHo+KPps2VQdLANzBQAPGWCE5SmWu73ZdBqRK7NGdXJqzcyNVRfIorXhmJrL2+P1L5xZAdRO6H05UEom0bUPdsnZFV7aX1MTEh3o6XK41FoCoHcEXRta6+/v8sE0Myb9ReiIYQ5Cr9kzSc3Pp40QXW+m/u491GGpgcB3M3pMJn5HCVPF/yTzznJ8p3P6GW+elfW+nqd+zB3Ck/i1bM1gQ2V6KXcKDQdKA1yxtho8cL1R3yta8ogh9zMW7+1ElIyfhRNKd3Xz8aElw347RtwEXU+DmIIVJvm26ZBG7aNwJvPD2sJASDpZZksvjqT4jiN0jKBREDFD1DWXUrb6VhaRdT7SnQCNZ+EBuER46IAGApc0s/hf+e83qL52SMhteY3122+NudHi+uedtZeeIRmxmZVyXuC2LBvlhfQUx4a0tR1FWIOzWhcQm/enZIp0596x73PDzyV5Ee9VE8MnEFTB19fds//UPJNrkNP9IDs83nMzoBjCSg0hPYWFCZ64tWAtT+pFdji3+fyn0n7XlqBTY8ARvX6IzS/h/v6UeeAygyEarozATa/XCiYqcu4pnj9mPQkZ6FVfdJJJ31hqhoRGqLWIw71OHF3wVBPyhkdhF1gZlAWPUbqTqHfwxCjLNTVTGnWCt7DxkI9oA8aHGTamwQDJ3SdpJLnzJGMB9UU78DEZn6ggMuN2U7VrCnv7lpHF1YgvUFPyjfu2EBoYGwm6DUSKyPkQwNJgF61lozpqU58GXZNrA2ptFeD+tnxaFsq8YE8xFCD+hgS0+ZpCt7sBsJpW9EgrOsr6/M7uvW/8YONtc2Z0LkAOaF1xVY+BjDgSBb/CkTTN8YIfAhJ+PTTVKr5JQTTmqLijzFBzwbBCzCop0iX8K/iY3g+uGGbCH692bi8EpnLFfMr5ONMvFZa9itI/RSJgHrO2wTutD4KGolFqJQyLwnhQK9o1C15KJvfIJcfKOSOcTylxl7OWwkTwxvH5THnksfTyG0UDpkvDLw0xreN8PsL4b/+A3gB4dvefCUzTTrRyG3eEDHJRU2luiNlDD+d3kgBnxdWX1ZNRhgp6vtF58xbdAI1n4iqkOSb1r1xOwMFoxVw3pvzWIErMden62/RUdqVIPXos29TvpEv6IT7da/vd5sLELhuyoWBzh9RtG0BXeoieKTRd2Nbiyyz1sE9yDsDsKr3SY/TPN7rXHtknlUtl/rpY2A62FyON5r+bk8TKhMw/l6N4fn+qu5/l/FC5JEBjK9BCiB+0hZ/BfEcGJjVy/rUltHE7KSTTvq6FF5XaNwPfDN2nysA0hT5LlNQNGVcuEJ1/kljWG37zuQCpf9OjRcg9xU3O3JtFi+MSxpCAaRtU6iHQ2GWwS68mfZCCE4eWSfLTlOOeQ02LQfScNsb2am8+6kxYZLsBRl6IMbIKFF1B1RtHWt+A4+6ZK2GfrJN74aHdUAm3kGPXzyiVpiVxeYaojTIHBS7lo6AwD0jCDEETGM9qLaL1/1NjuKfT9o+BaRkmCNh11JysEJdcJfdXHlvGp3mdjs51TDcCVxIAKYjj1T5HndcDSC12skAHBsMXoNpWNi7KKjZfd70PGj2sarzV0yzRuufjqaPLRYOeZFBKJg4QKpp3BeWV760mi8wi0JGlkl/NWio7e8XxvcXxrdLw0UEG4mZmBkA62sKKcAWubmKYS/caBGmSHRN2KBzibq1oC+uhU87aaQTqPmL6Wii+vpWPZI/M37nDWzWXvH8qrkB4bY+K1CnXm/T75rXnJ4Wae/597hHXnfbA5Z1nKVkOko3PVIZrcGnSBXGZXwGQHiQD6dktoDOvJ2qfMauPqj1qdau3pMu6D2ve31Oep4KvwBgNLV5C6Txseabc+2Dvdx31dPVnKn5eD1WoE9N6/Wsecws4DyWV2X+qn3vIwCPmaF62YCLhXLUPT6BmKM1qrIxqzXGmTqGhY39gHqfdNJJf1dKLRUHIjQCDVKwIJhDXNWgkRqbF5pG9W5czMljMo4FiSwdQYiw43Z9TqBAgQ7Q5CfH8iCiOMlvpmXjmhxb1QUlNT0qr1G9pGptGkH916h2TTNUvEPKv1WLWZVETAgXNNI19cLAC5Fp05ivFweG2Mozwcx5pAq4MCQEduLia8f8mbrAy1IBLGegopLBsJGh8iK5axJcu4JDnqRmwJiVv9mpmCsD/Ng7uHdsJLiwtS3ru6sAn/5VyFR/6Kuq0hhR/VL8ERDnnAqfSmXeQJzvTrMo5XnTXJ0J2MmdS6tGzLUrWOM82g1QY3VxXs3HDYMCzBz8UxrwIqQ+k7hrDdgAx2EZMC07AOBuB0qmecUM9ftCHsXSAY5SuUqVASwgzY12jiclpJPywWWDz1+dbxk1Lv8RYNE1M6xGA+OlAf/jt4b//N7wr+8bWu9or4LeO/auQEvzjqrrpb9gOB9uqSLNqo3EwthE8I1E1yzp+SI+cb/43DmiE6j5BHSzeZfrM+DyvhJuJ0EFUN56nlAXgzHXem1V2vweK6H0GZqFrYfaiRb3/Fq5V9+BBWGPOvQHlbTl+6jiqdfrhkFAhApMNcgsSzPKhZDMIZdrE56hud9HPt6OnGz7/SPAYwYAjoCSeezPYMz8/SiTOc3q99F4fy+QcsRPPJvHs+lvABka783pj9rawVYmshOuXwlbnXTSSX9PSrBEtVPyNJxNrHGfK+nnqnALZKhELPI0ZJ28kZvZyHBTuIqrlp9JdGS/lUehQZMwtEOA8jnkFPJUrnzFZ4gXU9fEWGu9rumLJrR47Eg97zW47xpPR3CBuIBizZwqC1l4cPNpwZie9bXa6up+aEiFZWaGRuPJUOqTCgTa/8/eu3XJkSTpYZ+ZR2YVeoa7syR3eRHJQ2mlB52jB0r6BXrRz9c5ehOfJF4kLnd3dma6G0BVZriZHuziFp6ZQBUa6E40wroTlRlXDw+/mH1u9plfU9IwHsY5iNA9ZIbd02NhgmWv8iAasrTMR88RfjgBB3GPoXwvWcsXLSmAoRfNNrNC/RXL6En1v/JeNzVkr0XgITipL5NzPyGvtqkkLe1Wt171cfxGVyY4uBjXR35Tv07SC5ULRVMXB24CAKz6PjbXLF5pNPqiNZPX6R12b7cBsmLqE26fI2veCbijBVLtp5s3UMs9Ro7M1uZeccQEtAA5q60UoErRbCME1JiarQRk34kZrdm1KapDBqykGPDSthbohZ3o1y07UHMncs0Imfd/inysjd/a/7Hz6qA3AzUvldeaTQpsVmOm4fv6CbGftkco6WbgydCKSWch12pcn8hrqk/ydSxpvp/LBbSck9s5Jicf3v0aW53J4kAVwNqRYRuf6oG0i0m0IYWl4GQMgKwqtHOITJw3ezTRdF7tx1vlYWx7SZ+7VCpun/Ml2kJ1u482/CXbXF477J76G776iaqPzz1/Kt1G2SLAV2nH+vfeh3bZ5ZuUMt+OkAgHY+AcLsSZJSb0g8ZAC8KUNNK1DEo+Gk8xzxfjOtXwG4LSmG0IxZumlHADmPie0F8qsem4TwkjghmqObepG2U0DD4Nq1QBAheuvDKQ+gCsjliZIccANx+zNVfvNyAN4Cm7fVTX8BBwsEmRITHVy0FJ0VgBgXkBMRxM8TlbgLYwqNl2eBlIFa1xejZU3S30wBWSXhhEwHJgy15lbjhhdwLUcBDF2xPQhXBkxuJZrhK4mt5bpnC+0fx+7ULeN+zdFrAGpseSN1glNV6motuopP6FAAAgAElEQVRGqxi6lJZ2GN61AzhQDK4mBaAavEt2nGDo9IxBJ7D1GnOdIFAd56yMMocnTtwkQhXjzNRESrdlxAIRfKzh7QFQ3GokcUSL450g0zh6x9jC83P4YJDli7ZJnH2Ly/m6KT1cRyIsjbEEqKIAFpj33EbBDY+YSeONCobCuLasX7bGOB6a9cvo836cZe/y0uweNVdlB2p+YdHpeygH1cD70KC/NSb15r5b16Dp9+0r3AZF4tqzgfqxcn8qobDC3B/DyN4Yw1ceqGI0VjYt3iv+5wqYW7ycN9cAyu9Jj6m/dT4Wl8fO903DGJMRXsb2XV4vqdxOHwDhXX5x7LVPw2WfjfZ+ra1fA1+uSe0/9T3rvO/G9b9Uu9Dp75eQqNc67gXPgk3e4/emL90o1OYYVwIQhoH3uVq/u+yyy7cj8xASBoLZ52a8L24jxZyhKCE9FB4gM6giY7wBErCZ9aP8W0MwfA+VIwJIweY+Ye8VT5UCuISJW8Fu0ylozCtkd2ogdCLnqJkyaNL4S7QtWaSh7kR5T1uNZzRmtOapzmPQRgA1bgQj5t9QavzaaYSHgUuj4vw5I8SYQB4iRRvODAPaFOzhNQFi1UUuYHhwEBhEbOUjLxNbqJvq8LTg8DJgGiTOGB5PYSTX9/dBBfjXLlkF9s4a4BmFgGMDHhfCm8Z4szBYhx4ffSE9vkAgccpnIutTZKFInQkMRscA1ipAMXT8gHvMi8tCAMfLUdtUvNVLxilrjUgvr9HNE0JKXALWRkdPiv6q2Wa31bNtIAP3oywDAZORpIhQqzxXr/0sY0fZXZOi1z1E5ETgADe4Jw1Z1qYoSF3RtNgzjN4Vg4uWAkf/VhB12CUFCwsaD7Lx8MyJcfMCrPmW+5HLDtTcgVSD3HLMj+1puJTfL2mzLzkm1Iu5DHG/ep2PGYR1EpzvMZcrBuKIrH5pH4zyKoAzrJ6OFwfkGtmm3PFdMSZf111yJ5XrpAJX7utjzjZN5hWgZa7T0DmAAf7kMeXg4fo5hjv1Y4Jj4zVtYJdLaRh9rMHi5cM9Wjf5Iu1PKBCzkg2MdzSHUW3aXNHZahubr1Pf6bU+tmmHZdt8zmdvF/rl2lot+wJXgJ2sjtnT4OqW2DLPTaWk+sgANCGfprhpVmBkjCIt+3fZZZdvSup4q+6yb+afEWYeCOn632AG4kIE4ZJilsNrgN3lzxlLpBeqhY3pnosCNZxoqaO6gwvBSRNISQ0nCpAgSFI3njPlGSvfHbkOIa5oMAEHIvck8tDQcnbwWNRP3IF94lkRnsFiAA0z2sI4LA2NnXMHRgQbKb0V6p4sRiqqIHTy8VgjxGk8g27qi9Ijo/kzsT88u6dN87pjNpNf2Z6lMaVHhahiQXOPmQH2MABudp1OluEnnr01wtIIBw+T4qyvgGssbCo8anYlDQiwgGFt+UDAsSkeF+A3C+E3B8Zvl5aeyuQKVfIVeaak1gFZxby3XHFXVXQysPBkqJrpC4J859ytvQhbO4jI5+aAT/hbCRkXTQKaSOzAAcxooP62owyw40NPJyIjFPa+Fo0n+xCNdhweOxdNJHTRaqBUHax0dIqLdxT4Zbt/7tOKSHVtqe1HenrgyMY1xQ3gBYZWd7u+dQIdihcUIz7NNeAg56KsPHuhZEBbg+DAK46L4sBixMTqMRKhj6ViN1ue37bsQM2dyAyaxLYK1nzs/Hruduu1X9f2f7hT0I271C0vLe+ndr+4NsPGjQ2hcN5cL04wYEgTEMlBUq+XN8bJeX++m8l4zEyR5QJVecp3Wa45G9lRrrktKMYYuMuny4Uy66BbAHibff6L3MinzdZLUPPmqykozHyN2D1vm7fXbRVAre3qWrk+ReZyXb/e7XFge5QrPbMSMUkAXlJ+x+o28rv3c3/ImWDYjBEdSo2fQI4Imxu9cxcIErvZZZddvjHxSXXjJQLPXhTeK7ldxwDjI2x4UTDM4EoFxMclJYayQkU3Y3YMmznPe1iA1pIE6ACMzDE0woeGsbe9VlU4tp444zkFmp4jGm4oFQAqRnAagcXYS5DIPUuOZOBVaxY25NFJeQZTZJByrwoyAliHNcCw0JTm9cxp2FrGLRCgHpMe5LP5CoObJvk0kCBPPDviEeFZqEL5UkqDMMGARuDkyrF5X1jRugFKrQFLs3D3RoOgtaY9Hq/YHoTodrafu5afUOjRLr3tZTsLAmHOMLgRXISySBb8LvDwOucjWlreQ90Xq2vADIOTJvR/gi/ARVuE9Se7AGc7IcBBmkgJTlEMdHG4UkcPTV0ccODRHU1CjyTy9PMj9InqJ+rJ/yEUTKIogFWXC+0p6RvqcUEQjpElK3pg9OH8tVVu89oKhag6KTOgKtAAn8UGNRU1sAzOOyOKzHTi7zv1ZfJKYTUjbQHaAXg4Kx4W4METRgQgZzFdJRF7ZmiLen+Zvvlrlh2ouRPJeGhcgh0189Ms1WCr227J3FfnY+cucaVvX5X5+Fvn1/2fmsHoGkiT151dVjAULoYN3jlY1kqtx4fC8BHUqe7aDIJlPI3yxbaKJWU5iuIVrtf11s3mik8KFdtlK3M/Cc772mwiVppcUaRi1d9qz3G9ed9mIv7AOZfl2u6r7732ISqf2Pe5prOfa1pUAB0jxSbgylPdr5fu6yFUKwCjvijCwn1gTaDm253vd9llFwAbk9qNqIXMYyI8TNI1n4bxSGrgACmDyTgaBiWNjb5KnkeFY9W+zvVxzzIwIUxL295y4LKFhIYAKgIsoSw3UPQU3ziub0Zay3tbaVqzdNzKBJXirZMkvXSZvrqANMS22P4I4IEJy9IsNTcKF0wahlYHTBH+QhBm19kUTcwIDFJf9bpgdm+ZWE2hMKDNIo6sTMQEdpAl7gYgY2eCK4RbAHA+s5oVn+TE7WCcNhGKwbA6WM/mEXBcCOvB2kcLDxz/SHkv4VFDdDnv/9ql6rPAQCYCrCFiDx+0TGNEbqq7R1tw0Cavi4NgrTUDFkWhIg6I+NKrKkgGGGNe+nY9JkASxHEPlgAUankRi3EG4IS9dSbTS5T83tmb7dEYGGHZOhb92AsTHJMJJHYfO7xfR2vc2g7DU2u2+Qj14HFSAKIV8K3fti/nEgBSx13OCqyikC7Q3oHOBsb4tr4qGBa2hN6hIsOOiXjALBQcpFHgoFgUeNMJbx6B7x4IxwVopCCdrNvhKr1LkR2ouROJphqgw2z332q3s9FWj4uuO7ZT2YNy9GbImq6wPaLe61o5ruEat4zZa8d+TGp55vOjDtNALts3UZNl7KJbBSkPqeUC11DpvIROzxfnT/sCsS+6VegfCNUuJo8cv+aH2uVVcr29eK8o9bxpD3rZdqNZhAdINI1bIIKU/XXbXJ65T9V+XY8RfLzfzGPCfJ2XyIePf9nVrnFmXTszVCeKTnSxb9RvLopi1gs0+xVgsda+4IrVOe887Prmu9pll12+LbnUb5yM1sN1moM0SpQZGMM7g90iUzhgIzEGDYAGwYVyzXJPxt4BqqQR55mOcj6KTJBQhKdM6orpPWKeBszFAwdVpxjcMIzBuZLgUa0PGmNsehiFLUYMUOV22WbLCsPU6i54wYph6SWKcrPXLdOgN406U6+b9Lig4f1AV8oHxSYZTQA6QUafd3C3CPMGco+aNkIwzGlAQauZ+CMtd5mHivKWr2bTlr49STuAxjskwqZNDJArOGO0tDVsjrN6tZdiYXsD1BG1BZwe75cMQBQHTy1TKhnYgkF0rclWbSVmEISGRRTgRottZKFT2abiYf2ejHGc6XreHhH9sHLwbNvIhU4UQNWN2q3jFEAZGgiiKS18wDZDUwowMcIEE0R2L5h5wSs7Emn2z9HuAagMjk0tbgYktiJ2UOBIwIPxELUVOIRHDSmadrAySE170/CQUpkqepcdqLkTqUYgf+SYW3LN2yIJ5cr58zVeYsxdGkbzNcZVroE7n2Pyqkbxte31JjGWRJ3ItD2MuuFOu4Wu6vccr2hc41rZ8kutrJgPfLsCOVob8d04dgPSeKFlssy/ZSXgp0p996kMTsrVXL8x+dV2EeBLhysJAB5gk/GcPj3jrzFWfG71sw3IV7bVPhvtuJXjPtRv537wMbnWdz9WxtfItXPMQKGN8lCleOmnUs7QYfcUe0f9+EjPGvwN4itsFaxRDH6hXXbZ5RsRHxS1/khzy8bWoGhoPvgoAgDRBCcaM8I0U1ULG8DQE+LyjYbpFtlNqkJQARnKSck8ejKshkyzGmA2JR8LPAyIyzgaHizzGrtq6B3kvDJiuIvENewBKrkw6jOFR0IANGQeOxyABQ/DvLmVKj5JqVKmSabUgdg8Ymj4K6iXM4F3ArSbZc7u0RMAU4BR7GdGdmB7LZ5BiALjkaHMLQRqjLYQDo3BC5tHEdjvLWBVtJPR1VJwd2AANTwcnzYt6ZfU0V6iy3/xMsRcXv6y96WW86/mpzR5ECpIM+Z6qKJDsLpB39VCnzqAFQoh4IGs33YidCWjVEFkbbL2xTBOpBFmAwcvJhtB7VrhhS8OGELdW06dcBwOiZDjCwE66QiNWjAWiqz7eF/BJUgTQBQA5+ej7f4o4DjBPfxgHmmVZzENkYCPos+GBSVj9CNND2TN+vEPRya1qBxy/KbcS9WMlUzHBuCBDah5tGddRPFwBN4cgAcWHHRF5tZLryop5d4lZAdq7kgScMBAXmvfpGkbct/t4XkLPFzPVD++69XttwzIy7Lo5pi69dp99cr3j8m1SXGs9Ixyxe/EeQNomW5mitVWZavPhxhc4wC38C726fidzxUrXQCCFKMqH7bbZqlQUapixZ6TO0JC9qHr02UGPADkasClckUXbf5a+2W/htI2nKa+qwqUzn/rfT82Pc3bL9rpdN3XEnW/Vrb3JC/LdZD22nlzuUw5L+MPTdfQUnek2zqm6v5bgR1ffeXBM9CaKVQVQPslldpddtnll5EYtVD+qla+LCPOjQxEQUCfabrVss4IBKoEUQELjKMGBg5vFoAmgszQHXK88r3B2dLS0MXQF1ynYVIP/yhzj09oyWWTz2j/SjzLZuaJZ1CY70FszfxRGcoyuHI8zIkG6MNkXimNCUszj8ZlMRckTcPO701RFyXzDA0ejaFD6Ug97l4N5B4wATy1hdHaeF5tWwOXFwttGoTLZvTTYs+zLJalykiER7gJwcLDDgcr5cIWshNAEcHe/0b/LC1rBJ/8DLMLXX794F1v7fwMRR2LmSMEL/4Ohdn+Wpifg6AV1MGYz4dN4fXtXhysmokhFjIwMELvRLR4lzhgSPC09GORJt6dM6/Y/YotkRQsrntYOvABqs6UCxLtwkP42ImNSdjKHXUS50VlXcTGDytg1CZGu6OxjwBYFqsAcsnHHevZ4x1Q9omwR1Indoyld4WIg5maHdbuv1GSXVut6TMbBnIVgwR7pbGCDgDeENoj4fGBsCzOSqOAduOnSQJn7DLLDtTcmYTBVoGaaLiXXiwvud6WCGs+/9o1rm2fM9vU68UgMZdxux+5vxpHrzGUZuN2U1Yqv8vEudlPGZqcN51JZOu18h4xsrsbbZybSpQiJ5m4ppb9QbBnQFwBhVIpoY0SF14+jS1DlTr5KaiMnbu8WgIInUGYi/Z+xYumSkz2OVHrJRBUAcM2nbu939RmPnDPizZd7lXLFd912v9S+dC48pIx5yXXrmUKo6b2xegfeR5hc2YFXdPbxpWtXOkkgPz3whYu3Yy3Dmvtcrvssss3KXX0jfFbYOODjac2kCiFQWgZhFrwmBCwgiGqaA7yqDJECER9eHjoPEOEV0gQ09JmviBEBiMMr1vXMRZMxKJq45yW49M7xkVhuosKcnDUBJsaGAIiX2HXkho4jDuKsAm7fyP3OCLnnuEC0jTF0hiLgyEg4/oxSh/zaDCXiOAbKc/OyJX7MX+F8qWg1tKDAAosh2ZhS/A6diM5DHVuDdzI0g67rqUAmJ0358Dg1oaO7AXhIKztniGrtZHtiQiklIZ/1FOmUP+FlLQ6N4fK+rOWhDZ/yoaxQ2D8Twrz7GhFWY/6y6ldR8hS4hMCkNhbPOjIEEmE9LKh7HRIPqXmfVXVqFNG8ezCAdBuiksFi9ChW4VHVepjof8xDKxRB448HJJIimccjU+9X74oGu0pRwUk9hFl3njaoOifQZoTHR4RlshZx1zGOiig3cCtVTq6tOHGH52MbZywvzmgbeO4DrC0XlAksRYr0ATgbjnZF8LhO8Z33zGWg2dcFYEKD13sQy7n37DsQM2dSTW24jfhsv22sv1jLbumWqxj1DD4Lj1troE6Lyk7Xfk9TxifakBeu8dF+a4Yd7Nhnttou7165ky7c0MS/+owFutAu5kDoEbaF+Uog3uef1nsfF+gbXkVSDfiXV4vte3UtlnreOMhNZ1b2/Gt/jBfc/4dl94qoWUyRu3XW5n70Pws9ZhPbSLb/nujMj5Yslqu66PL5dUcGCs7bvWNOLroLMOlGNu6AExRizqNVeAF7iKNPfRpl12+Rclxso45bsYzmQdejCthINXQyYXNE4VY8aySGWIqv0zaS85FMzxKtBhioXeYrmBls7/iaEXoDQ0OUPCYL8g5cIDh4emOuBvPGgUlT8YKCyeh0AuL7Uh+Dbv15BVRf/uJ9dwIq2DmwX/jx1sB7YqNYJ4vhUyZ4aAPWxrsaiGrllpxRvhY/GqNQE5ODACikmGuNj+UmbKUN8NimYx7xt9NhH9APBSDor6NyFYQady3ywpX9QG/1xdbELilv+KXWYTImih68jatPHn4U/nbyMAXRmZQG2F6lEkFiAAW71M0Qn2axn2HliFkabJBI9U6UNv1AGSBgWmE7hBgnEgsuFpYUHp8zLqJl5lhoX0jV5Gghkoysfe7rYeLI4tZdyPzWAVtxt8B0gz9jMizZZOVAQ4mEtXj8ujRQMhhaoW1by3aWt6nEv6qob3BI5OKlSIBysizHkhQ81O9b3/XGG+Y8AjFIa8XhxeQrejFUU3fquxAzR1Jtnn/rdiCNtV4i+NWXDfqrl17/j0bj7H9GhLfrhw3/752j3lV53MBpjP4spmPawFdKk/IFqQZ5mQOgiUUqj5gkt/5gJp6F8gHSmehp1GPgFpKSlfGYuCsHgLb8uoG3a8vpBLY7vI6yUm4fK9tOBcgEMpGqeVXVvg1r7K5LNEXAmitYELtg3TlGhWMybBh39Zx2X+vKpGfSa6NAx+SmQy5TP/2O+b66aB6n837I6RSPpSSrUdbnNsIWEBYAByhOGEHanbZ5auUawPjC2U71hAGU7/N0eHFb6v1g5i8+baFCMKW8YgAQAQrjBtD1QxFM/6NM6LPhl160riB58pLelN7eboPdsHLtygGpx458FJ0HlL1aIORDjuAEWBkwDmjENq7XjPSVyNDlUqJR/1QgBkFZEoj158rSYaDQ2Z4ExO5DsaE3sTqSAIEU+fNIVCDezIrIOoJstRzZBMWdp8XHsYtAKyrAl0SZFNHrjKrVnDN+PMSBxBnR7Bnr+kiUCnGrFoK466K1b8HqW1MYBsd+Ce0z9fKrM/83PefZRjYW5CGC0iz0AiVS2CstHWCZ9PS8WE2sEac7C/0cLPydXi8ECz9t6+kWmZPSQ+ZTgGgGrgR/JbhibY4p1QnIwq38usV26jYCUTmtQPzulMKIFSzHxiHlPUNpYSjshNHXXGmMkfp4AHuVD3HgdtCegx1Eu8wHpU2413YFnlvtX4pqgY2ixT+DX8hZJnPEqSpVgjBUIQWxxXttDugE7GZSjgsjN8sjN824LcM/IFiZCgYzcaW260dYAdq7k6uAR+XA8R2cL42Js8G08ua+2XWp5eddfv3tXIRtvwQr5lT4tpcNmyBl1BasKnEGk8aSsb1e/rgWxSg+DuGoBmMGQel8lIv5xNAxIXS5oqjoDYIM0QMiXf+vHHfeNY7HLs+9M7vTXKeK7+37/LyCQgD5LsFjMYla9O7dWwNcZy3zyWoZbvWr8u8ltfr2Pat1/Wx6z360u/u2lEfP/7a1thWM2pUDqH5Jkk+WAyFuFJO+nGtuLYbCcE1wXffUnfZZZeb8qnGqGIQdiIyjdgnQmPMCSbCkuI89VAGMxIXMhDkxOa6zyypZ7C4ocm+yu5zeaR+BpzTQsfoLB6K1NnHN1comhtgFjKiYIkx0s5z7aGMdfYly26IhZWLgAMxlNRDuSJ98e263Xr+jE8A5F7sAbq7kkJlYI6xN5UkAEzNqp0MpGFgkAyzpdS2UA7NcT6ITmPRi7yOESAQW42YsT64/xobWTCxsw/FHONuSMwNRIS2NBAxSM/oJMDaTQdzL4LwpvFmdDFT1uq7te+jcqtNX7ng0Gntx+BkNO+uZB26pVB8ZkmQJrxjaBBXMzGIm3tdeXawpYFVwU7Sq6nQG6JQ25553pCncxop5AXI8DlWC0skdWSHCCRimaBCFw+ibL9P22j5QHeALj1qHAQKO4NRfpSqDG+UIPluTmbNMoDD2n8ScIl+5ufV7Glpkw2EZiNKyFDFfKhQfNJYoIvGmlmWIrxJ4R59A1hKpbeucodSG6FQlQMg06e6N024/2fsP2FZCG8WwkMjHAG0IMiJ+1dDtyrqoQx+oyrbDtTcgcyDehhwsxE3n3Nr/7VJon9g32va/nUT7vZxMznyted8aUaaOpzGJwaoW5NmjFlUNtggaYNbhw+FOl+D8uCBfesY7PMo30OuXPG2nPWhByZfnonGX3IthdkUA1vF2T7LS+vql5R4/nsZUzdtpUhN045yTB6nm9eXc9SHFLAxCdtRrBv+/LhsfmoIY7THcvvNdYGtt918XQA4lueQ6dzXyEvf4YeU1Xr+x8qQShCVsYKwcWyKfhfHEmUUwOZumYxAt7oNk62Om2cNcPpImXbZZZdfr4zML8M7wgAVdW4/B3SDrFPUFohh4MmxGcfGwt3CbdhCG1gFsuGXs1GrBztpHws9IKB3AEpJYAwnwzUweoR7mPFdrD2+sL7SViOQL2T7wWF3EeHAlqWqMaHJ4MiJa0Uq8U2IRzUytdhtNMCusTIvEC3aKamnZw4fA6RHkcBCU8IkHQAKJ1CjKhlGJZkVxrexeSnEg7PHt27CYQl+XFzcHiC4zJiBthCYG9pyNEBHBeSrfZYsSjOsKrIIxURj9ilhU2E/o9B4xfkew04PwtYLBeiaQvTTS+L/jr/R5gycaQ6WucdVY8u8BUXzHicOoqq4XtQ153jTi/3aIsUjGZCAAQlYHPSh8LYCQbpxI/VEd0Ivo/SUs+xOMI8pca8p0WzroWsNns1hQ0T7hyoOMB3jzIa4ts4Q56kJvMXut20v6d0WHnfpEYTSmIdNE5J14gpP4jOxv4I1iaR6n83vgOezyqxbaBguToFASelYykb4k2BNaJ2ugHW/YZL6EA4HwpsHxptGeGTTw6isRqeX4y4b2YGaO5CXjJezkZ7M+3r9fOua5N8/fgc3ca52kRjTb+0DbhuF1wCaa+e9ROZ5pgIw9Xd8vzZvavk2nkm316paVDkjlKCNd04ZHINoOAfSqujUe9K2PhJZp3ADtd+R9Un70MsiBfS9yccM9nuQ2laK/noboCknhPvt/JwzEJFgjE6pFbFtTYzL9nztmhfg0vQcNVvUNV3sU/WxGA++NNhG0995H5Wdl6BPdCRFLq+VTTUkijBCF3wB9u7b6y677PL5pdor4h8VpGGmYou84sa5ATiE7oZ6rN4fmmUDWhjoQmg+Xq4EB2dcb4vrAg6AmNEkMsYmhXnQAgDCo4ZNvxCPAVnJvQVKWASDkgJClZLXBkAamA1jIOxQKAtE1MdDvdBVTJch9yqKZzDt0IzjyDJDFxzJcU+zzQrPBsZz2v+WUln9BVgIkoI4vGGMr8beUTFw/V6Np5BXAkAM0T7mAhDIM0Klp6ZLY/LwGPOWaGwpupfFPT2koZHieFjt3bq+3VTRREvCm2sz5Ctnlk+ZiK5NnBfX0a0jwqyk4MbvnyIUoMHgNQJG6L/VNWFZjAS6NQMGDmgZhiSZBSi8UuDzuoExEjBqeMEFcEhDy07njjjMvzAcP8DwljNuGRhACqQHjXi5x8pPra5hYCh8obYqlCA0srHD8I3IZlXtjE3FDY+auATKwSiZzApoU42cqq1dvmqrDHvMofzEO7JMWgEOl0aTq2Fkg0DUR8ak1euXT/ZJ/25uzGgHxeNBcGxqyR3K2JGean7fuYlnG/7SSukdyg7U3JFQ+cwiKOEMNNj25/CA2oa1/H3pXDBfZzYg5+t86LoxaV+TWE3ZGMgvkA9Ni1l//o/9uTxD65BWHjSBnkRSYjViPHllfN+OszYRDEMdHovup6ts3q8f7qf6ag+P30AMyJrjHfvAFu3g3uQeyzTL5v1WLiIM5b1u205oAwSYdm+kgjVFX9jsoyvb5mveqs/5eoqhHNf7zf3ite/nc7zPuX6ujSt1Ts9tiktvXx1gaPYhTO+KRp8jV9gqCWjjj3sr7rLLLr9+ifFePUxJBBCy1XT1FXWBAQkCxSqCNUlKCceFcXSCzFWcM1PDYIsAHSehdXJawICb8Jhx3AKq4U3pXBuENEClOzjE9jdShitRRiAQGUjDPAbFsI+O8AuyeRWIWHaahRTna0pnTBZp5DpI46BJ978BYA03U+fkQDLCbC4JEEiN+yXDpQwRs/IyDbAmPHB8dST0OHaDOPhORvYrGuEvZVYgNs8NFoDcG8e8aJyIGHbtZWG0w4JlsbCcpg3CwPFwRhcxziJYEpsmulms22qxwcjzBS3K8cj5+5quP7/Wn00/o20JhmcNwBDzaG2MpTFaM86nhQwE7GKkumLdDFCCsu0zvlqFgAysUetb6czht2SlzK5q3lCUfW+EFFK+wyytOMgDeJsLgKdsT7BjAAnRf4NzKnZExE+GGNIgEa4AZtgeUXWz3kOh8MBtBdD23edYQQk2zXpWXk6RBM2IspTsZaNMpbVkfnO/QAA1tRME6h2M5VT/utSmlKsAACAASURBVOFyAJajYjkKHlhx9M0bE02zRqM2d8EO1NyVKCbuimmsT3BDx7GuE9wgmd0aoiHbIea6zPN2veL8+xZ4MhuLHzvnJaLABekYMIw2wMcRckDGx4vUX671fJrraPKGICrDhk8AZCfWOOxxOE1/y42wHYxVw9WxPAyHymMPyuzPIZfv8t6kPsY9ev7EAgH5SmKucMR8AoxFCh1ttU4bNcPANeChyofaee0b1+rKlM6tEnarr8X+Ghr1kjJclzFuXAeRrj/tZa28Ukxrdlf1cp1SyX7I5X02A4xuwJwIeWIGiEdGkHvvS7vsssvnlxHmZGE1opbhRUTRGVhFcZYI6BkZfmayyzC6GgGNApYZmhipODgQ403Rx9zgjO91xBTtdm2xgSqiDcR1gpUslATUMysRI7LOuN+CInWTyGRk457iwGqhWT4PIolPh20Vni+BAiSnjwpEBV0Fqwq68piXyEJtVlj4V+9+f3dvpoYSOm7AVRihNhZnTcMISYYeNcxPB0IcpKLGHuJi80YDZ8gYkYfXZAaqYeAui3vuNAufOh4blgNjWex4oQbphIfTAlXF4cg4HAjchq6Zs11U3DRdjZc9N8BbDfPG9ivXqHovMACsxqYBMAys6F3ihV6dz7+IOGhQbYDkbmLzQjs2wnEhPB6bAzXOCdPN+0QaQ1ZASdFLko5oK4zBvxO9LkEY157DQ2fk5yoe7QlWDO6kHhXklRQcuBaeTlh9p2T/oHxegKCus0Rf3+qamuUa+v/2xVIZU2xcoXF5wLmYKEmUCUg+KGD00S1oOL5luRDGUBQ9ymq0C0bkTa4wqQ9AWcFRgRhuS/HS/bdncUrQpakhDUcCHQg4Atw8aioMWSpt088dYJSPH/Emv0HFbQdq7kQCAMnFCd7yosyGhZZxIrwzqtH42rb8muNvGYE0fafpezUoP8WIj/NqbOpFvcS+WLXBGIgHGDImrjhZy0CxxWhKXDXGJA0AFEHOftfNQDsVnLji9yP+mdkm183kH4qLMgiKziWb1M8y036a2NNRARfur7A2yW/TkgJIj6UxYQw30S1YMxSeD4EhHwJV6vZrnh1zP5qmw83v2qdu3eNa+T4mc5+at3/qm52fZx4j1F8M53vRzbG1b6aOQnX7ZSYOM6Q8s6tnE9muiO6yyy5fpXyi9TmAmpHNp6tiFeAsgrOnYgbZcV0noCZDkAiNFUtYHCpjrhABiyTwYfPiKGwQegYmkmN8WP4+tgVQ09WMqU7GeQFPAy5kGZCOzmFjuuHg7AiPwoUso5U2S8gSixVpZJW5MH5qMWijzkQEXQSriIeDVaDG6o87cHZjlAhAawYkMZnuo074ClioV04MVbPjXLEMM7dhkBQr2aDOrSxPcAPDOVASnPFPkMuSAWuNFLwYmPPwsOB4WMCL7Ze2QEVxPp1Bqng4NhyOq/PalHe4aX86iv4zSLVjCSNzl/H/EEgVa4nXjnf5JbWyLVZAWU5CaYcNODbg4cB4OHKScqN7+vNGELBxykCBrtDVLaMAPqBO0q1pD3C2HytE9GuNTlteT7ZBIMm9UwevuoPbWZLXs/0JAKXhQNmHgxy5k0JZR3m9IhKkKcrMqKPxDhuNvQqyfhLgS/DSkHkBbjXEqldR+W0NgbI9lJsDlqmODUyjRra6pWL3igXpUKhAo65FS7pSKX0Y9ma4W8q6A4AHAh4YvBAO+c6yaJv6uD/r4ZeTHai5MxlYgnc4b60BQETjPSyMAwPaLV1g14u2/oGG/rEu8FPNsSuGGI3fWg94hfjUPcK9aMuB8yHDGUBBnMcxs6GYF5r98cjwXPJdCURQDqNj4IsBMa4czz5N4AkceZwHu9IUl5GICS1XvUcvlRB7nJE5456E4JxO5IY6j9BbB+xTN5YycdjEqBcA2a2JpOgnmwPqNHpNj6OPHFOn4ltS57uf0oOv9YutGjD37utcNh/jyJrvkX0ryACxfZa5LwCh9JTtdWxgA2e2ChImAuJddtnlq5ZXavUxhiVY4/9116MMsFGcu+DUO0QtO9HJPW2E1Uh5HxoeDg3H54a+Cpjcz1c7VCRDlJPbJkGZOosPi6kCNRS8LBpZZABlAqu6B80wvJuHaJFY+FNjM6JWJZCyGbsE81IQQMQXnxRJmpokru4xkwarz+gKynAlgdXRWYGzKM4ioA4sZ59Xm8+ZQSLcGCrdQ5wUIEnj2YxmB9HDM0YVaxeAVmgf91QASurhXmHQuv7FbvyGBxOP6h0Iv2b9WmiapgFKpCBWLIvVn7Aaka0D+woLX1tVcNZBLJwLORrzbyiHr26QL9tP279pPxeABtPheTrR4Cf5UgqaK9GZPS11QQKDsbCFPC2HhuOB8XhgLI1waATtBD0S1i5YV0t5TzBATkDQdC2z92bEu5qeL64+I0MOJ20lvm/AUg2HEQJEDDx0Yu/Uwx2L6OJEwwnUUNzQD7Q7JNSoJRLIf2/Cu+eqSx0lQLd61Dha/EniXVc9y9rhAGuCO0fjYeu1Np4+AAmBRJ3cN6wNQabdbn5uR3kob4CsJeTDveEWMnDmyMCBNh9u5kXVaiVsXpS619OurAE7UHOXEka/ojKMb1PuHjzF2aod6MAZlwbaa8biW4bdxWDywuM2hh0hPYSg2LgdvqZ814iJYwCMOdcm82Kw+sESg9Rkybre4ws35enicIqJpihXRMUTYgyK1dsmYGvKvdPxxXiM5atIXmATv+a+qLfKU3SPUs32eyujkSoOkkNb3dFMBwoAyk7w2OGIQRARjrYLAOHCdrXN020w7SV961a9fYg0eL5HjBtx3seuPZ9/qRpsxyCgZFws571U5usCBYD1gU90PANNJ1QwZhOOFuMAJqCGXWFhoDUqmaXurZXusssuP5cEACEegtNVsSphFctc9LwKGhtkLEo4ieKk6l4dwPGx4fFhwfHHhvVkzBmAc7D4ar5lCTKjXiSAoTFDzGHoBANSyJWJNLaILKMUASTsXjaWSUbZvQJEIWA0TxW5qnhYvM0azIMMWNTmOuPwCHB8fKqHNuAASTyhA1pnB67O3e7TRMHNs2Q1gkLQlobG9ky9eDukMen6zbERaAHC4wVeEin3B7lu5/w0IAZ1hwXUw5JQ5q8ygdh9aHP3WJwhjo8BNUtzoKZ4YAYfyureVl2DaDrAmurJGV64X2Z+ofkLjTAji76hpEiw3YOj5YuCNC5ZDQnYmA8zkXHRLK0lUPNwIBwPjOOBocqQ3nF+Bk4F4hEidDC0e2Y0j10mtvDAlvcd7TZzg3mYo50w9gdoShVUcoBC/Z6a17DrrAqsNaoHg7kmFXSUDLsB1GwWiGcNjhBAiYUvwvmZit45gTQFZgLUjhWlTbnChIk7bUCboiPVF5aedKIestkHSFMzzAVg1vzquWIeSJSMePMDCkDj34/NPGq46OQ3W9MuwA7U3I3E4BLfo+HK9De2d1GcYShv19H94/yX3jOu+THD79ZxczmvGXlAJbAaBt9rMz7FvbOeasHK1yQi1fK7XGdTwdgOfFVBin8D5AnPC5t6rDYijSCVBw9334puR+0FMDSDOGNlZDwJRYpPDPDpXk3Lex9owz12KGhqsbiUuAtQ5hvxhmIeHiPzgAaY4FLfbgUdZkU3JqNo97f6XAJ15fpXmvnF+fO1PqWdpKJ3RaIctR99fLz5eCniuh0lFNrLESFL0WezHkpfsa6koYeh6qPhPVPd/0On2AmFd9nlG5WYU/2/SKt7NhcTPHUDQN6tfZDegvDcBavAjHgSvH+/QlfFu/cdT88dfTVPmrWbQb+uYp41AdzIMOzrCDrGUdsW5MBA1TnIF60Jwt1W3D38Kq7UmCycBwplwoEahAUN5gEk3dKIP587ns8dp7Xj3Dt6F4gMgMn+jpV7u7ugE7B24LQSGne8O3eoWjjVwoSnSFfeGIdGeDgwlnPHsmjSVESoGdwzJsbmYyMcV/Nm4cYGsrfg5QFi9uZmgNPBwZrWmqVFdxJgYgKx3YsRRnYHk4WRhz52PBiZcKTMSpYegi0qSpAZG0h0EsVTF5xWxXm1dxqeFgPw0uQ/gn587vspkvMkmc9vY04jH377CPsaeq1u5tEvKbV/KYzLqKsYCKqujbWG5txAh4WhIlC2SjUyb8F59fYo7vEG8ggC9WvBQTPkg2WkU/0Amd3JOJbU9Xwj6Abg79TSr2eYE4yzytLOb2kXEPp94Be+ObKwIXivOpKgPD5DsRtvw/oCYXH7Yvb8FdRzKPlpAmTNNleuvQFrlNIjLRxmCECnCPl0Mmcfb8ZqV4uYRrtQpOSeohSxwJQ4dmDGMz1h8U+CNYq2AEcyp5v6mNd03c2GezWAvrDsQM2diJZPNfom0NO2EaF3c1FbBVh19JWeVyzkS9i277kTzMbgy/rE9qhbx6aRpQOEUFh/fu1cFodnTCrK4OWGWnrdOCASBGNUrlLGOoAGQTPUiHutLoOjZAsIBZCcsck+5kbWpvDWMA9NDS9NxIBqrqfsK0JArCDZR/025PdSz/RQQIbXVdnPIrXN3KNEvQm83UGN+I2rsY/Rjrxh9ZzwrYOFd9XFfOgS9RDgWl03DWBASn+ZwZZShBe972tjQ33meQz5kFSAJM6frzefUVSMiyO2oFIdiS6vKQBWlJUojDA1Zq9L0+0316YoRVa8X9crpII1I/OTrUoveFm97LLLLr9OCWOyuzl58vn6qRuU/m7tNl8QoGCcVl8Ya4qFFG/fndFbx7v3ZzyfVvR1hYhg7R1nUfTVAJDwvOjSE6SpY2eMQzE3VB4WIrJIAwLYPW2a2vYmBsCo/+7kQAcEwmx2E4/j+tnG2mcRPJ07nvuKUxf07h4ibpAGUKOlpgSEtVuWqNNqQNHbtqJ3BkQtTXkjLMQ4EuO4NJxW4MCEA0vykIg6KBQDdLMx/siEY+PMCMTNgJShmxWgphlQc2gEYgFzQ1vYQBvnnBG2sf68moFtUIzVstX/ggMa2ONYJCb+8OgJpYAMlDuL4rkrTqsYUNM1CajTCFctgM2Yhy6kTpefaICOKc8ApSVCgWhAaxYSRjkX1ht9CRxp2DDDw2hwQHWs0rBGf0AHtQP42LAsBuxBA/Qy76XzaldVVfSuWAGs8PAzEQNpRBOoiTpRRXqKiW6rlnyfiJYyuxeNCFSMF0fUvGdEPdxRxyKb6ZClXtnHEb9X8+MQbaSXT20rk/LnjEoGXlwxxKp9WD2DEvxE7Cj6ljdC0rEstYkugPEYrQKc6qJ//NPIgJqu9uCJSoVh46UKMEbJMzdgADWt7D8AOBpP0QN7WCdq+9zlmuxAzZ1JBVYmSqYx4LiLbggT2WCFarTdDi/60Bg9wy63j9UP/Lr8HYNLhgfdMHY/JHVum1fFPVIFgsFrFSdUr4ms31I5ybdGHvpCwzifnyGO7bpVpmKgVbWBPl2OqT7fiCEeE4uh5+rLS0QjstYmushIMSadewNrJjs55Z7KmfXmBn/yrxFsBc0nrxqHX/uc9ccJKfAdFRSJNlY9Z4JpX8s1a0jjXM6JwWAD6mg5vx5D0/nz8Z/SxyY9ojxn/XdrdszXufZrvmYe4cAMe6jS0LywAV7q+QigTcf3uBaVT3ASxZixKwe77PINi1k5Zv+TuAGm6Eo4eSjJ+3U1o809K86r6QeNFU0EP7QznpnwdDaj8mk1Y+e8miG5dsk035WQGECGomynEnV9wSYocqAAQK5ym/eE63y+MLR6iG5jBlsaKCysYFKc2QxfJsWBbW44dQvrOq/msRBpx4fnTzG0vYShH/UuODOjsQE8ZwAnNu4buLdRZwv3AoDOhN7M+2VhOJAVbshqkRUErExYWdCIwNQt/MNDXDIFOTRDV9dGeGagcQOTYDkuaIuCO4NZcHK+HAFvPNUjkYBCsHTT1Q5d8PCwgJhwOJpnjqyK3jueT4KnZ8W7p4637zueToKns+LcFasb32EoD56f6wukG5knn2vKwLXTaMyDm3ktwmUo0qZbvZkXBVBJdl97z9dK6CDigEcQdZ9F8SxwryQYcNiB3gBhNgAD5F4zjJMInlfgtFrfM6AGWIXcQ8e8X1aNtN72SKdubfjkII6VydO5Awm4sldkgIHSLUTs2UGZ3m376h7VCdh4H41XSN7AQj8Mbp0AZZ7FeI0srf2kk+kIyAsdJkyP4G+JUETy50gbzS8SYVwiHnInujkmFqo5ob1hgwBlQdp+Gk9TEMjECpe41mQkVEj3OuKI7/L9rp2mJw17CBQBj2x8NYtlgAuP6Vt6GH2h9vk1yg7U3KFEJ5bpd93ffSSOLDsrvENPx33q/V+zPfbVfhXG4mxQ1tCETwEd4vhqcMVfUWClURaaz/KbbibRK+BHDYMJ4y9AGpAPcLndjdbgskllTMds6j+NHyV+DrdEUUqwxw6QotHhutvlHcls9N6rAZwgxFX0grLOo+913Z67BSr8WMIGAIx3VIEa9iv4m92AIbVc9fyLfjOVY5bZE2Y+/mP9rB6fCsgHyloxlJfOp7fIhWv52PkCQkHf3K90p3LRvEiGPPq2zBwVSm3RPe61je6yyy4/j6jADAuzbtCde+EsNsu+OzPOCnRezOhc7dh2Blon/IATDkw4nwV91QRqTgF+dMuQhABqoAnQjCFwmtGJ0BGJuzUHqkw7TIRFNIlULZuR6R+tAU0sPfUanCsORDHZNlHLynRaBeezeoYr3XjUzCS5IR3m0XBmwcKEde1gBU4kUA/BsRV0gqiARdEbo4ulZF7ZPSA6nHNmsJisTDgXzgpmTrsQrFiYDaDqPq4zQB7qtTDjoMCiC6ib95DVFUCtAexBT6poIF/Y7GjdWHAOC+PxsYO54fHBQsjWbh5RBtQI3r3vePfU8f5kINfadXjVpBdS8ZqePSY+h9SJ2SdEIvXMY3Aeo6KTqB+jdd60utlmq/p8UsMJQ4fqos7t415JHTifFeuq6KtCDuGlws4Fwzir4NSBJwd1zt1snDMMLO3iYIo6UFMUmOcOnLt5yHVX1qv+YKFI9p6JIjwOTrQNPAM4uxKoQqmTnd0TZ0WAfpf6CJHtBwzUFNUkIV/9+iMkq2hQ6nWno8/NPINAWZTK3zYmqVSgENtxhsa1IlRugDMF2INxNjb3SqNEUuLjnjK0AOQo1iDi8QL57/SmIYtvOvL4HMxjLhxvqHx0PNguRXag5k7lY4bWqp66zuWXMuBnYGgGYMJYjbjNMFQ/lRS3Goxh0PayTXULaOSAGr/HuJiDnpZz4yakgZwPw44JRpQXz0qR2WCs2gT07XMkgsAMaitzgCsfxahUnsK5fLDtPiEJLLb0nmVuB/dW2mhzsSqjZQeHUqWeCQNFSc1JrE7KOlyyaXAO2S67cp184v5zeaoH3HzcvO3aJ6TOabOnTgU6PvZO6v6qJNy6xnyPT5Ukek4FZnAFXZuwr2E1FwBO2ccwpYwzHe19Ap677LLLzysxN6sOb9pztxCIJ3YeDF6hxGmE89lDTNaOBqA/d0g3DpNVFaus6CLozgmj7s0gOjhShhE/jZ6BzdR0n6gLQnBQBGA1ulFuVnBRRicCtHkGpYaFLPyJQTgyueFoQM37tZvnj/RNKuMITbIyxgKUZaIyw5tx9ucVN/YagIUI3AnMHWtjrG2kjG5sPDYRKhTkvYB5uSxk5KKWaCIAqEDUS2gVE5Y2aq25583xYUE7LQPL8HQ75GzyqubdFDw2x4NlH3p8bDgeGtqhmXHOhIdzw/r8hH5e8ccfn/H9Dye8fTrj/fOK07rivHas3Xhquofy2N8CdF2+2c8iA6OJkHlywCb4aGIxRLzVRItzpXNmyPushVTXoSxjj2XGYqxqIMezCN73jrfrih/OHY/nFd+dV2iz9qCrQlbB03PH08k+z+eO09m8vyI8enWPmR78T/4QwWd0VsFZOlbnXKne81AkVxP7AmkAk9IN7DhlX7ATV/UQqK4OJFHaBQGe2jvZ5juN/r/2CM/qEIjrlwqdtZDQdwITYfOBsf4YFA2aoE7opuEJF15TirEfII82iH2C4FwUbMvLbrj0bv1U1TzeMkQhVq6ZkITC0eTMOLKCkwyQprmLdFuA4xFYBGgMbTy8plMoyx+teGz/tmUHau5UKtBxbSxdy5H31Iyjk42wjzFFxGAzh5V8imw4asr143sFbyq/RZ2jHEfJcgFuJPIAbuK6QfC3IfV1sCXvG4pYHBseGuEK60sbTQzZDutf1NfL1OvG45wD6b830OOWzO/gniTa26q+WhIKcXn5qmV1pYAGOXEU3Sbela2qWEsfuvdww81N2NbPS4CCWpfz+XP91r5Wz/+UscGA1Zgqx50uv43UmzQde02u7Y9yhy4QpIDpIfSSuZqmuq79G4WjhinBU1A1lnbZZZdvVXyWzjF97QIhoK2CVRmdO4RMa4l5gBQ4qQELeurQriMdN7qFZUjwsQxf5wuHmhulmQ/IkZZctyKAxEiPw+Ds7AS4AdSgoXmIFBNhJYYo8OyZmt737saugwwIjxApuo8bwWrGGRNhFQEL4XkVCAMiay5mNTa+lHNjnBbO+gqOGsC8ErhZ+IMNxxaWtZB9hwioUepWokY2vBAcYCE3UtXswEY4rB3tsCK8lyjQ/3Sj8PCRBpATHR8a4816wOHQsDwcsIJAjXBcG+T9M/p5xfc/PuNPb88G1JzWJGBePfSpS09yWiN1DcAGH56sf6LY3DZAGhSgJjxpAjjJY900/2LamQMIRupvgEBXIxI+i4XcvV873q0dP55XvDkv+M35DGI13scOyFnx9Cx4n2DNivNq3EDp2dKNP6Z7eJqFSxuXUwfMe6f3TLQipBBSS/Uenk8AnKXbSIxVk9dmFXH7ik1n9P5xFs1rRhVXR3jTYUL3s7J1Nc8rax89+5eUVUC71tAfA29r7hLMSiPsHtj2T0UCTeGJX5seEGMHGzCk7BxBo3/Hsex10ruFpFnqzdAiabgow8OdmJE8AqzWgf1eg5vCXaRbA5bFyGkWi3tSX1UcujKh/ikKNa5qj3NTnvvVr0i/24GaO5XXGLz31h51+n7r86nXrmsC1+a86qngw8aFR83GUw+F6waegq+MGeLfm6PwMWzkeb6CsB00ZKwI6bhvIAQxZcKv1YUgvgIVrrS9m5vmKoqzRkzpfUoMth/ST+5BCD73KGxidj4UcbfWAGsybSmGslifp4KNm5h018RjX9TJDEzO7ZanYxO4AK72mVt1K9P+1wCiVD7hrVff5Wv67a2+eW17PLOotffOg9TOu8vGdXszZcdxvl+3u9L9mjQyRMTK1AsfZJdddvl1Sh3cpHBMkIBJ8UwdiyiUm3nUcAfc4IMaTw2JQs5uMLmx1VWcNLdvvGjqLT+1qNA6hgYXngIe9mIGn4LFwkiYgDPbvify0BL3Rjj38AapniADZNiUVSxddZeOU3eDnIAzEc6teZa+8J4hNBEchNMDgMnAf6sfK1djD8JQxYHMzmOYLhVccYDraE46fGDCwpwTdHOOluXQwA7g2PEe+rSYB00QJAdYf1gYrQEPhwWHhXFeV3z33RE//viIh+OC/vSMfu74m394jx/ervj990/4hx/OePd+xfOzeXmsIkYQjeFF0+Nt/xQl90PiE/TgHRkLNKTDuF/JuV5IIEQgJ3+ldC/5/IULjcEAAUoPNBGBsAF8ZxU8r+Yp8/604u3Tkvrxelb0E/B8WnE6dfz41PH2pFjPauCMKlZV51VSrKuBjI3NY2t1EOW8dtsfZM/ellb3iNFewDwiwMm+SW2F9lktMxX5c5xEHCCKrFCUQA0weI8SrPSXb9nUFM/i5S5p3SNMKV6pQbkjzIrVAGMABqRiZLfq7mET+ungwNLyO64fDImmCRJZWKU6N0/YNx3AswBPq+DHpxVvHsnjzDCMJSlxEaFEqSJTeI+wAlciyeItOxsnxUq2rcNJm8dYFhnKcsGvKs/A9eb6DelwO1Bzp/KlxvmfUyY96LNetxp8VL7X+87HZp3q9viMi0YYqTbgx3Yl97IAknQ2jWpC7tyUgxzJdity8KLYylstO0gMAFK2zE8x8PYRj7vK/beHGazpHz78lxNvkEkc7ODM6jOHL+oNYMyP6dMlNiDGZPnX/QG4xMSIsh24bLvze/4UoKY85qvGksp18/E58sNXrc8/b5+3BaCyRrifDv2As2ORX3S7lHJRNzr+Rr/dQZpddvmVyk/pz9PgEVwyQgBhhXBzg04gi0BJoM4K2nsHiaJ3SwaguSoeBLPy2UMsc0yuyI0bU8FFYgCNeTIwAedi2CuQ4UcbgEaD4+LGeK+AimKFOlRuftLMRvraiC30ickiH4jQVhvlRX1RS804XKFJYRFBGAeiTKnNUPeO0HHMAigDB/DYpoLFPRm42bNHsoYAcNrBPHdC72MYUGPAD5mnDjNWWfHmuyPev3uDh8OC9XlFXzv+7o/PePt+xR9+eMKf3q54/3TG6WQg1yojkOW18+zVl/pCGQsqBaxRe94DzOubmEGqHs6iloJakZ7eOYPOXgk/UcJ2R7apABciW1PHuQuez+Yx8+5ptSaswHpSnJ4V53PH+dzx7lnw9llssbIbKe/JuZ/WLpk2uzmR8iq6yWAWBNlRxc9qXDnB6l3Dpa0erQ89Q9BVwP5SnxWeDtwAFaHRnjLTLGnhW7GWkECNwgFS+x1Z5tLz19ttZLYOvW11rqyukTkLmxBFzfoOby6M7QgiZQOA2O7g2Z/sxuLgiBE4K85inEBvnwT/6FmA1UAtwLOHceSzigpohrgk4hO12YaCJ+yAjQM/Rqa6GWcCYCZiB82waZd57Gvb6ZfDJH922YGaXb5auWVA1v4Zv2n6XWUmfp05biSMeowwLuiYIEtoMBSugAyMBnBMO2bGcJdMT4zVlCDpkhOpOnCQIM0NBeoeJEKA2rTt3oAaxQBcVDzUVm2lztJCjnruOhD/APg3wAy8jeh1XedW25uPqVKvE2Be9Yi59v7nRYdroMhLRTEytCx0OgAAIABJREFUFly7zscU0fmca2W4dd28v1g8+3n1FSrnbyIHQtuVVAD5LhD9yj4sQIuGSA4ATZ5Su+yyy1csn6MT+zUSHPb5OdJpNw8x6ipQMgJUCLCImKeeBEDjtPE+afxs40sxaEC+Ok/DQPUID0RWylyBTw/SYvR95D7qxurqIy6LglnRIFg5mXScuJ0RJL7kITgRYmWADBnEoQqGJs2FB2lsFvPhiyqNhp5BDjhEhAVz1D1hIQN5eHGyZb9GGOcH99BpzcCl71fBm4eG3755xmFpOD919FXwh+9PePfc8V//cMaPzx0/nMQIcTUC2ko9f/obfLFE/VZeGjJCEzAzFm7uMaE4q+IZFg4mOiDDmrL7SyxaBEeNcTNZaL+oedQ8dwt7+tNTB9oZAsKbQ8ebY8N6BvoKA2pWI29+99STi+YsYtm2pHDUqFiCAJB7snmokQCC7kCRgREnPz68q1I380bW1GC+VcU8il2PCE+YyNo2khyMXm9gywzUWDjVGuBvFwdTIvTIr+KZuRh28SesaEQ4uqEQAOqqkTa8O3Bq19CLfuxATEE8VAEiA5aZ2cFFA0bOpM4hRHi/An96Fnz3XvDue8FhAY6BEiShsA4FPypjxZRr2wfTRwJ+dP/wBuAtAe8Y/dRw6s29gLTUnMHAomGLGdB0oQTfUjZ/pbIDNbt89TJPkreM5mv7ZyOSp+NHeMvWIAzQhoAM06yrKo2QBiLVOxGhufupAQEKFicuc5/jCMEJ74Je7nuPEvVC0+f8SxbqhtiKniuEnkGCHFFSGc/SdfBAzQBIBS2ql8w1QGUGdz4GdMzHfUyPGlPx7eNfo4tFO2vT9pcooq/V+eZ6spU3AyjXdbi7k1c0JwHPtsZTL0gA1AAZ7rayGoiXTEDNLrvsskud7Os42sWAGSO39ZAmUshqc0WAx71ewE/+2YHgAtaIl5e0lzmKNofGGDlW4F9YXo20xca5wZFQoXDQqCJJhBXmwRNjtMJCYbiEOYhI6kjuvDTKU+oy9CouzxuyuDdC8IccyjZwcAwilbxj87nBKTTenVc8HhiPxxOW1nB+L+ir4Pu3K57OHf/wTvB+VbwDcMJP1Md+UsPwhwheGn8AYvu01sxriAESQVNzT+1UuFA8a9jsBfz5xEEaJeNjAVtIkljY0/tzx/fPq4XfKPC4NDw2hghBuqe3XzvePwvePXfnuREDYLq45606N5D4wqjx0AgUfYWlTXd/pwSKtDuYgwLUBFxCaBDX4yU9cS1LWk9C3ws9Kz1pKPXeaK0S6b2B9NQLHsva7wDzyDEQx67A+X7tt3nYuI6kW06d9KjRLfAWYJItpFq9mT4VhMI2ngVv41mApw58fxL82ZPg6UcBDsDxEQMsiSxOQv5gZQW7hiWEwvWGQO+8Iy6AvifgiSEnxkkWD+MSBEiTtRfAE5VQ91lh/IbAmh2o2eWblFsGrVz5Xn9fM4pp2n6GkdbGQZuMNDpcJCMm3vg4SkYaPzfCncKz416Ny2ILb8Cua54mv7QEUJMuq1rGe7X5J1bzbgEu9e8thW1+7peAHK8957XHvUauleVz3OfaNQTWZxYAKwhnVTwZHYR5xMD7GFl2EHj2Jo1CDb0VBON4Sg9n2DW4A6cVeF6B92IpONcrZdlll12+Mbkx8B4IWNS8RUjcOMQYd6o+oECGRf/SFkQUo3oZVh0lPQonY/FF1/a/wWMjGkCWesYpN4JJPdhCfWU/QHQzVNPDB4rK1QEML5pr8+9mvi7iSZ5Sd+LY5g8dHjVxo8g6HBXzh2fB0hQP7YRGhHW1BbOns4XYPHXN9NC/lE5jc2AQ4/vfZgCZcfd4mm7AQvH9OZXC8EdmNvuSkqFP7okWpvjaLXPSu7OgtY6TAk+ieGDBQ2sGPAhZWNkqeD5biFR6lDjvTIQUmQfJAEcFBmCIe7JkWJpaaGLHCMUytcH9NzTq11NXOxASOmCQbdfuHSAIEPWppXmp9w07JHiLgkA42mjqjp4ZtivZGEJwAHQkGbFyOBAlpf86UJP3w2iftZ2GrRHZoRSMNbyAiHAG8FaAHzrhjyfCw3vgP/0geGjAb99a3bBa+2rNwB50gYoA0o0ceAndTDzsTvEowBso6I0AfxA8/a3g3d8K/u6PhL99z/h+JaywzGDq3lcbW0uvPc23JztQ8xXIPRq8v1a5phzU37f2zx4Xty5K0waCgToDjR/3mcGCe5QAZj7m1XEvEnWanlDYvrtYSUE5DuX3LJ/rWe+tzj4VNPrUe0Xqza7AqoRnsdSQ4VYMmGK6kqd29QYngvwdx6mSp+309ikAr8DJV4yeHai5t9C8XXbZ5ReSKwPeQYEjWXgPgI3HTZwS83T8nuf3X0TCsMMGm9jqF1pNzVdfPkMvTCRMXNuv9V6aRuL1K31GuTVBv+g2duDRAkJysaaGwd+DzGANecajg4M06XXqIBUjQogZpJILHFuf1M8s0TYI7r3j2ZK64rwK3vuEfBbFc1ccWXCgwS8QGbVW96xRUIb+rCKQLujdNLkAGzOkSGQTFmQZjsjBjshsBgcLvXFkJcRKqV07dMVK/Kv1IYGBKuZmvfg5mqBurlObJpEBMWQkUxCa3lAAPsVzJvuxzve5eB15f3JER8k8nYwUnHBW4L0aWPP9SjiegL95J3gg4Lew0LJFCQsDD+w3dBdl7QpdFHogJytWNCiax6C/YYUeFXjoeP694I+/V/zhB+D3zw0/roqz13VkozIPIPc8utnIvi3ZgZo7ld/AXk6EvTzhviaMXbby0gFlNv5r6Mxm1esV17wXmVND36tUQGmzuERjwpuP/dbkl3huUc+sIIA4WU4AgQOw0QxxAuBu9mWVkAa/wXI2LoJGwMIDqPnhbOPp7lGzyy67XBMG8K//EfBPjsDp2Tiznp+BU0F369wdcjfzhU9u1bDMee8zFTK4eEJruT5v3k2NvEiCoy1KfTc6d3qNRnYcC3tisg8xGUcNmRYm7kVDxOnxROW/vOiXej+BcJB51igsrKkzcF5XsGfi6qJ4Rvdy25Jf7+YVY1wzxikDhYUuRTp593KBpk+NGfo6OFtGmFHsH78HUBNVYO3Yvk5gyk1QM8Ca64+/uTy8h+h0TK2uKEF3QC3Aq3G2V2uAMwMYvV6+uUyGYKk6+EUEIuOz6gQ8g/DDKvgvP6748Unw9m3HkYBHAE0JByUwFC0I1c+RfaMDDOgSJexopGik+LPfCP7x33Ucjg84PD7i7/7hjL/5+xP+r797xt+cOv6o5BzD6iXUDbj7dY0eX052oOYOhWCd4xEWDxsul3czaezyk2QefPTG9q9FQlW7W6X1inztdf5rlMi81bEFURhjopqBzdjPvkEAKCMzKLCDNIcC1LwVG1f3d7/LLrtcEyLgn78B/tV3xoX5/gT8pzMu3PDuegwpKxFat202fJ4b3XU9vELuXcemCbAxoMZSkBtPULifwlNx22/jrKEN0PPF35p7XVjaactqtK4BIJFlZhJFAxknHjWA2Dw0Vg9TcvcRdSLgLt0zlnl4UoIoI8tUgjUYYAYK0W5AAlnGudi4raNf/f1Tq7EALQF+EuGmJ9o47nWgaz65AkpB1WtYkBBwhuJdV/z9+463ELyFcRUeFWggHMWBPe3QVaDPlsKcSABWKIeXk3iIlODPHgT/5E3H4/GMN48r/sufOv7T78/4D3864++74kcozh4iuf3v5fX2C0ea/iyyAzV3KAzgL38D/O4AvFsZzwqcnsQAzF2+arkW4vRrktmI/qrk1/YyvjLpAN7iso8wjBwyVp1QjqleXGmYOJoT+xcyvolVgZPC46F32WWXXS7lt0fgtw/A//7vvsP//C8X/D//+R3+/k8r/uO/B/70x9s8JV80nOQ18qFJOJwo9nj6r0rGK/X/HKBhT4m+cEMjRlsWQD10RAmNzfOERdyDwj7Al+eqSXFFN7mdBJmmGtASXmb/quj4qCZnTPfsS6IyABkdhr1I2Zb7MECa9K75cMP/GEjzRWTytLkAgujKoZ9QsAR54mUoABiv37krfjwL/r93Kw4AHmWEPDW11O9G/tehXSGn7tnaunEQsbEbE4zgeSHgt4czfvcgeFgEjwfB798K/vZ7wX99WvEWimcEh5HAc2O9/qG+AdmBmjsTgq0C/+6R8FePwA9nwvtO+K8nNQKHXb4qmedCMzCHlvS1v9FbCutXCdTs8otKB/AelyGAFaipSkykhB9uw3Aldcs/dPBrd5iRtePdu+yyyzUhAN8dgL94Q/hf//tH/G//wwP+z4dn/Oe/XfEX/yEIz+8YqJlBmtkaD4KSzwDWUDn/a9djvgYhDP0xvFKMVJgMpPEU3ZElsTOBuYPFCZ8jfgrkWZ/w5f1qvL3F3GyZoDTTvBv/dAAq7pHhLLwR8iQqnokzyIA9PEYD3olQpwnA0eE5k6DNVyBXsaTPWHgLgQqyInIQjbCK4v0q+P1zR1NgEdejhM2zBjB+m3OHOk9QU0XTjpUUJ3g7U8UC4CDAd4viHw4dx6Z4bIrvn4A/vFP8QQTvoamPCQRS8ud94oNt5VdkhOxAzZ3JG1jI07/+c+Bf/Tnh//1B8adn4PBW7zPf8S42HsxKD43V/nn8iHR+HbpJNRnXkemEe51g6Mpn7PkZlIBdfnUye+YHCBPGUW1PggG6XPOCje+RUSpW7nZuml122eWaEAF//WfAv/0nhN/9L/8U9O/+DP+a3uM3j8/43f9hxsqt9MwM9jFnm8o34zLnUUp18/MDpbo87Mo5FBYxxWLQdJzGGGpf1DlELgbdj5YEDhKEkQc3nPfZ/ktJCWIaYU9MaMxYuOHQGAszDs4mrCC0bp42CsEZBo6QukfNhtcNn1/JHJjQAJVKuBYlfw4N/dkKPgDATM1sgVqR1TE8gpgZ6llUlQABg93jxhQHHSFekY58b6IuNhKQqgF73TNuk+Lp1MFKYG8v3DsYwHsPKZPzan+7cdQQRka04P1hXzB77Io3Z2DhjiOd8L4D74TwoyqeoFgRZMKS2W0/6VF+RaDMNdmBmjuTI4DvCPjL3xD+5Z8T3nbFGRbzt8vPL5Oec3V/xA1vcJoSejFnb7oANnRcJw54KUHYPcg149i+24z7NTzDLvcj1xaTXgquXFvVrpw3F27Fu+yyy9cpX6AjM4B/8R3w178DfvPXfwb+n/4p/vI//Ee8eQv85mgK8y2bYFC1GkHnuOiVWCQ3RMvJ07Uur77ZHjjM5DETYE2k9q23A8KzgCYiUn2Rh00Y1JHSt7GlPTYqEtkXZr60TGFL9g7Y03JzfgcIHeQZn9iyQ0VmLqHUTT3q5Yv0o5qpMaIEIluVeQQ5SBPYYpajgJcbrJGyTQfQpLJ1DiN3oyXZgpR2WUufrV/oeW/K3JHvoIOoe1eRjwEklklThSCemYucuIZFYdQzalnvRNBXy64l0nMhTbD1I4jHPgI4QtHQsUCwgnAC4RmWeVOgWDGyPf2Eh/rQwDyO+UplB2ruSAhGevlmIfzbf9HwP/5Lxt88rfj7d9d8ur7iVvcF5FaNfKjv1tCKORwpt19x7w0i9kpiSjnjxKRkJGkMI1FTgpO7jTkoMno1AVgtQlNhG1WRaevi3vcavRnpuUNSEfiK3E13+XXItfamVz677LLLVyxfqBMTAf/dXwD/7p8x/vzhvwHwb4D274HFUh83XOoUCyIM041hUojZOXZNtuuGp2xAKFI8am4tdowDaMPHRWVlh8JKcZLYdKwpqI5igDQWHkJQjFTGIL1YHJrLlItPDtIsC4/sOh3o3aLzd4/Fzyw0FgOz/omwEGFhxtIYDwuwMOHYGFBCJ0uazgyQc40oUf6FZ/zxy3/W7kSlvOwpwxuTA0qEpRnBPzPQWrGjfYGSfJIevwewSGrPb4S46viB9wBmiCqIxDJsx/lwnEEj89NnfuCLChj1YLcqSEGt7F9IESG/efbpNHQYCoYqQ5UAYQsnk26haqKWbat3iGraLx/yVD7BxscGRQPcg8aOHV7Su53wMdmBmjuTRoRDI/zV7xr+1V8x3vzfq49cIbegh29L5lqYQdMra1ibYwlbYtKW3zQ9YCJrzEaBcdAFRBafCYylAvgqB4m5pcII3yRuqOHoaXdm2HC5GGk6zmIDYKxcJTCTLsv3ZWTmSkb51Jnonsq6y7ct99h/dtlll0+QL9iJiYB/9lvgv/0d4bvjPwbwLwB+tIQ0VOe5IS0/bmVSACn2YQ4gBQAK4KLjSh9wrsHGm6AeH/dJ6GcCawoAlAatqhm+ohB2gxfDs2ZemK56FJMvTjGhMXBofr4C4qESgJG17/KZpRj/ZlJTkgkb+EE4MLB46BMRsChAbKEtROR/Rxt+gRPVJxUz2ooBNQQmA2oCsGleZma4B5DpvOLtiLyNBqCIBBbtGVQUSgSJhU+tXjPhO+TZwWEAA4jMc8Sf+IuBNZt+iW3Hrvf8hfvIAGvGQKXxVxFGjte/AVxdLAuXqCTnX4A08XuWFTY2GpCtE0Czy0tlB2ruRIIY88iKxwX4i98Cf/nnhDeNcBBCxv7hciKvjX4GKq754lzb/jWJTVTXt1fwANjW1c3tQ4cCytCV7ssN4RKTJxATGsWEZEMRs6HTD/yIhRcoicXOOvkZsbt6qrnMiNqKFPuEsoiRocm6QkWgQugKdBFIKES4n3eXHkXw8o8lhNx2L2WdZW4LH5s47vU5fo1S+3ftzwpTBmJ/HfOuvZ9on6EoRAjUriTssstXKl+44xKAv/ot8G/+gvDm8I8B/HPg9GB++n2rN8T48ogIiTIt7dwAZeOsCV0BhDQsOTg2rnic2hqQG64BvxBPiyEAyAxgMwq3Wg27O0NEXFF60sCz5yiEPNOKjr9dxYze8F4oKA/79YK49tAYj0tzjxzBqorzOsbo3YPxM0m+eMq2xEzgxmiNcViMn+bYDjgy47vDAlVgPQuEFQs1CAtYFJrcMCNF92cvLiE9yJitrTAzmBuWKO/ScDwuWJiSUwcAugAiNMKUvC1KZHoS8u/sBMIMhGeHAhzZof5/9t6lSZIkye/7qZm7R+SjXt09z53Z3cEugOUud4EFcABJUIQiJA44kRSKkDjgU1H4CXjiAQceeKdAeICQSxEQACk4LPaFnd15dU9XV1VmRri7mfKgaubmkZH16K6uzJkJLYmKjAh/mLvbQ/Wvf1UlONvGGDdJnLMhCRxsqDyO99E5y20M5VEVsKwAICbqsVqrykb3MTjEGhoOYJqI0qmyAYIoUTIq2eeHTE6ZWTMjplO1QE2rV7WXFLDwp87fd80+p3nh7eUE1DwAKYZHwEKfhgAXG+HRmTAEK40mB9sW0YO/D6fe+zSWjwFK7/PYFVxpGC/NnGnb+e8t0r8+xuJ9KjvYsxDLRC7GwVyVNCxAjdM3hYBIJET7fBY3DHHDLDOJTPIFJMRCRc2gmZzD2quWMzlnkmRyUrokSIkPRWslm4cywa0UR8RZSTzoMC1o+kL5LLbQ3x4/t+/2Q7n3v6xy+GzKMymKQcKVwEbHuqu/BQrt1t4nTkrCSU7yCyUf2LMkAo+28MkFEC9Bn0Lqj9bkrs41rLJcmVc0QIqLVic1PtreY6VHrJmnxcu93rwY1LJ20onUPCU17NoluoEYXPkpRm9GPNwqW6i1ihmPmDMpuGG8InCjlc0TvCS05ULxxLWqZIKFm/g62lbie91cewwmeF+Puc3RY4yh9ZHbc/+irAUVYAkFbAk19KlzIGToImSQGXpRY66orJjdbV6Y95lHsMWUltLhob6it7XvIkMX6R2oKedOCVKjrxe2V86pAi5ZIWFVoDTnum0GciqMMQ899N/xqlHqXlElW/Wi0vCvcvENglrGI8jyXu+wn6pUWnpfINGXlGVWod7DoAbW9FikQB8MXLKUDJmsVg2qjO2Sf7MwaQpY0zJriu61wQDtjIVDfS2XfshS+CWSE1Bzz9KCNBG4HISnZ8LmYiBe9MzM7OfkJesKoGBhN21/bEtGHhouxxalQ/1H7vj+UNrvW0O9DSO66ziH3qgv63GpZXnFDTlZWCkFvCkGXqv0lAilPgb62JmnSqJRM8U8Thkl+iJT7vCkiUkzXchEUZSAitDHSBciIh0ikU4iXQg8+9b3uXzyMbv5iintubp6xX7cE/qIdIHuZkbmzH5S5gz0pt3EcSKnTJpu0DQT5pmcM9OkpJyRSUl50RnvW8GobRBD5A9j3COLsnbf0gIAsfmu9KFWQt1+CYO7qz/fxer4OkHKX1aJwKb6pReApogCGxGPpF6eaZnvDue9DuhleZ/UXtfY6yQnOclJipRCDt23gB8IXHjo0/UGfQk6s1oPtr7PY4FBLKdcEpiCkESZxNYXYxgoWTuUhelSw44clZZsxlMXbP6zuWxxEkVXZJSSX8J84p0fUMVAlRDCMndKqUElZM99l4KzFEIiqTLOFnI952QMhlINCg+NUGtzJ4HoxvW2Dzwaet8+kSSzSTAl2M+LAVfeJ9bJRr/Twa/3MM32KgvkPMC0gbCHMFKTjr4AXh15Zj2LESPAU+AS+N2/+3f43g9+k5998ZIX1zf8m3//7/mrn/2Ub390yePzDef7M/opsrv6lGm+In/zI/Riy24emXNiwyuiTly9gmmEF3uY7lGRWfAA+xfC8ooh0HfGcuqDmE7TRXpgEyOKcJOVgHqf0Qok1IO/J6RGxJycpkMHohRQL3LWRS6GjrOh42Lbed6a4CwZmFJmTra2h0axmrOQcvDy3MZMU80oxh5KzhJLwZg2czJHZ9bgQI/19ykYO31KkAMWQqV2kpprqdyK192PxmkrYIw5jEFkz6ZkvQyuY3rC7cL4yZ6NMhiQpIeK89co1qpgerCCZAtJ6sQY8ecifHPo6AW2QW1OmjJ5tvuXtTCfIM2LzjVibJnJ/y7ySOBpgG2E8x5eTfByhJ8Af/VhLvmXQk5AzT1La0AGYNPB+QD9JhI2HRmxiYUyrcpq+yKt5+JdABA5+Pt1YORdjJ3Xvd8FcpZz5YPt3rqtPklmMZ2igl3i4ECwyT4e7BMDbLrI+aYHMZClE8snk1ES2ReYcpeFXZ7Y6UQviU4SKh1IpI89fewI0iMhMkhPFzo+/uS7PPnmr3EzPmc/XRN+/hnx6op4NiB9R99NxH3iasyMKVtN9k6ZdyNpSuSuQ9NEnHekNAMJmZU0GxqV9Hg86IeW0seOgnv+XB4SuF1Amq5pVMb7ECyeBRqQjzUIeQyouQ+P4S+jFJosYvVDAqaIr6pqCuYhdGOl5JCqsdKNR65zA6oTA2r6bEDNzAmoOclJTrKWHpt/wmPgE4HhAvQJjD3ssISazfYDBtacBZtnSniliJLMYrW1xReUoLaqyMGCmR1RKTpR79uXNT64UR19R60QjgE1Q7Bjqi+4IViIS4+BOsm9Yjkb4yAJ9T1lK9ucNKNYuIiUVc2Tf4iDS10wvWiIgU2IHvpkYdlJEzFaXpQ2zLSwIJUFqBHgWSf81nlkP8Juv5xufwa7C9PTYoYr7JU0s8NAJFU3ikNgg4H75bifAB+L8Pd+8AN+7+//IX/+k0/56fMX/Oizz/jp88/56Mkl33p6wZNXj9juB16ma/b7kfTRE9KzR7za3zCmiQtmOlWeC9zcwM2cmPL9rN4rvbwmAg7OcAoG1kTP++J9JAUhBqWLQocQklhp7oKmLIeye+/r6FduZwFratsMrOlDYBODgTV95NEQLV9NMABmzkoXlEnU8z1JZXZNKTA52JIxpoxm0wBUxIAZUe9vQsSAQ2NJi21vCKXrC5mkofKIsrPKkg9uPTR0jnjg2gpUlv6gKT8eYg0ts5w5fsxs4zHLolEW0LWe84OANQXwMxZNyD7eVNkIPOkCQ4DzqISc6aIyT7BvPGJ5MgZU0c1G4KZ5L/JM4JsRtgNcbAxsfeHH+jEPx5H70OUE1NyT1EUZCxkpnoGzAGcR4ibDJvli6mUQfSFVzPCIwCw2UIK2VQWWMX9Ym77NKQJrQ/MYEFOkAB6V3svi8W7BmGPHb9/b63+XOUmaVxRqfpjiNdLMkmXeJ48QbLuFeWMT6W//re/z9//u32S337Pb7z1LXuByOOfR5sJCmKKw20/s9jOfX73g+dUrPv3pT/j8s8/4nd/9bX7wN36TYTij7wcuLi/Zbs8YLs7otxu+8+3/mKfPvk9KI3Oa+aM/+tf8+V/8NX/4936X7//6twmTUS9TtrAooiEFmrJXUEhoTrz6+Z/y6sXP+F/++f/GH//7P0d1Jjlgow8ArAmUMLEmgzzL4v8QWD/gRjs2Zlx/ri/rG0L2CgIFsKEZSwtIugA7hcFVnkFstj02ng7H2dclx4DSh/AM3kYs34MSAwyDhy55P/J8gBY6eEDPb6pH1gSCATjrraRuHw0A38/2Ot/BZmdKw9WHv8yTnOQkD1DOMXZMdzHAkzNHTBR2Cq8gHzBqzoEL4HFn4eo3akDxbgikGBjoyBKYA5781DIS927YqSfszMVk7KQCNeaE0hriEkToKaUI3PPvxuGm5B4JZoB17tnvXBkr22fP9zEnAzzGOTCnDEEsP00O5Kyk1Gp59tZJYAiRIcJFHzgfIk8uOvPGkxknuBkSN9eJF3Mq0drsMVC8OD++AXwH+C//q3/Mf/PP/jtyzswpIQ7tpHhB6i4IM0iCiZGkE5/++P/h85/+O/7lv/gT/vUf/ZB//E//M/6Tf/KHRH6dwLdXz3ADfPt73+Ppxx/xOzd7dtPIP/pv/2uev3rF4/MN26Gjn3tiCszjK1Ia0Ufn6NB7QYdMx56giXEP19c7/uf/6X/k3/3bf8tPRri5F8tSKkejJhIOQt9FNl1k2y1ACNiaxwjdLhDVkvhmFYIngF6FzL2nmtUFrLC8NNFy6MTIpu8473uenPd8fDFwse14dNYxBEvtkN25mlJiTlZhSBWyMznGrExZSepMDqxCahmMYzZGTbGNphSYsxoDByUlA4O6WZhyJkRhLtu4fX9/AAAgAElEQVSrAz9geXywc5joSo+toWIFmGEBMUWEGG2cdjF6UREb37NDn9M0kdQ8RarZr1Prq1aBexdP+7s8H8KKcecPzRjKAkMUHg2B711GHp8FvvMs0OWZboJ5mrnZGZdfUNII07WBNfMIuwmu9jDOsJtd5+rh+9+Av/Vr8PgRPHsKn30BP/k5/KsfwdkP4a8xZs1JXi8noOaexH0rNYavGJK9+ELdKfQl1rIds/ZXYQZkX+LEB1vZpGx/aMyv0Hnebi5oAZhDY/PweHclOz72+Rg74W3aUVD7KObJcrC8JjArE7Blm3djXOwIIoFvfvMpv/8Hv8Wrq1e8ePWCHAMahU/On/GN848InRJ6eHm149XVnp9+/hmffvE54/gFX7zIfPd7H/P7f+e3GbbnDMOWpx895fLykuHZBcPFGd/5+A/46NFvALYIvLqCpBf8w3/4n/L7v/c3/WIaeBpZezMUNGee//W/4vNP/5L//f/4l/zpX/wl3ZiRnGxh0A8GwN8pC3i2hKvgQEi+78Y1IuDUbSgOpaglfM5BMk8WXTwbRVmAxutUDsbSF2uFMJa+fxguVb6DD3NL2jH5AR01X1kKg6YPRpMNWIhnAWFsPC+aU9VntAFr8sKsuxjg8RkMHWwG2E9wM9mznXfm4T0BNSc5yUnMaWbk1lhozdFnTufza17rPYVRsw02x2iGWQTtAnMUOiKZwD5AFiH5StmHElodQI0hCwuzszgUHMchhuiAjJ05FfA6OLgdIiUcRkToxYz56AuSzZPGFs5ZmZIZtuLG/qzKrBZeknNu6BWLIhkl0MXIEIVNJ2yHwNkm0ouylcA+ZgIdOsO1pMpyLrksynr5CPg14Pd+52/zj/77/wGRwr0Z/fUMC2Aqq9YO1R2f//Fjnv9ZYvfnn/Oj//uH/Od//7f4p//svwD+APjtNz7fv/cl+kSR61cv+Zf/6z/np//u3/Lzac0Y+HCyaFpWAl4cFLC8L4PnDOq7JextytmM8qwVmFnyGi1HVNGvrCAsTjoHFoMBAjFGB2t6zoaeR2cDF9vIo/OeTYBtCdUSIeVESonk/TPtM/OYGbMyqtZkwzNKEh842YpwTLo4cPZBmXUBaqaUDcgRY49kIuJJhZXiCAcRB2p8zBQFsGVUl3tXclkKVlRE/FmICH3XEYKVT0csJ1VSA2ckO5snO1jDoiuL6toOeJ288/MqT3tJKG3f2oGMMQfbTni2CXxyGfmNjzv6LPTTzDTB9S4hZESUeQ/jmYE04w3sdvAyewhUgm0HlwP89jP4g9+Ep0/hk2/ATz+Dv/4pXO/gRz80EPe9AzWt8v1LIieg5p7Ehs0yEWSMIoeoUWWHM3R7Rg47Q49ZlIkONx7FFtAAkLLHIq8B2daYLMeAdcI3aV7Hwj3a78vyecga6Jr99GD7dsyU/csCrs3nt5EavkKTa0T87wLWuGV9OFaHGBhi5GKz5XL7CDSiGjnbDJxvN2y6LZt4RhyE2EO3ueDyqbJ9vOXJ1SUvnj/ns59+ysXmgsv+kdH+xol8M5PizBhuSLuZdDGZRuLXdjO95OXuM6Z5f+RqljuQ58/J+YYvPv2c3fU1r57/FS9efAaqnPUD9IkJpXOvw/0nRdXaN4JUYpAvOsvV3ae0/TfgFM9g7RVoypNa/LNXiyQHM/qj962SKLFnrdwcXuMhUNmOk6/zXpRzLpn8tbYH1pU4HqKU5HXbzjwxj4YlxLM8o5Jj6hCIKnHTFmdOZU09OYNPLu14Zz2M2Tw+G9P/2SX4+X3T0k5ykpM8CHH7C3pHdsMjwJMJz8uadubbb4GNmEGy6SHkjglBepijMGarqCQhmPHni8PgJYtLHo6Sc64cv4/uucca1EXzzg8lF41aeWJ1gyuG4IUoSmiLGetdWJwUqNRkwiln5pS5DjAmQ4SmDJosZKs4JtrFqwuFmSicD8LFEHi0CXQovWbPd5GhU/blvMnWnSsM1BLg8QAfb+F8W2CxVgPMlBV2kR6IXHz7H9Bffodf+/UX/Mazf8Pj7fcw+OWj9/PwXycK3Qj9jlqC/IOJd8pDoKXkVYwBuihs+simC5xvomGLqkwxsAkwB2PUJD08jr8WH9tX0g/K+hwDxCj0ndB3BuhdngWenEc+uog8uej56HHP0AWGzlhcmpVpDkxzIM+ZPGfGXhgnYc62vs8J5rx0ypRMZzP2TGZ28GVKmTl7Lhtgl4QpK2FUdgkQ2yar2VwpO9ssL05euxF2RxS86OsS7lRYNTbODLTpe8vhtO08cbKDITkLSZVXBGZDbEiiJNfSJFsAlCTxkeB23Osexjs8rEUHLsnAl2cegF4y2whPBuGTC/j1b0S+87jjd7/Z02ehmw2oudmPFPrTPMG4g2lvQM3NDbzYwH40EOZ8Y06y738PvvO3YfgmhO/C0y9g+Dm8yHDzl/BqB//f7u2u41dZTkDNPUoda1IW32XyJPZoN9iC3IzIAlL42lvjl5OXo7vrPIef25cefIbbQIs0n1vjMzfbHwNwDs99uF0Bkt5W2tAVdzAtCpa/bBtZ3w+nIm6ClzLsNmz6zLTJPDrb8vT8DOhAemIPsRe62KEhIn2mPwtcXp4z9D2bOLCJA1OeLDHYnNEpk3YTmjJ5Tqs5dNaJMd+QtbUKD815Jecb0vyCqxc/4urFF1xdf8HV9StElT52jDGQc3L668MyuVswr/3uvoHtoqiW9yhOC6Y4DhVVSyRdAKY6JsLSt2poHeKZ7y1cqlzf8apRx9k1h/K+nuQqkz/r+3//oN7dUvpOFOiiUXA3keqlq8wmlmfSVm9LuQFqWJ7Z2WAVXDadcDaYQjdl2F3Dyw4GBUkP976c5CQn+XBSVYgYoetANqAbR+2X7XqoFeU6YPDQyjkHRIU5mrMt+WzUFVavz2l9tHWkOzCQQwVqCljiDJxo7IkhLhVkTG+syg5BhG3JTyK2FvRhmVfV16ySLHgqhjvK6B6W6CEwGXwtXHTPKGZ82/wcLE9N9LB9FchCjrCPyhCWdbToqsWpto2Wq2LoCn/ydRqCHUFE2Tz+PsOjb/Hk2bf46Ay23VPge9zWOr4eibO9Pqg+I8tbtQscZAlIBUaCGFjTx8DQmyGts4EzliTWdSBZAEA5OMnayvgSTa26t4XglUTHXQz00RlYQ+B8CDw6Czy96Oi6QN9H05mThc+NE+RJ0CDsxQDClIWchSkZG6wUE5iThUPN2UCXMVmZ+H529o33+RBgysqYxZhtbmgl/12yJynOGLN6lYvIQhMRarLv8gzKe+fA2dBZ2OG2N6CmF8uzowVoisIogf1s97w4lihRAMXB3Dim7nwm7/Cwlnw5xXZawNgS9mRsGuVygI8uA59cBr5zGelU6ebIPCeud9a3mGGeYd9b8u8xwnWEswS7Hl4FuNzAk3P4+Bk8+hbIt4Hvw9lTOHsG3/lj+M1zeJawLMQnea2cgJp7kgI2IA17RS0HQxchjHvkWpinxOiILzSLdInnCeZZITWghzS5aRploJy3XWwKcFK+04P3dju47Zk/ZOCskvc2f5dzFCZP60cpE8hdzBpptqntD80PvkDowQ7irSvhUqaPKHnO7G4y2+GMx5cXjOM1X1x9zvnmEefbATSjU0IIROm42Jwz9B3nmzOnc0IXExIjKh3b7Zbt2Rn9dqDbDAz9sGr73/j1v0GQDR9/9PGRq1suJnYfQ7gkdD+DqOSUyVM2pkEvBtTMVkvpvo3LYyBMpYV6qc97T6LD8txjcCM/gkRBfDzZYqhIBmnCnaL/BtYve/FFvGGtQXlyYrTZ5qGU/r1mri3q0OF4W7X5ju/fLGtAtwXPytzwtZVGPJDXKbTH5pYeC2PcRNh0yrZf7j8sTJkC1K6O7wqPKW1L3zzfwNMLi2K43FBDo8S9QZ++Yl2K5CQnOcmvrJR5WrsMQ4LwAvi5JWB4ZVVO2iWt5ivrhTgE4j7QIXRB0SBY0EMgRqP6hthZCFMsLBdf931VKIleSyiFuAbTe+6LjQM1JfRJJTjw4wajM2pES1JT9/iLXV32VUlyZEqKSGYXM1OeCCkzkZhzRmdPtNookF2w0s9DF9gOkU0f6HsL7rIw4kjQjhAVdK753trE7QLsM+xGqw71buLwWOhsDQ9ldfv6oRPBchBtZWFBfTCpOq5UYECCIFGWktdePamPgU3fGchGNvZ11xEVQsiEvOQ8qswamnX2SyoeZX/L12LVniREYuyIfWSz6bk467m4GLh4dMbl5cDlo4E+GPho+VoS+31gvw+kmJljpo+R7WyJhuds+VByEme/KHOwKlFmxVoemzkrc++hUw7AdMnCp2aJhDkjXWbK2RNTL/lvUm50OF2cb1SdbTE4CrMJlnyZVnLc8jf1QTjzcavJKk+JRPZzYkyKpAQ6k1URrVmn3HGYETA2nr77I2nD2koVKns2FkLZhVjPZbmODDy+jJkng/CNy8Czx4Ht02CFG5IQZoh7saSooyUTzr29UoDrzirmXV/DNpuD7ONzePwJ8FvAtyJ8rzNa1JT47g+V8/8X/q//ALx89z73qyYnoOaBieW1FRvI02TJ3XI7aRQj0BbkgtcczrEtCMLBe7u0HTO4D49zbCk8BGra4911rPZch0yaN60Ry8QD0nI1Q10llmNU8AbK9FrCcwRFkzLPytlZx6OLLV+kG16OOzbDGTEYKJZSoosQCWziQN9H+r4nhEAISgw28WqI9H1H33cM/UDfbQgSq8UvIjx7+oxpVs7Pz4/czKb98ZwgA4QOxOigOWdnGixZ5eWNd+sDi3eSskCUZ/EQpICDni/awJpgroqgi4KcxTwLbbnuUl7c9Fy7KFVWufcWT4WPxQataZ/SMbYL3H6K7+u+tXkBynHL6+vqObeAuzuvRpv7soQzRpxVI07/b4Cysm3pY2F9ODMK/GGV69x0cLaB80G53Jp3SxRebuFiC8PuQY2ik5zkJPcodS6IWBZz2aFcw5TQfUlkup67FSBYktYgYoaNlASjnm6/VGEKnhTYmS4q5tYqc5m6MW4OPE/U76FNUUpyYKnsGDBdsQ94CJQbyyXExatBVaBGzPAzJoaSNKKa6KOFaHVJnYHgbGTfT6BW6InRyi13MRCjl/pVJWQzzgnz6n6W0txlzk7ZQJp8zCN3p9RVHCFYaoCjmuvXJyUnpNzzgrGELq1DoaL3ky5GM/IzdB6CE0KoCYilrsoH9+8rKwYl70mgJL8Wz1HTdcFCs/qOzaZn2PRsNgN9gE0AVUs+LWrOsqkADAQ6MSAlZiWLMW3mlC0npQcP1ZCrvDBskmLVoDLW73Nmk2