File size: 20,096 Bytes
18b382b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from einops import repeat
from .geometry import unproject_depth
def compute_optimal_rotation_intrinsics_batch(
rays_origin, rays_target, z_threshold=1e-4, reproj_threshold=0.2, weights=None,
n_sample = None,
n_iter=100,
num_sample_for_ransac=8,
rand_sample_iters_idx=None,
):
"""
Args:
rays_origin (torch.Tensor): (B, N, 3)
rays_target (torch.Tensor): (B, N, 3)
z_threshold (float): Threshold for z value to be considered valid.
Returns:
R (torch.tensor): (3, 3)
focal_length (torch.tensor): (2,)
principal_point (torch.tensor): (2,)
"""
device = rays_origin.device
B, N, _ = rays_origin.shape
z_mask = torch.logical_and(
torch.abs(rays_target[:, :, 2]) > z_threshold, torch.abs(rays_origin[:, :, 2]) > z_threshold
) # (B, N, 1)
rays_origin = rays_origin.clone()
rays_target = rays_target.clone()
rays_origin[:, :, 0][z_mask] /= rays_origin[:, :, 2][z_mask]
rays_origin[:, :, 1][z_mask] /= rays_origin[:, :, 2][z_mask]
rays_target[:, :, 0][z_mask] /= rays_target[:, :, 2][z_mask]
rays_target[:, :, 1][z_mask] /= rays_target[:, :, 2][z_mask]
rays_origin = rays_origin[:, :, :2]
rays_target = rays_target[:, :, :2]
assert weights is not None, "weights must be provided"
weights[~z_mask] = 0
A_list = []
max_chunk_size = 2
for i in range(0, rays_origin.shape[0], max_chunk_size):
A = ransac_find_homography_weighted_fast_batch(
rays_origin[i:i+max_chunk_size],
rays_target[i:i+max_chunk_size],
weights[i:i+max_chunk_size],
n_iter=n_iter,
n_sample = n_sample,
num_sample_for_ransac=num_sample_for_ransac,
reproj_threshold=reproj_threshold,
rand_sample_iters_idx=rand_sample_iters_idx,
max_inlier_num=8000,
)
A = A.to(device)
A_need_inv_mask = torch.linalg.det(A) < 0
A[A_need_inv_mask] = -A[A_need_inv_mask]
A_list.append(A)
A = torch.cat(A_list, dim=0)
R_list = []
f_list = []
pp_list = []
for i in range(A.shape[0]):
R, L = ql_decomposition(A[i])
L = L / L[2][2]
f = torch.stack((L[0][0], L[1][1]))
pp = torch.stack((L[2][0], L[2][1]))
R_list.append(R)
f_list.append(f)
pp_list.append(pp)
R = torch.stack(R_list)
f = torch.stack(f_list)
pp = torch.stack(pp_list)
return R, f, pp
# https://www.reddit.com/r/learnmath/comments/v1crd7/linear_algebra_qr_to_ql_decomposition/
def ql_decomposition(A):
P = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=A.device).float()
A_tilde = torch.matmul(A, P)
Q_tilde, R_tilde = torch.linalg.qr(A_tilde)
Q = torch.matmul(Q_tilde, P)
L = torch.matmul(torch.matmul(P, R_tilde), P)
d = torch.diag(L)
Q[:, 0] *= torch.sign(d[0])
Q[:, 1] *= torch.sign(d[1])
Q[:, 2] *= torch.sign(d[2])
L[0] *= torch.sign(d[0])
L[1] *= torch.sign(d[1])
L[2] *= torch.sign(d[2])
return Q, L
def find_homography_least_squares_weighted_torch(src_pts, dst_pts, confident_weight):
"""
src_pts: (N,2) source points (torch.Tensor, float32/float64)
dst_pts: (N,2) target points (torch.Tensor, float32/float64)
confident_weight: (N,) weights (torch.Tensor)
Returns: (3,3) homography matrix H (torch.Tensor)
"""
assert src_pts.shape == dst_pts.shape
N = src_pts.shape[0]
if N < 4:
raise ValueError("At least 4 points are required to compute homography.")
assert confident_weight.shape == (N,)
w = confident_weight.sqrt().unsqueeze(1) # (N,1)
x = src_pts[:, 0:1] # (N,1)
y = src_pts[:, 1:2] # (N,1)
u = dst_pts[:, 0:1]
v = dst_pts[:, 1:2]
zeros = torch.zeros_like(x)
# Construct A matrix (2N, 9)
A1 = torch.cat([-x * w, -y * w, -w, zeros, zeros, zeros, x * u * w, y * u * w, u * w], dim=1)
A2 = torch.cat([zeros, zeros, zeros, -x * w, -y * w, -w, x * v * w, y * v * w, v * w], dim=1)
A = torch.cat([A1, A2], dim=0) # (2N, 9)
# SVD
# Note: torch.linalg.svd returns U, S, Vh, where Vh is the transpose of V
_, _, Vh = torch.linalg.svd(A)
H = Vh[-1].reshape(3, 3)
H = H / H[-1, -1]
return H
def ransac_find_homography_weighted(
src_pts,
dst_pts,
confident_weight,
n_iter=100,
sample_ratio=0.2,
reproj_threshold=3.0,
num_sample_for_ransac=16,
random_seed=None,
):
"""
RANSAC version