EmM4siOZNzNgd4tpyF80HY05yLfliAmgYYrCCXEMQYPl2MBmjGwBCFsz5aQuEEKSn7KSMqdKEjqUVBQHZ90oBTO7QBpcW+s5+PPJwjz6zF9UK5jw7OWdl0L84tPh/4+WJQhiBso3A5BM42QndmcwkJwuzzz8wymD1nlyYDEjRZuOPcwWUPjwbYXAIfAx8FeNb57cs8/hY8/kR5+ulX6XPvKHcp3b8AcgJq7knKfFCZNTRMmYT1ehL7pFwni3EEz44OiGYEoVNTCuZCWcWXNV9n29Akac7bMl/KPnf93R4nHXz/pqWyNRTBxnm7f8SohSVO+5i0DJyy78Jk8GM1iNKq/f4hA0mUOSipy9AnxnTDi1c7RDqePf02USK7caLQK866yMV2w5Qn5gwbiWyi0MdIFyIaOwjmJdOc2d/sGfcTT6fFTa+q3Fx/wYvPf8I0fvMNd0tAgyHwM9zMI9fzDpVMF81zlqNVjSjsiPuSooTVOGdAveSONM/hvgGbw35avJQVzNNFbVGWtgPVK2jeS/WEw/aFSMHi2l65iLG4pJaULMUgW7C1beNdff9t15bye8nd1LGMEYDxA69OLZByF2uovLdgWoz26hxYc0ytAsZStisPwH9QqCyuwrrZ9nDRwdMz+PgRSBZCVl5dw6dnsDllEj7JSU7SSAY0B6xm9h70iqsXM1/83BKR71lA5T0l94oS1LIMCoGQAxFhcFMyh4B4hZtYGTNmSNnexakTfP00AyuKVKDGQlw8p4VaQs/oSVuHWKrt2DUETxhaQzNCWQcCVnQmE1D6kMkhcN51CImbkFEy0dEcrZNr8bwv1YaiCL0ERDKiwUKgUqJLumKdlDk74YlGZyuiNX1JJmMHbBU6boAvsDw3my93sHeQGhrztZ9pLWv3zuoHezT+nGNnhnQEUKETy5HSB8v9FoMDeOFInpr3cFHiba3OxBAc3DMGxxCiMbJ6YTNEtkNPHz0MPQU0RehmtBOiJjoHTmZVgijRbZyU7Twxq7GKxDxnogJRiShhtqTYfRftuQnIDIMos0CShARhxgHDYDlCe9cFM1aRrfey3oWBVJTDEt0QCvjhoYdnnYUpfrTt2MbA48GAmpxgSsqYZgjKZrTj5y5YJS6FrAbiZBUI2QskmGJjURKC5sq7aRTW5v67XirBQ/R9HghSGDVLKXdTXQNBMjHYmO8ls+mU8zPYlGElfvQJU7xmV64K+hrNXNoIPFMYMsgeHl3Ao8cQPwa+iylinGMzQYJHe/i1nZV9Oskb5QTU3JMcAg/lOxxZxilws8J0i03jnv7C2uBgAfHY48JaaY2cN7FWjn1u9ztmlh7ud4wlUI6RWQz7ArjU0uOvaZseOfvaCPcJuzbGt6kGdQP4BIWozJpgTGyGC7abc9I8M08zEjxJrlj5Q+aMaqITW3hiQahDgBD9nEqaZ7IKKZUAMWvDNO7Y716R5vkuu371hSpWQSLPNrnLQlEsMckfhvT7emkN6GIstx3loQE1wgIsrVqmRWlZGDa1N676jh7t9+0jrX+L1PuysG/uHoPtce8aY2+jT7XslJJYuDyjds75kLK0fT1fHYI1wZUMafp5F9btXoUxqoWwGZBGVWrKsfpo+SO2neVFCNk8Pue9gThdiyad5CQn+ZWWZW4Un1BmVPeMu8zuGsa0OJqgmhzmDadZY9xwDMVrIWYgd2XeEioQY+c1haiA+7ix21GSBS88iNI8YQm56BzQKXPjwrot57F3caM1BQN7CkunD4EpqBueEMRCMaQqT+swGfF2FqMcfN3JSvB7UTD09t4mMH12fldGzSJBneykiQUq+/rl8HruVfx5tgtoyQlTnJdBFvAuFFCGRQeqOx789aWvse2ehbnj5zWd2YGbKJ5PJ9JF6PrFQT2HbJWTslqC3aRo8HAgUTQ4SBFAspX1LtVcFanjgaAkLZXVhC4ps6iBpD7uYgVAGuZJKECM7Zexhy7OiCPYWM1eEtTGnI3PEIShM9D0vA+cdYHLIdIFYZ5gCpmhE8ZseWzsXgSc8mM6p5gSk8uYEmPUBF0z3BRZvIjUrw+eccP4accvUucfaJjXziiPQRl6ey4WbShLp5llrYjOIAnooM/QzxYKddNbLvZhA3KOFVbpIzZWnWqwmeExlpH9JG+UE1Bzz6K+eNY1PUKIgu6VdJUZZ7UcNWV7FkZM9EkqUyiNChJQoZaea43DY4baXbZKe57yuWzfGuiHzJx2X1hXlWrPt1yPJ1Fe28V3SvD5yUpRVnzZJm/UQlCa9hnF2D3uCFEjg3Rsu8iclN0ESCYGK57ZdQOaZjTNpFkZU4KQzVvRR7rOqhDk5GeOBsnH2BF8Io9xfVfHaebmZiSlN2snIk6h7CKaEnky6DqEiMSAdBVpuHepaYI8630MzeKRzTDOb3qgH0BaUKu+N2DNKue09x8pHkVHF0u/h9t9VNpvfQ3NrrAWoLQo9Stwi/VYOXyq73brimJue3X+d1n0S0WRtwV8vqocv0e3f1spiAKxsxxdXbfkFqrVnHybCuy450idtdQ50FNAwvMOnm4sP812Y8B1ULg4g0e9gTgnOclJTrKSEpMRRsg3fHGd+fQF7Od1NcweZ9Q4uhyCZ6WJnZdFttnNKiKZbgfURLuhgCpVOfIZ2o0q052U6IbqKuG9mFceFQflm/UYqKuMlzUGrY69Th00qaBR9qSilgTZwBdf/wrqwtoRY7qqT845k8kksVAS9dCmjDneJ9b661cRyYLMgugZ8IQPYcIIcPnBztacVNo/2uDp5XP0MLRhiGz6yPY8IgpxVMZseV76pAvTpQl/kvflTWuVKml6YYlJkiWlQ/DwudhB1wldZywvMsQYzUlagKaQCTEjaYaUawLvGfEQRLd6vGMGD11ys8BZKc6EJpBRY9eoEC2L7yrk/aw3YEVcfc8aQDMSIrXSE5bE2IATA3C6GIlBuBysdP03zjrOu8DTLtKJMfF2s/B4b7lhhiEyB5gnY/imbIx8SA5g5lrkolyHAjknVC26wn5b7InCIoYlxK0+Cx/PwUPSggQ7fv2XPLRK6Trl/BK2lwG5dLpM8YxNfqyi0B4J1+g7Y9NszjECzRZj5oTof/jD2Uzw5OpDkOF+KeQE1DwEUWqumUJX1aTkyRJizawTlcKyMLeGnziy3Bx2bQgdkbsMt9d91wI/5fPh7+3nQ+Ck/e6NDTnW5mPb3dp/YTRI802J0+xCYE5imeO9rF8MgRCDJSzLeH6gTPAqDrbQRF8cPFa8epyCz4cLpRR8sUiZaU4WGnTXNTX3pdCdTUdyGC54bLZPig8A/wAatUHwBH8LYNG83Z80zSnMp+Wb8ldj/a9AmwNQQdagTtmgHWfHQNHy9+tgutbLIUfG+x2XtVxJ8ajqUjJdwDxRLMbBh5L2nhxKe48O54pgKR3MOxbKfWnEY6FqvwtAFkJhFwapmk0fLE/NpjMFohhHfWdJi0+MmpOc5CRFyuxribICSEZ1Zj9mrneWB7NdPQpzsRiMBXgJISAhVJT+li3sE18xnEsorkpriFcXVHUYrABrXbclqNY1xF0NBWppQna0tttCxZuZWLTOtYVJU9eYqs/Ytksifjck/XstFnJeLrOE6rfr1S3d7x1EFEIWRDs+pDt+8LN9aGx/0e1vSwFcglh1pdgF+s6eSU7mMLQcNQvIcFwPapSDr6hYeg85+suiJzqw4EwUDQGV3LDJzLIp4wOKXlNACK2OttLbFz1PF11HWz3Kjq3lngHFrSvOXNn2lizbCk8omn0bZ9QUfvI0F5aPXUjfdcQgPNoYUHN5FjnvAo+ihUASMhLst2H2Z6VKNDoeqgENELJCUGIu+Q5NQTGA1nqCehnxpWdofYrtewFn7JoXPapeRavcajMHBBh6oevFKmgEP07yeVFZKlVweFI8qTLEnqUsXq3M0YyeLtiA6o90la9b3lNf/5ByAmoeiviqFkSNSicdIgNzvmFMCzOhLH7qAzB4luHCXElq8Y3FUDsMfTomxxcBk5KT5rBPl+O1CYvLdq26URblJAtQU4assuSmeh2jpt3PKi1ocUf5RK4VlEEWynFZkOqSZKs8SLaJK8+E+YZ+u2U7nCHMiCZGUfM45cQ8TvS9EDsnSIqy2QxcXlwwzokpZSRly2QaLRb9MK64eALkKMJ0W6IEeul4fPkUzYHz7Zahs0Rl0RW7+7YxyzMMujw7irJY5ne9/7mwjheKYuzfF2WzWbFWfbmtCb1KIkVVespXDQsVjmwemlfrkZXm85MhsI3OEluwhsXb6gvvuEvkZPR19bXUvCl27wdfTw208UoJjZL/ttKuxa1i/SUZ63eO6yIBY8RsEAaPST/Mq1X3E+93UsAZ26Cw54pCFaMzdHrY9MbO6SJsNwbWhPseRCc5yUkejGyAC4HurDPKXTfAPHCdAi8nq7ZUpKx/nUJIiiRFNBLEmLDkTHSPe8Ln32zJUENkYTZ4jkExpMbnftNZklqdpjHbRFVSpBVDVMTKEk8EklCN2BjNYI1NoQUoiZC1HqtTqwRVmIaS8PR8BrrIwaxdwrayr6jihp2q5ezrQ6STvNJNWiYq1Oq+X3odOUN5KsrmA2oWAlzwgRk1R1uxhDDV0GDsOQZP5FpzU8aSm2jtuKmdoTJEjsMq7ySHXpkDr5CiZLE+tbA93InpSKJqdseoFdHQrJUFHEJAOq1MmfYeeGX46jRVtX7bs+iiXVISloNliLkCOx22bewsJOsH3zrn2cXAZhBn8voJ3WOUJZAVXj3fM42J5Oz288FKkD/aBDZd4JuXHZsoBiNm5fmLzPUu8bMXE1MWNnFkypkplmsxx6+489dT/BKdMVN0zClZSfHdnE2nawBRgZobSqSM87USqfVZrJ2IRT8Gy/23DZE+1oRHTYImVyYL+jo3L6eMl+qpcucAd3i7jzao7gOo+QWUE1DzAKSd52xy8QRWWLKplNcDqxou7tGQ1gJr8taU7Q9Fjvx1uHVrIK2MpOZdOH585TaQ0La/hTEcS7nzWLeOXXcu2PjaAK8IvDRGbm28KxdlW82gsznQug7JGckzU7BwrKyWGd6SC4aarCvGQN91pJSZi4epMF9Wd6dcsc+qhwvaUSneucAwbNluZ7rYeV6cxcPwEGR5FFqfY/3hAUm7EB2Kej9a+vnBls1jNLr57THS7uVYoT1qPfie4/1cMKb9ebdspM2OUinFIKNRX2fXvIZQchuYf6gvCfZKm32Nbanxb5IWm7prHjgmh4//9Vmnbp+zeKWtQoVWp9Dhgcs9XumGcvtvEWPcxujhVK4f9P5daJGgk5zkJL/SUpKwS+cTqwSUyJTFws8b7L68F0DcfvRZzA284JNUUnW2DHWuqXqPlBV//XtB1g2wXwzfsq6EsgleVtgPujhKZPEgeNPWa5UZqVJ2dEOxsmXqPur6mVL5C27pimhtu1Ue8mo/7b05cp/fZi25S4xHo+6b/3AKRwlzu39sX+riZ89ZK3gXtDgwGjaqrPvr+q/3eN/08A+HBTzEphSgPrZLASKyqoXOrdhcbcgWPma0AkyNOVDBGnGHYcCOGbCwqFhC/ELRh+y3oYO+Czy76PjG44HtxvLo4CGDREsnkSSSFIZRGUNi9hwulxvTux5vIpsu8MyBms4Bp3GX0OTlu2P2hOLOJqIwdw17eKAAACAASURBVKTOEebsVctRReNkU1kSBvucoM31I4dPtLnDPmbtPFrnjuVJ+e3G8/jAMne0nj6vkmUTz/JSD4XSzPL76oG3T8uVL8sicZK3kBNQc09SkMzWFjHDQo125jHJZeJqZenyymwpr0gYYh3dSpxKkk3f59A7fZg75ljbyrnaxUkOfj9cjMvfuX2XkjNjnaOmHdOvM6YPr73879OOfQ7hICQqr7a3+xsR6Uk5sJ8ykyZymOn7zOON0MlADD3Pr3bMeUfsAqEzGmJSw7l7AmmeuNlfMc1qJYF98ldVcsqNlW1yc/Wcl89/xDTevMUVgorlHSIppOSsj4Co0SiSWHz5uzAkvg4ppUoPQbG2Xz0kzKbG/bIAenUdKhsVhbgotnn1Na3+C7c9hmV83XX9h2Ou/L0bFZ1dqWdRsEzBcaUH0KQV90O8ooEsxx2S53Yp++vST970LNqlVI98Lmvz+5TSphGrTDWqrd9ejGEBvhpFcAUceQh1oeiVyghgusDQCZsezjZq1RmCUXO3oZStPclJTnKSBlyowLhpJimplZTW29sDTCh7CtMkMPSWs+ImNROMLxol2qiyDDykQ7Q4YUphBWMXoJZdQ6CWpRZHa+ZkOcgkS60KFUTo1ACT7IuAp8qpeUHBqhFOWZlUSSmTspJUq6feGNvqC6FWpk3Jj1MXIfe2i2KoeAhVxzu2VghLEuQvJTmgY1wu6pdZWkWi+aq1mZNhbIjkGn4vWCWhUkyAcpjS/6R+U6CA99fe5t3aamBFzmrlsJM5Pwv2GLAE03OGOStzKn3dKjdVO0OtLyriOlf2Sppa30uon6t4iEKHeK47IYoxvnJQd2Z5T40dWQIvrwKSlE4yVsnNLiIFswFmRmO2OKuZSZAg6Gxs93kPQ1T6OXPWCRedQ5tuBEUVolp5bCs+7gBNtIcaKGPNriU4GEV2AIpA1Mw+GTibxDrBushFYx2W5yBaMaeQlZBt/kkOpAVVxqRcTfBqTLzcjeiu43IEmCHNFvc5J3tQI7BrXlegM+gE0x5urqyAQ39JMwmUuALPUhzi7RCqk9wpJ6DmnuXQyCuMmvJNSZS58h3U2GLLTG6/2xYl3rk98LFpWJv/7wJryvGOGZ0Hc3L9XVmf/thxyvfHjvEmuQtcKj+uFp5DuBmLf1WFlNQYM2KlLvug9CUbfWchTCEIIdrxCu3ZPFWZlGeSSq1YZVs1VnFzVWneM+6vyLmtGbGWFowz1NuP0Rie5SJboOy+ZI3CH//xoczBFWhQ7K+SLa78Imq0dF/hg2gzMrQZc9y6rha00SOKVQty0Py8djgIKcGYlBlc+ShADbfHd2mHLEqJNdGUC3U7Q7xNX3V8le++rj5X+nPWJUfdLcDrrkmqXC+3r7OE4HXBWDTF09g5SBOO7XSSk5zkV1zWs3RyQ/JQ11nmxUZHE8t1RwiEbMDHEkJUJu3yyWY4Xa0ODRDt6oQZbA7QoJWpmYt+KA6sBDdkPcdFWSyynza059CFwWBgfguAF+bogS7VLFqmnhTEoDS/TVR7fP1/3W9vI4VZ8E7z9q2F4Uue/EPKgS5Re9CBXr8AE+2Kuc5WKb71YSjbAtYcXz+/TJNLd6ggTelXFbDJvs3SutKXDcwprCCpHqimK5tjCiqrxhi4Jdl2U8BBqI7bpU+Ks3XtgFWfcWB2P8ENIJoQVc+FBHOwClPJk+6ql5uKmJ41iZCD5cnLURk7JSbhrLS7OAdpKjDVsWIl7sFtC4RQqs7W0WhjtVNj3wRkhVMe09dWw7aZb6xi1PpZZTWf8JS9jPicmGaBFO1uJoXigE66CnViBkepLSR/hmmyClCrhMN2hevXV5kIfsXkBNTck7TGtmAPIrhCMCYYU2JMiRczfD4Jcy6mo3lfUvHGeEnF5Iu43tHxX28oLlN8mRBb5kv5vt2nzTVTtivHb89RJtbKviiTpywTytuO1dKO6mmHJRyoWdjKd1qolN6a0t6gGfJE2ivTTeC5XsH4I549esTTR49I80ierkE7gsBunNhNI1NOdENk6DvOur56pTLi90lW1aiqUiQ7NL5EZXrzRarCoLCFFBIzM1qCx1nije+bMVjvJQtoHguW0eJVD0WKUe8rv+ra26QZ5lnoStU1p50vbA4ffwcajee2XbFWpPms7WBofl8ACdsgUcaYbVjGXTuuViLr8VjGVsuuCa7A56K1vMVDacfvu6yhX2a9LXPgas5w+uyxvNvtfLG6rUqN117nR7BY8+jgTJA2ASgHDLyTnOQkv8pSQ5/q8r1HueJVTjx3Rk2k+oSrcRtF6IMgElE6phC91O8aJbfSvvWD5drDdTrB1njBdRefC3WpihsyFA86LEUL1BehWal5+ESEnMxcT24TTQjO1TWjOZWX5QfRXACbZmUpi5ssKYojpRS4V8gJpSFuWAZfi+7S7Q6Vz3cQ7QJ5G9GDyppvlJIYpyQ3fdfz8pWa/V5EV+/WmqhmN2RZk4yMjW+bqSvilU3cHKM87a/cMDn43N4s1zusz1lFI4JxRpaEKZk0K/sdbPpA38eq94qnHij04NiUTUtZUe/fya85NAt7Urw4h+kCQS0HJEhlK2dV0MSUR/Y5EXKCAtS4bl+cQeYIN2WilL23owmi2YZwEMuPFyxlwaa38PMhRvqQ6RF6hM7Hj2QfMP4WHYytOWqCMeBSygSCVW9SJUj22+yJl7MDUl75V3MBqQ5CK0s1Ka/MNqtaLsMZ0qxM80yagF2HITAZJp9gZqyM24gBNCMwwzzDfoL9aPbr0JY5rdLEULQhVCd5o5yAmnuUYxN/dgpgypmUs6GcK29OE7fYGGV18j2cNA/kwG5c/b0y+o58f3icFsB5nWjzR2negna/vSwGWjGam6zw5euDA+rBJ/s5o5oMwZ8D4zhzvbvmfLMhpURKiZxn1MOd5pzYT5Ml3guWST8GcefYotYUfeW2zKiOlEAW6vUfwmf+jSMxWfDAtjLBre/DfYPRh2uz9c2HN/MevVcC6FIZA4o+IbfGVJsE+tDRuPqbY/fk9vcc2cae8qKCHRz2+DFWSJNv7w0vo6IaAUeOd0yO3asP/USLbVDtpeb7O+/BkcmqTTpYPMoFXDyBNCc5yUlaqfO+FotvAvbMZIqLpTiKKmtfSqipQSDZw49UmtTxPnEdshvLWrIYzT4vBVbhLbbZUsGmOA6iSK0WqpjXXcTyewXs9CoO4OBMhXJ9fo056+o8Wox7VzJLThptZl+7T8u6UuOYyvFl+ftQvjLgEcRAmnBspTouii5JTwNIfLv91sd4WDZl6TNFH17hIqz7D83716UzVnV21UfbRun6+/r46gAwZkdS6IUQjZGmQS0Bd+lj2Vg0WRbWkOWC0oVt07annK7oAA6EruwocMAmOXEkef5KK3WevJnRWTCEkpvJWS9ewlo0u7PM8jeVhM9RrIprCflb9EtZ2q9U4yG4Hl3YOFp11eWapdw7B4vQou809lC5EYeKaPO59hM3MdRtz1xoNuiSPDjf8fL9Z4+QqtkfVufWg9eRtr1vuW1e/cLKCai5Jyl9qPWcKwbKjDNcX+24frnnsk984xE8vzakcvGnePIwz9FQjLwuGr47aaImeT1y3vJ+6Jc4jCs+tIPa3DTabF9ZFUfOBY1h1DToXVkX5Xy1Tb7/OsHu4qMPXnVBnZysokwk9jlxMyVjKQVhu9nw9NEFSWd+8vznXI97dikxjBPDfiJN2emOpjAlf0YpJeP7+R1Jvk1eMh6DwvgycP2zwLQ7ZBC8xCDpR1iqOlN+coqkuUPUqjwZuyPX10PRGOo82yhoJbHgctcfgNTOviSlE0CCAaOmmOqSic/jhwVQzz1UlZ5moauKLUURWCcbBqpXsSj4q+awjGfb+PZ+xSnRsshgyXMXHIVQXXIyLU0sDZX6jO6SN6m9Cu/0LN92jSznLRXEyuKfoZKAKiDtytaqQlw7n7CAOfbSVS6ExRArY/OBDKSTnOQk9y7VwP0swV+P8MmniGx48vGOT74DTz6DR/s1Ph6BoevZ9h1oJEskbHqyBK6nmaSWS2MJL1KyszmTJDPARHxO8qT2ydbNlNbsFq1VYeyz5aSB3bSY60FgiF1lEahAjtbWrhh2ZYGYLdx2mjNTYdaogzeynFuyJUbOanlz5gQpZfKcFxA8BGKIhJKpFawKDGs29gh8gaW2+DIS5o643yDp3Wgx+c9m8k8S8T/qkW+/276l3R7h8YHFVjSt/6wf5WwG8ZQyc8qkMZFDDZLzPYVJhdkNaWOqLpWRWrtZl2727lKWU1nb3hUEKTHNgEQrdx2wvDGhC0gSGE0H05AgdIgE+gB9gLnLJMlMk5LnkpSuFIAoJymsGalO7qIIWdJsYx91ClOh3+ZEcdSlLKQ5ut6R6z6isjiVHagJJQGgQEYIDtsWVpOUCk7ZwKOUhZRkSbRbR4WP5BLiVRkxdt6KPClosHxU+TAZpC5/Um1Dnyeyp2TwXQJSr6dl2lRSXHAba4I8KTonRD03zeQdrk0qOlGZainB3lk1uwnOjoY+NVKqR31dKlhRBH9J5ATUPCBRrMLTnGGcZsbRKPubUkq2AWpMbscDS12JabZ6lzYc368FeOTg/XCOb7e9a7wscZPv1rb60vVl1gR3zecSJlYzqDmglVVr0laCELvI0PeM88w4jcw5Nwuil8KrSWh9nqrGryPcISzbKbQQWZqUtDdMZ23rT6A7kDMQJ1OXBCOWWqxe+BJ+83CMyxaoWRq79MT3Qqt9j1LHSdNeEcuCX6mn1SNxaxW8FR/e/h2azpgdXGg3Kucua9PBz/VANRFeA0i0+9e7W7e9nQ6wbNPGJr+LHANZ3nSEd1sXawvrp/bZrOYPB5gKWFN2KMmU72r7YbJKbe7tuh0PqYee5CQnWcnh8JQ7vn9Pp8oANxleJni6g+6abkhstjBEc6e0ziwBohhAETSgIg5WRETmZZ3xMxjYYo33IKTqvLFkqQWr9mTCBu3Y9tl+T75/CKbjLOHn2dchA2yiT8qZBTsRAYlUo7Hom9nDTXNuDOxyXwrIpOu8NhaGteTcKI4xArU8b5nXy7ESZt992aT0ooGQzYn11qKQXiTyT2fCD0rw67tJBs8f9+GlXb+r08i/LeBZruwodccNhTRFOnye7X/v+YIO1dQWXFLXxYUlD41UGrorPCFTSo7VfhW8fLUrRCXbjq5OWpg1Yg7T1jppHFU2zvw+qWf/y2IOOa/SVBRuc+oY8KIFgDGvuJeltwOua1CVm708gxLKrav7srYRwMGTUkmtxLHX+PtjttbCCirHFF1r3UoJ4T+iLJVohHJvfJOc7F7U+LlZ1yBNmaQalo2WHDWe0iYfBWEOruAU+vTWcgJq7llKt538/VWG5xP8+AX0A7y6VqaJmoOheNhLeUIJNghzNgVgcoZHyc1yaGyVz20OGrhtCC4Kw/L74faH3wvmeSh4cTlGSX7XGpktI6cd/3fdo1bZWL5fJiGpSW/aUA+ftAolWAORQCcDQzhDN4k8zHTDBui4ON/ypO8Y55n9NBO7nhA6nzSNR6wZYoj0/UAmIHRcnF/w+PEj9ruRaZxvTYohTsT+hhjSKqmyphHVGyRufRHaIiKcn28Ics7nP4PdfkKzlyKXQM0S+4BszEq9Tr6EBjkKVtyHZGCSN1eZkFWHXryJpe+1i2Eu2zedumbeLzpHw3ov7WidC3fdljYksB2PpYJD8jYV6n3S7AkrcaVhGYt2PK3hwG/yBrZj8F1AmlvX0Oz/un3vnHO0sNJs73a+OJwn6v5+0SXEqeQOml3XwI87+WfLsfBABtBJTnKSe5cvgD4r+x9N8Cc7+GhCn8y8vFZ+/tISZUYWHczmKyH3gTx05DmSNVg1SBKjCrMGVJNvG9zoyrXiC8C+GEzZZujk8/WcDBAZKQZfMc4bLUyWtcFCLoQ+GmDTFSM4WhLTvnz0XBgkZUrKzayMWRnnbHlDDxXHbM79OUEKWsGaWQ0MKkzaro90Q2AYHNRIdfc6Z/fABQZ4fSmRDYRHIO92hBfjDVc3N3w8P+WS/p1PW/KmfvAVo65d6ka4r5HZKv/MOTOlzE3KxDFxdTUhYuXkr/cz45yZkzkmkzNxai4ibXTkr9LEon+U8KZWe1IDFkcySQ0ZFNVVWlnLeeSVy2pcckaZURIpZw+pUTRnstqxaqsb3U2Kmoz4eayDamWEZbymk/VjlOzATs7GQjF9oVSKXZ5DcEZ2ciUlEhAV8phM5+0tX2Xy6lWzWNhTmpQ0ZeY5MaeMJkVSYeyUe1bul7qt422nALqtrrTMF+UeK85IrrdiAXBbjpX9L/X/JX+NTTo5wZgz0xxhDmUiMsXJSnMatazkp/EcNUyQRxvzFZBaATEF6vSQ0FOOmneSE1DzQKRMTbskXM3wag8vd0YnmxO3DMXy3lo6CtVb8zrgo+xGOQZ32/2H32nzfrjPIYgDNDHW6wPowetd5VCXsPNKE19irasGdJ2Sqlpj6H4JHUEIITIMA4XRYl6xsGSg9xNb0mBL6hWD0sVIFyNTE1aztiYTyAyilSejFYouKkCBrCJ935FzD2ILh5Zra0OqHpDU52hYVgUHHoosfWyBIUyxNXCzxPu2AJ8/6KrQ1GM1Hb+wq46eUA72uWOzQ3nd0y3jrQVTVqFBR5pwOM7ueizt9sdAmnfD3A4Vg9vXcVcbdPXZvc+yKIOHIA0sv1V9rdGu2tLrq35wPJnUSU5ykl8EeRsk+B1EMZvjGti9SOw/m+nGCXRmPynXI15x5WD+EiAGJFpiVM2ysPp1CVGFZR3w6sSLDubriKhVxEnujZ+zVZwatQVqtOoEBdWvuS48dUtyZk2voa5tQdTYPlKMfiCplUTOzsrQJURrfXONDZELK6K0R1k5Y4KUSpnWlmPailDyhClLCv2Vl+T1IhEJPUvlxreTfZq4Gnc8yV+Oy9Ok47hXKUaw9S9n0jirZsrKNFlygAlhSnkBaHRtQ3xZvft17bK2NWCNFv1Ja8jVsqE97VCY70UzlwKROAjhIXjlOPh1V72kUo8XJaiEoVfH2dLK1Z8LM8dDlUrfL/dJGt2vyYWpziSLFZAoDuEyNrS2MauBS+Rc78MyeJbmmDO70VDWitBtvefWEG01tabJNczbr7XNQdFQjKsu2faV0ukru4al2lN5NYya8r70hfaWrw64XP99D6hfEDkBNQ9EfN3kT7+AH9/A734O9PDza+HVXpkdBYlSoAbr4Z0ntp09riZE89rInFYD/Bgww5G/6/gqRuiR8XQ4Rxweoz3P4XEPc9scO9ahCGU5l7qsF+9RCGExzKTdw9+bxCAJ87Bf7a747PmPbVbJmfj0CdsoXI97eHVdE+xdXFxwft7RRaVPQieRCOSUGMeR5Avhq1evPCt7QnMmzUsZbgV288zLcWJOh3elgDTlBRDozy6RLrEdzhj6wRhTms2bkCyx4SRvZkh8nXL4DLNC8jVT8lLF7z7bCE3fuYUWiINm4nHGeBlUX7Scdlr2L/23sFErWEPj5ag5anRtSHg37FhoyK1nZNlw+So3HwWWfD/+RVk38WsL4mOjtLmU53btMuqaafM20o77d4U13mZcFym+Fq96aUpoia8u5z7SAG3v0QEwlnz+KsmD63b+xxI29rDC805ykpPcj7zA8gD+n//mCnk58Q9+/8c8+wT+anfDn1zBPhkTZMDmlMteOO8Dl9stl9uBhBpYs+lNV5mszG/KXjkmFcaM+tpinxsfEKpYJUlV9v4+pYXBYoCNh0J5uwuZOIolMu67jhACc4zGMMzGBJijOIPBS3w7ULOfM7OqMS/QWkGUUNZDmyODJ3WVEAieDySI5ezQOaCzEAjELpIny81TqmQVu24PfA7c8BL4IZaf7zELv+L1K412St76gvaWosDnL1/xo08/4+n+MU959Nb7Fpm4hxw1rZFbAA/UWLQ5M2dhn5RhzuymGVHlhUQEYc5wtUtcjZaPMSXbR3Ny0ABaAOW92swVEVqMh+Cdu4IuLPp7DJEYIzFEOuOpALpUoBW1V8AqmJVcgwWxkGB9NDhjLZtWVxJOiwOsvVgZ7VGFpJ4cWAtomOkIdEQ6yfW7XEBQFcvh5JQ0Pw01taGafdCLja9Apivjw0uJR4Gu5EEU0+pWd70w5vy4y23MVa9cgr5uISGNQlRAMtegvGhGpOSoKYnLtSYWN4DYx6laygfmGdTjmYrC2YI15W+PZczud9ZSFWqkiXEsbfWdvMLdA/Q7P0g5ATUPSBR4NcE+w/Od8MUN7GZdVX1qCq0tyPE6WQs15vPI1PumyfiOKeCN+y7GJxwbffb7baPoXRaIYmQtMMzt85SQFNXl/hSw21pgoNY47fESW0zjyJySLYDMoKYwbLNS7ngod74oVXXRyczTxH63q+wM1fUEnJIyT5aobz2xYgrbgV0fQkfsBkKINfdJUeLK2nffAAg0/cTvbwtg3NWH7kPq/a2DqB1DvnihtT+1ba6GvS59q4yu9pkdXXCaIXi4z+0dDOWqgKrvexiiWLrgLdzp4IjH2vehIn3uhj6Ozwvt3yvdtLnWuwgw9bm0BxH1HFJSqcW37n+ZJu+YJ09ykpP8askM7BR+/FniP2xGfufFNY92V7wcE8/nhf9Rynj3IdDHQO+M2hAspCnE4OyAElQgKwM1O92mONtEtNkOS4aqMHt+PHs3Z10BalZzZZknS56YkAlaGDRiwIzrhQEW1oCzabJmt8X8uCWW9haz5nCFKaqmz6xlbSx6KYujo6xfBZRPFbY5453m37Z039uKwrgfub6+Ic3vzqhRFtv0w68UCyccqKyS7P0pqbOiUmYWYUwJUUteO82ZOeeGLbUwUxpiy/u9ptpldPnYdNZDIoX1V0HEy05LWACYMj5Yuph4tVVpFvMln1+TK6acr7LclypMJURoOUSrI2h96fITy3NogxbbZ2OhSqGcz9sYXPm0z3qr7at7RrErytcLqFLG1ptufU0SjfUR0TKzNGgwt4/VPpd651WplORjilrzKkyarA7WNOSZO3c8ATVvLSeg5sGJLeR/9uPA9ZXwxXVaJ17z+OQoRr1Ljo6XuE8plQIaA6UdZ2XcrHKlHG/GyoR5m8l8Ddbc/k1Zr69va8yXbbLUgCGfFJSgxTAUohqgsoSuiOeqsIk7RMv7c7bdcHn2mHG3Yz/ekFNgnkAixAgSIiH25Aw313t248h+mphSsqoOQ8/mfMt0c804jYTxhqSZrovmTapws11tvgqkzwO6L3fHGDSiEclnmLJyRsk8JPOMTBM6T2iaTTHTwqnIxKz0iVoy9L6k9KHEsuhbDjSjfxd2x8Mxg+vquVJ+QjDltpYjPKKYFibNYTl6xZ+0aqNgrE95HFXTW5/K8dsxe9gSaQfwajutscz1h3dcCItCKtjCcBSQ+hpEWKo+1cR2XjxkcUDZXan97Mh1Hc4lxSgotyIEy8/QdTCUCq8nOclJTuKiwB8/hxnl1/7FF7z6C+EvfrLnr4ApCn0Qtgl6hKHb0vUdicichaSWv0KnEvYQjKEiS+6XrFaVBl8vBAjFysHCi0Y3rMdkIS1jYdQ0RQ7ADDHAwrOB2b33SSCGQEfwnDRm3MZcPOt2oaIltGox+JVi4FHDMRaNSslkEolZYUoRzSA5kaaZeZqY5omcsidlvb2GbIAnwBmXwHcxvk3H2y5WgUinA6LvkhBYSZ9dM/+H5+Sr8R32W2QP3HB/DjJt/mVn1KQMY0rsBF7uE9OsSDaXYk6R6zGR5uzAn9aKXgbYWJ9bhai8pwX+ls3QPFZLlGtpBUr4WgiRbuiJ3ejlq00TqbqPGHurC8ZziUHJko19q9ZfE4qogVRoIhe2WquBVgaJ/aYejqRetz5pYM5K1LYICRXUChEQJeRkbKCuQ0JAOssVWr2BxQGUzfbIQBIhS7D8OOW+S6nitpxDdQGEOy26kdYIAmm1MamXVb9SMCVRsUq1eByC20FLtFPzwN1ROQgMIvQx0EVZAFF3etGxJFMtmBXUSCarQga7GaYSJFAHTKHf+FiPYtTEd8/r/SspJ6DmAYpi5biDCrv59u/VHhScDtnurKvtjgGh7eevw1a5y6PetuernHe5jnITwGJZj225TNUiOGU30seBOcyAT5YqhGIkumdKVZnmREqJnJNNsOLU32izlHk1MkEzQYXg1BKtU3T2OUqam599MYooPYUsWe9K9lmv0hKX+FxgxcB5CFLDdKri+ZDAmUNZ37nCRlsy7XO7o6pvIXf3bYDDuOPXn/mOH7X5eDCA5WDzNjxLq4LTHEZpQ5TXcc+vkXazd+lnb55PDuscrM8T6l9LCFrpUzS/wQFQ47f9sOr26jpkeQX3dN2ZY+gkJznJr6SowvM9/PQKfvyXOzbpmudXiVdAdr2gDwbUxNAhoUMJJJrcNLm1fasW4ECNhRaoLit+dnZNMeAKoya5MZ6cUZMOgJpaLkL+f/beJMaSZsvz+h0z93tvRI7f8F7VG6reU1VRj+4SUqMWW0ACljQSaolesGCJkOgFglXv2SBYskEN+0YtIVALaIaG7mIQjUQ1qiq6uqpeDW/6xvxyiIh7r7uZHRbHzNzc40ZmZGTkl5Hv3ZO6GXfwwdzdhnP+55z/yQkaAioJrw6S4nLqUrXp0hQJAGbPGf2E5iSMwumldapt7bo27cK21cxRIzmNJmVODq37LuEXD6wEvHSYc8od2Opl4syj9poakIaA7gfTq24gJcPjXUcyT5HcJUomEVUYokVz7YOVuNDoaspc7Y9FPdHpGd5iy5r/p5W+7TEVF2j2qvp2Lts9jziZlCGrEGW6pa3fQpSUCwK0B74qlWsaC0u9uoyjGmm04JDS5qELRf/WWpoeOez0qVEq5bizNk33vz6N2p5JGVSdzjk78AHR2e9T/sKVRROa21b0Lyc5JaxVvESmH68wPko0TSkbnw6SOpU7IBMXwOtRTf3CyhGouYOSFP7oSaR3Tv81zgAAIABJREFUifOxzFo2W5hZb3Z/RNhgeZZBoxnMtbxbgyXr5H25aly0C1A7odz2wlQmhdYeVl5errGMaa8GxHrynNFMKGUyS3HywNf5RMiLgIMIznd0J2t8GpHRk1aesRNEEzImXIiIRJyPphPgkG6F+B4nHSkp4ziSkgIOv1rRnZ7AGIghkbRkNNurfxxZf2uNPynwcfYiuQfAJnsWxnKVSAQXBOc6XNcTFcaYcsh0sTh551ZmOw8XdWtZnecuGMLT2pzLrSdTuFtrX/Li3y6+AIsstkxAbEctfdmX4191cg6ubTP1tPyNMv+9yCx6ibyYsuBfadpe7n2a8L4biV7x/ibSXq+2f8uYzo42K8epWUGbjAwy0LpsScvV0z5Tj7J20MtEtFn0DecXYM9RjnKUX3hR4LML2I2Jv/2/f87902f88WdbngEnumalHacbYeMd0m+InWd0PV4cO5QhWdpqAoIKEclgCzUyJqVIjWZAc0RNAXKUkCv5le3H7Pkv5bovtTl72l3m4IgB1OVkbWfOIydSVYfCVdbldUFSriiUARYtoZ1lrhUzkDuFXoU1jrU4+k7oMnjlkyN0VkZ5zJVgyvrkmbIgOrEy517Kr68JuLiO1K1R/3qmi/tA6b6jyL3XX8UU2AHn3Lys+BtJMeAzy6tm8ueQlGFUJEXO3MjoraqpE4ck2MfEEK3/pMpR05TxXqRB3YauJs3/ufG572YKgKAW5RMi2tkzdE7w3tF3ntWqp+ss6lWdWoWkwQBL55zp/523EtIYZ09xDFpVKCoh9hSlckX6UFWS8od8A2LmePEFMhEbS1aJCVSNzdA4dsCrZTf0Tuh95nESCLkBQwgMuepTAV21feWI+VQifLJiYpHa1GioEFJOVcxgUtKcApfquDUdazmmylMpI9/Nrlcw/ajvYNU5VquOvs8RT+Khc1RPn2MKgiu0Ulh7Quapebnin9vWieG0r1+A7RdSjkDNHRWL0Cy9fe5TduQFQybkOiGFJ/0KmRs4yyMf2u91J+6XLblX/VZa9SrcoYI72rw/sCyA3RNXyWrmGxTiVe87vPc471GRnPKRFRZVJIdWitDkxU6RNjGmPPFbKKd4ZyXqUp44iaB7SDtwI/QJXFHOSghjl63LktSZPQExEaO1SMQZWv2uXTkHpAXz2n5010CaAlwsvy/pTEVqv5JCCtz8JtOx6n6LwXPpHAduQONTuCRyxe+y3F5mfxZtb9pKA9K8gSKmi7+vK7K8UVccq7T/0peXwK7Ds8Wh+1aBGS7fo6Mc5ShHaUWxSpsvFH70xY6+DzzbJUaEjXiQjq4zkIKuA+9RV3QIR8RAFiPlnIJjYyoknfZCSwUYKqFnG3FTKvmYlzplgMda2DqgoKmMh6W+qDNjXp1aWoLM1+iSlF3WBSkXDpOfX22DGS+bTsUcCt/H5Cyb/pYIBGletRyzmLPNSbvFa0jRx15vL5SRyBbVm0Et77Q8d6Mk17VcqaBLEiHEhEcIKdmzSW7BTVP2m5SBmzpvXiWXwRCtb0sbKjmuSI1yFZHqLHMC6vK2bgJFVA18FFeIcZsTZqDThpUwRahMbaC9f02bpj6uzWbzylFSjpO/LLyGU9+e0hnLeFTIY95Kik/toypnE6hUfpsiguz26VR4aRmd04zbWfMAVCroUy++VMMtplEL1pDHdSnQUvK5ajQN88Hc6pnT5Uz96pLS2rwK4HOMqLmWHIGaOy9zk7dQXZVIkkK+pTFlRnib+MYazjod5ZCkxe8vA25uIstxeJPjZigDaKNpyCF9zWJvuU2NwSezg7ikdAIb6bnf30NWkbgeQYWL7d4Q/d6Tcklu1wm+E/YhMY4BJbDuFI2B3W5HVMH5DkkJ9nvCOJJiJGkwrD9cEPfPef75T/jiR3/C7vzF/ML8YGBOJR7ZgApPnz9he/Y5Me7pegOQSCmHFqfLHF3vSNp5uzWdC6AGt9ePbiqlB5SKFU7AFyCvAV2KslqI6coCaWG5Ux6xXbMtnJTFM5/j0LW2C+6lSNDcQlswJ6q6tvHt+J39Xku0Lk5Wdm2GhJK9vG8A1hzIwLyRtPcDrPlJM8GkNvehjnHmEU75/xkoU37X6ZlBVvycVuOgHMcL9M64G9qjHuUoRznKGG0NeDoOOB0Zk6D0aO9xncOfGDeNX63wncOfrNBeCFsYiAxRCEl5sbeKSvtonvRQAJjYRMgoFCbOAtzETOobs8e8fH/JeeCgrAyCErGoGZdzQFMGWlxTQ9scDCUdS6d1qTEs27OoTkBPwKpmpmz8+ryeCljEsutwvsP1HYVNtEzNXX7dBx4LbG4IlG8IPGTH6nVWJFU++53/jx/+nf+Df/qf/w345379Rud+l9h+BTeSWtnolEjiDAAUJUUlktiFZGTXKTKOyYpkZN2xAAUVuLn9Ri7+5qcvgnhwncOtPF3v6b3He4fzZEdk5mGpOpb1WQGkE7x4xqxs9ZlGQEer2KmZy6kAnNoqBEy6V1SrnGaRN41NpWJRZcmqSxVqFl9aUa4nk37XaP3CLVWASlUrZiS+gjWixp8TsJj5oQCyOT0oKTXCKWnDX4PpbCUKPCQYYmJME6A7u+06ORdTveo5kFXIygt1TEiaq1tBSDBmQNmegZjzOYPTlrbhs5KWqKfIx1cH2kEKOYobZhE31gg/fbkSK/i2vm7n+sWWI1DzHopesWJMCOw0Ob3yWK/4fF1524tYbdcVJ5LGmrvkLc83bEKNc6lt19G5DiNfUwtwcd2UnymTApNKibwcqphSArxFvCRFQyRF47PROEIcjAhYI2EYGC62pBDzxJ5fB+6+ooQ0MoYBFZ28R3nzpaF7F6Sauzrd+7vUvirCZMTPfljAmQ1YUwE/LZDK/PflEcqxZ9cv07hcynK/GXSg82OVcX8JXpjjkQfldZ7HpeHzGvvPAJT6nR487qvO0QIxbcoZTPdyicfab0qbY90CPuVVUseOcpSjvMdyaLJ6Q0mYsTGmlOf5nuwVg04Q7xHvDaTpHDiHOjMaI0JQZVRLORmTldeOahwzCZ0iHUoKSirkpoWEuHjiU/1slzYtOlIXhrIYycRDppPe0tJTlPW5pEhoc4gJBCrzqzTHufwq0s6i9f0CWFemr73dwhtziDoSHbEamNeV3bMzXnzyJeN2f8Mz3wEp+t8ydUbFjH4hp+MnJLp5ig3lWdwuM03TtPm7WXdq+kWOzrjMRaNT50Wm3wwZMaAn7y5uSi+aVbxtLkwW36lMDEv1VI0+V7YVJmdRiZip900N7HBMlaFKWy2TvikoIdM1F7A11ciYKcJpptMv2lVvoVKjag4/vXk9XUVn47KZNg6O53Ku6sgrSpxjekg1hK55vuVtO8Cb48/n5vrwqd6yI5nwteUI1LxHYv3eRnNBno1MWNDshUllgfwaLeVXGWDLbZfbS/P3Zc02A8vhmLxM84gdU3qSWGhkBW6ad2bwJUIaIIFnTec6+r5ns9qwXp+gagDLoIHdEOi95/5JjyblxcXAEAHnEelBOoZhZL8baq5o+OInxH7EffAhbvMQz2N8+BBJq9zOp1gNgUfAYyZIbcSx5fTRmm7zkP3uBVtZIWo5otWr8nU+3GvIErCweKIZKfw7k7IAWmUAqeuCZkW5SMr+RS2KASV9rr3dxfgvyrFWP0ELxCxBGuFymeh2WS2JcMJVUTcQ8iAp9THIIcO+kOK2CjnTmEqUkNnXew7l2bVr9nUBm0NgzSGpusCyvTS8M4u/Uwg3s5t5OJVJJ93AVzuLdS+sV0Lvr3tFRznKUX7RZCrt6xDxsFLYJMQrzgESQIQwCikKQxjZx8guwpiUfRwYYrSCBJoIuSBBjAFV46JRJXv3tTHE7fwFsJlDKJNtW43JvBaUyTCRCWXVoWIp8TVNXDVXwmyNw+bEeZ0oVWYm4CbPySI4b57xGEHFjmf8GpGkkZiiRQ4xMfWV8w0C6kFvmPIQkrIN0fg/rikKXIwbnu0eMMT30OSpYIOCJlRdTnmy6KyAMnrrC2Ow0vCjWrUwzbw0mh2Nheem1BBdGuy319xMOI1FsIRgURsRavpfjIkwRmJ+pRSJRLx4cA6HR8SjMaEpIXmceOfBC8EpURTvHOpzGEc0ZShl3iXy+PAlorqUkSxtK6CLaI4cE0L+LqZUdS2AmCx7Ye1y+p4XfAcnK6FzQt+D95aiJaIoRlsQAoxBGYNx9JTKW4V8u0bUpMmR20YFlepUIimX6866ap4/phSq/AAqGGsJj5Ne6ioiU+xHU490FnFsYI6gOARng1U9mbDTHmQOEdIw1T3JqjOuM+DqkiJssV5ADxtnps/mFjvez7G8h7PWUaA1XAremz8v/v48ijZvZqkOsy2k+duKoc8pRSNYVuOBceJwzqJsNFkRSvJkKtLRed949ctxbIKKMZFirBOVhj06nCP6Ifg1IiuE3iY9AB0werpHiHRYInnhqAmIMwOz0Z0uX/0deMBtX5sZ0rJQKu+AtJ4KkSu0RJm/FyT3r/ZAl3fRSgpz6KHIgXfLQ83fHYqcKR6K0h/KomphuHr1jVZuPCe8Cjh9mRx6/u2x5Ir3pRhsbXO5tAUA3d7uNn2tzAWXdISsiFRlovl8B4bSUY5ylDsoJc1cDBU3eyUTkxuFQza0aLhltKRilHSTlI2zYpglSpWk4qm/NE83wPqV83dea1t/etEGp6o7U22Zdk6dHUbLdg0/zQKk0eZYqpPuU79Xplc2gtvXbQECVnHTz0Ck62gZUXqC26ByMxd+KS78rtaKEiXRPsMpooYppSlpTZmJ1Xif87RMz/92rybDIovjNn1o2c+ba2ABSpa1XBpUUSTVKBppxqWt5yXCphkJl3TnuZ1g/bYAI1P/tPL0WVesDZr2nekxIngRfE6l9g7aOhWKTGXR0wS+1vbNxlC5QTplTVyl/zefmyPWTTLEU7eos0KJlIPLdlPT5vkXBTQqSE7zLBevqme13rd6rPLKE2ipjHOUV8oRqHmPpBjEpbR9+32RpMuB/G7lKuN0acC9rNU2eVp+9JASvUBfiOvyBFGNaVfiExYTUb55CRhj5GLYMYY9A3skbXBJSDFACIQYCTHgvLDxPWu/pncrHpys+fhRT7+CQQMxhFyGLkJS+lVH13f099b0j06R1SMSH8L6BO55tM+NDGr79MlKWbHDMlgjqoEvP/mM5199xtnT55ydnxNirIpRUiM+viry4uuUZtq9DIvdMQt4qvgzR0EmPhNzARSlsyrnMAsVty/qf1O4+ZXXaz+KXl3jQjFHUPtbLd2a/3a1vUzZc2VvyRwsgC/VjHQaN2VKeB3QrJy3XFKJGrotrpqr25OrWWmpuJBDclOjjOj8WdTxL808kPct96WdYzR7e9Nd6qBHOcpR3pGUlWwec6jJo+pwfYd6j/Y92nm6dcfKe1iBeCFmAt0xCkMUtmNiSIkh2iukaJUi2zLbjSF9MBLzwOfl9272haK5TLdYPA0Tp0b53ibHyNzRZ6XACyeORRWU9I+Izb8uwRiVIUR2w8h61ZHobP5Nps7EaPdB1KrVgK0bPdP820VwO5DxtR5QlUcfPOZXvv897j98wELjeImIRTd/+1eQ03uvfU4FngFfYFrau5K2UpOtXg7FImysAlAipFRBjAwDZgAnR9QUZqIGNLm1VbAuvnMrvdUTiw4mzln6kgPnHao+l2Is5YS8VXlyQpJIQqw0N4nYnkcwMMfpZU47IacuSuUUdBW40krSrRmY2ceAR+k1mv6RHXoJjwIrSXixpKdoPyCZPNMJrDvoO2G9cvTeoYEcOZdVfsm8MxT9PT9HbUifC6iiypgVlxKBU0p4ljkjlYi8BvAp97s813LfwaKHSqx7aYOBf86itcSyM5J6kmY+mRL+lsTCugO0yGtS47YZor1iCaVvX7VVJaKmoN1cb/ge5QjUvG9SPMLV6GisqXbCvcsmyE3bqRxaWJool2LZHRr8raHL5M0Spw0CXsIJzQPmnKk8RfnpO8dm5fCO7DlLFh5ZSM7IBn7X4foeXA/0tgD5FmafQlDJFaKEYExcMRCHgbAfGMeREAIlf7yANRNWfpTXlubGzfKbp2+53MOW7zXvX0AanVbFAw9m+bQObdYurNICj80+dT9ZqkLTvFBeDZb02qKLv1+7NPPZEgTTxV+Yfj/EjzSbM5p9K4/nW2j+UY5ylPdXihqhWGUZSjRNDsNzTnCldFHJJkDMiaJk4EPrHLMsx5vq36tBmuvIEqbQjFjb2tBGWmp7UXU9mgy+yUjUolBKdTFUMLzybKSU0zWoRn9bDrlsf/CaDitx15bVquP0dE3fFxippGbkkzp3efEE1Dt0ZVxCN5F3VvVpIUUT1OY+TtFQFr1hxvnETUPd9O3qjZNO8pr3uAFWNHtbCthUiXopzrO5M3DaRKZ0vaJAZe4mmN+3moVQ+63WcRo14VWbFKO2mq4pfFPsmdahZRWrzDFkaVaGbZSumJRmr9qa+q4+RZ22SBTVsklrqg/w6iepi0/zc5SI5Yazp9lPS1tLA8DuYZJLoXElrd4q2tnfkmZf9NT5Q3bzv0cF7NpyBGreMyl+kcn/byRyVxNNff3SGpVLronW7mp/v45UKioFjQaw4PNErArJSMc0YdORtMa4hSiuO1j3nvV6zclqhdN7uL7H9SucCjEGUooG1kQDaJJTgkusO8cHpz2brgc6QrhgGPegHsHhVfEI2t+HzTfAnwCOTjpWboUTbxcfAowD+ACuyeR+/hR2Wx6tPP2Hj9ienRPCWEOrQ7K89nQ3HvMlg76dnO9IE6toghiV6MwDVZWARoGGadF9yZEqUKKay0hqww3VdvysJ9R1Lt+UxSb1sDD18XZNBKYyiousLSPV0zroiiLj8kliozS/zjMpETXSfH7dZ3rVXTyAsVQFIaTEqLBPWelpFDGysVBsjnqMrJdZEYY8LzhTrgeyE0gtaskBKYmRJYRla45ylKP84sk0O07e+GI5Gg+Fd4p3yQyy3uF7T7H5I0YiPKoQkiOkkAGbiTQ45QIEJT2lBTJuMgO1TSzf1GBRKeWMMydfpj8tG1tqh22bVAkVeCkWmmsUM20m6Wxc5bLJaTSOHi+gKRDTyBgiu32uIgNcYPHC5RrH4qS/YcrDabflw81TNv4ZxvW3AdawHWA/wukpbJalZJSw+5T9iz8kjc9vdN7MrHEHAgCyzp/7VkgJEUfIJMJ9/iyaCEmJKeYqR5mrJq+RU3EMbnEJnPfoaV3PqYExMg4jIYzEFEiZqCglJYZIig0g4Zmcqxm8EDUkQFCcU7xYZGznBPFKSkKsFgalbJK1wglBlFFydaioWZ8m93UleKvM1qnigDEPEhsKVvpcxdGXUmcpglO8rOic4L3iO2Hlld4JqbO2e004TZYOmSawswK39bsCHFmsb8ijllQAkRyFV/bNtDzLiJpWWpjK+k6OwIIaYZUkERVChDHAdh/Z7wV2OXFRNXPSuPwyE2YIefsIFwEu8vfjaN8f7lv52QzAWf57lFfKEah5D2WqSLNcNsqwvBvGR+MIv/Tppi1sAZ/2aOZ5l5leUfJMa35pdoJ5J3jv8IgNAN+hzllkTC65ZwavedQKsWx5GaeNrSSaMmFXRqhNt+tAesjbpJRIMaCatZ8MQ8dxj+LxfkSIECMSI33XsWGNc44Srlwjado8lrvxmCc5oMXclSbOPAc1TGMOlJTvJ2LG6xytkdrxpo9Fo16WVj2068vOWqNstN3IvEZtqC/MnUnL8XLT5/G6+76uQlvbl5WOpJPvpW7TKCTt8et16vyvZqCqlLNMTIBZUrkz8+RRjnKUOyQieU6xSVWETB6c59bCQ1G212L0tAB7w3vRpqwsLKo3mYHqlC812buuXdNyINWxUNaLctJZZE3TnrIOlmWypf2YzsxsTdMakaN1rj2Uou0c+M4cDDe7ZodTXyGnunIknbwSByTEgWHcElO80Xnt3O9a5mwkU1RWidLK9LGqNaImNX2z1XXgzfreUuSK9+1JpzSsErle+kwBkbRWPptlUZUDLS+gbpALMpQqqano7xOgOelBZiuUKJlWna73pdwzN7enUjIy4mm82P+zqB6o0TUKuMZzaYVfpv2nVxvdU8bj4lmXdzr7dM2H2B5LZsdXtOKvtYR5VGJUy9cqNy4CUdA8qFOEMcKQy3oPyT7XMt/Rtml8iPNnlqSmUd1FU+auyRGoec9ECsoKs95dBsNd6PCHjDozuC4bR69TTUYwoL162ev0UrxfpiFoVqbmwJXiRFhJx6bvuXe6ymC7MiYYQ6BH6BC6ztGLVXoQHCerUzbrE34cPF88D3yDnnv3HhDCwDDs8OIQcXS1bGDOxVRAEs+ffsanP/sh+4sXmSRHYZ84e/pH7MLA44++web0Htx/APcfcHr2jNV+y8n6S/r+wgzOEHOkkEMk3gGl4bKUZ1gWvXdJvreUupjmz0lzJQH71bxTMWUFcgYP0EIDs5BQmjDP5jxaQBWsDHRRlBO2NrX3pbTHS1PRSecVs1r9pP7u5yUuS6RZlyO/U9lRpja9TvTasn/5PNrCLT/RcjtLGC0JNOb25wHvVHBp2q48Ei0NzffXO6xSi4LUSgswjPaKAtGZh3ffQbhh5ZGjHOUoP4eSJ70kjlScMeKN+MsZrwbO4b3gPWg0Y9g85TlyQMgVBidi4Sn1aVovboNjrjienEzGYSFgnQhXsc+IVcdRxbCKKc2i6GDzNmWjDsnfm5PKi5VFKAEPBSRA1XQzB10PBDPUVsAp0yr6aO341qOOh6c3C6nZXvwSX331Fznd/QqP+JCaRtF10GtG1C7Lk63nR897LsabTfoRixB61/pMKcdtoJ8t9CqZo0ZypSKxVLCoSsCqQlkURroEtr0NuEYX2kPRUyYCbtAEIQaGAeKYLNomBMIwomsQ8Tix6mXJqVUJc0CyFMMQIaZsASQhJIMnOzGARVCLsBelN+8pvbPIN5Umja0AOmLjo3POosOYQAYymGH8UuCTIlHtvjtLp0tZwZOE3X/niClZgSR1BE0MSRgihCTEKMSYnUixpF1l8LP4c93kcFJt2zPZNS3gc0hsXE/U4nYtWsc15GhAlJ3m6Jg9DDss0F8E6GBQuBD0Qohb2F7AkxewH+z98wG+3E0pUI93cPYM1ltY13MXzVcOTTi3K3fRQHoDOQI175HI4mVGy7vxC181Dg5N/3O0/TKcdNP2zw3k9syHW1cUpUvt1II32yIo2UVv6P4UYTOGxMUuEBN03sjOJFeN8pKjXzJcrjrlYY7jjt32jBhD9oA5VDyqEU1Dnogd+JUpgv0ekuK9x2fFo8mSPcrrijR/pPSVvPpN7sa6jf3agDP5fem5Jc+XZZdr+lZbuWnZv1uQ5tA4OdSDq1dCadxNi4PK5a/K3+uCoctzXj2arievOuesjUqujJCBGmeKT/lNMbClxWcVppT0BMnbZ1SJOZQ3RgvrLehXTJnc711r3Uc5ylFuV97U/pyxkturgh0ZBHFO8F4spUQLd8t8nr0cpTL//CbS6oDW5IbDg/K+/SzTNggqtn5N1GqtIVdWPzk497cBK+aQaK5atZ67XXNnj6R6F4rbYsY42p4pHzOaVZ8PerEfeXIW+GgsbodscovPHryQG9lRygkrsE0DL8KWUW9Ghx95x46n9r7TREPAFDGT+6Fjim5qtyvHeJvX8NJjS9Gipo1bjhj7aqnnTv1L2wPVX6UpSpRpIUTNYZM5a5xmEHO+63TOzH2jkEFH0/0L8Bmx72JmyI7JwkCC2hgKSXFJCFHxYiCSiAEyIWrlcKn8LTo5ppb8VTVyvvxftjlwV64rh/TP+pLJARawiJhhVMZRieOkxzIoulfiYN/vB0t1GgbYjrAN9irk47sRdntwAdaJzOKckSzUNtzbSd9af/w5MpaOQM17Jr4TOhFiMAumDLISZvoupV2Uy9J7nUF43fFU7TPN6aELp8xkv2oTaDMdfR8CX+mes+2OcL415SmB6zybzhNDYgiWH5oExt3AuB8YPtwReMAnT57ypz99xg+2e046eIGAOno6VnRIUIKMxOhIrHB0qDouzs94/vRz47NxAg8ewL2OB48+5H5S3OoEfE6VEgf3OmS9Y92v2DjFZ13GlbKgtdTQHZMCVBQPik7P7F3KHAyZvI3tBs5B1xXegbxYZ0Z+26+AOjJ5JFRrqdbUaHFCq9TlY2VFwKlNulPQtuSjp5kXp/5+ULmyxR/J3Ilktn0mD6sWZv/MafS6QE07Jst13OZYno5b5i9hTHC+N2Vl0+UwfjGTQfLtdzIpPEL2p2ZvchALuy0Vo8738OwCNit4cAorgbUTzs/g2QvjUjjKUY5yFKDOxGViEW+AjHdC54S+c6x6x8m9npN1z+5sIIyJmGBAGVQZSxRNNo8T5X2qvCBvuh7W9dW5PPe5mp7lndB7Sy3qnUOcQ7yv612pYDjBM5ORL9lwvjz7mwOrpJGOmiyiYYyQU5nITidSwOWUh8IRdtEc6fNt5J+Mid88fwF8BtwHHjJBIUWLHEAHGJ7A+BRWG+jX/O5Pf5v/8Xf+Fv/6Z9/me/wGsAX20D0GuQ/yFOIFuO+CfFTP/DP+gD/gH/Ccv/ba91vzWc5zC++E1AgtNRLrZOk/tjAW4mtbC0twuekgpd7Q62oE12pU83c6ftUB1So3eRyd93jn8XTG0+iFruvo1z2d87gcLZTUom1SCrY/WAGQDiQJJEfXJXwH4+gMLMmRNEk0gyxmDyhKcgpi0V/G30QdpxdxJCZwY1YwTLmoOtiqczgROhLOOS6cp+sjo1fWnWPbCSsnjCRWHlIGPF7slPO9shsTQ1BCisQU0WSFQmIpYJJpF1KyGSOkXHmt6NGZoNx+X97lq59IeQqC4jTh8vxkFD7WHwY1XsDn+8RPnuxxIfGtlcenkS7sCfuR3dmeNCTCudFpfvoMhj3sL+B5hM/jRLrtBe4J/PIzuL/Hyr31eyrb05NhrcftAAAgAElEQVQAf4CVUjvKK+UI1LxnskzhaAfpcon9GlrT/N9Ki323KPB8SpHF++ssG69cXvJBVbVG2RSuGlMylPOLHU+ePMtAjeL6Dt/3hBAJIZoRjjDsdgz7PYHEEEdenG3ZDpGzsy3PvnrG8xfnnJ1dEH1g9J2V2vbw5edf0q8/xXVnJDzD9gIncPbsKZ9/8lPQF6juEXWIOtTtsCibDG+lPSnu+erJVzx/+owQQr20N3UYfp1yVwBtvfTmkEzAQHE/1WpbixVRSi7RwaNMf4s3YrmglufYHqEAD+VVCfcX+5QvNbczpoYzDyujKjn9h8aD87r9RRd/l+9vU8q9SVgkTcyv1iuLZgAqA14F1CpzXkl3LMdxWM70foR9Jrgje8WHUdmP5j06ylGOcpSZtPOONNEoLoPC3uG7TEiPVYVpU5rsczaGCz8Nk3kMtzSXNotNrYhTUm3rd5ayVE76cv3JZlPNEcSaQxarzqENz0jhGpl+rIS10pxk6ajZJngyKl89/YqvfvTHpPSQlB5RkoJTBpAcA449YXhCGJ4g6xOk3/Cjz3/Cn599wSef/pgvfvjHJNmS2BHiB8T0gF6+wnGOcwGRCytZHUeev/icLc94+vlP+OJP/gTpThDXQ9wiaaTre5x3JN+h4ukzqDCGc168eMZ+t70TqU9F5pBIhl9yRE1x/9Rnd4P1/8aN0nkPuwQoNA2R3FFLP7VoNVcLB5D18wJKlZ1rPy/WRY6QLnZR5azLx4V2DE7tal1QqsoY1cp8R0WSVp2qQJtRLJXdY1w1YQx0qnR7xxAdKRjRcN9Heq8QIAZlCHbsEkEzj6KZSIULj1UZYym3r60eV51us9C26z6eHCmnWm9UnbM0p/clA5S2Q+Jil+hSohsD4z6y3SbSoMSdOcHOB0sp341wpnCWphTB5wGe7S0FigvgJEFfYJxoRMVPsTz0o7xSjkDNeybaLPeTZ2QCQd7VQlLW68a+OmioL6vJwDXAl8W2sACrVEkpIM7hnJuUhAasKfuOwO/+wZ/y5z/+nKDGudEhdDirRODAi6eTjqCJqJG+93SdYxwGImv+z//79/jdf/xnlPSXlfN0zvI0RJS/93f/LxwrM6BRtmdP+P53vsv/9t/+V/zOb/890m6HhkC/6nCdw2kPOHYpEDTB4NGovNh+wm4446effgGIGbFRCap3olQkTIpYBRnk9Z7n1yVVWSiLouToGqhRV1MZxsP7t1KiOTTOgZCyBpbfW8AlNa/2yIpW8vs5GDM/3wzcyQfZKrM9u2CxNF1WL0pU03LMvUqWAeLX3femz72E+ZZoufPBPIEt52RmfiKJKU1Fd5PsIUNA/BRM/2IHT89h08OjNbUa1KcX8PnWQnePcpSjHAUa7F2ntUxE6xpRigp4Z3wWRbcoEX4lJiSiRBqy1Bb0583WxhlxvMtvcpa1y4ZpkhxBIznixrmMF6Vq8FmaUm6TGPBfooDA5cibxuAumFOuIJRU0Fwcahwh7pXhPBF3diNEba5eJjV9ovBcYfV3/jvSP/6HPD/3fPWiozDhnGORK49QHqL8WCM/1cBaHCsR/vCzJ/w5wH/2X/KHf/vv8swlzkX5JHmeJMd3JPIRiRO+Sc9DdpyxZ8c/+tmfk0Lgf/5P/mO+/M//Jv23/wW6h9+n++Tv48//jG//2q/y4KPHPP/wu4ybB/z67oQHI/zxT/8HPn36J/z493/C9g2f3RtJdVJMaWlmYBu3SUgJnKPThODwySoYlZQby+Bv+qJOesvtX9PcAqi6i5ruGlOy6qpd6R1GGyDiZ+XVC+ajOWXAsuBK351sgEJwOylbCTThsAgzsjMraU6DTmI8trkvjykSUQZsvzRahTbJ7TI9zMa9zQEGFHXriPOOzfmezjlOvKd3jg+fjKy94yTPGduLyD4kwpjQaGBmShZJE1NCUySRcmSNVsLrkHOz6/OiADYL8Os1ZJqPptTGorOPCYaQuNiPPHXKj76ELgb6/Z5xiFxcRHQP6QW8OIPPn8JO4TzBM+BzzL7aYylRLsDpT+AHvwd8N8CvbbEZoYOvRvgj4MvXvIBfUDkCNe+jXOGp/zrFBvnhM5cJ4PK3L/v9+uedfc6GWjGQlyLNhk6Ulbcc1phSzk2V6UD54J33rH2PpFC9Rkmh7x3rrsOLMo4jzjucd+YJ8K7m2lqIYqyKj7XNk2IkjAMpRDQkxCc8QmJE1Mr/BVUj0IgHUHOd3t41Kc+0fbZ3BbBZ9osC4B2iepnvOK/W1PLWzIFGI68rpbmvk5V2qR8f+v46TpMDP2S9/ZKS/CYRTl/XczQwbSITPjSuVYwUuCgvUxU8+91l22VMFk2zH+1VEJxdjrI5RtQc5ShHWcqlebJGqDDx1XizEut8VY2nEkkzOc/e7rq9WHlLg+riNrnzGuaL2d7Lhum0ojHX8uyX2U75Oo1otZAnX62b9g5OHXQocYyEQYnj5M4IsHgJI30F309PT/hGJ2zWHWEciNIRpGNUi5YOuPxKOEYCI0HHXJ0TYgjEccSFgIwRGS3cMoWRFIK9YiTFiAZI+TeniQ7uhoNslg/dGPE5rc7RRG0wB2feWpM4cPhm7W4dRWV81B+Yb1e3Kf2t/tK60iZepmk7zZxJ5RZd6tj5aAWomiJbUk0/Uku1iloLoGSkNpNyF0AUvAtIckQMEIpe6Z1jpcLoHXiPA4ZYImpylE5GoAqZd7ERpqeVddQC7qb5Pa6HeG3J47nlvGmU9VI4LURlCIndmOhCYtxHxiFxMWBAzR62A+yipQSW1wWW6rjHImxeRNhtsciZjwoLzmivIcLzvPFRXilHoOZ9k2yFRDG0PPLmOc83lVZFODxvyKVPL4u2ue75Dh9RLzWkjbhR4NFa+ZUHyvf/wvf4zb/0z3J6esrp6T1EE5ISIdrr48cf8NGjR3z67CmfP3+G6zb4bs3ZT/9fzj/7Jzz8zl/k/jd+LUfcKI/vP+D+5oTtfmQcE7/6g7/ER9/+PtARE/yn/9F/yD/4n/57/t1/89/iX/xX/mVgBdIZOzygvAD2KA9Ae9AtmvY8+dHv8/yLn/E3/4u/xe/9/h8aN4poNUTvSr50iahxYIthNrDvgh0sWCRGAS+u2kZQY/MXRV3bjeaKaV3gyq958S4pRkWWC2qt4tSExWj7PYfH0DLy7GqZ/1pGRqtYvglQ8zZFmXi2QrTwYhGXS3nmXpQvqPJQxmlfgcphI9kh58RCc59uYdXD6TpzOAg8vxCe74R9uCtQ4lGOcpS7JObhzxwvzpszpnO43uE3HW7TkZwQRBk1MarW9EvjGVvWvjF509mmXWNSrlpYYRpnlS19Mn6yWf5rXpEEc1jVtCxyClP+OGEAmfOkWfeSSrOd1DUuZZBkR2SLRcWMmNE2MJe/fAp/5TH81r/xr/KX/+2/TkxrYlrP7k9JXfVUs25az37/fyX+0T/k5Lf+Autf/zUiv0Tiwwrs9JTqiVaxU0mMceQ/+Bt/gx/+N/81/9K/9+/zV/+1v4J09xHfI+GvQRrpVz3Oe5LvUedYJYdT+E74q5y9eMb/8u/8db76+7/Np5hR+rXKUgkoCocDTUJyGEeNozLki7PIDeNDybwnM7DmLa59OmlJpn8JHdCJ0Il9Lr8bf44SibgUcdFClBU/KW2ppKVL9sqY59SJ0HdCFIdLlmaUd69RbkkhxYTmSGMvSieKz+xREUWTlZmM0e5VGCMpKRaqM5W8L1flcwq1SwnxjhgC3gnaW0TNmkTwnq7zeBwXQRgyqXABZDJSNJUk14RGJZFIMfOPptntnBz0C13zNR8O03PPc0I+XkiwH5WzbeJEHPsT2A9KukgMg3JxDmEP40XWrbDMpXMsouYrbLxvsbG7AX7jKRY582hkgl+jhTv/GANrjvJKOQI175lU0vws79rUaM8ts/evMAtL9MENznPpN5WSpoqFRTY3qfKMKB2wccrD0w0ff/wBpyen3Du9j5BwREJIjFH5+PEjPnr0mNBD7BTXn+C7DauLE052jvsPN5w8vG+lD1V5eP8e9zan9DsDar7xy9/kW9/7LrAiRlhtNuyHwMm9Ez78+EO69SO830AmfFW+AtkDD4AVwjkpbnG7n+HiOX1XCzfPb94dlGI0t1E171x0atNh5bnRUgu6IpMyUZbW2fZZrurls+VwcROuenqvDPC5Yr+rpPXA3FWQpkir9Fu+/fR9+2YOoOlsf1GmAiHOeG6GCEOwCBonihcYgjDm0phHOcpRjjKTmTepuPwnvhfnHd47A2Ugk8vrfPuvQTSvU9Nfs2H1khXXeu25tIhUh0KZY3PEaSEW1uW2zT4KkLRGc7SFLZYOAgEeevjVFXzrow/56Nd+gMgKK+B7jfumCuMPgT+F3/wW/MZ3ge8C3zxwpklCCJw+eggiPPrWt/il3/zBq8+VZcM38C9esD65x80Kir8FUWb6xfI3Gl14Cb59fQrZvIVLvbDdpOVnKZ1KM4DQWhJttE3bxaUAOHBJJ1jqastX3SIDI9pWnSzHk4Xule+x98ZmGURQdQRnYFAs6V3J6m9NVZ8mp/p8HE0RNa2eU9q11IGu+HgNyQ2vCmFzcJ2uPUQl5hfJ2h+iMubqmUOyaOUF9FKJhAtIuwPCCJxhOfqj2hY6orsEW9Bj+vm15AjUvGfSiYWPdnm8FQ6Hu1Rqtq2po83/9tv0fU0VueZxlwpCytD5RC5GdccYAaACKc/dgsREP0a8elx/ym507J5tWffCeuXqHP/s/IKLYeT59oLtOOCj4Fzknh/44KGySwMXzy5InSM5eBKe8cy/sLaoEMJzbHZaYb6dRI/w/Gd/xs/+8P/h4+/9M9x//C3KciF4wKPssVjALeiWJ59/wic/+hH73YBgTPge4x0pzoa78NibmhL5mzsF08ylUUYnpXVi9i+dyzw9zsJh0XqvJ/WjWeGQusi1SsDs6rVVDl4dSXMTaaOHWoBmGVlzV6XyPETzakn2UCsGujixqJiZv7p474r+kXW9lImEXwxwsoezbck1V57tlIsRxnjwSR3lKEf5RZQatSe1HLdz5gRyYJWfvOPeuuP+Sc+LzjO6iHMJcQXUcCQkk+K+PdHmvxLRmhBEBRWHkYa6PHdmICX/LdZiKaXblg9ul8F2zSsAelLjzghRCQGcJnyKaNAawVIiYtaYBpTrvLAGPnbw7R4e+R64x2sDW987gY8fm0+L51jCxQ5b+coKeLuQimJRA8+5G1HMcz1EEIyb0YmzBTOvj6olzUWrnlFBubcpZWku7VWdSHQTxnEUEzFEwhiJMRGDfY4hkor1Lw6HZAClJd7NpAI1cidrZDGXlFadO7SdoHl8OrUx4hC8Qqcw4knicpWoRMIZkW+NOCtncLPr8wEk80QlZ/ODIKToUBz7YHrxGK2C005hl5Sg84ifNpotqZKSzKKflo9LD3x3fWn0XpnAM02Zv2dU9mNivw/st4JLAUciJTUuqkCNlm9L1ut0d8hwDDtg3GGVnT4DPgFCgHBB+mkkfQHpgqNcQ45AzXsmEyjxvhgXVxO03vBwkwaRneozrpHFLDYtSlporHJqhbdJMSZS5ydTXJQQAzElxjAa+VfOje0d3OuEgLJNiRitNKKh5hFJmUA2pZyKkRuj0QjD4kAcd1aWz1SoCdVXAUbQCGmPDnv2ux0X2x2xxHNWT8It39NblArW3yFpvRNXb7GAmRpA55U3Wy+/v7TLS4bsbT7LFiI7NCzuar85KEXZ0rmv9OA1tD9UINcMkJisAhRi4yZEC/NNWrgYjnKUoxxlISWqMlt9tYqSd3jvrZqSMHMUzV0UJRrndpt1aG6ffy7GWOGUmbg4KhdGw5NRtImZAd/oVro8dj5O0hLFWCI3ZJbyvIwB9kDvYbOCzuewx9e9OesVuPuwWjMBMgUaKovAoZIVNxHT0SCQuDsFHC6L1k5QKgW5phLBnK/l7WgBAhPRdfmmqfhh/aPow4vn0uhMLZgk2ZnWVn6apehZONvsIIc14wa4keJUPORSa9olReWWBtyyk2q5PLXy50nNQVvGRKm+FbUUlGgqPmVrovLV1GtuxuHiKg4BNbchcsVJyrN0zoo0OKPbwTuQWnBlSk8sf0uxh/IdMJWBKuQ1o8KQSLtEGM2hdpRXyxGoec9EM1peSc7vomV8YLq8NBXqfIp8lbRTalEGXFEk8sQd1ThAXM5fNYb2Kb6g9477q46TztOLI7pEIOGdo5OexEjSyDDsGcdIiBFJEU9P5+Bx3/GNkxWjdzx3qSLQvuusssIQICpxyBmaCmgghAuG4Rldp5yervCdoESk0m/1oB4JX0I6h+d7uNjz9MkzPn92zm7YE9NITCmzxd9uJMabSqoLTFHIDufnvwvR5at4TGcNtBKrEas/oEj2bATzOGTdoii91nfl8hp/1QORRqfIDXkbz69co5T25C9bFe0ui1VpMKWg6zNxX54oulJ6Wy2FCYrRMAG1M/7MohNGS3+6CFMVrP0IQxQrAX7n78pRjnKUr0NKfGuNqCkhfPklzuO8p+vXdKsN4jvEjTnyRnG+JTiV2VHL51tzsTX2rpCXpZKClSwGNKSIEzOcin5ENXSbCIUK2EwQS0k7acWVtTCDMymXE1ISISljgL1lNFS45AKz06yuJaw3cO8jWJ3e8Lr7b0L3A5BHWETOSWldPkthtSlsNW8iijFxPGFkYOQO8O7lUKeWdNYAgmT8KqI4BCepAgbTdlMp6Le76uW+3gIRWmwXwAnO9YjvbLHPobQ1bU6FhCeGCDGgIaLRIlGCCikVFNHZIx4L1DH1u1IRSzM/kxMQLzg1lEEjRniQGyeq+NzeOXYwRe5URqg88DTlSKVkYydqxKkypoAXJYojifE3jWp8QSFZdaeEkRdrqiVHGhSKGXg1b83tPZ/yrgx1J9B74f5aeHji+eBBj4/gtsreQZ8gDLDLc0q6sKiZAsoELGrOYyNzBXSJKQ/qBZY3tU3sz+H5aITER3m1HIGa90xKnnRL9FYmjsLT/07atfj8snbINbZ5pSwAqur9UUULerNwByVVxpTMEySOQqdeFi9B8N4Rc8iiqKIx4VZC33nWbsNm/YAurJrZXKryY6lYKc+zQlkyyvG9d1aSO5MIk/ao7kAMItC4RcMWlyKqkVqysCxwelsT9dsVvTVt9JZlhmDk98u2tkjizONR0m30leBoBUb0wHeL13XkdW5lC9bcxUdwlVhf1+zJyd4bFp7iBpQpV6d5o5ltVG5AA+KW8VMUVwPK7m5k2lGOcpQbyC0M6CkQoIbL5HnJUqG6ztP15pwpUTYVuM/A8qHl4TZBmhqpUE7ZzIvFbNWctDsZ69M+1XjWsq39m/TK+RXI4u9ERjzpTyVKoDghWmdEMZ6HaBVjxpsYaAJwAvKB/WUNdKBtZM4VN//GYgtJARG+lvXiuu2fPc8GuKE4NRpk7muSq5qusy0ObKXz5buCiaVEdf1uIrSeKwcNxtFiHjo/86GTthXdSnWxNl2sAKFSxnceI1MCdnkQdtI6FvK2LYBUo9rywNV2/9m7hf74FjyfU8vsilx2iK07YdMLp2uHDw4XBY+SAoySU74CDD24lLl9MLzM5yOeYmTC3RKzbvpsW1H9KC+XI1DzHomIhYz2ncO7iI/TwH6Xhtlivrzyu9s4T32VEV4CZmSalDUxhdoY4gLAi/3Ij54OfGMX6aSzyllExhCQFDndrLm3uc/oBkI38PT8jPPdwOO158PH9/ngo+/zwaMPWP+wg590dJ3Di6AxkmIgSSJ1SnJl1RlBdtiE3HNyco+HDx/i+95+3j2F8Ql0xp+xPz8jjiPr1Slyv+Pho0d8/HxHv1pTytkUrOEuGZgFUS/PJjGvbnQXRKrlbguLc8yiaswTWj6lvEe+CJmUn4JCLXHAqgQX7KdZkIoUJaJVYJe36E1BzKpcNMr764BC70KErCCJ0HXKqoPTlbW48P6U7cq9bb3Dgg2PphgUgoE9FbNpQV2ZF/o8ylGOcpQyw7QRNeLMMeado/eOVd9x/8GGR49P2Kx7tt7jJeRKcxbBa2u0efFVWr4MS7QUffP5uAVeigEpSJ4brbxMSg4VQV1JSSqpTzJLX0rNmqRYRMZ81ZDmfyoWIklN2VKrrJPGkRQPR4sWTtGfPIF/tIXf+hS+daMr/yXgI8xFP1BNQs2LsXQgha/mTUWAxyiegRWmyb1bKWt7jazRZEBVA5ollBFHUCWlmEGDCZB7a+BN6Y/lc+tUqUzCHlUhJa3tyiFaiCqFYUd1SjQrfTgmIcQMDGiCaEpcSSlSBeIE2NQ+nYxDkGR9VqJVeXWieKeElBCxamgiBi44INAcN1+HIKhYxYISOd6RLIoJyRFnyXhmiPlapN7/VEPSyrMo1bia1C4O9LMlMPUGj2gCZCedygmsHJyuHB8+6Pnmo45f/ag3UGa7Yj9EzjeBOEA4gfMT+NLBfg8XF3Ae4Vk0zuDnCqcCDwU+6DDE5gQbqsVYWIH0eage5ZVyBGreMxHncH7Kx9X6/92RQ61p55ml8XrT41cMpgFp7IcC0liMUQkLjgpDyiku4iwySez+xZxnLbiak14w5xCVMUSGMbIbAzF10zbZAnRA7ztwptRBAjWGcwMuBLzHdz3OGZyhYYRhgORQB+N+YBxH+v4E7ywdJ2harKl3m1PjltaTW5flPbM+0Sg9zZYTL83cjzjrYhReocvj7/LzsbFa8LuX3Z9XgZ6Hj38ZzChj4y73laWI5NSnJqKmkKRXhYIMozXlE8owLOmQ5WZ4b0qXdzl1Suu0sMinP8pRjnKUSaR5V1KZxBlpa7fq6VarHFFT2Rhmc23RS9o5pvjhp//fTKapbr7qltiYiXum8GyUqIu8jc5fJUxB86RaAwhmx29XmHy+xsJsHRCtwZltaHYRng1vkvJQUpwCNuPPGDGaNt6GCNRCD3dH72pwg0n/L+/rMyzPe3oC2uzz9toks/ZdBQgVHav2vzT1w5SSVV0q3DRJK/fLrO+W667fMYGP5VprtsEULePEinKUgizJGYDqREjOUMjobBxIoT+CqvObaliIxnMlOBG8yMTdUoHbCUgt3XIJxCxh0fa7qz7flrQ6psMCAU7W3l4bj4sRweGd3dTkbRx7hbiDvYe1wiZBF2CbYBXhxMMDB/dOmICakqWYBLdR+pXpaEd5tRyBmvdMXN8hqw51Yy2D+K75SpbGeTupCPOJSA9sc92212MIqGfOIybLLWWusKgSBYbOQedZ9x0aE1EiGq0s9xCV3ZAYUmIgMYiA6/jqbMuzi8jzn/4Jn8mPeOZ+A9x36413CCKOBw8fc3p6j/vr3maxdAHjBfsUOMeR+jVufWrxguwI5yPxRcCvV4hzPH+2ZTucs+7v4VYdX14846dnn7MNe0oJzkJaeFeUBpjaUij8nN6eqnRbUoO7Wwu9VMEA8/BkEM9ojRaKp05HKZ+Xqps2209v7Fxlom3W/akvl6106uNFjy2+wQLNXhV+Xe53x6TKgvkc71JfOSRKvi8O7q3gpIdN10TB5PtS0qIUrAw3U7SMNJNMyqDNwzXcX8GDFdzvc8USYJOP3+UKUnf/Dh3lKEd5+5IBGWQiCM6TjniP6zp837N5+JCTxw/xqzUiW5JARFExj7nmib0eTRqwhxxpcwsGcxvFWQhKHeQgl0TIlfIQc/YE1TrXWuhNylxsWo1gsNLctYEyGf5VzyyTcSdoFAjT/iVitJTqLetY0VOfCvzYwa/fWEEoHDTCxIjBqz0gPyeiBeRTraXYVa2ABSKMOON106mCkFVcagC1NDktblcOP4AWQCl0umBRWHEIxNGqPw1DYBhGHB6HQ3J5JIv6EmLM1aJSytwwMVeRMkAmJCN8DrmktGYDyWFjZOUdDrjnHdJ5VgmiKnuXKzE5RRPsnRCTMqSUiYIzZOccghAkV1jD5gfvHc4Jm87Rece9rmPlPfc6IxwfYySi5l2qDL65w4pUJbBoIiVJ4NDtvK1H1h6njGsHnKwcv/zxmm8+6nj48QoXgf0Ag/D4zDg4GZTdBXzznpXfHnewS3AWYB9gt4d1Dycb+Ob3ge8C38ZC6HYeLjpOfjmw+aXIyQB8eUsX9XMsR6DmfZNm0W9lici+a7mEndzWcZv5bXai/DcD4liJvtbrU6rAWGZpDYgBQKryFDVVo91Qe7FywTGCj3TOVobym+b9RYQYI+M4Mu53hO0ZXvcQRxzGT6NJiSHguoDISIyREBVHh7ieFIU4KqpGr65J0Ji9CkwekhpFepRrydwzUTgF9ODv9QudfilemZcNMD3wfvmMLvsiL/92IKPv0uuq8x46R/v5JvNDO8zephQF1En2RuXUtIqZqQForkR5Fw6bPIYLZ7g0QE3v7dXliJqE/d47e/njIDrKUX4+5NYmKJn0C6kf81xjUTXSeVzfgeTUonz6yfCV+bEW3xac46WI+2tcT6sCTVwlUzRxu2HZZkqVoXwzpfPmAxaODZmdhTrptk6jkihcnApp2nomQc3rPt74eR1Y4VrW2pSszF8pU/M+ybXWo0XEChOmpvlDSW0zYKRNL5qe922L5P8ucaloabPUDYUcjbK4DntraXqkSQVTLYDUdKETMJiBnDSNwXYcTIefiL69EzonlrCkiZhLdicvNp7VqkISXeb5sS7mGtsrQVY6Ju6qkibpnNkTNYKHtsceyIJounD9qp0fGvVTuD2Arb0/5b13sO4d/crh1w6XCpm64IOzsZUBrXQCqYPgYZUjasYAux5WPWw2cHofYxbeYErYykHyuNME9yKuP9SyoyzlCNS8b+IE9VI98XeJkKkd+IeMVF18bg3Tax2/aAHTnD87opeSdtQs3I2MyXE+OvYJ1CkxJEJI9OLpug4HjCEQUzRvU66wJCREEt/44JR/6sNv8HtP1nz+bMR5j3izAGMSPn3yJSGMnN5fswoX3F9v6L3jJCqPNividsvZF19x+oHQb04Yhj37MZTjqmMAACAASURBVNGfPsbfu4988Tm6OwdOEf+AjT7gND7AqUfVWOPHGBBs4L7rSCqYK6FtpMhd6ZNAVSoFyyP2WasoYcL2SXCoeaMO3NVyfQXwg+k62z3K+2mhtXPUTJ3FQFiCbiUSdNmCq4DY9ntpPpcrK/0kHNj3KrkKSPo6+lopsuI7C03unSlhITIj/asgTZ5ICkDrmnnxZJVfa9is83UpnK3g0Qo2nq/pqo5ylKPceVlUexLn7H2eOEoVSel7WK+I3uWoZjOeRTHeFszgK+uNRdFMjh1xDenuTaefCqbY+6Q5IkCzSSrgc5RFxMIQNeeD1MgZinE7AToFrDm4AEEuTy64nAYmzqPi6SSyEmEtWuNcPFaRt5V9MC6L3XjD667VnEbm8aV51Ts7h+0eHt6H05OrDvLeSoXOyvPXCZ9CSpSoAWExOxxTBTWWgOLXJALqBfEOL57Oe1Zdh3c2PlJeyJ3zdK6zKLByvWLXljIjthQ0KFKdqWNUQrJIGrDxmNBqZNTUP/EgSuc9fR6AQQWnOerICaqJ3lskTYg2ZlJuSMzMdrY9Vj1KBC38kd7n9MgM3Gh2DOX2VNMl/1A5g6pymX/P74s+nfL9mOrXlptzw4eRd2wBo6Kzdl64vxFOTsVyl/CgvZVy60IutZ3oO+gUi1oKdp/UzCbGZPpbvwL3LSya5lEH9LDqoO/gI4XvjPDFTa7hF0+OQM17Jstc2UNe9pfJ2/KQv4m+cV25KqpAaL+8QsPISL0mQKVG5igJxGXj3fJjNZn5PXnsTfEZg7LdRULQhgHeInfES606VebdEAIx2JE616FJCSGQQkBDYAgjuziyGQckc9V4VmgSUlQ617HuV4j498qcvEttbYGLq34v0oJOV/UiPXCw1pNz8MD5qGVRPARaLjY92ODr3te3Aaq87Wc6jbUmqkZK6D4117uCNEwgTc1QkHkkUlciZ3LJ75KS13cWaXOMqDnKUY4C1HmkfKg6hUijc4hFV+ZJqK37Iotjtd/UylA1ZIXJiy63YDjX49jxCydfa5QXo6xGVGj7W2OsZQfGLBp54XqrqWGz623v38ubGhtnx2tfJ0N+eSyiYXHSgvRfpzGvIaUP3CndpmlMC1cVTWMiD6Z+8/WLTA1rXlpIAudb5ftcxtfUb2dgU2qiaTIQVSubNWdudTUFaIi9vRMiglMDcgoIpOpqaqDP6WVSeHdUMuiTdX2ZyLpNR5GqsxS9ZR5lt7BeDnaoJtp70YUPbHorj3SykEqJbvCdQJ9vVnIQm88KsrKXEX5SIwZcefXgVyAn5FrdDugwBuEe1iPct2NcAqCOckmOQM17Jm1IH1DJq8pEdZUsp4m3Wb7+VUvkTcEi0cnYmg3sCrooMSbz+jSwvG0vliI65hvVOTQqyQfECZ04xhAYQsR5xTmbsDa9ENWR8Pzosy2f/9mXjA8+YHXP2yIREqt1T9/1dB5iXPHogw94+NHHfPnVU56/OGNIntXqPglhF0ZO9gNJPc8unvP07CkxRk67E2TnOPEfEbfKLm65d++Ujz76kL5boSnzyosjkb6+UpHXkPIsDqhNd0Ym0joHqfAXTXdwngrl8l9qRYESOjNXfJuFeLm2lm1ftTYXJTd/GWXet5fA5OJ0s20KQCjMqx+V471ulNPX1b/atnujkGLjp++cy94lsfezfdX0dXFTmHGRjRfurYXTXll3ineWT356odzbKKtej0rCUY7yiy4zxMFlAHhy5hTARlVIKpOzR4XEREw6EYfaPtPuFjlg1puagaeNgXlTg6usRXl/I1PPSlJup8rkkS9kwrarrQhJm+o7NGDNchWS+s50sKpvNpEBGPvIyNVrzZuXuf4E9Gcgv8q8blS+2/dOLZJG3BX7v74IZij12LW907Wi8AypmN6fFHEWPYPLUQ4C1s+09rMCeHydrS86h2Z0TkPmmImRGCLOW5yJOUYxIFMLQbSvxMIhJkKAFDOPYFCjI0hKUJ0ih3IUfDGGNCoaU67ensFFB11nkTCpADTJIp41dhPfj/2AJisCAZCSywCjgTUpD3ZxBmyuPfROWOWXFeOa7noBdaSdJ2ba3TQR1PGo01h6q08v61a9F07WjtWJg/tZowoOnLcqWzEZNVSfmztiBdhyAwtQQ4+lO31ME1FTmIVP4UGC757R/4EVgyrw61EOyxGoed9E54P/9eSmEMlNRRpD8ZbOmY3ftqpCebv0/RTvQjsZqpjxHaNNwlDKAntiSojEyVufT6ApEVPkYhfYnwe6TTKS1+IlU/ICo3nC83i3AudIAiIOl0tGKsZ348NI1/WcbE7oXY9TV0Oiy/YWgp3VoIUydZcMy/kdvnuy9DylAw3W8l/+rYAw5e8SLGlBmtpVtDnO5aNXKU7V6zzDV43Y5X1vgZ3lPte1B95F32rsoQm4KfaBMkt7KtvXuWCxXxGXeWjaSlKdn967K4kijnKUo/xCiLR/p6K1MptNsnZRARtqJZqkMksrufIUhRetAfoPtmP5+boTtsw/Lt9Xng8afaw4L9Da/urUOnCK8m66M1PUjqK5bPI8HXjZfIVaBOP6Ukz+BPtz2D+FzcewHjATpiUUvloTucs6yk1EF/e/PsNGUZye/1yPbHXJtyONzj07iVYbBiy1UDKIUn8u10Mh5tZZ/5vpw83FzHildHn+6QgFPK29vIlys4+Sq0dOpe1LlJpBF5YgL5mfqrS/VH9yTRTeK1TBgzLbpNUrb1X00juhBKSJBaV1YpOeChWNFmwodvmlzV+wKlkFqFnl1ybvW3fqMioE4u+2g/euyBGoec8kRUiZfDtCHcQvG8jFMw3zQfm2JulXGe43XSRq2xvDuZLW5YnbCVZ5gTb6xiy95CB0wvD/s/d+P5Yk2X3f50Rk3nurqn/NDGd2udzlUuaSMiVBsERZsCwYht9swPCLXizBBvzGF/8VfvG/IPDFBvxkGzYMU7BsyIAeJEEmTcoETEE0hSV3Z5e7OzszPf2jftybGRHHDyciMjLrVndXT3V31cw9M7fr/siMjPwREed8z/eckyIX51tiivjoWa/XnJycgLsgpIS4DA2LtbvdDpxfBMLTLfF54P17kYckRBzee1KM7GJgFwMhRVLyONnQr9esT3r6lce7DNSocD5cMKSBD9//iF/qvo1sHYzKZ6c/ZQzn9McfslrfY3SBcz0lxB0phpozp8Tg3gYTc9+99kyes9si0xiwa+hztv6apA6rAICC0/JUyewhLcrEXqp6uzK/YAAUBkdRVItSW4EGnY/X0szSC7nU4y+BFM1+ac/vt0mEXGRVpldlyKjpCUuQRsigK3nbFqgRMyeclxoSveqgc0rvEyunuZqWYFmJbhv0eZCDHOSNS55PXMknI66W4BaXGazqqsFWctbElBjHSFAYVRiiJdGsvhqZ5nOn2aBTNVaNWF4MO7zOlo0vI1WnEqsAJShJE05cXmPsc1l7arWgzOpp29m3tkxxJIpqyglfnSVeRQhJGIMlYV1mjmklYOkurp+iZgucw89+Cj/5PvzKGr61At4D7r9075xt47XWQMX6fRs8/pr/1byqJ4vcR0kkLB+RQyrrqYE8GpBGm7beRCfnV7mu205xziz5FEFWjn69QmSEHG5nIGiyIhoVzbOntq7zWbGsulI+gPfOHJvBro84C2WyT5pzNDV6Qn6kU5LmmTXdoAPUdxMQpjDkMCtLdDwpJXmKoHOOzlmyYi+CS2pALlOlNVGdQraBJhV585pL8Se9mfvVAFhNfkDXi8WNay6z2QscORizZhkxEGY5WRQkdo1RZe5hw3Pd5S/XtqP3sDKg5nXH5ddJDkDNHZOCeBZ51cFrC/Cbxc+v0/rrgjTopXWgIuszYFzVSjEXK1htku9cLtid3T8OIYSR8+05IYSc2T2fUTK6pSar8uTFkm05MaWHjPwLtmJUgz9GwjiiKeVD21LhxOHFFo6ocYJaiqcuK1mUhIZ1Kp+m87sgt7+fVyEpsn+M6HKr+XdLAKVUzqj3bN+2+1CXvR+v41qd40V3UWbGAXNwpnwu118ke2NakKYRURud5Z7YdnMl9XpX9yAHOcitki87cIWaaN484462PPfkLZ/mEJcjAdpGLIwizRuefZJsLl7Zjf2/veYEVY3ywpopQIte3mbP3tOBdf79jIGjWecp+UOY1r2ruuwx+87v+e3Fkl0/fYBNtBifa2hFXT7u6wZE3eb1oVQ+KnpHykpyau99ZaDYDVqGbN+o1BL1zbpNOyIK2Ff6t9y/blUVqCnD39RG+6cVlxf8VHT52fOZ2yloSaOCa35jgYp2QVvfm8t2QSp0/qyjz4ob2DfGupFynZvRXS/Ci6GJS6f1xpS6uS2p5JC54i1MNN6z4kljyhZegJlykRJzioy0n5v6V/liiWQn3Zs4ta+QHICaOyVC3wvrldA5e8ADL67+067zSpNJ/I307nI/ijdn2R/2bPsqYnHYTOEowhQG1fwtKHSUaa5YO+VBl9hIgDTSYSjy0+eP+dEnT3n/+BHvHz3KVRw8hETYDpAE7z2P7nkebDy7HsYhMupgrJyuQ5zHSv95dudnPPviUwYGNCZiCAxxpMdz4jZsGRg1cHbxjC2eNUc49YwpEUqiY684WeHYAD2KR3W089aXTfNvV3Txvp2337XM1gkK7GU+x5RK5ScT36xHRbEVpvXokrR4Tz7hQn2NqsRmr+V4K7/sY7otP9s5mKoS92y773xHwxnxepnFc9vE+mZerYASG49Tu1EBZspJ1s8soDfNII1yKf9CAoLAkHW0HptDbxP76yAHOcibF5dRXucMnHHO48ThfGbUeId0js5bvrouv9Zrx+bIvvcCKh6VZMZnSpMnqTBxslISKUZzmpXjvTEbrNqu5qRKuepTQVBa9mi1Si8deAHS1AVpkcA1Wq6QKXeb1vl1qQ+0cgR8hDnarye5duE3gQ8d+JIE49VMmPtYuozNtY97OyVl3aRc4JAspNvnVV5zpaQY03RPmnuYP96wtCtto/NrdpAUrFAVJZCiIw6eFKI5NbHckOIArzm80MaLI4fWpYp+2HkUpUaABJKgEwcdaIQhRmPAqF2PwvSOzaPvizPHSbUvDGTKVZ6kcLGNja1ieljxIk0gbi5jLTaP7FBibkyyXl+7nwrQeelyXbovNbF3Oe/Xvj+5mT2ao4IxBIGRZHOVK+XIM7Mml+nGC/TKrLxbSzkr51MUq1mHc96bjNB0Ys0sq8MdZC4HoOZOSS4p7dMLY6Jvi7woOOd1+97oDTa5ZmXC/sp8u1YPaeamEk9aym57Z7TFwqZx2KQqTQPi4N6m4xdkzeOVZ8xGovps7KdIv1rRdT2ghHFAXawddU7wXUfXrfBEoyGrEomMacCpgxjxQSGMMA6WJNV3Na9OcYXcxvte5ubWA3EbpTo4uPx8lnDc+nlxEtcdc/Va5GdV63HnuGJ5c922Z8fYc+Tlb9cxCL4soHpd2Qs+NahVZdLIcqOmAZmfowE1ewyHCnS+cRL4QQ5ykDchX3LItl5wl9d6V/WCiUnThlxqNnyH3cj2fCCEREwpV6EpIEwGSvLfYokt7bFXXsVf8zwrcFKM5NrW3NCtuWrqdWkVpbYT7aQ7LWTlnMu03O6+r+tLx8mriwdZgT8B/x65lAyv6osvTJ476bm/6mJlxUKRfJ+nalqFZVOS+U7PXvss3Jy07S+bbp99VVl8N638Vuq6MH9kAnUm1beG6qXmszHnG21H83MsGfSJZRw2HWJ6FouuX2u4NXrElK2p2AZqoVbKlExYpuffPue5Q6d2yo8TuLbQPfdc06XT7qZknx443Z/lxnL5c40zVy5NC+2rSE6+Ptda36HcQXXvANTcIVGFi+cD8WJkGF+v8k+br+Imn9cXtdUO0dar/zrHn2dMZ1ISmoPMkpM1x0pqScsFR991oAPowIOjNQ82G7zrQCx/iROHz0m1vBgz4dvvH/GXH73PH50f8XwnrGSFCAzbHeMwcPzwIQ8ePsJ7x8X2AnpQiXROWPWezdExR/fuI1tlDLBLkaiR3e4JGiLdaWQVwD19ShrOcV7pTtaoRGIciDGS0u3NqDFXRG+HVA9KUVrKKjytqjYWnBJLDHOzritNHiQa479Z7HMzdYOyMItQH3jBPDVtNabC1NF8zFZakKVVaFoGyf5rbGq5z4pLYdwVpeS2smoKsDRVbpJ63vU8hbmmvU/byBeu3LekTEkuNRsJCl2+EO+8isdBDnKQtyptCJPllpiYkMaKtfW/IeoDyhAi293Ip3/+BeHZjqfPt5wNkTGMxBByhUAaQ7LJD0KiVuDJ60e7xtzEHJRobSermFM84iV5quY1aOrLfsiorkulb8WYbXSrAtKQBKcTy/tluuXrrUHHGB/ne8AHwIfAQ17V6CspM64fcnULRakVvUCRrNsgmnP/SAUxYgPS3DyD5iqR8ljUdXhUCEmIyRJwzwx6J4j3qAgBkJhZ87nzqhBVcl5Oq/Y0xlztifzM57YKXmPXR8ErabSKUJRQxjz4rCBI7vFMn9P63vjX0owBWGVwLIjM7KmCYZSJo4/gE5whxKLflBw1i2s1+yafg9QPNL26CVGmIP+p1UuOSM0nolBjoUoiG3lRHAcNCsaCstzcqEXy8YNcLQeg5o6JSjFpvkQbvPmBURb55Xc31XaRaZK8fE2miShPSjVW1/7aGuEtgaC4vLIkXEkKlqHyznucdDw+j/zJxSlP+kc4L5nyKKxWPV3X0XmPpkQIgWEY6Z23WPZ8TPEd0q9xg7eEuykxpmgeuaREl1CnPN+eI9ETVfHeI+K4ubSDb05ub8+KJ6N5RpYPaKPJ7D2PK05Os5IwY5Q3YM1Vh7pKZsoxE0BTPssV281OY7bnl5O3fU/LbZi8gHaW+2Lq986C7XbZYCrGkzSgzQz8uc0P7kEOcpAblZmN6MjATPuyhKzF4qr5avL+UdWYNKqTMdUi+WpJQ/MXFWxeAjM3ooctwGmWa1HTC/t/QohqvxbXZta8LNauOi8byCNq+UNahlLbtX3nd33t1e6WqjJ88pzhs5+w/uYRq19475VbLGk17gSj5iWKc42sq/e8MLikBD7NcwjVJq7IB/Om1j+d3pj+VYCXKQRrGhumA2tMJOdIksvLz+lAxQCaddqeabEqrlqqj+X2LoEBC8cPkoGerGksxo622lvZvoKWBoGWjVvdrJ7TYuBXpt01ruEyJ+eXl/3ZSsszE3N4IzGfSTmH8l1b1g144ekoe5AYaS7SZQLOQS7LAah5x1K8Nq+0cAtI55He4S4CPlq+hcW8daW8C6OrPbebaC/lN5XlkEHeeRin1tw0Is0OZdKPkRRGeu9ZdSu8tyTkwzAyDoG+8xyvPM86QBInR0dsNvf5Z7//J/y/f/T/8Zt//Zjf+I2PIFdReO+9Rxyd3GN7vmV7fsazJAxD4H13j6P1yqpChYG03iD3H9ENz2GEYQycjSObKHj1nK93jOvA08fP2e0i66MjNv0akRVIl7F9m2bfZGLom5Db0ruZUg72KCStIFsBVbQsQpnS0QIDFmbcXnGdgzM6fw/UvJKlWmHpy1XXpXzfbrtc+Nvvl3lnXP1OZx7LloTyqvfkXS2aOQsBQSHmeyHOvC8pc7pdnlScu3xdqjTKVsJua1Cq0hZ0Cp0uFcpuL9PoIAc5yE1JhV8EOmf5aVadp3cekQ7BWxi0c1iiix4nydIyeKH3gnZCXAmdF3oRyA4aGQKSIpIygDFLmGo5bJJOuTLKnHNjYA3TnCcASXGiFv6xUMJmBvylhemyxqYUppASohKdOZqcJrzYcQpDyTFVG1yeW76qrw2YfPp//gGf/M4/5Nv/+d/hG//xh7xKQJPw5ZMJ3zrJ97zoGynfs2TUmgmsaJxGby43TdOn5gCSkQmniseeEdTAmDAmojcgJYVIDJE4BOJFtBuFTHToZEVYi/pu9dgwwocqKUIs+XiSMW6SQgiJFJWg2U6qBUBy+1Lf5bc2ECLL1MUtWCM1+Xgnpm/F/FPJsxvy+acMGqFGQKkV1ppzeTlY2oBuXB5PryPzNuxoqubEClHZBWUMCXaj0ZuEnIMm68hj/rwPrGn/lsloNhGUiUogM6e+zHzwdZEDUPMORRavveDjQgooY4ZZE1f5ou2/AlINV507sCCvC3J5+wLclnR+IoLzhVqYQD2KyxP4FJ9aeJTeeVZ9j3NWxjmqleNEHJ1zhBRIKbLbDeC2pBCQZBahaqz3xongxUp74gTpPK7r6d2OFULnfKYO23AUF/LM5Sip4zXdztw0rbTAwm0Syf/O9Ig9qEkFS2egi1zatJynyDwMSpcb6aW3s2Nd1dflmreUfYe56trf1OL+1qRcywaALp6pAo5dYjDtaaIoNwV/iw1HuY3dv1sX5yAHOchNSNUHxBJadm5iyBaGjc0/Wo04UclhsbYeO3IpXpZg+KIyUmOM1VDO/MWl6efLLqIzXUjNpaPNj5fabRapPWJTZlM5j8w+kGlFree6YCvu85Rb5U3wr2mZ9T5wtNrS+WV5mZfsh2NDh7+NvvvX7NLiVs9/mBn2eklHeWPL3r6GG4XdAD9pwpEntllZl0uxkPIwzZ6jov+LZKdNSfmrtY0yzkCavN45lLoN9Wvz2jCp/paCpik0oc2B6zldfjvpj9r4hUuuoDngYju8/C68vXC1BltRA9DqA5aam1O+b/+WV2z+SvN9yG20OyStlXAOKtjL5QDUvGOpHp78Grm6AokoRg0UpUPq5BPLxPB2unwt2YOhvLa0bAKfv5gYBXb2Tqy0tZcpx4XgTAHroT8C14GmQBJPiJjnKRpE7LyV9RsQ1psjPhDH+aic7bas1x0fffCAR/eOOFn3PD/fcbG94NnzC8YofPjoEQ9OTuhIdC7gJOFE2XQdJ6sVXQf4iF9vcCQe7gaOQyK5NSqetTqSBsLxhr5XYhwZUiCGQAwjSRNJbicDYJ9Sdhuex5ZRYiEwgs/K60QplUmBLp8bcIDsuSFNAGCJ+QclFiovjU4idgynrZLOlReljZUuy9nyPGi+lz2/Fdl3iNd5Zt7W/ZsUHKZcPVKuw/z6uennCZDJ79vkfSpWCSNEGCPsUp43BIZo37cs3oMc5CBfD2l1iE6EVedYd45ezFNv5f+cVe3ThFOHqEBySHSkXSSuAp0Ia+9ZM+lsZqckIil70HP4RcrVkoqxtg8zuSGZWBZQqhyW87a/04rROgmhmUsXbUpmMTiRmlDVO9A8l4aoxAApTm3tg1H6Du6tYdW/3rl98G3Hw9/s6L6x4jo1nO6x4gOOWX8VTZ72hiWZfd/6IvY6lN6IZJYGJUGwjbaEs1w1auyNmIpeYk9pxHLUlKpLmpUWEQEvSAnFKUCN2LhMEolEErkkuXlHrR8RvCoaIynnlEklAXjpX21zUvVEIYhk0CXbFo3TrmiL1a9brjEQc+W3wqCxHInm6F1GDmmdDOY3azke39wt0/pvCRHXkPtVLkZImYbcgDUtOFMYNkP+HDBWlAe2wBmw0ebH0SaNC0jjhO8c5Gr5Cs5ad0taoKZ83ueBrz9mK6QYIyWRVo1X/brIEtHWgoTv23b6toapZLS7/pcneHHO5p+U0JQnZxGcKA+PVvziwyNO1jZsvPP0vmeMyRKbqRJSsiRmObFer4pHcHWaB5xDvKfrrD7dWYyMUemy985KhSopNaXsuKz03E65rbyaoqAYQlMYG+XZqV6oS1pqRnSadbQqOmIfCnjTOmCWZ/+iBXffeJ/7el5+79uFXRbf3747MZe2vzNDRiZHTK1qAZbHrnFht+deL0C5X2lS+Aqwm1I5jtyJ63OQgxzkZkShou3lP49hM53kctteLKzCgZbau1kz0xyGGUMyx0lNUT+9yCEnU7LeeXjDC+ebNzAZmUlaPAGXDfVLTFCu0jf2gQD5X23ZDC9Y69Tm72Xy/FcV994D+l/5FvLg3t4eXiU9Gzbcw99mk+e6Ct5COZiDMs3T9rYWuMZbNztkGQ+pAJdlbEwl7UuexlpBLWnV1yaAKT9riVxUY/ovj866XXHKQQOMZL2iMmqLbkd76YUS+LTUy6bvyjWd9ir6ZMp2RUnRAAtGTenLC+7LJUDt0vj8cnKVfZnVWbNlSgUO1Yw0Na+gOUa9+W4fs6a8nyUTztJsd9C/Xi63eNb6eohrXoI903B5MFUARwVNQkAtk7gonU45F74OD31OGG6gOe36kJF8nRSIiaJrdMs4QoopV4AxlFezuoUXxDtiVOJuJMWIJAtNWq083/voAb9x/AE8OiIB637DqlvR9YltMLbL6bhl49a4lWMjcC8KK3V46aaOdx2wpt90OByffLHl6TbyHo4NgmjxMXiEDuc8rvO4kPCNenSbRGli42+RlH6lEjeMLZquPiuSFQnbWFOJ954aaOmyxcgnj71KuAGQ7C0il3HMvsxWES6MKKeXCxgpzDP+8/Lx3AI6ytRmqb4xcje8FeV8Y/a0aZqcg4V5K9qM+cRUPhdqOFTdzuV7lRUCCaDOXiHBmHKuvIMc5CBfMykQjcPh6BBWwJEXOieEXlGnDN6h4nDeI95m9KjCsEvsfGSXRgYGM8tUkZSQFM3wjIkYzTiNmU2jae5Nf2tS0ftGYWqcCq+wY/2keUFtw7psxUyVMVDXXPasPQmkeN5fQ+Tf/HXk11bQ/fJ19uKED3iPX2bFyesd+JZLqWhovJKi27z9BU5hHlGkxmAJ0ZjhaQyEOBJSR0wC0aMhWWWmkEjBtPEKpOTzcLHoXZZ7ZhgSKjEfq6QYsNcuwpBAck6amJRRLe9dTEoQy1nj1BjPFVzS6QUTQ7eGQjXnODvffJ4x6yMxN1CYQVFL3pwJgNKyd2Fj57E0AW3zvzctV9qXSdntYNwpbPMJBIWdwk5sgA9qZby2zIGYAt6MTMmoBuAif9dKZNp/0ZeDXJYDUPMOpTWwykAp5QMv5WAq22qy+M4GSb4rD3ldQL5sj1u406fHPwAAIABJREFUu7FopeEhFqO3pSV6B+te8L7Eny8NYjHjOnsACtCjyRgzEgIpBFwISIhWHcJ1OB9wySo0ed+hCcYQGHxg6wdCStn4zx1KEU0DZ9stw9mW3RCIo7JVK7meeo9zDuewpIZLbuUtltsHITFf/NpFsnmIJP92qax7czr1eWpX7Dxw2+epLZFqOy7a4QWAlk7MkbJtO0dcdW43Ke/iDs6MF50Uz6IIzen8eTOdgzV1uwa0KcDPVHpdakJPvZVP60EOcpAbF5l/0GYWtnnDvvFi4T3qjFUTazlqK3edYmIYRnYehhAYYiJk/SAVQKayaEoi4WaueccTzlIHu5yBbb71PkBnWj+LoalzA7fZbtmy97BeQfcadbIFYBjg4hyOg1XrfiVRlIHEOVpdoXdYykVtL/R0q5ixNRb37608frOHpbCttAkFtNc8qS6LB6aAilp1tgKYlOIhmttvNy9vJe8kBYgpIU75txrFIJMN1UYl1K2r4mVvUnPMkh00lU+5IZWJqbs/sqkZMy+4fDcP0kzu7GXTbX9tLsOQJyR7F7OHMUrDrOEy22aZu6aERqX2KPlPBD0wal5JDkDNO5acT4kOA2nW+XNxOsyYMgoxhmxspLnRwu194K8yMq8LMu09x+WiVd7nyVmKJ0lh0wvv3xOO1iUBGRgkb9aeqOCSoCmSUkTEIb0jbke2u5GLZ8/ZPX7K/e6U49UFR0fHdH1vyD2R9XrDpt+QQuTs9ILH6tiuek7TwJBKNR4hhTPi9il//vPPefzFM5ysgY7PQiCpcv/RI/r1GtVggE3OND/Rqa9x0d6R3JYuKovnpiwiMKO0CBPLxe3ZrwICLVjTADUNJjMLZXQyp966dh+a/S7rG7PmW9B2yaJpz6H9e1vuwcskr9mVaZsUYsTCD2SKnYYG0C6KTwZpfFOpSxVwBs6MyTxs5xF8tPCGOOb4+LtANTrIQQ5yo5KEnN/PQpmC2jzhFHqElROcF868EJyxFFQhhMCA8vzZKePO8/xsx/l25HyIDGNkOypDgJC0lrgteWmWYUFvUpbtl0jRpQ4mSFV/5nEWyjw2OP9SjMsk81CV2BQ70BdXfdps4P1HcHT8mif305/Dx/8Kvvct+M6r7xb4jIEfkDh7zQPfTmn1Grtdk/W/SHvy5vWBFpRsAIo2ob9VZ1J0hLQqbFmDRQTBac6GJI4Kd0h+kpyY89JbURASpGQ0GntcYwZcFQ+oTHkGnQPEgpK8GiCbSq2OXMGowrdt3ym/QZS5Y6f8Vp5zp1nf02lIFWeRMbEngMYwzibUqwU7y983cM9KZsX2m3zriCmno0lKDApDVnYNsW6AGWcT5lbnoU6lElQL0uyAc4zi1PLscvUojYc8ga8iB6DmHUuZSFsGTTH2igHTSi3v2EwizZ9bLTfpv66TzUKZuMxWkOoxi0nYBVM0Ou/wYtRno0zaqlY87VNlA4ghsN3uSDHmJHrGnIlRuRhGkiqdd6CJlJMSC+a7GYuSpsqwvWB7+gzdBVscnMN1PWTFpxr0GcGflVe8Czf4lspV4J4lcis+xSZfiUyDqjJsFs9Y21a5P3ucO3tvm2i5x9P2i8d4vn3T1quU2l4qZ3fh0akAWaPcSaMELcHJMi+WazIDXWQKlyqhaimHStWEfnq5zYMc5CBfUSkTrJSPliQ0qRB1ypcZ1ELJnRqoO2dMJmIStkMkqXIxRLZDZDcmhpAIKRJTnBtg3A7e3rQe6P4fFoyjuSKVF6zCVs60xYnFmMuQp8m43ccIBxgDnO3s7/V6PwAjyDDF9V5DBhIXJEsQ/RWTegu1ud7XAWnehGdHqE9+Wb9tvDUMm6TEaDr3lGw3F3sQafytDvEJFakgqxPJj2Rmv+vs0BMjpvmh+GyFkgyhUdjK2wKy7PEiaxkGudkS01DC6ks3kmQmT2bv1oTEOl2Ll+ketcIlbyJ0/bKGWqqxOaHm9dPiHSsnpQ2zpn0F256SSDwbtJJflY3QQtWqFpL+1RuOb0QOQM07lgLGFAZNKfVYPCCFVQP2RczZysdigLyDPr+OvMgQfR2p4SVlQssTq7S/keeXrJadD/D5M88uOI77DhGPE0fnoBNlUGWICS+K9zbZCrA9v+DJk6fcGwP3+hXH6yOOj+7x9Oyc0+fn3D854nizJsSR83FLt17h+55BLQLeqgIFnn/+CZ/9+E/pVhuc7+nWJ9x/4Dg7HRiHmK1wOxHVRIyJEFIFj2673P4eTqJ5MSlLRwDG/NC4At3kz7KH1VHezMOpctvL4+wBeVoGTcuQWcq+MXPV9vmUDLhovrsuWPMyoOmmxQE9mSWTZMoDlLQ6djVbS1KAS5fHeZ4DC6jqXNlBa8hTiGaIVSZu/nzIUXOQg3z9REVJYtnpBKsCB3AezKDyUXGi9D30zhzLUczQHGPkyemAc8Lj5zt225Hzi4EQI7vRwpxjsDw1SctrMuLe5ZRzWYeQ+u/CnKVdBXSxtU2vxn5QVVKMpJjQaPPtwJSqYulofH4BP9rCr12b2PIU+Bw2F/BoBevrxU49R/kMZXvdw94RKfeo1VFeCaR5A32w91oBzqKXtKHISXNFxtHYGzEa83WbOR8WYWCpCHyneJHq9BSXgZrMkomhYXXJvD8l142q2n64XKBAq/4AWP66JFmX0ELInzxqDchSWTdozXkIBkokkYl5Ey2EKBQm/Ewba3PTLO5RsWXekCK2T6d0ApsOVgIanTmSh4y0JLXBrM5oSCPT4A4Ya0apeQWjGHvZl0pQA4aCLxk12ei97Fw/yFIOQM0tkWVOigLUtDlr0DIRXx3feFvlpgbipUGdPyTNiUazYayqiEw0P8W86mOePEUcqsoYR/xK8J2nS4q6RBgjuxDofc+qE8QZFdOo0q2FbSFJYwicbxtVJyoqkRCTla1Mpth0qw3rowdGod4FQrDfxHlcB3EwKNuUOwNripbXJrQ9yPVFsbWhYmFweQyV8mlMG0n+XEFBZj/Xdq4SoVGe9nhp2PPVi8bKixa1qxxj8oLfbovMnLdK9VI1X0+/Z69P4/CujWiZH2lYNUrO62W/FBr2bb0WBznIQd6QlDlfJiMrogRVxqT4lBhTwqvQq1o4lBO8WFJQRRnGERCGMTKESEg5T00NTS5e/sYKe4uTzRJqKSB2Of/6p/6je9aU9ruGYSNZr8prYTu/jnEOfu9j1ATgXC0f6fXEY3B+D7pinor/5ZJwhFw+4isjc1WlflXVjHdoI8yBIhtrxlzTWuk5qiX3jaWKWq30hOnW5ATBThDRnPzX8jaKE2OtGH2lCeGzv6b7GzgjsWHTOEHSdFW0VABVZvQOyZSaFpycRKuu0WrlmrcsIdyoVH3E2irttaDNq4leHqBfSi7piDIVakhJ0RLOVCg9iSZXjRW0IVK3U7Vw9eTyLUkG1tSQqNZzWGqW76sGdZC9cgBqbom0uZgcsGG6OQkDLRPmCS5j564sOss55nX7fWmuypNzQbpRNS9Pnkid5HKbkitlJeViFwkRxPXshoGL7ZauP2a1WdPnSfXTxwOPv7jg0X3HZrWm63u69RoGxzimzGoC7z1933N6fsF22HHv+ITNekMYIhIS6/WI0jEGJUTh5NE3ef+XvscnP/wzzp495mIIjFHxvmftV8TdSBgsOz7eocHcD5pSpRur2KJ1Z27+LZGoxpgRoKtIzQSyXAJbFuhGie1VMY9sXX/3UGJaxTjW/YuBwOze6eLvZX/m/s9LKcBu6Ubb/dvusRBy/zNAU2La9z3iiswqc7nMrHHFA+UmZS+WcIbMqgHbZoiwy/HYBznIQb4mUibG/CaJEjKTNiXlIkRSUvpeUKesNNGjrMSDE05DYEyJ02FkTMrpdsc4RsYYcmWbREzJkg6nNIUE6Wx5eCuynPsvzf+a59BLC1+7ghRWqdTrJiI538ekr8Zkc+r5aE7ysg4V+66VC+AzeI1MMRvgIcT7MJ5A7K+194hnR0+8JsBzF2WpU7xLKQ6y8oxcBNhFZVAz5PtgDsowREJZkMWcoy6H4pTkwZ2CS0r0jtA5YgSIqC8sLzui6Wpq7FoUScYxdo0jLuXIBBWtCW0LGCL5jXOSQ/qu0saK66c536xvWBn6BrSt46pmx6Qw/d92eKTZjtMMUewkl4d5yCwnRqXG00Wx3DRRcqUuRXfUMKkYDahVgZTZBb0wMWoKIFNiz3dqk0EOgbwNz+ptlgNQc8ukDOfyXBcjxi9+vysP9psyEMvEXKmI9WjNMlVg9syucaJ4B87ZFe48rFceERhjIuVymp33PLh/RNcJQxgYx0AMiTFTLMeikGmDixcjHWq+mRDVGDWZHTPsBranWzR5fLfBpQEh4qRHcuHtpAlNmhmHiaixGq8FpT8k17ieaPtG52OoLpl7BpapqwaMtfe4PGb74pj3SlUAGjX4KlbPvKt7P1+1ffu3qKOv2sVlW28T2ClKfXsO9aXTd+z5nBpmjWJKQ5GaeyJZ7ruyXfV4HeQgB7mb8roUwWZi0bwuJ3VEEkEdrjBrooVBi4usvcOpoyMzAzIoE6KxZlPWBVo2TU0a+g6kDdm1Oe+ydjTbvvl+Duy0e0MxSi0vh4HqISq7mBiS1nCnHZOzfHm8pYP9lUQBDZC2cH4KT76ADy/yESRbh2qTf8kbML1BgYHABQPxziQLuMtSFumSWHgaGwUbLHkjk+b8NGUMpQJsUBURyWBCKXtdnLBLVpe1OTlqy8bt5+nrqfJrDV9qH1YxPd6+zqBO8/zbFDLnxUTJ3JuMb7jMoanJlcu2+dyXl6u5bPPvW7kBxUyad0KeL8owIuti1dZof8hMm2B/QwKNNjSjmlOsONkECxt1AdwAklNM1cSdo05I79uSO6zzHYCaWybFYNkxMWv6/J3DwMmv+1JTDLukEIIlweo700pKiFhJ2NqGlHVe2KygcwnVgfXKc+/kiBjhbDsw7BLjTnnv0ZpvfeM+n33xjM+fPOf8fMdwFhi3EXawGiOrcWCMkZQSooKXDp/BoCEpIcJuMGg9hEjSyNPPn/Dpjz+h8z1HRx8QXCDFRKcnkHqSfM6YAiTFRUgpEJLFv8c4j3U/yKtJa/RfqnxR2Vh5cU0yASjNNoJMFQAyBTdlvKw8b0ulfCrdqJVBKsuGERKpsuj2+fqWa3ZafC7vy/flHMsr7dnmVeRtPmMKRKTmgVAmCn25H5MiZnu0lbecgPgpvEmw70KEIcA2wEVOXCdq3x2SCR/kIF9TyZOhSiKJMGok4vAxkZLQD8kAYB8YEqyco+9glZWzMAa2wSo9hZDzs2iaqjylzIJ9h3kE2yT4LdQiMgFIhSzzavNgMVansJUhKtsQeb5L7II5yM+AZ1zN+G7zMV5LwhmEz+HnH8P3/zV89JdySz3gTREcA6w1L6Tz8Kjn7PiUM7ZfhfLcryiv46T58lLAmHnlp6gF5rM4mWlsKCElxpKPMSopquV4cga8GFDjiJJIWbNqGcQ19402IEMDN5bQq0oMk/k2URMxNfphJZDlkuJAIleKVXtPBiqLHWLsHLsCfSrlv6ewKlXq/FABK5r7Uz4vdPybvX+zI2aQxkAwZIpsiirEJBAynQk/ebuGBDslDsouYtW7drkolLPNhmiENyfQ72B9jk0Mp5r3T3Cmlhs8tXfqIFfJAai5hVKGU2r+tpPTXZflOVxnMpLFey82SY7JSvSupN2mLBr2XhNoNCi+67xVfqIFdBQlsBvh2XlgjIm+6zk5Et5PHcoGTR1HfUfXdSQVkEiKHSB43+Gdw2eo33UO8Vhi4BCNCi2JqAGilVgnLxhOBN/1dP0a3/e4voMLQ7Ml58Ip2P5Bri+1tDZkT09eWAvaUp6R4oGpi2X7QOkl5ecqZWi5TfFcKBOzpjlC/fSq43sJ1CyPVb5Xrje+3rUUxUsz0EoByVJ7xZidVGLOVoKll81AnOJYK+V4D8mED3KQr5/Mwl1r2IOSnBJQQjJWTUgJlyzUOSULr/TFCZTMGE2Z+TpVaNRbM+8WPoxI4cfk9U21YXROv7V7XWqnOSnJHgfVegQSWpk0pYV95+8wo+PaAUhuA/4BvP9N+M4TuP+ImUbsHLkCRHOkSTwdHSvcVzH0SWd/ZoDEO3sIrziuOHvSUqn2lIGZlHPUlDxPxelSHGJ6qc1SuSmnAmi9U7lkkj2udjFKXiXyz86ZIydV788UkJSz2+SjlFc7ogsAVACpiW1D6VP9nZpzr/SntrS8Rsv7eOOypBVNH6vOuNCb6jmpWE6acl/yeRQGTmQCy8p9q6BZ2SCUl5ICRpJLXw2b9k3LAai5pVK8MAX/9/k1vJvufCnZZzy+jrRAuWIxpJ0IO1VOg3LsYVMCLaUoFClTLC32MiRFcKyPNviU6JKV4k4OnJi/54vTM35+Gri3use9zX02G8c3P3SMn5wTPn+Ou3eMbI7oO8sn07mO3RhZ9z1d5xEREkK/7nBrR0yJcTuikpCVMmzPiWNkTANJE9JZgrT1+gTvPOvjE7pVhzvdIsnhxOGcIxHrhH+QV5eyds/oGaLmGSn0y7JIygIEaZSEguu07ZZncfqtWcSZP/tA9V7E/EzCfGxMNPX5XW51rn2GQDnOMlfNbTEaXiTWb6vCUMtpqykHZbGv5bfL2GZucGl2mZWynYrWkMGUsmKIXYddNJZNKG62W311DnKQg9yoFGMiNbO1CCNKksQuGDjcjZZqeFgp3ikuwUotOSkNeybOKjwp8zCot3xu+4ywqhLlVcVNSU4FKlNguefMcaBi3m8P4tTayG32zpFIPEMZWRTAWEgHHGE8mFc/JwH/HvhH8Os9/OovQ/dtjDVTGvb2ukI2bLjPfbrrHfnuSqtUvEvRibXhnAPnUBVCSIyDjaswJOKQGENi1MSYc8oJBqhEBZcT1hpgWIAUA93EgfOxsQ+ElKQybcQ5fNMh7xOiMIZIzN4ax+QGFS2JjJviIUU/ye+VNp9e2c/2cYi1lwGa2IC92uqaFIxIJ2Dpjd+vCVytumm+ri4rijk1JpoEdXnLCIygUQhYqGgBZCqTJl+flFPZBMkAQ1sdKr/iDsJAzjN0kJfJAai5I3K36WFFHboMMlx3XqphJMWrkxtxDag+M061qV7gHNFB3694sNnkDFgjKRnO7b1j1XnGMRDGBCtwvWM7JC7GQAwjKQa6GPAhoDFmr5qFNiX1JHVo1ozEWZlP8z4pohY2o9HaKrw/ISAq9J1D6C3pmULfe9brDikLxgGkeX1p0RRlYtNkKbHzkpXrGlrTuKaqortvNZXpKS9wyyWvSYMJXAJ8LnX0agjhZXNB2/W78rxUz40051YMquzdaZXPtNwx77u8PwVoS2kCavQScnWXrtRBDnKQLy1KkzOj5NIw4yOqMyA9pWzwGQjjq2KRSwFXBk1e45m++9KynOCvavIFC4EUGulsI61tFSaMNg21W8/KA1PYODmEQyxpqJ2z7eXQmk+x7LovofCrOQ7a0hoOZADdwcUncPZncH8N906AztCjWoJmNFc9JyAbbFUf2DLwnIFwFxMHvC7oct3tbwzc0cUjN40zyripybZTzVMT1PJCWd4nKuInlRHTssubJ1Uz9CDagJKN6lYW/qaq01KHK3mGy0ielAmZctFUhW4aK47mea4Dp7Rlx2gqfE+vd5jDYNJ2muuZWUkignfmGK66WJMUuc2/1Y7jije1jk5pDyjk2PbqidPm57tr274dOQA1d0QWU9OdkIV68KXnJaWmj2vWFANiOpgUqXLwYnHnUn/Je0LvOT4+5lvvvcew27LdXqBDYLcLbPqOI4HdGBh2oPeEbuM4u7jgk2fnlshud87J9oLNdlv7EONICCODc6g4WzCcQyQZep9ZPS5Bn+Bi3BGGC3SdSw+yQ3Rks3JovwYEDYnjoxWSjui8m0Cadze/32kpnot67cp6WxgukitWqFUXmDyReVEWU1KnRa7999LRqseigAzimmd2P85TdYq21RnouGf7djuYr413RZRJl+rE4SUDZuSElDkWfKb/yfyzZkWwlFN3TmpceSk0kBrQph74IAc5yNdTFANcUMtXA+CUqI6gQkgRHyGmSEoOcviTxkSKiWgcV5LGnJNmCoEqucne1RRT169mIZiMzfmG+5wG8/1My0oKMapVhVGInWRAy5ljKa9eZXpdYWvqtjlccYi8vNxwccGvc0vPgMfw89+Hj38XvjfCvWPgBOPonNuR9AnoOchfAPmIkjnnC57xE55zzviyA9990f06xps/rlYdawZhFjA0jxuN0cDPXB0tpsSIso2JszGx7g2s6TuXw5Ss0pgBhYKIw+Hy6j6J5PS9DRJpr1HRoGYgOIVkBTsmuGLimYASBCJzfTs1wG7R71x5J5NtYu217ZoNUgCMAuZO1+zFttE+He8mRMSSHVsZ83wOHsQ7Vr6ndx3iyolZEZWqQ2V2k4U/6UwZVc3hauX82+SL0RnNJkzbwVcnpceblANQc8ulGDEw89PfeplPMDfX5xKO2qL/guWqWRrRMC1YxWgeVfjTH3/KP/qnf0gII+M4cBEiFyEhKSIx8Wy74/nFjp/cP+b+/WMen17w9HwHZ5+h58/ZnP2E9SdD7cAuBMaQ6Loe7zzqrZ7g5mRN13d8/vkXqEb+5I//mN47zrfn7Mah5sHr8DjEOIMNEp9SYNhtefLkST3pA6fm9aWwMgrgIo1Cc0mx0TzesuFft5tvcvWx8t8ZcLJHIS7v9y3Iyuwxn8nLFvDl8e+G7DmrMn6l6oH1fcVil7vLBMqUnAzT59zsDPA8jKmDHOROyg2wALQ1LrUkNNepspEqoyo9gtOSDLTxKr/E2LqWvOqE/aLtGjpBAWzQ+XlCtTlnoi9ou1bO1FzSN4PhkPCaWDFn0OzTVk+BPwd+9IM/4Yf/6H8iBSGOwnlInIfYVIsKKCNCj6Nj4BkDp8Sf/RHxs++z+Vf3WP3CZwQ2BFbs2BEY6fQMz45RvkHkIbAlpR1/+mcfEzTxL373d7nf97XyVAHTStEOz1TEoxN7v91uefazn73ggh/kKpmW5PzMFZCkvGJOLJwrri7XaSmMllwN1V5lhE6ibQnOzBCpqWuEDPRQGy9VmbybKQI534xtOMvRUuwLmc6pwEKpOPMyVbe0UcLbtTnwpH+8w3yTxYBajvM8+KXSkrKbUtRCoLwgSdpGKhhcqnC5DMw4n0GaZi6aqvAa4LYsgHGz5/fVkgNQc8ullDhcfRWfvmuK0OTgaAAbzzRZpPxDmbYrei1CVGGb4B//3r/in/3Bn84atIRki7jNnIBMxbJhpZx7xusneFz2xCmiuRG1pT8mIamgziZjlxKiyj/8nX/A//G//m8EcTULvYqSxKEIXsVwgRhAI8H8dVyMO5v0au8OhuXrSFGq63qe36fmcspyjwbcoezfbDVXKuzf9u64xpC4vO3+tXK53fKut8BOqxS3kvZse5ufmnreeyjBNs7tLArttgVr6nZZWZjamtpu7/EBpDnIQQ5SxIytSXdImghaqsEI25SQlFipo1MzNlOact9ZjpeGUXPJjHx7snQA1G+kzJ1tz5aZ0Ezq+lM9BWa8OQdeHD2wEmHtBHUJNNAD95iqOgmmly0DjT4BPgW++U/+d/6NH/5jds8d26eeH18M/PBs4BzjxpS0Fn1+PUb5ArjQxE6Vj+Sf874Iz4FzhM9QngH3gQ3Kc4Rts/KFYBU6/7u///f5X377tznF+Dqliuo3c/9PMP7OR/n92ohU/Hj4GjBxblK06Fclfa4BLjHl5MERiCARNOSkwqlZm+uty2AOEPN2McWcwDtXkGIaw5OTywLVnSqdExKOqNHyUiUDC7wk0/szmNLUlKiAbeHsOIzZU8GMZlzllFU5L9WURHdUFlWeFCU14Yblu/1aiLjpEtwkQ6okWJ5/KVW3ncKh8m8OxIPvOyQlknOWNMjZPfbOMBiP5fNOHrrO+j9j1CRALThSccTcvm82Och+OQA1d0QK/fSuyYuMxNeZe/YaumKMGufmiPe0vS0UTqzU5i//0kd87y98FzJ5eQyRIRh9mZTq5Oq8Q5zjfBi5GEYe9Il7fWLkiJG1JdQTCKOVz/aFoik2S3Vdh3OOH338I548/oLvfvs7fPDofbYaCWilHZYMs6t+hRfP7vyUEEbwEFPij7//r3n85AkTneggryoztopy6eEowM1soaYY/QaPLFk3c1V3alrFvColl41UjePyYlxz4Ozp76uMi/ZU2n2Wx5kd8xXbfttySVHJN62ETsM0jtt7KbJ/OLTgVvWMNUBZSTBcN76NF+UgBznImxWdf1CkAuo2b2gGYcy8MgLAlC8OGofQsrmblmus++2aNIH8895VIIZpXdt7iDJvFgaEE9RLrpIFuETXMStvXK5JYa20cg94CHz7u9/jO//BbxK2jvFceDREvrEdGUjs7GqTSLWIxunZKWfnpwyrxNgnHq4ecq+7xwUrdnieX5iOtjkKrFaJC44ZcrJhVeX//r3f4+Mf/IB/62/8Br/+K99iywkjKwvDAh5hLJo1ZhQ9BNYCvcAYAv/XP/mn8NMDq+aVZK9ek52gqo1DRWvFtFJEoDima5XOooOlDIKUtTwv6IJmdsykg9nxKikk6xKSKxY1uVHEWDGpUK0xh+28iFQZPbkWVNM+7Bk7kpOU6+RUKiBSey1m1+lVJo4b8ba1ZzSfH9otnIDzYpSyJBAn4Eac4DrokqC+aGSmPEdnOIxzBtSsOgNuKt0GyRWgjD0VcwWpA0jzcjkANbdcyoCK+dNdsSlKP93i8/L9ddpT5vGPRczTQ54Q2h+nI6kqnQgnneff/7f/Ev/F3/tPiGnLGC948nzL4+db0nZH3O3YhcQQE/26p191fPzpOT95fMFfeXDOr51s+dR/gy/c+9B1iHc8e37K+fmWo82a1aqjW1mJ7QcnD1l1a/77//F/5g+ePuXf+9t/i7/51/4aT9I5F2mgp8OLzyCT4/7DR/SrNZ/97KfooMDdAAAgAElEQVRcnJ/Rb9aMIfLb/81/yxdPv8hp9e4iXPdupX0kpPli+UxWJQGaRIzl1xe3Pc9HoJUWW/au+ewW++5jxLTKLnt+b/u8lClO+sXb3TYxLppWFpvkSquOKT68Kl609+lyW5JBWSfMQLaSxy7m6guaDjjNQQ7ytZaKqE8gjSU4JeeegaiRkIQxGVATcz6aiZ45BRNVEOcdJQudAzC5X7M5UmbbzvJlzH6Yb5NUkTFBJ6SVI3oleEX6yHpt86rfTWBNYcQs5SPgrwB/82//h/y7/9V/3XS6/Nlhhb7H/MqG5Q++Dz/+Aby3Qx8OyMO/DPd/FXgAnKA/eQKPn8O3zuD9HfBt4AMAQgj8l7/1W/wPP/qY/+y3/g7/6d/7j1C+C7y356pc/nx6esrv/N2/y788ADUvlytAmkKsKGt2Yb4GVYKCqjHeLX9RrrqUw21I5JCn2ZCzUCOdqoxpxgFEJl3BQJepfHbUCcxxSA5TyhyXrAxU8CdvlzIbyE0QywyYLQ6hsn/MiFIBlzJ5yBjApe8zsOaKueINzh9V7ykTRGbbCUrvwXdidLLoLCVDygyaDvqV4BF8dKhPaMr5QSM1Z/Cmh6M1hnS6TK1JLlePUlJQQpx0sKvG30E3MzkANXdE9j3Md0FuaqCVSb6jCSdh7lWPyaisnYOVmzxetQ0RvPOAEmMgxEiIiRitHp0BQY6+7+h6j+8dvnOs+kjfJ87Gc372fEDe9zx8cFLjqdfDihgj/aqjW3Wsj1Z06zUnD044Wh2zXm/wzjPoyHm6wPeeE3+EU4/TnHxYhH61ol+tcH2HdJ6u73MFKTFa6GHaulFZXs2WidGG18D0t6zQ+pKVRK/4aQbWZEXiund1nydk2fbSq3rbRWYvqx5SwBb08oJe7k+9R/lETUErZ60VkNO8T/HIlVj4w5A6yEG+5qJ5bc2TSou1lJCoAnpkv/ted8lsKtmHtn/JPs7kCsvmKkC/shD2bXWlR6CcbclV4XAirMTTp0Q3JEKwJMPFYHa8+JQ3GHvl2Dlc12fGxPKYHVTtCltsH37DEpGmT+Dsc3hwDKsHwBFoDw9PzH1/bwOrEePuGKPGOcdD7/kQOOk29Kv7uScrXkV8v6+fB9kri+dw392d1nEDM1qQoFYME2qoXsr5aVIucZ1ynpri/CqhRgCixpApOabmoX624Uw3a5QKWY4Do0g34e4Fjm3GRVYWVSx/VS3fLY1tkkr413TcGh7ZzBFXjZubDHu61HZz/AlMK+FPzuKaVvmXIIiz0CUBXEgZRIv2F8NivAOfYxalE/uigDVY2ENSYWSq4rtPJh324E47ADW3XMqk4iQPojv2vO7r7nW9/WUu7RB6yhyqc2+6wpCUp0k49krfN4w7BFGhc47Oe8IYeP78OWMMDHHk7GzH7nxX0f3j/ojj1THk3DTrXlmt4ZNnn/Oz01P+4nueX/mFB5ztRi7GQBh6iBG/7nC9Z3WyZnN0xMMPHnHv6AFHJ8f4ruf5eMYnZ5/x4Qcfcf/4Xl50ICXjcri+x/UrUucI3iY4jzeFMaU3OmF/XaVc0mVZ0fp7vuiXAJt2/6IkNE6SEqp4leK8BGte1r+lzECl5rv2N1gyfW6nCFSKewFpujJ2xbw1wvw6meds2r+wl6c5YVLIlBzulN9HneLKD3KQgxwEmrkCmV5qDqCYK0XLcuMFIr+w6d6JaPNOyX2f/WaTZTE359/Ot3UIDqvEh4B3jiPXsU6RzdnIRUqMaoyFjsyAXLTVXooT4BexXDL7pWOvWfL+Bu5/B/70X8CPH8O9I/iFR9Pvj47ttUcE+Abwqwj3OcJYOP2VPTjI64s2b5ZgjTDZMFIQFleqICkepQecGNCRVGuVKFElRAuXiTEaaIMBIylN4c1QHDE5vCY7eaZwxSmPTKuD1c5fAmsaMGj2s1SGjVUEVZxMVZCkaVfqhZk0w+kyzYGj9vBvi5RXQCUv2ZktghNnwKco9N5KodIZfuoV8QGvCilCVHyw+6cdaJeBmhWwEugzetMANRHHDsmsuxed5QEghQNQcyfkCp3gzsmVjptr7L9UJsokqAIPH5zwrffeZzg/5eLZF4AgTpr8FEoJcFEghMR2F0Adm/Wa3TgSByu3GdKINEBw5x2jmJE3DIGLix3bMTCEyBACYwxoFLwTxu0OkvJ89YwwRMZxxIur7ZoXQWryQckWaRhHUlLCOBrjJ1nuGzB0W2pgy0FeR6Z45fxFfqAuLYhqT0jJY3IpR02DjBQ1t4AFbQLbsiAXBaVd8F8mesX7q7Z5le9vsyznuBZAg5rGqW7sWu1Pm98b5cg191opClwOk14c5yAHOchBJoupqe5EqQRV5u8lt7WdnF5TbtAemfVGYZkQrcIyL2KJLE5JRUhioeeJYHOos5IKRxrRtSN1wv2HD/juRx/y6adP+PiHn7DDCmS3UmovXH3gpaglL+1GkDNIT0F3zCb7l0iZ89NN3KuDvFykAS2h5ptxrklWS3aWaAlBgoKMlLw1MVpCYCmstvybpoL2UPPdAE1lKHIVqWwc5O28cySjp+8FR1ox/WAf3Didl+kVaqWm1eBPzcpgrSrW9r20pq+pfVzRnWs1ke+NSuXKNeXDp8TIdWNK4pkCtDgroNK7HPPooUu4LqFOwYN0GFDTi+1XGTU2iZR8X+nSXDo/1UmD/pInfcflANTccimT3YsoYl91KQpSyTFRps86fMVe3/rGB/yNv/5X+cEPfsgf/uGTKc+IZFSdhKYx4/COYVBOn48cH614eO+YZ6en7HYjKY7sRPFdR+d6xAt9L4QcgnRxsePpk1O2KTKqcr694GIYWDuhF0d6fobnjHEXcf2a7XaL956kgTFsiTGRopi3QBOu6xBxbLcXqCq74YIxDAzjyrLhA+IdIimXADzIdWVKTveKOyh7l5B9V78tHd0mrS0Azj6GSws4Lh06r7KEL+eDtv3S1tI7elufnDK+Y/PKDmyKZ66AbBUjS9Nn54yNU5SMcr3d4l6X3yuj5g2f10EOcpC7I3WeVmNDltwsKRtdkYa9pzaTX15O3u0su/TIT4zNaZWZ/AyTGdQarVPVqjyZOgvtiAiRRNCAcx2DX9Ml4SERt3a4ex2//Be/y1/9W/8Ov/+7/5J/8PEnPNY5UJMcRG9/X1kEcAO4M+BziD8BPbvWNRmxKk9p4nVcowNfX937tWQfSFP+OnOeAnmMWRiMPY0y6SlqLPKAVrZtfSoriDpvu4ZHlVLfmXVT2C3GFIFQEoLnXhSlrepuKgb2MIVIazmRZoCVkZQy+wcVRNVy2ghElKjTqxQxmOWFesv6fNV/Z3+l2pimH5Uy6WWseKM1r1KmPed5QRMVvZWEK6m5NU3EuLVkRo5rlDi75wEhLkPTmm6V123VW9+mHICaOyDSTEhfR5nOW+deHqZ5ThSePTvj+z/8MY8/fzJjMxT03MAem2wdymbleHiyQsWzHROIsFl5nLiciCyR4kgIO8a4YzuOnA+Rs93A2XbHoLaQxEy9SJoIKRj7RRyqgqirBvyqP+H4+BGqid1wRp2KYspgs1EnV/0KUVj3PaNEBEixKa15mLmuLXNF1GQJdFT2xRXOxuKYrPegQUO02UZ0SupbnjtZvGqbutj/in4vfQrtInbVOb0q6HMb5JKfszkhZbofstjBMb9Xs4SFTVNFCamMp3Q3rstBDnKQtyMFpKgf6g82cYhqZvjNgxdeJG/N0Ch60B5nhJZ/W6OwGGgs+UGXVsU8p1qouSVsFZJLaL9j3EXGbUKDogHk488Jqz/mBz/8hKFZB2uLauSYa4fwy4jqOePFU8bHn7PaPqbnC+AIq9VUctr0TOllp7OY8m+s8j7zbQ5yszLXQwrAkl/JgACn07aiFkrkvdS8dDNRjInjmPIFzRScnBQ4ZwGWnF+GRmdu7YUpRG9+sEmPE+ufWP9d8cZJcfAo1uOcPJiJdWdzxdS3CvZqO9ZaC+UtgzXUS2afc/Jll2PSIrkseevJSgvtVSSzZMghoeWOZ65yp3koClON7gzqRNAkxFwmvWT8Wl6Ja4M1X2ED+QDU3HKp3mF9HT/Au5er0NJXlb2GZwNsJzKQleDnP3/MTz//Ai9KJ1gMpZZkYI6kQkweVcFp4v6m4+Fxx+PTwGfPR3rnuHe8sokkKmOKjGlkGM/ZDuc8313wfDty72zL6vSsgslgnoKoFjsrbpVLb3scHSSHJuHk+BHvPfxFwu4Zp2ePWa1O8H5lgI4ornfg4GRzjK42+M6x2w2IQgo5Llff9rR+t0WXL21YFzJ5SEWuHl8zxTev1zN9fgYilH/bJXn6OwMkrriRSxCm/a6snctqakUh7pgvbHcpR41jurZFkU8FNFsC1TLl7Woxs9ZQKcBaYdFUttHlgPODHOQgBwFaz3oJnVAkKQ7NLD1TOJTUhDBcnkzepTe4XbO0sbiWgLgWys0ew7j4xcp5FwZOwpN8IK4vGHdwcQpBYaeBH/70Y/75//MjRpQtVtxh1i8FHw2suZ5sgaecP/mE0x9/zMPf+HN6fgJ8EwNqhrzNCftAmLLGSM1Rcz05LBXXkfzw1GTAlifJGCVKTEqMakn/pQA10InQe8uRAhM46MpzKAYMROdM4S/VoLAQmnJscZY9RrCFvy73lc0ije43KXKlAj356D7rGOboUQN/CupDYfwai8accwZweAVpFPWgVt0qaVqANe9wfqBc3wwXiVoaGbH+pjY+PLNgwGflCduw7xqPl+WeqZ7KXqFPFvpUgJoklTqtQYjRGFVLB6Yyn6MOcgBqbr0sjbXbLkvP/z4pA/E6k1RptwAzTrIBhoG2PiPfJBCfE42LTMYbSinSl1BiNrhdhOPNml/aHBOGC8bhgkEHxjCiTnAiHG+OeETH+Rdf8EyVzjs2vWcXEyklQ9LVQjWdgvce3/WsVivWqxXemznpxUKptmNk2G3puiO6rnRQcOIRcUQvqERCHBnDYOflrA15Z1P73ZWytrYAScueofm9ZWLMAJXF4CtJqsn3vnhshKnt8l3tw0v6eJU3YdaXK9pazg3L/e5KmE8B0oKWkp5ZkajKmm1Xw81kMUfK4prLdB01QUgcwM6DHOSrJq+ieLyiFJCmMAAS5mXWMqG38a1X7P8uZBZiApV50FZ2qXPj8o0sfs//mo4lSNarFAshInpWw8YSu8pYDdwAXOhUIWu5Ljlv9p27tuWR60WlD9D4IaT3sfLaazuH6CGuofN7yTJWiMLj7qS78y7KDCmsQIlRWyWDJjIbLOaQtnXfi2b9fbJ+yjNtZA6ppbfRZKHQOj1xsnjm7dBtnqn2WRc0JzBWldqM5Nw2ruh6NUxnX7iOsXikzA/ZrSaqOJmYeHVkNUDokui21ANvfD6ZebJyvqACSCmEaImbNWAMpXweVvkEq7+dXFNuq/SyXLhW+8xAjVLZNAQqq8qqfRVAeO5YnHTgrGff9HW4Q3IAam65lIkF7tby8jLD8lUH3XLBD1pAW5tQB5SVWHLx6v0BfJO0zOUJUsRgmiSJkYQkQZLwwaNjPnr/IZ89fsJnnyshDgy6w8sK3614eP+I1b2ep59+yqfAuvPcW/fobmCMU3Z5n6xwXdf19OsNR8dHHG+O6DuLsO2kY+3WPN6NnJ6dcXR0H5eTbIl4vFvhnUedI2lgODvnYndB1IQ4y8SeLAL2Ne/K11y0mfgbzwhMXp2agPZFg62iMZIVhGYRkdxuc4tUpgVoX+W2Vnmozef3bbnTF9gGewGdsvi1c8htFlVjvgQVxmT3wotUN5cTqperSD0vuXx9Sgn1cm81QbAiBS+8lgc5yEG+zpK99JlRE9QqmphJR0WTa+JSnQyvqYV3I5UZ2tAQBTO40qX+XU6LXJKguswAEBxjklpYISqcq6KxY7VdE4YtUcaaTHUEzjDDolTobMX3sDqG7tUqYzdyH1ij6Tvo+Cto+g5WPypf+GEFw/rKqKYez4Y+B6sc5M1JC4ZkoBCmnDHJ1mFNMr108o6J2hrfuRw1QzHUqQikuMyI8fawyyg52bCg2nKNtRYPSCiBuR6k9TXlxsnROIApbULObVOduzrDaYXiLdKpmlV2CRfnsM/tSnvQ2om5DlrsnfkVvSlpjiUyhY1XoEaIKuyCMg5K2hnIJOTytLF03uXPBVppABlJ09+qgQqoqyANI2gsoWBtWOI+PfYwXuEA1BzkLchNosKVsig2HXb5c0kOmnRap5cGr5dE7wMi5h8bw8i4CwzDOZ99/nOSWjZydY6+X/HZs3O+eP45srmPrE84v7hgHHeMKRBQur7jnu84H0d2Y8R7h3MeTYkYRlTj7LxD2rKLZ4h39P0R6/WG9WZFjOSQKVuEnHqb3CPEMdXJfFnK7yDXkwqGVCfA/Mmsn2T6W5gcRVpHZLkbbQtNkQGk/tO0oe3+jXNjts3UL53vdqkfZb8l0NOe5uzcXkFeBrK+CanPdQZUqvEjOvs95ZNy7vL5FZZNbVObtluvlTYv3t45HuQgB7nNMuXSKFh7yamhMZHEqrvUuell0k7Eb0GW8/YctK/1Xablr9l23obM50wlh7CY8eoSOCJOBpwLSA8EYyuWaAmHcWCGpl0HnJzAh78IJ5eij9qi3tnYVgU9RdMp+uQCfbZl/OkP2D7+M+L26bzXXV4Jr0g90+FZ0eFr0PBB3oSU52xpaFvYkpBELjul5P9n782f5Lqu/M7Pue+9zKy9CihsBEmQFEmJkqiltVndcu/utsMx7YjpiBk7ZuyYcMTE/Cnz2/w+4fAvnnHETITbvYzd3Xa3erPULTYlUZQoihR3glgJoPaszHzv3jM/3OXdzCqAAEiQKPJ9EQ+VmW/f7j33e875HvHFMtRhghaKiAFRLzysnjhMun+BfLEaKkOpm6msFGwykVAyO+xLA4US32/N7OnMAaQSKJbErOQ2RDy7VmMmBLv7iBrXrpPephgZFFadsuFnDJB7R9JM25gHtqtBS8dBUyt1o0wan6NYEfPWQsPnpgw0P6U88zggkzZvLM6XcKHUPycGmXobheljTJ+jONYn2FLriJojhKP8mL6f1ywy9FH9XSTkjIqvAKdAre32c9a8bVahFEdlagppcGoZTUbs7u2xsbHBjevXOX36NGfOnAFj6PfnuXz9Mj/6+ZusnTjF6rETbO3sMJ4MmdgJE3EMBn16ZQ/dG2IZU5YVZVGizlFPRj4sWDWlbo7dHnv1BqYoGAyWmZufZ35+wP5oQtO4thS4FogzuEapJ40PDxSfsuVuy0LsMIv4DCVzMPQxMbjW9zM6RdIQ/+r0djxhMO2L1GxKfbK0qxrNNFKUqc46M03TjnVmgun3J/orikPm5cg7v/v5yYmGULQBnMNHwKWLJKniW6zyJiLtfVSduY74HHadue9hmZj33qFDhw4wTW6k9kgVZx3OCM4oTiQMCN2B9vkjRdaYTRPY7Qwj3s+flrlJxZX4m1UfoVyook5orFKJ15gpcBRFjRaWYg7qMUxqYt0XSrxazCjuO/y2tgbnnoC19dm9RlGMgqnhmr0B9h3chW3sa7uMXv0xexd/xOruu9MnXYXpJqgoGdDriJoPDf7N8LaVQURQIzQSMmcCWyKENCbjnZwizpM0cXBvwITUJgmdedSca5xP0bFB90XjfAEXvDDGSLLJDJp0alwkdiAZDcZ4uyDGwlijiZ9w6fcgqq1tFI6Jkftxe05bUkeCvSEHKaycJLpZI/LB2255FF1kpmJb59Oe6lqZ1I5RHYiaGI6shJKZwZpKjUz0moUQJDWgtiVsUi5ZIHFQT9QEaYnpqzLjtOyMNKAjao4UZh/o+xG5kTCLD4ItTmV7Yxhk2nZbKjN1xaJe4yoImi3MCw+tG5bmDE0t4IQKYWdnxBsXNykHSxw7XmPEYIxwfGmVJ8+e49LGFi9eeInS7jIo+lRFiTGG0XCPvXqbxpRUZZkaHb++wUiFUCXRs7Ls0R/M4ZoRTi3jyQSzb0BLClMymUxQHWOqInQGNapNMAzlg2ytPzHIiYqU1jTjVRQJOdPIlKtUMqX/fINpiby/0+iHPNxvodnXqW4yPxAglXg75F7LzLr590QgzZzz3ejmzh7SvcYUEaVMhRc7SJfT13WIjhpJtyZ5q3SapD1wn9L2W52a7pXq0KFDbAwiQZOXAG6JmShZ6tqFswHpPW1N7sTwmyJtdIqsyXFY+5jst2ymhnbXqcE6mKjXfLGmQIPqi6kVg5tSgMmjayp8VtKxtYKHnyxZPTEz9Nh9F3YvwOIZWHyg/d0sAae59PbrXPzb71NvvkHT32O9uAZcAEYgNXAKr1lzOJQeyjzaDXnuOUQ9KSG0or0xjbkyxldQEhK54os5+N7eR1B4G0hCUAahglOyE6R1foq01ci8MaAhrcfgxPnS8q59r2FWNJiWLcmEwfNjS+cVvW8u4xziBmL7oZrZFn4bnttoqz7Ff/Elm7J/DlzMu7wJh8JfpLzOUrxH0a5V2jS1dMxRbDykd6Vt5RcxesBSOHncoATiJtyk0Gb6zckBfZ7ZKV2CadP8zvAxMPI6ernDkUEidBFU2tc5eclpq8f4kbOf1ChOlNUl4cmHSo4tFkzGIFYYiGFjc58XXrvKhavb7I8mTBqLU+GB4yf56pOfY7I94u++8wzXLl5noZynX/YoC8PuzhZXLp5nMtqnX1UUxu+5NAX9sqKQHkLfi6c1ll6vz/ziEmWvhMKxPx6xs7OLOkNV9BmN9tne2aBu9rDs43QcyJqPQUvzEcI/Hz7UMnZS01c065jDL5F083Onp0P3kciEtoNJJMmMITxLtsxuNO/GZ/c324nNbjORGzPf7/QJ+rCfuHiMMbo2kilW22oRQYfQ+15TNK4P13VZdG40lFI5bg0raruvmCbZoUOHTzhm2gEXB1tp8kUDNKVYBKGNELJ32KDro0AimeLn2R7kNgd9IXaXKL9q8ZHB1hpqZxipMKHEygAt+phej6IsKGmjnhWf9hQjoQd4lZkHTpU89bV5Tj7Umz6crbfhzf8GG29nHaSAWYPyMV57+QJ/8Ud/wItvvcC7c9vslxeAV4AfA88CV97jnOZQlrhl2E2HDw6a2SqB1PBEjU8VcuKyktWR+PSTgI+kMa1TNtpsjhhRq4mkSQ64WHgo/CPjBpxrbaGWOInH2hII/v8gH64uvOthuRQYIplN2b5rLrQPFh/lE6N2rFOanPxtL9EBkmbW1rxX7YkQooojSYXgMKFCl49UahpfnUsbRRvXGmOR1UniwMFQs7GyU5xMIGmM/2whMmyqglN/X28l732/ByZ8WOjo5Q4fOPJ27Wbz3s92nXrRugL1qU9hsGZMW+2pMCZrfnz561HtuLLTsD4aUbg9rKtpnOXUiWN87emneOjMOlVZMalrdvf3WegvsbAwx6nTx3nsU49gCsul6xssXbvB/OI8Fy9f4tq1Kyzu7jI/v8zJ02dYWV3lnYuX2dra5emnBzwwN4cRKIuCSkoqKgbVAON83nSsQwDiRdIKYTQcoTiubV5jY/MGk3qUOrCu4bpbRM+iposYo0/I/0rrDMirN81iluVPmjNou+KsjZwvnxM7emDx6fWyY4lCuHnKU+g6p9ZP/MRNtnu/IT7bRmae8VlGSkIkzWx4UZgf79uUPg1txQcgeZCke5k6dOgwhYMDqSQq7JTCZAPMvO3XbI1btOcfBtKxhGiE2XbOEzpZxMDNDrQ9FS/GKj7ioW4cYyPsO0fhFNM4tPb2SYycGQCL+LHZEDgGPAisjCyTG2OKYZOSnABYOA2nvwSLp6ePITTmZ86s8+UvPsHlzdd562fbnHzxCscefIndt19nePUig5Wr9BdfZvXBM8wfO8buteuMdnZZfOwpesdOMsceS2xQ+ZpVt3slgS3gBgcLjXe4JST/E20uTR9N6IMtMT1KPTFT+CmWio6GTS5REgLlvRxKyLJxDmwo7JEbVIIg6lIMiRHBxKjlQOwUGosuhKNVTanqrU0iQTNYkx5mtCm9c6i1ztWFNiJEpHjSJqZKas4JpeO8KW41mLpDzDr5NLBokejyhRralKTInblIfTltI6Wm2KSoozlDL6UoGpkJ7Q6aRIXPXJg9tgMRNdJGTx8FW/ZeoCNqjhA+qQ8pHByQOufzpUtImhYmsOuFKShMSWxOY0jucOQ4v1Hz0N6Qwm7RWGHi4OGzp3js0cfx3YZlazjk2tYGD53qs7Bc8dC50zzd1Lz56iu89fZbLKwu0u8VvP7267xz+TwL1SKDap6vfO0bHDt2jFdfe5OXfv4G6ydP8sAD6xSFUhUllenRkx4L/Xn6poRJA9alSgSmMBhn2NveYzwacfHqRa5vvctoso+Eak9dcck7w3TXoVPXLr5Prfo9U8zNVF866/ogexa13Ye/P9PGfr78VEQo/vmdOqaZ7c/eaxW/v/gczG4/7jPvF+/3diO/9PEdjjOmhJnxVSIkxYHOGD2R5MkGUDEqJzmDwnKme5E6dOgwhWhhTLedThXrHI1zFCo459Mp/HLaespdu5XE2XyIjW+ykaY8EBo07rLGLjBLt+RowkBTgofBGpiIRRWKRjFi2asMVWPpjxTX+Oo2PTxBM4ePoHHAPnAa+CywPmwYX27oPTqZ1v1dedhPcCiD/qlHz3Lul3+B3//DbX727BuceOQtji19n/N//j2ufv9Fjj/+HCsPnuPxX/4l5j/3GTaef4Hr5y/w8O/8K3rHTrLANmtcpZdUc24HDrgGXII7Wu+TjRSgkvXjLmosBhE6b7v4WBoxinFQFEKhQlmYULUVWsIx2v1pk5lTTbHWYZ1iHUh4AVq+0sfjmLCdIniDYpCtEUJVt6A7YxWrMW1L/HMalxdQ68kZIbwngazRfHJKHaJprDpi4mSaH47tozbOvN0lFAKFUQqDd3IHckRVsBJLjwtGJeg85QefnVRutKbIGloJKs/KIcZQ9ArENFMVn2bf/BjX/kkmaaAjao4E4sDrqIyRl28AACAASURBVHjHI1qz54NFZMdVfWRNbMstUKtQiTIofVnN2imDChZ7wsqCsjCvTGTEpb0bFGaBoljCWcdkOCQSNfVojE4adnb3uFzcYDSp6VV91lcWKU+tsTo/oBDD3GCJ5eWTPHH2UR5YP812XfODn/yYwVzJFz/3BMdWln0ZOudwanHO4pyjqRvqukasQ5zSOItY6zsbq1hbY+2E0vToFfMYKYjxNJoLrHZ4T+TPn9PDIzbic1rFkpAppGa67HZczkQPDxzobKPn52aOEMFHw7jMS5TZM8mLc+AWzyx/CG906He5ye/3G8J4IIUmu9DomankXG2jZYIRN+WBCb/nhK4yY0D51bp3qEOHDofAD6gkizhxQaB0Yr1YZmM9ceMIGgsppUGnGuaPqonRmS/RZpgeDPmSxrT80hRSv6FBgNg5TOG13GLFnSbEB1iZTgOpgUEJvR7MW1ir4cw6PPYAnHwceiegXLgBvAwcB9YzcqYJUxzZ9YEKWetTPLrMw4+f5SsXNnns7HHW1yrGDz6M2epx4hvfYvWpz7NQWnjnEkunHqI4+wSDk2fCdpeBk/hYn9uF4GOEBnQqEXeGKbsnkRrhzobnLpItBsEYpSeCMYaqFIrCi/MmTRSJJbnBWKEwgnMhOiZ5ZkgEZDwACfZcEQ7A2wVe/NfSat7FpHhP3ARV4UDc2GgvJPvB7y86fpKenpLSndzMOtr+57eahbLl0b+HXkvJ5t9loxIJmSlNmkB0mVjuPBhQjfoKbo31ZFMjGoScHYV6LSrfKrjWKZmHOMcbG0PmpvLYPXmjDlxQHp+y4ej8Z4ehI2ruU8wOsCxHk1WcHbDKIfPuFEIIfQTGGioKhAGctTAPzFWWUWho5nqwviQsLcPKkjKRPd7ausLq4hmO9Y/T7Dc0+7v4oEbLeLiPjms2N7fYHk0Yjhr6vT6nj69yql/Tn1+gwLC4sEYtA778ha/z5Sc/y7/749/nr3/wPX7rW9/ii089xerKMbQGtQ6rFuss1lrqumYynmDCsWMdIs7nhDaOppnQ2AmV9JkrlzBSpob1qN3/+wHxvbGE/jd7KONHI9ATn0cd10le0fBD3E6eqjT7XGtG4uTbiB+NRI/ttCUf14/GbnJK5CeSkTQz/NB7nv/d4sMgevJ9pOiXqBruWkPFiC/TKWQRdARjLGdnsh4/6dZkqebe48UB0qtDhw6fbIShE22kjOCs152YGIsTpbYW6zIdsSSqNU0Of7TnQJYuoGkw6tu8OFy9edsXhqKAoM5lWqDiRYVVqbHUKCqGnjgWgg02AbSC3iIsjaGn8PCD8LlfhLPnoH8GWL6K8Bwhzibbc4OPXpngKZ9lhApzcg5TrfH4W4+ytlVw6tEVjp3sIY8/wXz5JKd/+3dZ+we/BN/+feTHz7D6m/8dq1/4CtDDWYBjCA/ia1HdCQZ4i/Imdb87TOGw50nwUV6qSu185AtWkSISNd4u6gv0RRhUPv2mCJWelEAqGJ9yY0xIz4EgXOxDNSLx6N9BTYaDEQnaNeGJFm8L+nchig9He03BeP2UFDfivAs3esolvOAWvCAugdClrcyaCiIorfZ44mciWfPeJE20O6XdzF3iYHUlE0iaQkxIBwMnQu2gdsqkcRRGqTNySdVReDUb/5sEQy0KDsfRWRzcRGPNOc/+2AJUfFRSyCGL+qJy4GjhsOi6/Np8Uoy3jqi5T5EP1mA6cuyoIr58eYG4u0FksuP1qQqYL30Ds9/AvnVsjiWaW1T9gpXVCicN17cbmsEOk/47XLq8SY8LnFg+zqmVE7x+4TKvX7jMynyf5fk+bjjCFbtMnDBR2N29wXDzGsXuEFMM2B6NGU4adoZbjOwu586c4Juf/zxrS8sMxxOq8RArYNWG0oPx/AMDH5jpSnyDWBSGwlWYso+xjrIaUJWWwhRJCLcd/Xe4G8Rw2dl+ICdc0nsX2X6RJGI35bwJkxzSYRy4V2l+WyI1280BTZVbESRTnS0378Q/DJLldnGrY8kuDYL3ks1G6ueRNImTmSXFADHT9y8/AM308FJadYcOHTqQERsK4LUlxDmMiyk8jlKgjmMOSTKoU+TIR3Pw4W/0vodzyb/PHlq+yk0JG23/+gGrL+ZgHTjrtTxKA4OBYWne4MaKDpWJg+0aSoW5EpbnYH0F9ofwwkuwXrzF6WPfRqrXof8y9I5B7zhv/f3PeeuZlzn32EnOPXoSqgFaDRht/ZzR9lv89MprvPjuG5x+dsDxt/rsbsJoT+jt/DLHRODcMvROIScHYRDpe4sRu+xwg/qONGoET9Is0w2V7hDSfohECwQdFCMUlaEsDVVpsoG67+jbUtYhYtaY0P8rxjlsMOBiVTZkmrzRYHdJ4VN4nHOo8aLYRiK5AuIiLesDPYI2eGsjxHkxQiYdUWsXIj4dSKXVb2lDYOLxSfs52+6H3VT4aJrpKk8Hl2kLssT08Jja6UmzUAUuEFaeQCOLfDL+VYnCP2SCwhjfkDa+7aibNpUt7ju3v2XWOIebG7kfc3Stz32M/JmMJM3HbWxxp4PJtvEMFQYEeoWwNBB2J8purQxrsPtKv4RBBf25grXjPa5twdUbDTtssal77G817G9YvvLUFznx9DIvvfkWf/yd53j6Uw/y+cceZBxLUQ5Kin7J1e1rXLt2GWtLVEsaC1aFzd0b7NWbPP7QGR5eX+fGeMLu/hjT32UiNY1aiqJEss7Fs+ueUhajlAWUZYlDKao+hYOqqulVjtKUFBIa2S4M4I4QHRoFLUkjWV96KCEQv2gMC/UL2czPmEJbCbcj3BPf0chUJ5PTksnbM4NZg99ky8d9pH1ln4tk0hzc5uy69zMi+dJev9bjGwdP+b2KaWxRr0elrf6QX6t48+NzEKN1bimi2aFDh6OJ99E3zjYJTWzgLRgH4hwFyqRRGucLmXjdiayU9yHb+bCR2sz4BfBpvHmhbkmjK/GzD6RAeR2e1m1gwwI1UDiwtcMYoSxgbiCsLJZMtiwMLWMLN8awWsBqBasLcPoYvH0FXvkZfL54hdMnLsLSKVg+C0tPQu8pXv2rP+Hb//t/5jf+6dc590++DvMCC4a93U02hlt8/52f8eeXXuH0q7C+D+UqFMvCg1v/A48L8MQqPHEWr5LTEjV7bLPJVeo71ppZDH+7alF3g0huOPCECkGLpjJUlaEXiJo0QFdHKab9jteUMcZ4kV58BIwGW9o5F5w7xgsRZ3ZdURjESAjocBiVJAScUgEVMLH8vC9K0mhmT6mmCpOKyTxzIGLCvv05GnGhwHh4t6a0oKLmy63bh3tlq/k4F5ltAdJYZHY5IxKcXj5CSGIaKJ7UMvj2IEkJmLC2AcoisD3qiZtI1ERR4UZxDX78NEXUtI13svWOgvH6IaAjao4IZgdyRxGzg8n38w6mlAeBxil7Y59T2ROoxKexiELdwMa25c1LE/YnjvG4QIYgGw1PPHiGz33zQTY2lGef/wnvXLqCdcqNrR3evHCZRx8+y6cffIA3rl7m/JUr1GPLYn+Z+YVFBnPznL96g3c3dvj+T1/h8vUdjLOIWqRfIVXJ3PUVymrAje1NrEwoekJ/ULG/71u3xlqcWlBNlaqqoqDf6/tGa6mgLOYoyip0FO83FumTi9xoTWRNPg+S9yB2GcFtEjRr2jiYGK4bO/y4kfZ5PsRXGe3isO6s53XWaeCyz7OYXfawdsEdsuz9jrZwQns2KaUpLpPNjhE20QhEg7h4cBe5cJFj9IzTkHutfurKc3fo8DHE3ZA1+fLBXawITiRJK4zVIgi1Ol/RJZD6ebTKbdto96phjm2jzOxCQRMx00YrxFXe+5jbfkwl9pE+HcgZYdJY9ncb7ETpldCrvEaNVdhy8PNr8O2fwmQHxpuw/a5j61LNoPcg/aVf4drPr3PlZ3/P8z94h2dHUP30EnXzA574za/w2OefZuf7z3DphXfo74x5bGmB0ycmHO/XvLQBb+8qwz/+M/769R3muECf6ywWzzBXrPLQuQXW1iouXX6Bd5kwOlSR52Y4Sr3n/Y7gggkRM4URisJH1CQGAEXFEzBqXeBEDIjBiPGVoQhpUWVBESJdGtu+h6ItAYloiiAxBjSoCbugIWBD2hLZ++tToaK9oEl3xtt6US1cQ6ZPdNxFEiYStn6DThQnirq8LPcMUzMbNPJeL+Kderan1o1aNN4AVgkOsaxdEAJBI6ECFEHfx/iS2qi/P9YpYh2YoFljgSJc/3h8idnBG1w1PqNxotgGxta3D3HfniKKhdjpXr8MHVFzRGA/6gN4n5gZb90ymu29INmE+FDk3bGviNSjJWpsIGqub1n2R0pVGqqiRLE0TcNnvvkg//p3f5X/+z9+j//vv3yHa3veALu+uc1kNOSzn3qEX3jyUS7fuMo7Fy9wbLDA6mCNU6fXOX5ilRv7Y968coPvPvczJqOfsjQPc304dfoYq6uLmHIVMXNsbV6nIRA18xVmx6BA7SzWNqj6qlRVUSDAoN+nLEr6vZJeb0JZ9tuO4K7vQIf82vm+J4TlZtc1hr2nENxZzRpatt/QaqAcvrfWY6nhQwrqlYxIiMc0EzFyO322u0kkzQf1nHxYz1sqjYlOly6PC8S0wYzhcnibTIz3zEjRHnCSuAl2k7Ot/o3VrABB2n+HDh0+NngfkTUkgldxoY/wDiE/21mX2PSoG6czbfn9AM0/pLDEdk68RO/dX0znJ2jQsxA1KEIjwqRx7A0djSr9CqpI1NSw2cCLV+DKc17O9wFg67Jj452a1VOP0F/+J1z+6e/x/P/5Hf7+nQ2+O4bd589z5fnz/M4XvsJjT3yVzf/2I84/9yYDDJ9eWeTUuR2Ona75/jPww0vwl7/3R+zt/hHH8YlKZ3twvAe/8usrPPHUHOcvbnGF+g6Jmg53DZ35oIkGSCWgy0KoCuPfs1S+2hMiahUtfJ1uCbIBsXqrKQxGoXA+WiY5a/JokURUuhDxEokaQ+l5WE/UOJ/GF8NdWr07H0ljQ4nt+HZr9sIk/RzICB2/nWhTOonlue/ezfpBtSmZJTvzKX72pJgYT2wJnqgpw/VzYhDno45wiobQ5MIF682GGxEbRWc8wx1JmrGDicBEsDVMXNumEvbVvZ2HoyNqOnxomCVr4m93u63cmxVFwmLqSm2hLGGh5wfbTSM0FvbFYWpHMYI/f+YC17b/lpd+/g67YxjXYK2AGgoMP/r5ea5uW85fucD+bsNIxuwXyjtXHJc2t1hdXuGXv36Cq1dusLm5zd5wh/F4xNbOiFHtePpzj/Lg2Qd5cVJzZW/CfDnPSn+J8eK+Fw/eHNNY69XVG4tTQUxJWfQQsfSq0pcOLM10CEiHO4bQitBPIT5Ih8xQ8CVKkSzawy/fEgi0FaBmRgc58RLtY1+SUqYN+8zZ4mbXOeTzYcgdNPFc4ehUiouV3NIUcr/yiJq4TI7kSROf0mSlJd5imG4T7rF1B9OePkhSq0OHDvcR3mdkjQs/xLbbl/0N6U7ENj3sRLO2/D7rp2fTe+PfZD/dxjWKZJXiPfFOBBsIG4PXrRmbEhuqwpQovVopSqjmgAFsOtgewhu78Lo6fnyjYeknz7HyF/+Wt3/4U964sMHL2/vUwAU8mb7/V9/nOWDjB99n6/UhjQgNwolhzdpV+PRnH+Ozv/EA3/9Pr/HzZy6x0fj9OAs3avitJx/m8V85y1PPv0Lz6nVWpRvy3DNI/qwFWiD85gf/npgpCkHMzEMZiRoJjq8gXItTxChifK0hCkFssBUC4ZNS2WP6jeANBxPsCAUTYqBFfOS9i+RQiJZxmUFgaSM9TIjvmHbyZULccX3NKj4FSsZHTvvwHBfJGo1zMwPkwPaz32bak/fDP0drp7VF2237Ik1KIUppfHpaWRlKVQpngkaN844xATXqJ0KVPMRXQ7WelBGjXqemDiHMtXodiTEwBleDtQanJqONI5U0bQt26IiaDvcYsx7rD8KLnW9Lw+A2etDFhEazgV4lLA4Mk1rYnwQlcxel24U//c55/uNfnGd13nBs3jCqDdY50IJCCn744lv85++9yvpSybHFkmG5T1WN2djcYmek/OY//CZf/eLnee2117lw8SKvvnWBi1fHbGyPcFsjfu1Xj/HlL36aq29e5to7GyyW86z1lxkv7iGFZXdvj/3RhKZx1LVFyhLEUJYVhZZUZUlZ+DBPn3z7/prpTzKMhLTZQ1r+1HHNGrQaDXINEvnSWrhkz7Hk31qyMP46GynjMk/M7N2Mv8W87dn5MrMsN1kmEjUTYtHJjxbvdQTRtorXK/GS8a8eJGnAv/vx/jl8GHS83i6QM5FMc45U7clkETwdOnToMGucpEEjbRsE2W9hJBXtkEONnI8aeZ8W/ps91NtFHEh7ogaakDJRqC/RvW8qBKUQS+ks1cSy0IelNdgQuGLh+g5cvQz9S475HzkWeJZlnmUT2MDXe2qA82F69s+/B3/+PdaAFfyApQTWrsHKMvxvv/ME/+x/+Tr//sqYbz93ib9TOO9gw3r9tv5nzvHkP/oiT//+kLKqOWY6rZl7jQMxG6E/L0IUTWFMSEmKFs40W6gaIyuCirc41Bi0FC9KKeDlAmijnkVQE6s7RbLGT16cGE+diIK1OHWJPElR0TGtB7zTNNgcTqQtagQ+XSjXmiSW484rPnmhbSARMxqIoZasOfz9O/DbB9CeRGsnlQYXHxEkGmkSpRAoRSmNUBVCWQolhsJ6fSATy6ZmRqrTWE1VEaeIFU/IFOGiRoJmojCKRI2iNVhX4LR1v8US6Umr5lYVnz5h6IiaDvcUt9UQ3eV2o0ZFpvlH7do2elzDzkipG2UyEYyBqhCsE6x1VIWwOIBClNHEYa1vKibWsTuxWBy9yje6o4myvafUTnFa0DOGlbkFTiwv86O9Ea+ev8LW7hgjJStL8/QHfZqm4cq1d9na3WFvvM+bly/wwusvs7mzwXA0RFH6vZKqKinK0ufnoqj4yRQlZYHP0w3omq47Q05vtdKCLbxHgGnrNfdgyMxvh/BlQjTXJZEGU+6AmQc+6tvc6nhvdkg6M2/2cGY7//uFiEilLg+ZF4klXy4yEwScWSZ9nvEwpSpe0rYLwZZL1QkkkDZ146PtGuujpTp06NDhMByINJkl8sNvhwqTf9RNS2YbTfUHM8d1O9E0EaIgTjHYEEngyxg7V2BxiFjE+sZ1og6jUI9guCNsWbhRKwx9Me4Gnw2xDQzxBE0kaQ7DfjilQZiadOwPAl9mmx9wCd+PnMRHU5cVXH91yA//eoO/v7DNC/UOX3X17Z9wfu50brI7gmQfQv/bRp9oS2rgNSZjuXs/Ptck0AuBgAlFHUQFEYcxYC3JuxaWPHT30enjS3n7zwYJ4rohgiN7t2NxAifRhmjJ2GhHOhGsc57kQZKt4VRS1ajG+cgdG/4m+ZqZ9iJFud2OcX8XD2DcbCSsJCt7ms4fKAVP0lQhLU2UEqWIkTOZMRXkalLFLmNk2ruY0p/EhzlHYcCxwj40I8f+2FI3rdjy9FvWjXRydERNhyOLRNYE2NAAxjZj1CiTfcVZwTXKoGeYqwwTpzTO0KuUsgLbeKImBPBRW2Vn3GBx9Ht+P+Maml1lb+RYnCtZmOuxMr/AiZUVdvZGvPL2ZQZlRa8oWV1eYWV1hbqpuXLtKpt7O+xN9nnz8nnmXltguLNHPak588A6y8sLPoKmqGhcg+ISUVOUFeqKRNSk8n+duXBHSBEXuVEtPtw1ap0BKc0m7zKATNq+3WAU9Y9RIH4X0TtxOPLu52bdUU5o3Mrj4rLl899zwuZ+wS04qzTfEC5zzPKbujjxgh8kafIdpFur/kcXfhBVxHnDLpI0jdNOTLhDh4873k93qTODpzig0uzrzRrp+wGpn4ttYnaod3jMqd9SxVgLha+CaBCclggNVhrEORjbqQGtw7AzVrb2lRU8UbMF3MA72Ce3cTiRyFkK35s06H0I5RfY4gSX1DvyTwH9Evo9uPbKkB9UG3zvwhY/qXf453ozKui9z7+zvN4DU++C/xIFfmNESopicS6I0nq7vfEzfcaSAY0hwRqiZUKpbVFSRSICQTLFomgkZqYNOREQm5M00Z6OETJh2RDV4dP5/DPuJWz8ieX6uLGCVLT8IgnT4G3L2rpA0rhM54a0nTztMLUl94ifiDaW5F6tzKw1AlVwZFeVoSpDdE0katSnoCXnePCQpdLq0YCL5xEbACstKxtTnxJR46hte11k5gVrH6fureuImg5HFrNtWqzGA0F82YFpWje7tY7JBGxo3dX6EEt1XuDMQ8E5bGjUq8KwMlewNCgZ1ZaJtaidUI8bvv+Tn3JlY4PhaMzTn3mCU8fXWVlaZm80YTRpuHTpXc5fOM9wZ8jiYJ6VpWVWV1fpFT2aSe3JGQuSVOx9HeH9ZkhjG2pbUwex4eiRiGVAO9w+UkcQ/5PpSyiHMByx45WCg9CbV2VKBl2YEYmHvEN2enPtmMzeOCzA55CImYP7nznU++ZxuZmxq7TivoVkkTXE82kNhNkNttJNhzE42bqEaLVoIDmmSN4OHTp8THEnI+ypjoGp/uBI4gM6/rR+SDMRU1CYAiOGQnx5ZEyJUaG0BsSixmKcUo4cg8aP1RQfRTOhHXwUxEExU46THKsLsLIAw13YG8L1kc+qeP6//DUrG9usD67zu//6SywtPMpgcIrrb73B9rvvcn1zyFt/9RO2Lm+wgi82cbfnf2SfgQ8ZrbtKkq3VVqGMQ2/JUo6gcJo05QBfRSisW8Q+OxKDTgnyNdhIduisloxgUAqFsvBaNi5UaPBVosU76oJt4G3rrHoTrQBwRExvSuW6XSxZLa1OjVM0auCEqXFeUDhVf5p5kD605yqMcWLEkAabyDsyNejyKD0j9ApDvzKUKIR0chON4lDxLmoPiQmaQ3EA5sOXguctsjqB0lEH1rWRRuqPI24spT5J1CGCZNB9gl/AjqjpcLQRve+0A8HIdkvUpAiwjTK2NoXcuFD+RWLObGy6VHEWTCEUhbA8X3BipeTGjmNrz+Jsw0ThBy+8yPd++hJf/vxTPP2Zx3n80cc4c+o0L7z8Fm9fuMqLL7/Bxctvsd4/wfJgleWlZVZWVugVPerJBBVHY70LoSgLSkpEDeNmBE5pbE1ta9S5NqLwE9xY3Q1m+Jdpmz16YGaXnWH1p3ScM0/I1HYiZOpP6qtsIAdykibnHma5osMiZmaXg2mj9mYkyP2EwyJrIlHjdaZ8OchCNHlrVL1j5rBtpX58htUKVOy0xyou2FndHTp0eC8cRg7PNlxyyDKzy+W4Rx7z28b7aPeiPg1SIFJgTEEhxsuGGE/UFJWh5wqsqamNpRhDtacM8O37GE/UCCHdFT8IqcPUcDhRs7YID63Dmw5uDMGNYW8Mz//Xv4G/+y5f/F+/wjf++y9y9uFf59jxp3n+v/4Vb/zoJ/xfv/ddvvv9n3MMWClL7lahpusybg+H2UQq0eZpr6KqT5uzzuukxEjimIYeRWujfS8aK2F6kkZDYYCYZhSdMXkEjcEXkC+MYApBLKgJKXuJKIopVxKOyW/XxXFAOJ6YAuXJoUjCTNsusbqTJ5I8EZEm1ew4w3U4xG58T9xtWFe0S0P6E/FaI2n8FAuyVEbolT4FqtBwTa0fT8U2r42uEaQg6QSl9tDEgZmQ8qQ0Coj6ilGRqInsToyEmoqGer8N5sfkpe2Img5HEimAb2ZQ7WTavopq7jFgJrY7sbRmFMJqI2rCfAWjgsFwZv04n3n0BG9fvMHFd7e8kLlTKmMRoyz1K+Z7JaIN9XjI2mIPc2aNa++uMdzbQlXZ0x3Gk32a0QRbN1irmMKHcbrG0dRNJoRmMEVFU1smo5qmaWisL9AuRlpJ+g63DSF6BNrfgs5s+k1EkjGQEzO5omQkbmCGrGGGLwjPmbp2hqgXOPS3UDMvU7tuXP9Wmi43wywpdb9gloSaPb7caI9LpesXDQM4cLGjPRBJmbiDtK9wn3xqdfTeTBNhHTp06NDhvRH19E2o4GNCRE1pCkRcEIwFKvFRNqakUEepjU//cJbCQhEH2LQpTXlETY75MH3rK0/xq7/2BC/82Yu88t1X2SlhWMADJ0rW13qcPHmO02tfZq7/KZAznHniMQZLNZ/+2Qu8ewWu3oCLY6910+HeYXZY7W0bRUKueEwZT3qMGgb8Dppgj8eUchUw4qKR7ofw4smdGPmCtlGyiAYNG3LOBrVhfkitKkVQY2iMtxqs85WLjMkIoWjyadBDoo0AcbYVIfYRNSE9KhyXTVOIpEkCwtMiwndlp92tcadePyc6JiOvFcPJBfUaNeJ1aowRpIgES1ihCFdUBZzx99QbtUzliKY8t2xHM981xs4EMegUkXML5Hb37Z7zxwUdUdPhCCOyw5r+DxGTU6xxTs56QjuU11NBw4hYVFOYXYqGwFBScOr4MT7z2MOoK5iMLNsN7DVK30zoFTWLg4q5qkKcpZ7ss7rYY3mu5K1jK9zYXGFvuMN+s8ekHtGMxtjG4qz6xhDBWYdtrD8WBBGDMSWT8ZjJuKZuLI1zgSSQtiHscNsQpp+LXIj6gNM0GAkpkiZe7tu85lFkLa6btFKityAso8kaIGndzBqqs9/f6xBmDYC7dcB80HgvEqlNcfbvZiJtpJ0/u24uHXTodnNiRg8ew/1wXTp06PAh4FaRMbfC7TS4d7LfI4rkLI9kjUQ7xVAYk4RKTSFglIISg8HQYIoJvaaGxlHWSln71KexhhLct9jvPHAc+MYXP80//xe/zTNX93n++Vd5owcXe3D6ZMHx9T4n1h/i5OrT0HsE5BSnPnWOE484nvjrFS79HC6P4NIY9mP6OMGW6nBPkOgIbYkA7yBtbXVPsIQS2Sqe2IBE3BSFggjOOYxVH82FpIpNniXxOcwx8iUVR41ad8GociGUWVQpQopOU/ijchoJHn9sTXKsiU/zIUbuBHFgpY2oNX6o4QAAIABJREFUCUSNPx9P4ESiptFYAjxWe8on0nWY/jCDWxo4t3svwh1QUnoXZLxIiGiqAklTBKLGe8FkmqAJcc7itPV85sRMboHmjFTMDYs7FgnRebHEuidrxLU6nHqzc/8EvrYdUdPhSONA+xUG4BFFZO7D9zjLp07qQZp2KtzOM8ejGnZGsLmzz42tLQYra5xYW2Z9qc/KQo+zZ85wYm2VqlfhnDJpLLaxPPTgWZZXl3nlpdd598o1LrxzCdWCh84+zNryGmIcYiJppKhaREJD6oSyrOj1elSFoRJo0DTo73B7iF1LJPFS3xIZjGCA1goTp5T4nOhokMZ+PzkDYh+U3YN84J+TQfkx+N22zEG+TiSL8qia/DbPPNIHtpt/nz2mw5b7KHBYX5u/k2mS7NrfyoOSKc/lgs75NfSL+ZTGeBDq2pn5Ne/QoUOHDjeHb5vbQZXJPO++7S68g90phfHipIU19OqCWnwkQ+0s5bihAipCpc5sHzH9qQzzo36NuhFit7BLY+oH4PNf+BTffOIhHji1yvqxRdY/+xWY+xSUy2FLZxCZ46u/+tuceGCd4b99hvp7b6PXX2bz7e+wsP5pegsnP7yL90lDCsSQNJZ3qjSAdQ51DqKjMjizho0yrB0DAwPxhEFRhL9xORRnvd6ktS5pnOQR80Z8+nT6DZKNHXVknG1TlxQJqU5+GV+FyhMtlqBJgydgIiGjGstIh30E4zDGikSjJdeCicfyUdgbvrqpJlLGI6YZSfgGRpSy8BOlgBiwhU9VMArWQFOQQoeIZBmZIaaZIWegKPzfFI0T9ha0bcS0kTUpRJrMbuvQETUdjjIOEjBpMB2MCkMQDJZDyBqi/75F9LIk5XgMk0bYGSvbeyO2trdZXD/O+voKD588zqm1FVaXFlmcn2NsvdL7pG6oreWBB07xSO8su1d32Ht3j0uXr7Kxt8extXVOrZ/CaU2KmdCoHy8hf0soi5KqqqiMF+wjCJJ1uHNEoqYgI0ayB6FW2He+9GeZRcSYQNwJbYht8obMOA9inzerK5OOIbAyuTDuFGGTTTcTGz6MBDocIXLnPuzs5JC/tyJqYuRT/CIE5w4ShP/CfdLDr1m0GjVjfGJg2gfgsOrQoUOH+xsfUAPn22g5MMWQm6ghWhqlLB09EfpaUjqhMIaynlDS0OCFfWt86lPcNrREzQDfl3pH/RjsDm5hQn0aPv1Lj/ClX/sG/fXj9FdWUZ5GeThsR4CTiDnBF775K3z262f54V9e5PzfvQU3XmP7wrP05tc7ouYeYPYx8/a4H5yrQh3SgXzVJ0PkNKwqo9qxtd+glaFXCkLhSRojFGLQUCnKOYdtXJtaBFMeWCPeQSvSHtEsSWNtSEPKbDqf2hQqUTnvGI3aMlHLJlWAyv26wa6TyEjlM9OirYzyPbnQt7G4CzllPrU/Rsj4d1dEk91VGi/L4IkagbIIqQom/C39BSvVXygrfvwSBQWjvoTgCZpYUSOH4AleYzDGi0THql7JCdcZZQkdUdPhyCFGSUAebRDK6km7DKFxVfHkb5ENwGPjabStKheNjsL4KlBlIEgExWrD6dMVc70lHjh7kvWTD7G7N+Ttd65wuXeVqhSOr59maXkVaxXbWOq6QVGsVdCCRx4+x+mHz7K8skLtGhpb49RRNOMQYVhiTIEaQVTo93wKlJQGFw7yZiRAh5sjtvcFITpG2miZGNES+9jZ/iT2G6KCkbZjn01JSnZC6KdiPzMVFZL1PZovP7O/nFA8zPDRcC6zy7/X+d8vONSYi39b2+EAieJ/a0th+t8yr9YhnXskaAOv46tKCClHvuM9O3To0OHWELy+WvR6GxFfHaY0VJUJdpVSIlQilKJUJmjV0ASVYEVKgwwKpFG0cZTAHFkBiLC/mPK0ILBgYLmoqMo5nvzyaZaPP8HZz32J/vFvUO69jl5/meHOdcbD7zD/2LcYnH4KGINOYFgj+zA/gVURVtfPsnbuM/QWlg85yw73Am00R7BbNFRsCiK7jXU01uGsDdEZgkqMwPCWfSGChmiLqDnn+/pA5QXvm6dDTIo8b8kRxTXOkzTqqxa10oPTJIsLBE1a1S+UjI4ojGw0ru0drE4lpENF9gcvUIxis/Sn9rp8NNDMstJ4dxRQ42NsBK8ZU4bRhg2RNcYE4zPeQMKgKigMqvMGlg3WcSJr0u7C71mkTeFS1FHy1HU22QF0RE2HI404KPZtgoQ2IW8Mg+hXFhkRkXvyk0dIoDCGqjChooEBcTTasH684szxRc6cOM7x1dP86JXXuHT1Otbto9R8pppjbmEFZ32HUNfWN9IWoODsmbM8+enP+HmuoW4arLNUzQQKoVRDgc/3NiL0+gVFUSCl4EyMEJqNAepwK0QiI/UXMq1bpNqKxyVdmYxcySOs8uiZnESZjRDJO5rD0nZUDp+n2RQxe69niZybieIKB7d1P+MAgRXJ09mLnC8UYIIh4JxMG0KSXdNotAleC8qAOjn8BnXo0OHjjXsdSvcx66RNsK18H+pTniojlIVQlmGeCqVAzwiliFepEesHwqrQGCgLTL+EQN5EomaS9uMxB6wBywaWClgsSkrT55GnTvDI5x+Bhc/A3Bfg2pvoO28yuvwCO5tjyuXTgaiZAEMYNbANc7WwDCwfO8ny2ceApQ/v4n0SkXW8UbuFQG6IhsgWbasiNdbhnEPUAQUq3tJVFyIvxD+DqlHrBk/o0Oq9JFs+7N9N2Q4+1ck1sZqTPx5NGjqRftGkgaPxPKbOK1IbYX8xxYlMhDiK7KRVDurTfBRmh6Z/8bRCkXLNy2dEL5l4ZXBVUi1uUwSiJpy90zb8OVrFTbu3uLn0MMSTjorkRYEae8D7HB3vcWzXoSNqOhxBxIamMjAooFEY20Ma1tBym/DFkA0A07bUEyChlJxTZX4Aa4sGtQacoE3D5saQ5Z5S9nosLixw6swy54brgGVi96m15tSxVY4vLXCDUNXHKs5a1PoOSHGgNjXmxhiMGHpln17Zpz+3QFn1fP6uKqPasj+saRrPNLkotnbvL/HHCrG9d/g0W5NdwJj+UkDKa46dro/knL7a02RKG5YTCUG/DUkdfeynYlnu3H6P6biRMLpdciVf7mbjjaP2jCTSNBx4MoTEJJ9VHjCTou2l/d07aiQYhdPbi/aTC3+7ymkdOnTo8N6Q4OWQwmAKoSqhLKGoDPODgvWlHpNG2R8534+ifjKB4CkNlRbgfBWfCULV+L6zUd/39mlTofaB40vw2BKsLQxYXehzfGkRdudg9RwsrEF1DliD9U/DoKF/YoIOG3onz4aj7vuDnizC/iKVXWPAOiUngJNhfod7izhY9xEZDsEiOKdI48JgPSyCYMRQFL56mANfKcyCM2ClaMtfB/HgqbLcmJTeJEEI10eKeKepOmViHU0QB1Zimo9f34rBNi5tbyotKpAbzpGiZnKtyKh7NysmbJ3zpbr1/nGatcfhrUfF8zCpHLkG7Z6ooByjX6Rdx4ekmzZEPZUoVU/upOijaBAbkjaNi39BreVASHNHzhyKjqjpcCTh8G3CQgn7Fkax9c36BpiOpsgjH1KEXRjsFcakMnuDPqwtCbY2uNqgTcPOzpjBgoLpMT834NjxBU5vr+CammEzYmwnHFtZZHl+jr3xhP26DpE1Fudiy+Q7jkguF8b3UmVZUZU9Bv05yl4f6yY4Z9ndrhmOGqxtY4Hy6jUdbg/xvqdBevDqpGhLDSR/RpZMRcfEZyVce3dIRExL4EgblaPt/mLp0VjdKH8Wc5Lmds4lkk5THqQD69+P6jQ3x5QDOhBbJst/Stcnv2+RJ8sunnfwhEoO2fY0u4fx/n/MnN4dOnS4UxwWsng3631cEToZCQ2uGKEwUBZCURjm+gVrixV7I2XcWIxzGGdDVDChgoz3xIsDxWJV0JAtUTufSVH6rwzx47/VeXhwHdaP9zi2tsTKwhzs99HV0zB3Gi8WvIyunoNVoXfCYWql6J8IB95D6UEzD6N5KrtEn1UMa/hYHcho/w/ven4ikNMS7TVWhEYDCdA4KENEiwpoFKc2gWTxFZbUgbWSHDCWlghpo2kk7SmPMPb2fCB7rFJbpYkpUtKOCZzEhKnWwRZtxaiBlyJRFF85yfljSXZhtA3JyKQYTZTZYrkN8mHDx83EM5Epu6g9dh+ZHIcs3mAtmDrRdPESQ9MaYhKWj3RYkVm6LrOZYyg72g7WImY0aqQLfO6Img5HF9bBuPFeGdHWYx4HyjFUd7pd9I2Aqm9nvOp4nOPnDceWa9uO1fkeKysL9Jbn6S0MqM0e2+N9ru9sc+X6DX76+pu8+PO3eXdzyPbemH/2j4/z4EPnWLY1YoSd4T77IxuaR+8RaJzFBsa6X1WUZUFRKFI4TKEUhTKpJ9RNjVKDNCjWl/mDLhzwDpGTGfG5iOR+0j7T1jujUwszZcPl6v1+lkbnQBsREua0ZKBfPhIDsXLGzSJ1Zn87cDJ6cP7NyZqjAQeMgV70RKn3XqVwGIlEpSY7oYgGRjKQAvJoGmnveR56lCJrPpzT69ChQ4ejhzigNTFKgaDjV/hIRyM4NYwbg7OWSq3PgjAChS/VLU4orEPEgfjyv9YYKAzO+AFIz07v1gI7E7i6C499eoEvfeEEpx7cQ+degr0rcP46rIIuLfDWd/6ESz/+G35ySXlrQ/id//Ff8o1fXsKr3FRgdtHqOlvmGle4xoi3gVeBE8ACbVhAhw8Okd0jXdq8OIMK2ML46BoV77wMIr9qgTIG4Uh4BqNlLll0SmuJpXLd0hZ/QH0hEaFAxWYGGBhjQkp7rN7kPIko0b72Th6Hj2CPgsKNtkSMaiwX3toSMRIlleZ2mTYNrT7NR2F3zNJmiaQJtm/jYOSUkbXs1w2TiYFxYFElnGE0di3TnnCd2ZGqbzQMQYfGhDahAHGoUx9dJZIcm0Edx9+XbHuRs/mkkzUdUdPhyMIpTOy0CJ1jOmKhhaKR8UVSw21MW9rPt+PCeGLZQFleMCwtzWHm+8hcj2ai7NZjtvb22Nje5vULl/jxq29w/tKQaxtjfvEffI1qrs/8eABO2Z9MQtsmOBGsc4Go8eGFfVNRFAYxvjGM5bobWzOpR1i1qDRo8A0crRiJ+wvZOL3ttDLiw/8u6f+DPI0c6JOgJQqiEdIu3W48zU+/HyRrDuvvpj7PPNA5SXOz9Y4KFJ/aXBNImuB1i1njknIWIw128+sW0QqEt8tMXaeO8OzQocMsujH7FNoU0/YHERMmwSHUjffAV9EpURikAEowFox6IVJfwcdQFgXONJjCjwMrpttnCwxr2BjCwsqAJz69yuDEPvTehL2X0P03kN5TsPgUl378d/z09/+AP3kZnr0gPPn5r/L1b30VKFFKVIZYs8mubLHBJmO9hHPv0CZbvTdmnSodbheS/d+Wrlbx+rRR0FcT09F+jg4tv4GWFAiqAFlsSKv9EqNpJSwba76meJtY2cj4Z1iDloyEqkdhqbCvttqTdW1p8aRtQxttkw4/WydVinLZMdKSDR8VWSPxIMI4SAm2lioThbHz1bfq2qG1Q20YmyRDWVrjKSdr8Ntrr0ZgeCNhE8p4RjUgnwXldWiiQ81E6zgYbV1T3KIjajocOcQhWyRpVUECW5N4mLBsPqD1JejaxkCQNgUiaxUaa6AW1uYWeeLEcS7vjXj3wiXG400mkxFl8Q57wwlb16/Tc8qxfkFvuccLz73A8MY1xuOGurbsj2smjWXr+haj8T7P/eB5Xnv1zVaRXqNfoAAx9KoBRVEyrvdpbEPjHHXT8M7bF8G1Yn5dA3b7yAfpKeol62PisxLTnmSmI019WiJw4re2q41pVL4T1oz51wNeABOW1/DgJSG8cByqbUnSA44KWt212WfgVkTP/Q7BG+sVIOoFBBunocxmvAdtpIyqN/TS2ulzWGbGviObneeLH6Vr1KFDhw4fJkwsYBBIGVMUgWiBslB6pdKroJorMEZxTRhOSJSw0GCz+MG5FKGfDWkuuUPE4sn62MfpOOjXLJ5h7okvMHnzIsMfXubSpR2uXp3wqV9/lrNfG7N98WWuXIcbI9hS5W//3/9E9dNX2KXPPiV7w0uMRpv89fOv85p1/Pt/92c8+8xL7LNCzYAJBTbrTSt8jM0cfnC0BLi65u2f/exDuuofA8TIkdDZRn0+jSlO6gk6k3mwUnR7CoMN4r+Ir9aksZKTJs+VukCEhLBoVS9S7IM/2kiWpnGJ4AFF1N9jFwYRJqQniRGMin/uXRgvRJsunE8UA5493TYtK2rbRPdqu17iOj4Sw+OQnWZ2khGhCppS1kFjlXpiKUOUf7sZbY3TjPCZCl+OxIyRcGNjVSgfEeWs1/rxlZ5MovDSoC6V5uwstIiOqOlwJJFIi9ioxhkz0TSJqEleIQ1eIU/UxByYNmpBcE5oGsNCb8DZ1WW2tvcYXbvB9mjI3mRC1bvGpNlnb2dEqbDcLxlgePu1N3nztddxLtRmkgIRod8rKAvh9VdeDxWgfBs0HI+Y1A3jsa8MZdQfk8OX9a5FUVHmKuM1unS6alWH20NL+AsSPC/x99i/SBtklWZq6iva8Iv0KQz6U1WiSNZAZqhkBxH3cxNHRCQgbhbokW/rViTNUQwUMfiOKJbuVG21fmNBAdU2SsZ7r5KTxs8nkmg3OftI0Ex5f47alerQoUOHDwHS/olCryIGY4RCvAhrZZwXFu4ZcAVFWaT+z4hiAlEDYTBYiCdp3HR/G/3wNW1KMjW4BszcMXpnP8X+j26w++wWb7+yz6tvNyyvv8IDZ6+zf+MKmzvCbgNDgZ/9zTPo3zzDu8A2cAPYBa6qsgP85bd/yA+//UM28aLFQ9qKU4InaCpgBR9zcxIfd3O1GzTeHlLIiE45RnJtRe8Yi+nhwRYvBLFeA0myTVmXid2SVUwKk0sbDvtDsGqTI9SFlCqnmpxj0QaLaVj+GdRQbCQcTxpHZCSNi9WrmDIdkghv1KOJ504r0tumP927S//e8Bdt6hAyfqSUEIPkBGuhqa0nteK4CaaJmpjKUGSUq3F+UBZLrKZIaG8cqxOvL6QtSUMsxR7GX94y69zROTqipsPRRNbDi3o2PpW+S6QMSdMihlGmRipvMbVNf0JADahRmkGf0fIS/ZOWE0Wf1ck+TT3m5OkVjh1f5NyZHk4rtBbUii9DVZhUcnBklXHjePPV19l49zq/8g+/waOPPMKNzV2GozEudByDuQWqqke/mseYkr3hFk0z4djyMoLwH/7gD3n19Te6KID3hZyRASSrypRBQ0+u+XrtzNZY4OZRGUm4NhoFmcGiIfxGs51HQ3WWcAm7jE6nm977qN8yc7Zp/fsdivemNgq19dVCXDjxGOkEbTXIZJcJGDMt1BcJL2gNkDgz5o87Bx+xxdShQ4cO9z/SwFUSMe4d5YIrSzCGCqEsDdVcSd1YxuOoCeJ8qoiChm34SIkGax1N49tiwZMl23jyxAH0wPRAFs/B4reY+2pJcbLP565u8uD1bU7/wtcxj3+OL/6LfU5+a8TXR3B9AqeBVWAUtjka7TAZD/mz//CHvPTcT/jH/+pf8tTXv86YNoonSuQI3llg/O4pgQHQjMf8H//m37D34otM4vF1uE1kGiRGMGWR6Zb4SK02kka87osY/5mWD/AEgic8bONorMPaGCkTl2xdNSoh/Sik1wAQyZRSEWmLVfvlDRZHoyRpAqeSRcQEoWHPvhAjeDyJ4xmfKC+cHEKZ7ZJzHXdw6e4BWuLE21H+enu9T2U0cewNa4Y9ZVx7eqCXbGa8ERarNTWBxcklJYy2IeGxFntBNNaw1jGuvbCztZkZFm3haN8dCcv1w0NH1HQ4eghtAxCUXL0gsLqDuh9h8Xa95H6PvK1MLZlmGWh6FZP5eapVZcVUSD1CmgnrJ1ZZO7bE0uIK83OLGC0xaijm+piqpHGWxlm2xpa9ScPuxibb1zf50hc+yy9+82u8deEaG9u7VP2Koio4vr7O/MI883MrlGWPjRtXmUz2efTUGUqE7/39M7z2xhv+nLRrwu4KMv056tHkZI2mPqx9jmIfFD05iaCZYWkyCZWpezSbqhY7oUMJnpsc9iyhNP1cH33PQzTGbPCg2eC0EW3JmWgHuMxKFjz5kr5Le21UvS3YErO0otH3/Iw6dOjQ4T7AB9jYRZLGxLRd46NsChXEGHr9ElFlooqoCxEMmhzvScDVWZx1fqAW5tXAHrRESAlmDmTuJDL4LP0nNumf22Npdw+G+3D8t2D1H/LoA/DoTc9dYecKdneDned+gn3+Rf7Rb/wG3/qf/6d4Rrd13rs7O/w/f/qnvPjii0GnpMOtMOvACrHr/v7H0tlBpTqSgK2GSXR0+U7fpw8ZLKH/tkGk17pAqPiOPbfxicsKbYGI2O8HZ5uL/6um6A0LWNry1MnmU2mjZDKvkEtkjUmOuRhVndsdMrPeLYN5Zx/Jg57EDw7pWLxeT+2USaOMRw3jiTCxjjJWeApi4incOZXemhllGQIxQyjNSxsm57x9VzsvXhwja5RMSDhZ5vmpdhZbR9R0OHoI763Da1UYURYKoUYZhwibKaFYBZy2kTZh5J3EyrLNqipGCyotWOwNOLa4yO7OmP2JZb4sGFQ9yrl5ZG6J3UnB7v4E68Y4VRYWBvTnevR6JUVhGO4P2dwbMprUWGe4en2TN89fZmPHR9T0dUBpK7Z39hjVlr1hTVGUjIZ7qLOMRhNKTBBKO1zMtsPtQQLRL6k/yToE8c+RVfV9THaRNTw3swEYOYEye08S3xN6bxVS2cf0+0wHHMmJ2Xt80OhpkcLEP04I19q5EA1jQmSMOUhSZo40v6qGcOa4nAM1eXSRhKIFyoTWk9qhQ4cOHVr4aERPxMQBdYFBVMAZH8ncOApRBn2YK4WlqmRrx+ImIZImaYiAcRaxNdpYXBMGwrRRLLODs0EBqz0YFAKUUC6BnIDiOCw46K8dfuCzuHEFrrxJPdxijGKTlOmd9Zyx2E1nf70HMgOldZpEgz0O7gn9urZ6fAIWR62hKqoanHr1EqcWZ3xEjcvTj+Lu4gA/hK3YMMMEEqARhzPQND5aRoLAb5Q8aJzSWKj/f/berEmSJbnS+9TMPSKXWu7eG5YByMFQZGSE5As4MqQI/yIp5I/giPAn8GFeKJQhBwshDRDoHqAbuMDt7rp1a82Mxc1MlQ9q5u4RGVnbrdvo7PJTkhWZsXr4YqZ29OjRbAzFicaMEwptk6cOVYzZntYptMV2Npoh+5ncyp0O/Aalrk9u2WcHf9/GI76O7HklbPa+vvetqYvqdxosMJTAbid0a/FKgXoZkmXKnLUMZoKxnmzmJUxkkqzVS04LZBX2CjvzOMyaukc46PDVvur89kPFQtQsuJMYa18FOvGJXWwypDtYbNe/pU4QwLRiP3g/Z9cDQkfHWb/i3vkZIUSGrFz2wmrd063WyOqc7cvCsCnsy+AqGoFLfMBah8BuGLjeXDOkjBq8eLnh62+esk3+fIkRQ9hs96Ri7PeJGAKa3d5uGAomWstkZGTrF7wLDtm7mQBmDBBPtWxu586r9vsN01rqvFUnoBaItM+58RntXLYpWzcXjHF0X9suv719y+7yuWKVZAFuDVjm5fA01c2MxG2/HHgC1aCrVGn0ggULFiw4xMFasXV6Mtzs3UBUEDUiRt8bl+vIZxcRy4mnnZGLkccOPYq3YC7VdITR6mKuOJ3PdX2Eyx76UJ1m4znEh7CK+Arw8tZtH4kBU7h6ij35irK7JlUlxTQLv7katdE7y5TxZrgZ41T1SWM3mHXXrLFRwbwrqgUnZMRTK2pOkqjOzHnbJ7R5v/0yBnVNx+OfVCqBozhZ0842E+/qVNQqYePlT8lsLJNurzuomK5qkLG7kzF1rxo3o7Xkrtv7Lkqa74CsMY6T1I1Y8u+YEZIKQ4Jc/WcMqunzEVGjVNkzs0wZ1XBQJoYzMH5GUa+aGmhehO0Itozb4fc6Tlx+iFiImgV3FEIf4f4ZnHWBe+vIy62yHfI4DTcV3mGHn2nV1viP4wWf4S/sV2vOzh8Q5DF5yJw/POfTj85YX5zT92vCeeEsKJvB2CefeHJWvvzlI7bDjqyKVrt5Q9gMe55vrwkhEILTQULPWbfmbLUmVPPhFN1M+HrYgxaGnMfgQ95xcP7Q0ZQU8xgtntiXp3dtfWJTa7zB/reW3bHDAG8kher7zMmFloSYP6950xzO2zc3XI5+v0vy7BY2FXNJbFAYFBA3dsQ8Vgcm8+Y5y8aM7GqPiYxZovb8Jl+W5fpZsGDBgpOQOn62n/ncI0GQrqPrI5eryOcP1vzR79zn44sV3394xs//4RlPHm/YiXKF0rfcuIBJIORArKu8plBpifc907wVLgLdp5Fw0dj6C+Bj3IHmPvDJq7/E/pdYesK1PmMTlevQyqpGvevb7ZO3fsWHh9umVcXdW5Iq++rbOGSja/5yY5aqxWdH0VJLUgahmFHMzW5Vb//MRvyoQCqFVLTG406aRBXvDIWX+xQ1SiloVdzESt5gEMwQq543NZnr6hFFZtsqKGJKmPo9MS40jjE7mZrKf+KYZFSXjGVggGgjVOqTTd+KrDmMIQ3C3J/HGFTZJbjeKldd4cVG6QE793WJZ84EYi1bCJXJymXahhq3eamUd3pyiZMfRyug2eqhllryxkgcyfjdb99tH2L4thA1C+4sYoTzHs5XgcuzyJAbEWOjt0hb+OopkoaZIsHqAAk+SgQIXU+/OkOIaFb6GLl3viKsekLsCL1gKMUSasEXyMV48vwFj1884/7FBet+Nc47Q8ls0p7z1ZooESGARfrYsep6xHxg0+CZn31JlJQoOnfdWvC2aKRHmf0RZof65MjfyJPJ/n/KxdnstadQ75/aUs6IGpndz6EAex4M3qakmWcfps22g+fdxTNlJGt0yrjEFuccBzXMSNb2xwEHJyMpayMbNvug+e3CwuLTAAAgAElEQVSCBQsWLDiETONp/XP6LQRiDKy7wIPzju9/fMYn98/44ceXXD3fcxYCJdQW3WbE6ARJoRrHHo3XLemeZx8fVoF4LyJ9nSGtx1U0n4B8RqXwK44Hc8PyM2z/C3Z6zXUwhqqoWIb97xbzcwYYlTROsJgTJqW2zO5m8dTshVb/t5GoAVd12Cjg0NKeMb3QY7npHhX/3KzVfLiSLWj1vjFDTclqaCVx1F2EnYAxL92TerLeDCPmWTv/1Mmg4OhLzSFHMd1MpDKxKU5iyIH5oU4vHgOgNzujD8jWGiU1lU8rCU8mDAr7QdkNxnavDJ1gGST6WsWEWgpZiZpcg+kb2cgZIdqkc+ZfQZtEqX43CY2kOdraD5WVOYGFqFlwJxEwNxhXQMtkMoZ5q7mZ8HEaP2zMpvt4LU2RN0ob3KMGegnsdjseP3vCLu+IK+Fqm/jloy2r/YbV0DPsBnLKlMrN7/J2JHwuzi+9RKqrFdhmrGLkvF9hauyGgb7PSMyoKaX47GNq7GxLsUyM55SUvVZXAkg58N5Z8O44UMbMiQBu67BUaT2bkgbHPM2pQ9PuawFpm1+bOf7xlP4qJcyrskd3Ldt3vK/a35k6/6eqrAlCrNdw87VrmMcoLWax+oCoByIiU6LOjYplVvK0XEgLFixYMIfnzd0gOIgQWrviKEh0dWMQ6EXoEXoTVsVY50KnBQmFGIyzqqLxZIW7h1pWNBdMdRzv4ZCkAYhJWW0yXa6yibSF9ARWe+i/Bn4Hb57dUOrPC+AaWW2Q0HHRdQQ61oT6vV4C3wAP8J5Or4fhNhx7lhnjbTCVoFXSo/6ouS6lmJM2XjnT/rnSOYYa29c4rSW4TCEXZdAyttFuGNu9CyO5Yk0JY7NGBdGqkKP5FAqFOKqfM1rLnSqRUbs/6Yx0stoZyqwqd6yuP+ymGfFtZ83EyTj50lXiogQDEaJ0VYlW96W5qU5p0VINeHQMIF99djbD3tDKCSUQxOp+9IA0AS8KXOyNJy8KUQOfrIWzBPfwl9HFiV1rAXMz3pkH1qUejBig1G3PsMtC0oBaqIbjLepdrq7bsBA1C+4sBB8fUK3t9BopI1VeO3PwmM0Z413m0khpapuafXflXiClxMvra3JJxE7YD4XnmjjvBtZhz36/J6VE6AMhBkrOaFFEAqvVmtj1SKitBs2IElnFnl0ayEV9OgjuPK/FPHhRJemebJmUowc15gO3NRZ8wVvhJKHSFvUyTfDtsRvKlPk5w5wYmeiGyvMd+qFw83WN5GltQOdZvjlRc4oI8uf4p59Sz9z2+28a5vv6eDsLNaDK0+8tnIqezL35frMdNU9wHZBkNlNX2/yo/SbvqQULFiz49UGOfm/mnqOytAZdIj6HRSCq0Bn0asTq5hEFenGTfpVaMmG4ubDquIhvaprjBEUoRpcUKW3RN0DaQNy7gQ3HZsK+xIYrhGfQJSxEVjEiEumlJuXY4/2lLt5qvzQaaMFrUBfrY9dMm4xqbbzfGRdtChebzrOAjASMwOh/ok2JXEuSiikBJxJhFn/RFCPT5zXuoM3/mGHi/koC1QOnKktMKCZka8VLMuv+1Igfm3xpbLJp0YPnMQUf445h2lYmUqn9EmrnBA2+P2Kt97bWZW2MXWRazzDvW2vcHs5M13FrhR7afTNJTwG2CptsXO+Ui6i83PnbXvRG6ASJrZWTMZZAtcCrKpJGVY3hB69uXlH3vynaaDKp7I/OtnSJyo6xEDUL7hxG1YO58q6XQN91dFGJ4nbC2UDEmfM2gJ8ax4zmc+WrbKkDhxGdGa80uyBYhNwXtNZortc9q3V0V3pTuq6DEDjvBIm12w9GHzxIMOnQsMLtupQYAl2IZE2QjTRkSlGebZ4ylIGLL9b0oZu2b+kt/K3R5sVQJ8cxMLWpC9S8+1KrQb5BmhzING8Sgu331m0K6lzYJliZJnibvdObKmNOncenNu838XQ5tU1zU8lGrKQC2wFiMNadBzCtC1SUSUUDfnvA4bRYZiTkmih5oToXLFiw4Fa09VP7F1xCozFg4oOwmCsdwcgYFiP9xRn9asUqdLXUpIwVDjNb/VlbY18YJk6U+kqHhh6TtkSJeLnTqt4eL11a6uNz4CGIJ8Hi559iq2fEex/V7lIPgM+A9VvtjlV9xfG2fmvcNSnsW2Cam1uScSrXDtQ5vLZyNmUs82mGs6qGFEMlI5VE8c5LjSSYERU2+ceUFiqPXIL654Up/mpKFKWZCDuB2LZyog5sjOPGra+MidZYQkfyhvGzG784tiZnruCZx6AgtatakA4JQux9LRJZ1ecVDEhRa+mWf4iUiFXTYzPDtMY4TTJ8EOjUkjDz79kC00YWhWoYjngr9F0xnu+8MfpFHLh/FtAcOT8THobgO7OzetnNWKTmbRXED3AzF/YgbCqDY9p/niythNutfgIfdtS2EDUL7ixsHBADMQRiMILIOHAGmFa/t1znij/mrZvHZTwmMnOp94HEAmjnbLyIEWIghEjKimUlhhUhRLpVJHSBghuYhVEGEPFLzh1GQmW31TJJlZQzORc22w37tEeLEpqZCqcG3wXvgnFBP+5am9RZs3mlJl/G18yJlBnFc6vi9Lg059go+EbSZb5Js/tvTl230TKH99gsMPhNhhz91uTKAEM2+liNn8WTN3F2II7Nhdsx1PHOaVHALPFzvN8XLFiw4EPHmKBof4yoxqYieEcdLz+neo+YCLHviF1HlIC3Vfb3CP6SNrrX/2deIpxQkkqEsKor+fqIBTx+WjHNpu1VdcXPJcjl9F73emJ3QVhf1Dn8DDcjfjs0mui4ROu94HVkzR2aqMZEyIzTaLc+D/tRbwSBhHpYmRJiLScpCqK+oPeZPLiR7uzcYXqVP8vcbHfqMjVLztXPdDJjOu/UqsmwTaRM+4ADC5r2DWdKnUldMxGQk13LlJkbVdsyHe6RwAlOkgQJ/nv0+4J1I6FlGBoEMcOKf6lQiRkdk9H+vUvLYB0Ff83Tx6yaPpgdeOOEqnxTvKnDNim9FJ5tMqqB8x5EIg9SfUHfgi4ZPX3GADpwlH2bx3ZVTVXvHo2E54dz3PR2ID7smG0hahbcObRpWRW2CfrOWeVS2VpgHIDawq11gRkz7LSxQ8bJRSojHCj0kuhCa2NnmBXEhGDBB3sxkma0wDA4wRJDIgTlTAMrE2LXEztBJFJUWHXC+Sqw3SY2w5b1dgsEur5nFXtkFQlR6bueUgrXuy27/cCQEqq6+Am/BzTCHxjlufOg9GASbZOuTYFmC0IUG42I53FWO0TH3mrHM4zNzsP5fHpM1BzHcMd/v+6UuGunTJPCD1Qz4TLtq77uaxWw7iZxNgZntFBuzsVNteOtW8Rd2zcLFixY8N1jImNaS24xH48FRSVX0iZStLDdFobLgpaCZf8RU/ro86ZlwUKgxI4QEn0deZs6ZT6O10/nk/OOP/z4jI/OKiGzy/BiD7F/jbXM3KZfoF8Dl5zFjnu8+4KnKX+WOeN1mNnpmlMyk0/L4d5TNTQrlitJot41qRWpCe4pWaglS+28KZAzSFAINp6j7TNyJXqS6dhJsnX7EhiJlayTd40iqAhaCUmkqmXGRE/tVGROSsj8+9icvBnpkIm0OkKo644Y3Eg3rlxRI1b9NfuOEAJd7OvbO7li1d6hi4YVMO0r6ZKrVw4TkdUY0PGo1AZLBy0vpW6PERCavcKgsBXjhRqalNUmsS8RFeE6+b4+Wwv3ckBiQDqdFlxzFqx9aFPVKGj2JlG5+QUdbgqjlOl15OUHhoWoWXDnMJ/YU73gp0Fy5GUOr/VGyrTa2elOJkYeMCOI0YmORltm3rrPLI51nQiUoqSipOw/sVMCQl8XhVGiy4br54Yg9J2gVhjyQMqJlJJnnUIkdgFEiSESRBhSAkvkUqba3gXvBBn/O8TNaevodzva6zbdtHKbOYE2Bik1i3jbIbuNiLntuac2/+Zb3+2ynhbYNLKmEWXtThH3rrEIUjhQ2U45GTu5w1qc14icu9S+fMGCBQt+bTiemGxKXMhsISq4qWrORil1MWlTp5wYfeFoIhQJELzNb0u064mPasqHyz7y2WXPxcqJGksF2wzIvXKgZj298YUxSgwdxBWdxBs6nLdBU1/c5fn1u8YYobZ4nGm+neLXmU7CQMt0zoARmJEgNr1XGU+UatrbaoswJxLVKglRk7bqJr9l9JqBUe3RlC+1w6Sa1IbaYfSlabGUl23ZSDiNyb05GzXfB+17M50rx5H7pCZyBY0ncwVKJWqiEGKk7zoQoxRBLRCLtwrXWsZdQlUYSaneT3Vbg3MlVj9sulrmjjZ2c3ucGvPuXCrsghHVuB4KhhA7RRAedAoaueiE0IFIcFVUbDTdRMwcyJjUsHGfz/wZRx8soMxWZbNE6Iyn+yCxEDUL7hwEd0hfdXB2Zqx7HxUE84lYpoHnQKIANGMLoQ664wp+lFmw7uHhZeDhR/f46LPP+cuf/Iyf/ORv+cPf/x3u/+B7CB0Q0KKUVEkcLVjx9tolZZLBUDs2DcMeo5BTIu0TUOii0sfAqusIEhGEbh1dTvwkoNnYvrym5EzJxQdDZnWdC94K88lTbTYJNPUm1Br26fkNfq5UJQeHk0ZhPhEeTs7H9922XfPtO3X/zan1cNtOvd/7wqQ+esfX19vXvbx9x0wrDmwht9RuClUxhxtXrsy8TDoIKlWGP/9Apljh+JgcB1ILFixYsKDiQOLijh0eKgmI+1P0feT+ec9H9zu++Czw4L7MiHMhVgNfFUGD0JlhQyIRsNARQmFNIeNjfvu4B7hN8B98/5w/+q8/5ZMvzjHg6X/+O579yX/gk//+f+SjT/8l3qr7FLb15z5wBsMWdi8oZSDzbgT9GDe8w2s/PEw6EjOtZUWgGshqJDNSMU9sxkKxMMvG2BRraVPRCKW2zTZxS4JmJuydlaSWFQlS2zDl1qWpbkmoKhk1HTsoja2+m4KGiVTyN55kt16iM+/s5K8r9fuN3a0qq+CEZfuZxxpTcCIIsZohx3pZESIhBM77Nau+597DhyCwuX5BzpnrYY+aEOXCvTNLdl+d0GPqCWZVhVyw4Nvbvphf0mOaGZg65zYStlkCJHPvz0JgQLgSIWUjX2WGDEjgfjIGU87XgfsSiAFipC68uonJsjDLWtZfCU42BSdxmal8ZE7atF22BGoLUbPg7mH0qoqw6qV2i6tD4bzesV3xhg+8je+dkzXtuT7CghhdFM7XgfW6p1+fsRsGvnnylB9+8TlCBHPeXw3v1lQHfrS6yKtSSiGrUYr/jrk0OOcMpoTgHWxa60sQQhdGAkGLkTWRU/Jsg8gSLLwjbmQ35vzcbH3f5ozb5oW548ttpMnJ7MmJ+28jZk6992Huw++xo3tOP//d4PtG6qXTJvs3fN0rHnuT7TokVmTymtFagx5q2+36vDA7ZrXBmr+2xQnje73tlixYsGDBh4uR0LY297UMmBBDYN1FzteRy0thvZoUjq0pQ5A2XvvvoS6oLQQEpaOR8dPccQZ8BHxyv+ezH1xwcRmgZDaPH/P0b/+Oi3/9x3ij4P6WrW6NtGtXp5Ig7TEtdW6Zz7xvome9uU8W3IZacjPzcHGyYvKNLGZOtJR6qzqt6VtcZl4W1e4bfWDqzD/+raAyqURCNdlVjFIJGI/3q3clk+q+WapMjSNk2n6m7fHHbHqtmZdJ4UTQnAw52A/jv/oeLXHMXDHi10ms14xJIETvVLbue+7f83PY0o69wC7vAQihR8XQqO5PEyJIU7IJRdTP02by2z6PGQHStrnGT1L1NFhtZ87UAWsAX4MURURZrxVFWHeGCZznCBEiigVxo+FxrzYTIhl/rH5Xk+ruPFuztdizbfFkP/1hYyFqFtw5NM8qqO16pcoXq6xu6iRptZ60Lc+mRXZ7ThiJnEoAGTw8P+dHn3zK3//dz/m7rx5x9eKaH/3wd7m896AabRUYBlLKpJzpYse6X9XBHoopxZR1t2LV93TBF5qbtOH57jklQSxrrq+v2Kcd6/tr1n1PsABF2L3ccfV0w0dffMFqHVl1fR3PhFAzAQveHo24V5lNChwkT8afccKQVhI3b4N4C9Ezu6udo6FKvYudVkLdNg3dppSZprTbCaNvixgjHz+4wAyevbyayYxvYpxTv+WGjCXNs7/DLHDyQMdTPSUIuatTeFXTdExKqXnZ4xh3WU3qzA3uFixYsGDBrTCaknQqDRel+tYEAt650hB2WdklY5cCGUji814uBSvK2FOnZu+9/+XU9rpjavl90Z3x8flD7O//nM03z9Gn/5nuRx3hntVX3RYF3cPpnpX/uVqBnBO7jp42v8wCyDeA4B2fznGtztKm+xbU3ToRfK0TkpErQaMZshqDQVSjd4MYrEBWJZsRVBEVQk18FhFv844TBmPr7CrUaCbAZjNPG2ppjUg97lIJIFD1JGsRpaCoBfewMfPSIpxIILisR8xJIAvmsaMaouO39NjOqAqbOUEjNxTwE/UgSIAQhJA6QhDsPND3HR/f/4iPH97jv/nv/ohSlD/9f37K1dU12L6qkiIq0J0VTJWigqqSipcFxq6rnpZ+pprU6/XoUM1/1CCrl1iJeTJaCRQ1cqoKJBEkZdZXwFmgDx0FJfaFdQcXvXM0fQSJwigVEvFBpATMIv72yU8WCd59yuVRR1Kaw+Toh4yFqFlwJ2F2ONmazQZFmy1lZfr7AHJw056NCKy7nvtn5/z82TO+fPYlHz34hIcPHrJarzHxQVGLUtTbckfp6GNfCRpDcTmkBKGvfjOYkUtiXwaCCqKRIQ0MNpAtYWEq3Ey7xLAb6EPP+XpNrJ0PhGWN+b4wX8AL8+xJw9FEUQOQA8bkiKjh+LWN/GMiIuaT46ntOSCQTmz38WQ7/+19TWchCJfnZ5gZz19e86rp8n3wNG1/zPMux/up7ftm7Fcq2ybmk9i4f20ib2FKKNnBDhZO02YLFixYsADmY693dRrvHLsj13/iCuNU1I1ei5DxRW1TUFjLjtURPiBjqXGjXKrNBRFYxY6z/ozdi18wfP0IIxEfRGQ9nx2OIThBU0kaMei8U1QIgfgtMvRTv84PAN9iUh+VrDPligtdmpm/35ZaRqRajXELTuQ05U11/A82kS46EiKMSpZxE2efq011E2pBdC2nafGDb0/zpanETCuhGhcNbV9Y7WhUP6bKf2QyqRlVP/NuUC0tfLgLx/RxDUPcmyZo8CsiCF0XuVif8eDePf7F731ByoW/+fE/koZESpFUDC2REAzrvCQxZKMARQom4t43gFAqdyYnA0ebtTlt+2UscayEqrX9DmiAvij7odAH2GajT8YuKZjQVyFN1/Z5EExlImrU94GPJT5mUPfBpDe6HR8yZbMQNQvuLmq6RyVQorjDuxlRpsx869YjLsKbfGlExoEd6qAZAAkUjJ0q984u+d1Pzxm6jhcUPg3Gqg/EGIgirPuOLkbOz89Yr3peXm9J20TXBzqiK24sk9TQGLm8eMAnDz5j8/KKYbenD2dEieyvCy9sg5UNWpSX+y1bTWTqAIxRGk//IY9W3xKKB1xtHT+SNM187YB0scP9fCyZmd9vU7DZTAfblKzGKMFtjx+/vH7amOc7/oiJkjw1+R/i254aAvRdxw9++BlalMdPnqNlsuEvR59w2+cd33/qe516zXw/zN+nmc8JHryhNnaANIFcVbTN3Nnb2k/ErRmUApoNLbeH+gsWLFiwoC2EXb1QzHUsLengBExhSMp2Y1guUDJX+8yuZF+MhTAqmmOA0AXKKpLPVkQxQkzs96CDj+sdrof5DNxE+P6a/iwTysB295A4PCCE7wOfcHvp0zH2wDWBQOQS11e8Pd2yzBdviqnoR00Ra12fhIIyoCRTsipDEbrk6hZT2BdlX9RbUwdBqytwKv78QqBIcL+UBOJWkZPJtfpPMe/ehHob630IJBG0mgxmLWTzMiqxMB3YUN/MFBFDiiJayBq8lEozgpLVm3uolko2afXVqZ48pbWmd5LHKhERmtxXI4jQR//IHCIxRh72ay5Waz756JIf/OBT/vjf/luGlPmrP/kHOjGy7JGkpH3EtBCCf/7ACiODDE4siYylXmMMBP5dAQsGUjXLNnWz8pIu96RqKybzd3YCKwshOiFjyeg3mWCRiy6gK0CEdWVbO4M+NMkTlCLkDPudkTaFnPQoFj59dc31NcbrY8jfVixEzYK7iVnGfGTJmYzG23PmBHkrh7TGMM+ueCdBnAX28ial6zrudZFn5sZZGiBGIdaBMMZAiNCtIt26QzZuWOZCy1CVN8UXtyL0/Zrz9QX7zRYCdNLTSU8ZjL0kSimUUhhKIpuO2QAf6z7E4en94iDYsuncGEmBOUNw/NxZQvH1REkl/5h88o4TGreFiseExjGpc5vg+32eHTEI9y7PKEUJQWYdAQ7JqyoUO9i+1+FNyJrb/vbMmr9Da7GNONGmdljVpOOFPx2RsTX3ciktWLDgQ8A7qSPMu93UUpKxG5+1hVwlvqtaJiUv8ghS2OdCVkUkTBYZ5hqCEDxm6rtQfUsgFLDBPzXiWpgz8TlIo9NCISYk90i6j5sIv7I/9xG8sbZrf/qZjuftsKiZ3wZzL5hK21TVSTE3AnYfx0AOzRPFjYazupFtb4Z5nRK5kTUilOBmxLm474wnbpwQ0arWUfyzGi8yT4DRtkMVG9N27cHJENu/hi8s2nnfTnwnN2q3Ku+ZPf5uNpkO39DTtBjSM8LeFjsIOQoWhVXoOYs952cr7t075wc//CHDkLh/ec7Ll2u67RlZCjGDBaGLnXtZZn+v9iWlttk+WuBM2zE/TjB2tmqPtuhVKgs277yZBQaFrriS5qwLpGSEAF2BYEIWQVTotPpvmnhpWxFKNkr243T6ipoFy7ckRT9ELETNgjsHw6dfDxTATN2cLBvrmknXRhpX1Z0PwD58hTqgjUqH2fpTAuxz4flmTypbUjEGvBabTzKFQAzBM/Z1UB72O/Z5TyHRra2aFQcfiDtBSkFTJqdCSkoIkdVqxcN7DzlfXXA17Li63rCKwSWVQaE3Pv7kAZ/c/4j12qW8QiWb+GDHq3fGnPiYFC+tk1CVfTIRfm2uaI8XdSl3e6N2HOblOq/77Pa8yWptuq+1DZ23LtXZ6yYSYq6tufkZ3waC5yljUTbPrzyLVY1fVuseM6PsB2II3H9wgarx8uWmBiWnMx7H64TXKWts9nMKCvWCntRF0aA7PgBqE1FbP9lkVN+ymNQtWLBgwavgepq2jCv4AreUwFCM62Q832QePd0TQ6CTgW+eDahFNyJVL31oJHonQDTW6wIRSgzerU+N8wzrKtl5GuFnj1/w//74S8hbSFsoA5Qd+b98wVE67jWYz87v1mBbcA3P94EvcWXRgptoe1YrcSLmvkRFvd3zUBUz19l4nmBdjF12FXwy933WBEmNpIZlgwybZGyTMVghWXEFiyp99FbWnfi5JXj5UvOMEalkTZBaD+1ZGitCsECSQBFh3XlMn6vHDCUjRdlIYBAhG7Wkyia/FwtHRsnUblQ2qvQnLyMZgxqZBYEazFX8ndUar4xoRy8QVdk++pqUMl0wzs4iH31yzn7IdLZDuhWX3/uCvMs8/skjdlm56nqsKJazb1slWlqsozUTGdrBOsgeTttoTVUT4kiyeULMybJ9XVt1CQhKF5V7FpBekF5YSyCYoMXXSRKltj6PZFGSFEwiIUS3sAm454/p2AxmTMTPNu9DDtkWombBnUNbcCk+gLaaVVX3rzITis2XaHg9ptTpvcoDDwYDA4IrarIq230ileJGeHSIRChVxthY9/rCXKrckVIN2H3QCzNm3oq6NNOqNDEE1qs152dnvBx2DCnTSawO8EaIwmq94vxsTQxTN6glq/PuaAv70bjWoIhncOaPt/OhHeLSfqakxUSatSzG7DE4fZzmc+PxnHNM+Bw/Pv/cU4TI/HnfZj7zSdwYdoNnnarRToguk22Z0fW6p5Sb+p53/ez597aje0+RUqU+MdeDGa1O5vVCmatm5iTdKRJpwYIFCxY4Ro+NpqixSRHROt1kNYbiC+iXm1w1xMJmW1ALZPN51aovSQwgtdSj64wsePqrV0JvRINQiZpdgKfXO7765TNC3hHKlnPucS7n6H7ftpI3H8FrikPebcQXXMNzyZRQWXAazaNm6vzUPGc8Ts/qiphdmTxqBoPBDBJYptan+wlk2dgkJwUH9Z9Wp74yoVdjFT0J4x5EkydOqOqS8c6JiXCiRZyUiCHQx1ATd0qqiRxFqm31rLPrqEKZ/0zfs5E0No9arJ17Lcs3U9fUvz1w87bgIQhiSrq+JuVMCEbXBdZ42+t9Z4RV4OLhPVKf6CS4WbJEX+e0DZtfH1KvZ2D0g2jPadzIuO2tbXaLvzy1aCKjqjkrDMXYZ9gkpevF/akiUwmV+VpMalZc60+Zvb9IQERHvx6YKZqOIrZXJfB+27EQNQvuHMwgGUiBmBjdxpJSB/JDtUJblIcohG62WDchqLM3IkLfBfpe+Ppqy+OrgU/ur/n43soHv2D0XeBi1ZFK4Xq78UEmeGbHF7gBzAgRQjS0KFaKBzgC3apjfb4iDQJWSHnHLglaEqKFzfUeU+X++pJ760uePX/O9dU1m+0WK7Xulw93sPo2aMc82eR1IjYpaNpzDn/x7Fnm9n3+umNxG/nS7ms+K+uV1/FfD34eH7ap9qajMnuX08TG9N7veo6oCCqwz9mDnRgQVYbdMAYkKStPn155UKKnP+9NFEZvg/lrmmjZqhS3PdZFXwzMr3tqwKCletPU8qd33Y4FCxYs+K3GAcntC2NfYDkxnopyPWQeXydK3CPrLZKNsDeeXyW+ufZJwdeDnks/U/PSiNgR7p3TFaUvhQfrHXq+Y9gKaSOcR+W8M/7+58+4/tWW7/1ozec/XPHDjwsXDzKsjTdX04AvcVacn3/K/Qc/oDKlQEIAACAASURBVO8v3mmXFF4dB7wzfluzBa38R5SCE3P7lNnUeLmY0YWOTmJdwEOTNK9VWA+gWbFc2BZjm41sSq4tqEWgmJCbSV30HRmZEjulnidBKxFQ5/1UyYIo0EfjwXnkbBXJsVAQNntls88M9ZxPmtzGQNXjxZp0LcWbiWTTSuYwGvC2oMiYkzIupQlVka8mmAWGsKYPkV4jvUXKOrLr4NHT5/4ZnWAxcP3I2O0SL6+eY0Q2+56SMvv9FbkMkPdQ/XHURuEx0srEzcYk93TaGRYEC/VWGsnkf7vvn/ea1fq4iic4E8quwNXg+7/bunnz2TogoVp6ixAIZBX2gzIkJSellNb6ZSKv5gTWkbDmg8dC1Cy4c2iL7qKQWi++7BmceevEtliL7UW4DLIpJqiMezMvi52bZW12hc0ucbaKPLhcjQ7vIQirriMNgzPdsSPQPNIn6WB1O8VMPWvQDItDlWHiI3rWzFAGimZMlWFIlJLpV2fE2LHd79gUJaU0ZrWWxeW7Yb7f5sqYWZ4FOCw5sqO/5+81f+1cRfM2E4vg8UUQJxliazXPzeM838bbyZ/TCpS3gQTPdqTsE2kIVRY85JnayNjv07gtr4Pd8vttz50IKrvxWAt3ZnGdy53Vs7XNIapJapqPTuto0JQ2y3W0YMGCBTcxagJmsoEa0aB4+VMq5pn0XebJ9YAkkK1yvS1sk5d0BDFElCjqcZkYREFiRwhGDIEVmUsJRAOK0Aehi8bLqz2bR3vk7D6rjzs+fajYqtTYquGYcT+RMjBfsYawousvCCFyOJPe/OYTptTId0bU/CbjNnnva9DaZUv1mVEJtWROSbmwj0JMmRggioF516X64louBZYLmgu7Avtitauq+x9JVXCJQQ7uG+lNRAST6Xy1WjMTavxMJWmyQC9ujHu2ipyfdyRxnxyVqQW4txdX1ApZqSbCTtSo1VuamobD4PBoX9pM2dX6MhkBlYhKJJiTGnSREoSX11tUFbqIxI68M9JOGYY9aoG036ClkMtA0YTVLgnNH+jg0NX7BWq3p6qgOVKZ+VeYbXz1AbK2vZWA1Zo0zoaXtOXALhtnhVFNp/UYGaGqqmrCrK6Jxs9qhNKt7MwHddWdxELULLhzaAvopEBqg4ZUed/0vFaO0kpbQq6mo+IDe9cH4qpDTJEqyck75XLV8/CjNV3IvLh6SexWxNizXp3x6SefsXn0iJdXL5CuQ0KcugjRCi73gNEHt2DNpmTg8Tdf8+U//oyoQjB4/PwJJrDbDaRc2G73lKxcnt+j73s2+x2lFDb7PVkXNc37wlxxcbw/FRiY5opTJM38/ghVYjupdI7JgDmZc+w98+nHay7PO54827PZZUz9PduxPnW8W+D4vrMNIQYefvqQIMIvvnlOCIEvPvuYXApf/eIbSilvHLu9yXnaCM42Yc9Js9viHWaPj/ugZo2kgIiNNeujhL9+2KwMe8GCBQsW3AZjYrbNalWG1oUr7BI83QuDQdHaPaYoeYAh400WOpCihKIkjGSFLgn9ANIVQl+4WK1YrVfs1zv2l1vkypArWH0Eq9+DrWz4xc8GzuSS7uw+Hw/NIWaHd3RqM2pt7F0SmHvgIAbf/AqePeHlN7/i66un7NIz4AVwztjG+wAbnJK5oHWWMuA58DUeGyx4PawqagRBxVBRcimkHIhBGEToojdAOlTUwD4bAXUVuSpJIRdQaVFCGZuCqEEXI10Usng5U9HqGyM1KStN9uuRehFXlpz3Hf2q44vf/5SPP73gb3/yiJffbBiGQNFAypmhKKkUSjU1VgUrpfpi6oFZ8hjD2M0UUyM/AUQKhECOPRLd26kPkXx+hj7ouffF56zuXfKTn/4jIXZ89KM/JN6/5sufPWNvYPGSUozdbouVjOZCLoYWb2BipHo92nQd120UbCxxcl7EG6OISCVPvNOsChBk7ArlhE3wRKKYe9U002IFS0bceNHTulfKOtAHYVXVT4pgETR4OVlp5VESnHw9znreOKHe04l5R7EQNQvuJBpZk5vLu9i4+HZM2sNaGTWWaUioC2tztQBqNStvaDLiGs5XgVIyu32hU6HrghurEkgps9nuPDMUI9IGkdCBBMwKWGHVR6IIqZY/XV1f8+TJEy66c/rYs9fB23enTC6FzWbwtnUqrPoVcb8n58w+5dHsdsH7w5ysOS4lep065mBOuZmYOHjePH930L5bYLWKXJxFniDk8uq56pXbwGEm5F3Kn0SEftUDxvVuIMbA99Y9sUSaYOx1Ochvg2MS5TgrND9WBySYTVJfVb+1MKlpxhfX20WZtmDBggW3oy045/UcfqOY+mJ4XwohZfptqskyRbOgGojiJaeiRihG89/ozdskR3MT0hA6VrGD1YCIUrZQCs6h3Ifti0K+Kjx5uefias/zl9dcv3iJcQVsPcGGgvU4UTM4WdPVdfnjX1EeP+HF1QtepC0vN8+5evGNvzlrYD6fGPASLzRO+DITtldXbHJmy6Fi+9dyEO4iWqKqZq3MqH40rROqkxzuTeJldXlG1Bh+roztttUVs67maD4rRifuleJET6DgPiqtyYhKa41dKZTWnrpmd6wSBf35ivW9M4oFdjsjZ48jilbz7Np2u1RPHVNXy+fa5aklixpZQ92++e4Qm+0Y1P1eKkHSmRKA0kHphdCvMIk8fvKcrl9x//c+o1vXbTYDImZKygkrBayZGNdW6NXDZ9ymY8O+6jVISy62LBazbl1ta0XqcWzZSBvj14KTLsmqX01S9knZDcYqGklbXxRX4hDAREavG7VWajXLdJ44j279+wPCQtQsuLNoZE0bA6cF9iTXa5WQLtMzghqhto3rTOlT8pbbnfjgjJCuMy+2rSZV6YLShYH/4z/8Kf/3n/6EIRVSznSxI0a3lxuNuOqAY4CJYqI8ffyczdWOP/uTv+anf/MlfVgRpElwjVJcCphypqjS9dFrWFUoxfjql0/cHf/Iu2TBu2NerjTvwtTuex1Rc0zM5CqTmSthXqUGac999HTH0xeB630hzR5702P8Ps+FUpRvHj/z33NBi/LlPz7CgFyNg98/MXNILgVOHxOd3T+vsfaAoRJgTWEXwDovJevmT2zqapbraMGCBQteBY+ragZeDUpdZAVXOOxSQAtoriUdhg++GToTT1oVw5ISLHFtA2FvRDViLMQ+15IVQWNGO0g7X/hd/QquHkHOkDKcv/ias//vBf/yP/1P/P7/8r+xo7CncAGssTFDH00JZuyD0y3X+z27YeCnf/cLvk4vePk//6/87//+3+NqmUD05fo4HwxkFOOCjh7hHFdQ/NVf/AUbbipsvxXetyT2Nw3O1FUCoaqumLq1iroaWc1NVIpVQqZ2dWpmK83EeuQbgndzSiIQhG3217TibydvDBU/utTuSlkyKhAtIiYMyejjnuHPf8n52Ypf/OoJL6+2vBj2DCWz3Xsb8GTuRWPZiYyifo6ozsyDbeJmtHE1dXMlNK2NE0Va8LPVBsQCeVhhxXjeX7G3xF/+x79m1ffEbkuQSPeXXzHsE189+pph2DOkra8ZdkJRZSjeCUuTd3vKpZFXOpVjNVRWyfe5k1q5eMmYWhxVyIx707OQNvteUZrfo1Xj4KpiymA7pSehuSOKcO8s0FeDYYKMHVYUITE1hbCjYGxuyrxgIWoW3HHc5h9yfN/c6Fwbq+NaQForOjUfdHI2ilYTYDM6yXQUrjdfY199Tdet6GJHHzu6GMbijfa2VNOtTKGYkveJkguPv37G06dXROkJ1ak94AtMA/9MtNZhG6X4Y9dp7xkClsXlbyKaQuOYpHldQsAMtntlh/5G1L+bGbvdMKmLzLja7H7t2zHnVm7bh/PrfAyIarBXYzNfONySpbmNSFuwYMGCBTU8krpoMsG0xUu+SC2qJBOCFW/MYHjrYjWkKhLck8IVEqIFyUrISoiFmDMdvgiRFcjax+8c4HoHT7ZeiLQD2O6AHS++fM4v+DHXwBbXxVxALafw94r46wa8yGmL62T2QPjxX/H3P65ZfISOqmZgKnsu9X1XwD18ef2EX7Oa5rcE47ljs7IgY+yQNP9pZXVmN4masYtSnbRFvLSpiCuRh1rXbI3wqaSQiXhn7mCk4CRjzBDN1T0xCPb4mj7ueXq1ZTcM7HIiqZKLx+CF6jPZtofmTzPFfvNk8XHSb7qO2t9VoULtqlkZkH0uGMY3j57Rx0C43Pv1tNlRsnK131JKxlJGi2HZv0MelT5tP872940DMm3QdCwUq41QbhIjjaypfoCtnKySo5XHQQz2JuwKrqjplX021tlNn109U3/qikmZ9h/MyJo5SWONtPmwo7WFqFlwt3G0mvMBwG6sz+aPt6cXaua+3tnFSOgDw1Aog1JQshkZr+1sg0rIA6KZPgkRqaZ5s0G6qWpqpsCqk2nOLss1200TDpVtrm4d/nWqpFIEw8iqC0nzHtEmideVNr1yemjZEw5VHcevf83Lx+DvN+nY/nNuSzs2bV++zqtnrn4yfH+aedbKzNt2j1Kc+qLXHtsFCxYsWNBEEbjkoZaXmnd9yQmInmE3tdqP258fizAUxYqiqd5v4kRNSsRgdNET7FHg/ipyfx3pLqHroXtUyI8LmmE3Y0ge4X4xbb6tzjTjeN7mgvZ4mf0APAZcM+qvmM8dbe4B96MJ9b0FJ3oWvBt8oV2JAa2tuhUk+0yvlaTJWtUwlQTUYq7IMo8CzDxCFvEsTB+EGIQcjT6EalLrxIBzIcWfX1trZokoQm+ZaIZEV9pcp4JIYLvfk0smJdAiFMuVNMJPf/MCv6KN4JgImnZza3LOwEItyzb8xUNEQqCXgpmw3Qspw0peEP2ickLn2omYPcUJmV3nyhl2ThoVv79YqcSPVo+gw20Zl0pte2X6Dn4kXJVWakFhnpFjY8xsTo75dWOjQkdESAI7hBcIloWw9dd0XUBDIIdA1kzR4J8hPo7Mr7sbypq3P91+K7EQNQvuPk6QNW3SZnZrJ17iA5UXS4UY6LtIUYgFcpna2Y1qGZytl1IwDs1k50SNMZVDtWBA1V/TkgXT9jqx04KCJvuTurhc/Gm+Wxwv3N9kX8/Pr1ML/zc9XstxnWCc3pfzx+eYX/bj9UzN0swVaLG+fhZYLft9wYIFC16DlmWvY6objOKL5uYbMlNJ+ErZU2VWBMuKVgMSMZACIStaa1uD+AJWENZdx8W9wOW9wGY/cLWB3U652tWWw7i65ttoPPf1558Vv+0lT3Aj2L6hnlGrnnKTQbXq3BvGlVil1FndDMPbP7curFRflkBwc19tram9i5Q1Sa0BKmT8M2ndo8yQ4F4qSHDT4KKUIliBsU21yug/c9yG+9j+5bZ90RoZ+J/1jtpUhKiYCqVEMBhkICjYAFjAhsGVQrF2mSq+PTlWZ6hKzLiaZibzOXFImsKHdtuIo6PvMfdS1PE1MiWiaX+rH0cBlcmzZq+wy8Y+w1CTZipSjZ7rD3P9zqTmGffvEqSNWIiaBXcSjfyYZ1PmzCwcLqZvG7iKCBYCxMjl/TUPH65JWyXtjJfXW642O/bF21EeGMHO3ltn7zcy1nK4XcDYhermgtPvaVmfrpVp6bKg/C5wrMK4jRh4E7xK8bHg3XDKH2hOop0sbWS6DlsH16we1Aemsqj2vMJyzBYsWLDgtbDKkpiMKygRJRShF+GMQjEjmRvDFgvur0dwwtzMlTVZEVVEYWVgBc4C9AIP+zU/+Og+/+pff5//6t98n0f/9IxHXz3nz/76EX/x02/4agO/2i3l33cWxkgkuEKmjPc3osbbOlfbgZLdh6X4cl7Hchj/X6iqrgCpeCepxlFQlTetTbcbCkrtGgXF+w0hpUOCEKQgYuTBlbiq3tVJRWtitVQisow+O28dN5qXGIlJNRZWRAoqkK1DRIhSMIG9GCIBTWtAiMWJmlyVNJQ9ZsqQfXtyU9JYU9bcTnJM8dO0Pw/WLe1eoXZjqtFWzUS7CXJVmwmItE5QkEVIImwNQlH6hHtRbQtEhahcJ2WnsFdjUDdBnrZjXnp1fPthYyFqFtxZBGpGxl49gd8kRtpgNS3ZJYh34LnsycEoEUrJpCHVJFGpKpmbC8mTg/aMtW6Lw3j82Gx7jrd1TiIseD84tcg/fvxt3+/U65Zj9t1gvl9PqWlgImvEPHhoQUuoAeG8pnw5TgsWLFjwOrQFW+ssU8kac7cJT5a53kHbotrCgYeH2mQgK3hJquLJqCCwjh3312u+9/nH/MEf/i4Pzy/57N45L14OPH18xY7Mi1QYdKyw+k7H71Mq7O/sQ47x2zYxjeYsMLazbtKO6tfiSpjqR2NVJaKN2KnnVPVHau858Ybuy9IWAYY4WSNMqhrEm3vUcxTcQFcsjkRNKQErjZBRSqjn2YEa6N3jB2tsiFkNUFw1ryqIBGJV8BfxB1R7qj2y76Ncr73qZalFx+vNrKmOXr9tU9w6bydeqZLxPabb8di1BDIyLYRw3xqEWjY1kW5JjX0xdkXBAmLKUKqdRB0PtH0GzZh52vqbpM3Rnx+CMq1iIWoW3FlIEFaR0bn8TaVyzbKi/awEzgN8dHnG9z/7CEpANPDk6TnPnl3x7MWW51db9kNhn8qorCk4q9/QOtb4gDk98KrBc5pG5uNOM9u6xRBswTvjtsX+t3m/24i2489bcDuOFWqZw334uv14TNqU9kYyXe/FbnoJLViwYMGCV8PEO7wczHUiSBS6VcAy5OrdkcFrWGQqWfIijcl4tI3pK/Ox+eP1Bf/i48/50X/xb/jeH/8PfDIYeQ/f/2//nH/3kx/zf/7Hn/Kf/vxn/P3Xma+eFq4VtjaN+5GpUyD4NrzLON/ep33PeSfG94IPaHE54sZ39jvawl7ryeAdlWxUhRTTiaihmuXOspyCe0NGVcJBvF3l7PMOrDCWH3npFIhmd2SpXaRKyaMhr1HZBqjdnTzxUz/66Jc3RDvv3fQJKQFRgd7706ZUv0VnIAXVLSCEpmbR7GuLqvgp1XxYG4E0S0S9zTZNHhF+5hf1rm5D9hbox9c8VUXjr6m/SrvG/ZjuDUIBkiK74pmyGHg5GJts7EtdP2lLoFn9bvW2KW3G29n2foBYiJoFdxLjOCxucIVY87Ua8UZzojXTOGPVBc5WPYGOIJEhZXIpDKmwH5IboZXiGR3joO50zjj73xPjPBLpHJID42vl4ObgsQ90XPpOcXwc3uf7Lnh3nDr/3wSnEiwtOFM7VNMs0vkFCxZ8cPg2mYMWx4yKhsMEksmMZrfqVVPb3NRGObPKKX9eZDL5NYMuRC76Nef3PmL9yfc5kzVma7pyxcf9FY9+9ZQnX/2S/X7H9bVSkjHkaZw/NhWex0+3zQ+ndk8jaub3v/f54gMia8avWkmT+a2fTzIdq4mDqUqPSXHR/unsSTILqg+7Fc1YBJPxjNX6maG+gZgTJqE+tVRSqG2LVNbjlB/N+8CBVwxOUIlUD0yblVwFJ1CkGlt6x6lJbdS27W1ImvH7zBZN82unlaPNyc/jE9fXOzK+h4l3zVWpZsTmfjVDlTUbxlCMXEuexm5eI9FUj9TB7fF+OvoSNzfrtxILUbPgziKrsa+D09suwNwg2KWGLsWDkgzbKd0ZrFcB+fiSi3tnrM461heRly83XF8LLzeF63krghkJQ+3U1D7j1PTRtvfUNhmMJsQLfr14l6BMbvl9OYJvh3ZNtH0Yjh570/dot8JhJ4GuTAZ5y7FZsGDBgrdAW4xRfSXUCMm8w0zxRVcpSvFO3DRVsNWBXcaAx0ff1k57jbfP3ipsM2Rt+sePEPmc8x/C+pMv+HfxHv/qhxf8X3/xc/78b77ib/52z8//KbHHVS/H5ejt/RNTd8/2ztT78+z+NYeLIZ39uJ9ZOCAVlpnkzdE0GaNyvCVYK2kjUQgmRKqKXH2hTzOtbb2tGxqBQovZDlt3j5xhIwAOvGrmpI7/XWrgUYo/X2T6GL6r5I4Bor592YuxYvD9UYZDgsL9HQS0XVONWKmeO3M28m02QGwkyxQnqrIGUjG3f1AjCGOXp3BEiLTjSG27LQIWoFTBzWAQFKSY7+TB2KTCVpX92P7cXDmlWkveJnXQwT74wLEQNQvuLKyyvpU4pwprbkWbMFph0jTc1axPMUpSbKWIeFu5dQicnfec7XuG1JFzZDOoTzLY0UAy6Szni8b6yLTdt32f1zy+4NthzLPM5v23OT6vw0jWLXhnHMcc8+PzJsdlCt4c3lLyMFu0XF8LFixY8PbwWMmQ2kI5IcTUylMUrR1y2nPni642Ls/H4CzUTjHm/hUpQ0pYFCSu6c4eYGdf8Nn3Puf+i8/58uun/OrJEx79ovC15OqTc4hGCMzVAI2QaZ012+J7LH9H6GbbVsbnW13IzguiwN6msOoDDgrmXAsiiHiHVakL++lvCCq1g+rh4409GeP2RtKciLNHpQ2TMmR6/LQko5E883N1/vTvhqSZbq0qabDDEquDL4V3smpri/cRx1jdo5PPz+QxNf60zxHAwvSZtd7JaC3Tpy0dCU6bDKIbYZuLkZo/TTManylrmpKm/bQ11odO2CxEzYI7izahvu2odZx9MVO0FK42Gx59I9zfX3J/MAp14CpKv4qsz9eoCNthy7DbMZRDHxk1G4ODFqTMP2feHepgO+qAPZ945s9bPDXeH46PRzsG35ac+cDnkfeC8Tpi8qgJR89ROAqZb2IehEemrOiiqFmwYMGCd0BbVFaFAapexlCMVOuXvBSljtqzFpdWZEqSxYDG6Nn8oOyBa+Cx7fhy84Q/+PJnDH/6Z8TfeUn3owF0C7an7+8R7/8un35R+OGLc37x1T/wzS9/hey8DErr8nw+N/jcIWM5U2DqK7NGWWH0EggIqy4SQxgVC7l42ZZg1Uujqg7EMDGyhpbi+/Xs/zsIqaUxQaQ2/hCCBGL0nyCBIFKbbMjMH8hnbj+ftLZzNoRqptvOq/o55SjObv7B2p7TTsux08DsZk4q1od/raRA3TYbFzPT9tG+l7btOpSZHInU3vpzffcaGhhLFLPCoMKgwk6dNIoYIQiE2vacULkzv66t7ux2/QfzDltFDCt+HpTadv2qKJui7NRIlcjx66uRNza7SpdYrWEhahbcaZy6kG9bxLWL/1g94R0JlP2Qud7uibEnxr6aYykpZbRKd0RCHaAYA5djcuVg0D/xefPtHMfkWdbp+L0WfAeok/3BMTh86I2xHKP3j1ME2KlM0qkcWQufZ0mrGyTNcm0tWLDgg8ONbP0b4GgwHsdYddLCSjVHreqWZvLqWatpcT2SNSIQzMskgAG4Lomnuy3Pnjzj+T/9ktX6Pqv796AkKBm7Ttg+oLoixnO62NNFIQaphEyoZsf+2Y3gj3WLYt2ullgL9e8+RKIIXdcTQiNfQMTLuAo2lqKLAUGrKbJMC+f3hd+mCUmObuvRb2qZEIQo/jNCwYJQzB+fFDdO0mB2owqq4UbsZodz/MlDZSd//fXgRLB5chPHL3H06HvY4MlK6sjnxmrjBfPzvyXDR1rS3Ah6XPs04ssmwqfRLKWqZ7IaSak/zaOmxmTj50+32Oz2tq/7ASnVFqJmwQeH46z6NikpGfu84fnLPefrLeer53grvybP8xbdqspuM5BVR8XMPPY5lV+xo9tTGCWiTGqc8bHXvHbBm2E+Nx6YD852cFNfvC0+oDnjO4Mc/cBpUmZO2Myvt1PEjt/6uylGZuoIslxTCxYsWPB2MHwRZ3XVFqR40qNm2UMlS3xxPZWDC3iL5KC+gKuLwY2BfHPNs/2ep/vMX//8H/nis7/gi89+0Oqi2F+/YL95ydfPX/Lk5RVf/+oZ+7LDELooWACTiIUOC0JXyzE6caWNWJ1Vam18DEIIsO6ELgix7wgxIMEJhSFnSjE2KZPUGJJ7dgxW3HQ2OaEwb0F+Eh9yYDCvNUfwbkGusOmDcBYDZ13n87hASsaQFUmhGuYG73CkPrMHYewcdmqevy2xcwOvIEZ+7fjnJIuYEUHN3Ndqdy1V1AoFYRAhmmJaCAhdqFSnBSfPTP3wiowmwa2MMJgRzEhqpGJscuaqFDY5syuJRKndvdwJykwXRc0JLETNgt86HF/cpxQto9KlBguGwVAoRcnZSPtytJibKptz0bGLjB29//EK87aB5tT8fVCSJYz1uO2xZdB6f2gJv7Ee+ETp2btiOU7vB6/aj3Oy5vj+2xRsLs5dWt4vWLDgA8dxAPIOA6IaiLQSIY9VvPS7jsKzQbpqaVyBU2OnFkNh8HIohOvCl4+fEyxz9aKwebxDkiBJ2A479mnHy+2Oq/2OzbYmywi+gA+u1NAoEPw+70gjNRETnKwJ/kX7GAgBVn2gi0K3ioTopTgiELJ4LBgMyYrWQDGoYiZIEYIKBUHk2KtwwUEgC9XTsRJ59SeGwCqG2ikIMN+3Q3GvmsmvppY9SSPcbAyI7dRHcsfn91/bxrdFyswPZv6vetSU/7+9e1tuHFmyNLw8QGXWjI11v/8zdl/02K5dmSIR7n3hEUAQJHVWCpL+r0wl8SgmKRKBBQ+Pdt2SnZnbNLSsirFlJ6VXs5mmVokzqfepCc09rInQyV1zeAY0PZxZetX0ypr43K/hGyOowZf32Bu+BzLu0jFCv+usv481g5NY5z/37vFnTbZ0vsM4VgQ8Nnt5u2Jhb2zXl7y796wCwBvqlUu2drFfXseiF5da9ICAV+st2BC4XN9gj++5az1r+uk+yDCZKq8OALyZvqrOsu/cxkYW1opX1vIHkxRt9b1o5axttW7949LpXjr+zy/91/Fe//nfv/Qfh//S3XzQ3XxQPbnqHLqvs4616td91f3xTrVM0qGoHIqiFE2lV22U/Mw3yylRrXdOmSIDmsOkQzH9378m3R2Kfv680+FQNFnrqVFzueTp71/6daxSqTrWUD2F5NI0tUWe2w5m0bqjef4E6ftV1SzV4W26UzsjwxnT4VD0427S45GynwAAHlFJREFUzx+T/vrRai9Cup+KpjvXLNdxlmox2VTyPmqf2BZttag4q4SWzqc7S4zFnqqPpXqF2ymyf8y9m6plGFst39eT5f5QCWnyNs1RUimhqZjmkMJMh5DCM5y591nHOfR7dv3rNOt3nfXbq+5j1jFCs3uuGFdrW/0pslqPI2oLghpAw2dCZDhSPdaqC8XN/fd1zYGX1VOOYU1pg52ybOheNqUct51NrVkrofNozfa8Z943r9HbuKh6e+A6/eexibd0rQyaShoAeJGHSoM328v83I6zFTiXKd39OuN8IctmoyHpn5MrfrtO97/0q8z6Md/px3xQzCafbTkSP8+huU5SKTmlRrYs99wKaTbb+lYpU1p/lGI6TEWHw6S7uwwO7g5FU8lAwaureujnYVL10O8aKnKVuk7x6l85ZUMXVdCvfm6/kjbIzfFtPv9TMU1TBnoWramslZyW1ld9Wm46vLARF9v37js8lW8tNl8eUo3Q3FajqiWvVdt7toSW0VQ/mDa5rffVXpwS2XzbQjq661g9q2lq9gT1yDC0rzC1TLsaV3vSA++ncbD3xRHUABshZZLcNh7baplbnxvbI/vXrr+9XMpgpkgqh9xA9W5cU34iLoMYvF4uxTk892XZ9i8bhdDLCmu+TOntB1kGCspeMn3VpotB/nBeX0Z1XFFte5vxfUhvGgB4I5tS0svP1ji7Wme9u7u1Hbt2VGyWdF8lV9W9uQ616uB3mmrRVIssu2Ro9qIaLqvrb7SQdGi5TdvZy54561GYSUWTpEPJ3jQ/DkU/7yb9v5+TfvyY9OPnpGkynX7PqnPV/TxpOrjuPZsI30+5A1pK36mNthRhnG+ksIjNjvQk6aekn8X0c+rToSQ7STaH7ifTj4NprqaTJLdcRciKtRLZ/IOjgvn1+spl2YPTNdeq43xSketXMc0mWTFNVnSYpOJFc7SwzbLe39vUtEn5Ok5FulOOs/ub4lhd99X1r99V/7qv+ufkOp6qThEZvtZsO+HV5VVnrSWWu/nGCGrwbd08Yh9Sn35x6xNi3QG8/QnyUEjTT49HDPpRhKwWjnbk5gn/EDxZf06Xp9WG5zg2R+Ge6aEKEDzNOO4fg5lrIc14nm/uI3Q5br52HgDgFa58oG7PurZT3c9btrkhhUu19nFVyN1VvepQpYNn6FLM5NmyWD16t7Zj17/nxtyub5SHapjSVh46TEV3U9GPQ9F0KLLqmhW6O5gObpomZTXNZoBgksLivAr31iDgG5ZH95AmhielT4fq31tbIU1FmlpoU9o1+qpP623bX81yv5cYgz1Pn77nw1dtAUoJ06z2N24ZVoaXrGAufTXNVnmjdnDN13YR1kZnR3cdZ9exho7epjt5W4VtrKgJrd+XB/gRz8q+ENQATxSb79JlFYXres+Ma/fTKwZK6c3TPAcCbf52lZYl9PiwehsuLdUa/XUaw7D+mrz06eZler3+FpDWFbjGt8A4uC/D7XoIs62C69cfV3wCALyf9TO472pv6on79BaTzFwmz6CmfWC7SbNnscrUp8tY0WSTehOLUoqstIRGIa9SeGiaMoSJ9qXWs2aySSaTW5EX0zRN+jFN+uvHnf7Pz4N+/sxQ5lgOqrXor3nSbK7Dr6qpxjJ1qrRKIF+KdR4sK/qWYhOm9PHxyaXfVbqrplqlqRQdDlkhdQjTnU26U9Fkdv4X0+7Ixo36E0JCPCDa33HkdKeTh+5rNgs+lZC3qU8HC915ZC+a8AxMy7Q0/l2CUUlmuerTQWpTIF1HzxW9/nWs+v+nWb9PVb/nqippVk6zmts0qFsH2r4zghp8W9emqtjm+7Uj+W/5y9eKmvNKjigma31yqPF8W73pnHT+N4B92FbBbC+79t7s3/vP42s8XsbUJwDYeGxD+IoPzfzMvvwFGdCslRU23KBNXMpQvS8NZetX6yebCwD05rJa+wleju1CYaZcJ6ovDtFu2sOXKXvUTJN0aPOxpikDoray9OVAbSjwWMaQpuf3qfmCzrbLsX5lKJDBwPKcbfbKe4VV/3l3Xvqg9vR30QZTbTGn9tpkf85a8nv2m4m2Klc2EXYzmZVcslsZrizpmWU4U9WnpWeZ3KmG7tv0p77qk0eotvdrnFXU6OEl77td/mG8D4IaYHCtUnZ0awd/3M70I/39yH2vwPXNhmj5uUgqvRy3XxaqxRQe3+nz6N31QYOZ6VBaq+jaBgxE+B+uhymzLgfbm+OxS/WMdPm+7Jf75jsvLwD8aWNNTV9yuVe25qe1qfV/Gacmy7O6RqHQrJhcUaqKFRVZ7kBaKOS5zK9JoVApk8pky06fSpGKqVpRqOjOQpNNcgtFCdmdVH5I089Jh0MGM6VKd4dJh4NnWNMConWZzpDVXlEzHEB486N6n8zy71+nn2XVRmj2qlOddToV1R+5NPc8h0qtmmvVXGd5nRXu8r5sc7/bXqFDCvZ2ehGYu6rlGcdZinBZ5BLbhzZF8FAmlZK9opb3n3L5bS2hayxV6XfK+/HIkOZ3Dd3PVb9Os2b3nP7UQh33Km/X5dW9RFCDb+/aB8P4cbG9/KGQ5skfMj3NXn5cSwfxfi7KKocX70kpPv6I9X1x/bR0Xh2zvWxbbs10JwD4CONW9ca8lTi/ePk8bxUY1ipmzFxm3oKRkkuDm3Knvm0l8jPfs49ND2panY1HVt8s/TiU/TjyyH6/jZ2PE5b7WIt7Xv00fHVDWBNtKW3XpgeK95WFcud+rm2ZZne5x1BlMY7FY73/P+Gth+TbcuA9WCpq8rmuESruOlWXmxQtqPEwlQhNlrVuk7WgzWPpI1AkWeTUJ2/hnHv2prmvufJT9qfx5f0XOn+dl3H4np6jD0ZQg2/rsc+Bp3xOxJWfqzbNTTd31Ptq9B1N875V86Gy1lQ952g7H1hvKpRHAXyumiw/BPtr0Us22bH/OONYeKlKG87v/YW2xtfs2viKtxGA7+oj9xHX4DyWhrCWXWmWqUomW6ZhrOUTa6MTM8k9V5mZosqtykPLzp5ajxsp5CptyeD2Nec8Jz9k8+Cju1Slv48nVQv9+KfI66xaDzociubZVWvo73+q/v2r6ngMzSdl9a2HokrhassJa9n4RGz+wWghjavKdArpt4fKXKXfR3mEfhbTX8V0rK5jrfr7d9W/T7N+n3LKTF2Wbm6v9Bia4W1EX8Esm0S5F3nkNEEzaVLRwTwbcM9Z/T9Z6e+6HJsty6dGq6xxyTMAqp5j7rkHQC3A6e/dPL0seMv7Z4OgBn/EHoPkW249xmvHhV4T9vQPpLHT+XJZxLJEHd7OMo6KtfHzOC1mWab7gx4f0rZSZhuIbl+j7evF6wcAg2slhx+ghzXRD+WP1csmRdjZh/5QnKGikGcas+wk+nKv64CpDuWxJi1NyzyyuWl10+zSqbrKXHV/mnUwaZpMtbrmGqo1cgnhU1Z6uLeQZrt2cAwPdDiJ9tq16SxLNU2b9nKsrvu5LaVVTKdWeXFqz/+2qmatuoi3e44/qoj9rX/vK5+PZexr0cbGsazKZGbyNgVRbbl7a0umL2Mx6/sz+RplE+H1fVIjsi9Rr6RZGgf3ihpCzocQ1ADP0D+YXjMFuR9Bqn0gUaXJ1RrjSdaOzvR02YPPrrfUD4CZpFOsfU76+VTTfLzHQpgqAMCT2L4OlmWokj+ZrQswZ3FxBjhxtjPrub32UAkb/i19pz1HZsv5XuRFMstBlZXsBhwWKlEU4TrNRR6uH8dJVqv+uZv0178nHaaieqqqNfQ//z7q96nq1+/8fjrVDG2qZ4WHDw1Q+8NAaq9lrzhyVc3KZZ5Duez6XGcdVHSQqdZQrdL9POt+nttUqDYlrYc0EX3BLwKxt9QOXIa3INWq3HMkbMpw5mSlNQAvbZXasgQ82bpBWhOXdael78Ms0w3d14PTar+XA6QPIqgBXuCllTS3KgR8+JSy4XOOD673MT6vfuN8AAC+iheHCe+Q8qyVMhmwZCGNLUf2x9+VY6bcrfOlJfG6s5d3GMvUcQ9X+NoA2NpevXkozDW3foCnmiHR72OR2lH+QymqrYrm/ug6zq55blUAV6o8lrEag4fVMNDtoVyEZaW4R1Ytmelo1noE5VLd3ipqqud0mf76jqsCSa94rr9qG8i3eH9u/o693ZlFrpiW1zGZ5XuwFF9ukw21hztYmjnZclYPasYZBEtFzisf+ldHUIM/4ju9CZ8b4pxaGF1q71SzXo8PsPfDcwsA+PJiX5Wi4yyHpb1wSLWtBpVXaJesZ7TpFMPe9maVGGu3sxb+mHn2xClZuVMiZG3aUymuY4SmYjrOrrtS9KNMmqyFBi4djyfN1XU/eza/rTn1yuu6P/pQ9ee3NjwZ4bnjPyuDmwxrclqZyVTC8jqxBmJ1mf6fd7Q83zzJ7yfy735sEyVl3OIWLXZpq9NWG28mDQHqemZ77RTn4czmQDQv6cMIaoAPNn5gbXvf8AEGAAA+3K2KhFcMVLZhTdjmkrPmFZueNtJmz31dVSraVKie82SvmhYEmStkstpWs5FUS+6MTjJVN7krmwoPq9SsO5txsbP5Zb2mWmMtd1pCFveQlViaAxaFXD2oUZtONny1eU5jMPbkh/JVK2hueavKmiu9HXrL7nHl9eEmm4ewJmq9Gm6tjnrhPs53ey0HBDXATuzpiBcAAMB7O4tilrkU4yXt1KacIq78kMFMJjPWzrfIyKZEyWWEvaiYqU4nFZNqKZrM9NssK3A8u6PWui4nHRGavWZFSNRlxzXE2O2qMVdrlTHufbluzyWf2+vcw7RoXWl7QLP+R4X5H3WlUswj1hBGOut7de32i2UK3OVFeBqCGgAAAADP99qj3UNJcYynH7ruYxdfXC+nLZlM4SEvkmpkb5yQwkwly21kbkv1R07VGasCNtUd29+zPf1VKgFeUq1xUZXRa51auNX3+XsD6aHk4iKkYdrT071T5/C4eeLxG/HSvRxBDQAAAICP8047lkslTs05G9mrRipt/oYXb42IW5+NvnM59EUZgxpflpx+38f/pbTnJlfczCe1r76Zl8dFEHBWQcNzuzu8JH8GQQ0AAACA9/eRe3jD6kE9KPDWw8aGx2VSLgWtnPaRNx2qPJjL8XxDdcWVNigXFTNU0AAENQAAAAC+sh4UbJKZfvLienE+h6RX0FxU0uDpNlNhLkIbnlvgDEENAAAAgG+h9Ru+ngssYUJcXOHbV3m80cpCD5x8va/SF2jP3qkPzs3f840R1AAAAAD4+obKGLM1tLlxtZungW/FNt/Hn5kK+G4IagAAAAC8vz91NP4JHqysGc/nyP65Hb2GC16j13vkObRNWLOs0mbD91v29LfyiRDUAAAAAPh22H8EdL1iZjzZfrBtGDOENDTZfnsENQAAAAD+nKdUQOxlh++5j+O7VHfsobLmuzzXT/UGr0UPYy6ymyWssYsCmjy91qflkvavfyzfHUENAOBL2MOYEQAA4LOxK1+yjF/M1tOyImmtoAlrMU1kgJMhTcjDFZFL2z84xxA3EdQAAD6Va9v7bX87xgMA8MltqyX4YN8njpJ8eksYY1IpWR1T2gtrQ1gjM8U2qFHkNXtQE5JLKjJ5rp+24m/kWQhqAAC7cnY0Z+Cb6zx2Hx3jAgAAgEt9vFVMKsV0NxWZTJOZTCazImspTvSwpt02WkfhiPXLPTTJFDGphqtGlYcUfRB37UgbA7WrCGoAALtyK4Sxq6fOt+6xuQbbfgD4IvZeYfPd+6X8icqa7/4cv4NeSWPWwhozFTNNsgxo+nWKsnamjEFNTnvqQUy0K6+LQZlcJovIkOfmg3jPf+HnRVADANiNa5U0MVw2ntYD59uN8wEAALD2nunVNFMpuitFxaSpDaSiXT4VKWwIaqJPegq5S9WkCFOY5fSnCKkFOGaWFTcf+Y/9hAhqAAC783jIEmfX295uex6DAwD4YvZSYUM1wLm3eF14Tp/nNc/xsJpTVtbYUmGjVlVTSpsCVUxWMogJyzW5XWs1TkQozPI8SQpbVoNaxnXXBmXbI22QRFADANi5MbQxSWU4/dB1/crlAAAA39p27e1l+tMa1izToErJeU9lUinSNLWgplXNzB4yC5lqq6bJtZ/84hex+tNzEdQAAHbnselOD4U0AIBv6L0rbNjIvAzP276tSzoNZ+TKTzJbGgmbnfeskZQVMxaSuYqVXOVpCGPWe4q8bVsqiqzmaQhqAAC7EboMabY/36qUoScNAADAS1mbpNQDmSIrRWZFxaYhoWnXtiyt6ZU40UZxZqESWWGTK0dpXc9bFNY8FUENAGB3nn8A7vIWORBgKAAA39JTNyS3OtQDn8UrjlRdLOJgww+hbCrTK2kUrT5mXdUpwxpl1c1yQa+g0VJJY8ODY2T2NAQ1AIDd2A4YrlXYbFd0esoqUAAAABj0YGXQZ0KFTBEm9xbQTC6TqSiXigqTwkOZ06wLPBSNDYMZkb1GefwqAAD8aZcLdT/toGdGN3E1wgEAYMM2X8BX98AQKbTOUhp/Xs5o7OwN0xsMhyK8Ld19/qt6A2JGZ09HRQ0AYDduVdCMl63j6L7o4/XbAwAA4LZtkOIeMpNckRUdFq18JqdAhSSLFtL0QKcFMB5SDZe3O40x8cGzEdQAAHbo+lb9sWlPAAAA38prB0NLnhLrGCsil9tup225ouXqTp7Lc48hTehayczmwTFwezKCGgDAbmyDmIcu8+EavbkdAAAAnihLZLL6JSSFK2RymxQRsghZeKuqyet7hGbPcMZDcnd5uDy2I7HQtcNqrPr0NAQ1AIAde1ojuu3qTrYc+2EoAAAAcEu0/8eVg15rb5mcArVU0bRgp1/WpznFeMPxjOGOGZk9DUENAGA3rvWoubZBf8pGnrUGAAAArht7//Wfa+RqQ9OwFHdf/UkmFcVSObP2t4kW1rj6qMuU7W2WK+LZCGoAALsyNgweJzfl6e0557cbT9HDBgAAfHmvPDK1FL9EyBWysGWK+WQ5ovIW23jcaEHTwxuPJbzJ6psYAp3tL772YDb/pm+MoAYAsDsPjTUyyLHNuCS0bTJMSAMAAHBbRKuo8VCU7DdjJlVJZmXpT+NhWSFjOQIzy4oZU+tj0+/DpSpXVcjD1VbrxgsQ1AAAduV8Ce7tZXZ2nc2MaAIaAACAZ4jND8uUqAh5W57bPVpI08IZZb+a6i2M8WjNhdfa52VMFuf3jachqAEA7NK2kne7cc+Z0OdTocbr0KMGAADghsxgJOXqTWZj9Us2F/Y2HcrbClDFiqQcY1V31XBFmw/lntddZ0PZ2Wk8D0ENAGC34sYG3q7U3Ly06TAAAMB3twYsfQWokLlk5spewiZZTo3ql4+NhKP/F0PFc79cV8ZkHFF7EEENAGCXxo36tUoZAAAAvJEIubtkRVXZm8YkyUwlQmaSSpFCy9QntZBmiGnWYGZYBQrPR1ADANilhxsK9+UfL1eDAgAA+HZeu/rT8j0UYeqjK5Pk4SoyeSy1NbkaVF/Vqa/w1L78oYfy0NE3jsYtCGoAAF8KkQ0AAMATxNA8WLkkd5Hk5lpaB0fIogc4RVL2qsnlt7X0qNkuye1PWe6JQdtNBDUAgE9rW0nD9h4AAOD5zlbdHBoNmzKEWUIbWetJkw2EFa1HzRDSLKs8hdaeNQzSnoWgBgDwaVyriGW7DwAA8HJrI+FWYWPDmGtIb8YimVySe20kvFx4a7lOPAtBDQBg97ZLbwMAAOANtZKaaEtza1yy24YSm2UVp6GCRrqspPnDD/+rIagBAHwaZ2W5AAAAeLVoocwStFyZWm6tf01IkpkuW9C0FsPPCWk4EncTQQ0A4NO6tXAA23wAAIDny8qYkEyyMIW1HjVmrVeNWhPiGAIdk11Zg7M3Km5XuY4jcFeVj34AAAAAAADg44yhyrhUdz/Vl92O0HnjYKmtD9V+Jnh5E1TUAAA+nccqZtZZ1AAAAN/IKwdBfZp5dqqxNpVpvbPYLOF09mvaVKaltw1ejKAGAPCpPGe7z9RnAACAx/XambFvsPdqmn6dOJvMJJMx1nonBDUAgN251XvmllvXYeAAAAAweGRgFcMPvbJmnOJ0fvs4u/7Zyk9nd4bnIqgBAOzac7bxjAcAAABextVymOin48Fgp1fgSOuS3Gv1zXs9yu+BoAYAAAAAgK/kub1q4uxbrvrUzuh9a67Nc4rhOtdWfcLLENQAAAAAAIDV0KumnVwaBZ9dbQh4CGbeDkENAODTY2AAAABwxQuXy15Xf9Lar6at5mSb60nr1CeJxRzeAkENAAAAAAA447GZQdXSm2UqlIagZrgdIc3rEdQAAAAAAICbtity0jT4fRHUAAAAAACAJyGbeX8ENQAAAAAAYLGs8jScPgtoSGveFUENAGD3rjWtAwAAwNsbQ5ptL2LGYX9G+egHAADAY641qgMAAMD7GsdgjMP+HIIaAMCnwOAAAADgz2MM9ucx9QkAAAAAACzG1Zwu+tPg3VFRAwAAAAAAJF2GMoQ0fx5BDQAAAAAAwE4Q1AAAAAAAAOwEQQ0AAAAAAMBOENQAAAAAAADsBEENAAAAAADAThDUAAAAAAAA7ARBDQAAAAAAwE4Q1AAAAAAAAOwEQQ0AAAAAAJBMmRLYRz+Q742gBgAAAAAAYCcOH/0AAAAAAADADsTmOz4EFTUAAAAAACAR0nw4ghoAAAAAAICdIKgBAAAAAADYCYIaAAAAAACAnSCoAQAAAAAA2AmCGgAAAAAAgJ0gqAEAAAAAANgJghoAAAAAAICdIKgBAAAAAADYCYIaAAAAAACAnSCoAQAAAAAA2AmCGgAAAAAAgJ0gqAEAAAAAANgJghoAAAAAAICdIKgBAAAAAADYCYIaAAAAAACAnSCoAQAAAAAA2AmCGgAAAAAAgJ0gqAEAAAAAANgJghoAAAAAAICdOHz0AwAAAMA7sI9+AAAA4CWoqAEAAAAAANgJghoAAAAAAICdIKgBAAAAAADYCYIaAAAAAACAnSCoAQAAAAAA2AmCGgAAAAAAgJ0gqAEAAAAAANgJghoAAAAAAICdIKgBAAAAAADYCYIaAAAAAACAnSCoAQAA+Gziox8AAAB4LwQ1AAAAAAAAO0FQAwAA8NnYRz8AAADwXghqAAAAvqIQU6QAAPiECGoAAAA+kVj+BwAAvqLDRz8AAAAAPA35DAAAf9gHbHypqAEAANgpghkAAL4fKmoAAAB2J6789Mq7eqwBMakQAOA7224nP3C7SEUNAADA7o2dgUlUAAD4yqioAQAA+DReEdKQ7wAAcNt7byfj/Nc8VOhKRQ0AAMDObceOrLwNAMAnsoQ0j81DTlTUAAAA7Fkb0xHMAADwySwb76cFNB0VNQAAAHu1GdeFqKYBAOAzWbfdTw9rqKgBAAAAAAB4D7Y5YY8HNlTUAAAA7NB2XJf/s+0lAABgr8xkMpnl17IJf2RTTkUNAADAzpjWwZxZ5DntLKY9AQDwWfQKGmun8rQ9ctyFoAYAAGBn+vittJFcsRzYlWKSS1FMEaF4SmpDAQ4AAC/34iMkplKKrBSVqaiUSVZadc0jd0pQAwAAsDM2TGE3MxWTwnrpdORpmepTR4+ENQAAPF8WtV4//0G9cuZ82lOfBvVYqxqCGgAAgJ05mGkyaToUmYemQx6FC3OFm6plRU1RVtU8Pl4kqQEA4Nni4of1VEhxsQXO7W2xkgdapkP7PqlMRTZlhY1KPNgxmKAGAABgZ6zNXy9mUpFKKYrI764c30VIClfYU5bsJqgBAODZls1nXJwdIdlFVGNt6nILakp+t1Laz2VtKkxFDQAAwOdRykGlSOVwkEXocFdkJaQyKTxUi7ceNaFog8RtULOetuH/1y4HAACPi7Nv67n9jLVhcJ/uVKZJZqbD3UHTVFSmu9anpkp2e0tMUAMAALAzvaIm+9PkETkp5FEUtjYR9vBNSBPD/6VtPGNn1wIAAM8SV6ZAnZ3Rpj6V0hYByEqabCZcJCtrH7oHpiUT1AAAAOzMVNrXZCoK/fhh8hptClTID0WhkMvaHPlzy2lmPAEA8HYeqabpzYdtM/VpuptkVjQdTKX0CVJU1AAAAHwaJm+DOG9nhKyEzLN+xory+5Uy7LMFKghqAAB4O5clNFevZhZZOVPyu0rIzBXy1ojYJSeoAQAA+Dzil8KL5vlOJmmOWaFQLTVXefIc6LlqXr0fyAsmNQEA8G4ePQDS+tS0ipqwnAJlMlmYok4q1WSzrwdbriCoAQAA2BlrMUyEK2c3uWL8z9YWwn2YF7n8BAAA+DBZ1xpy9a25yRRtmaeQtdUbH1mrkSMvAAAAAAAA+1A++gEAAAAAAAAgEdQAAAAAAADsBEENAAAAAADAThDUAAAAAAAA7ARBDQAAAAAAwE4Q1AAAAAAAAOzE/wJAHLmfF629ewAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ] } ] }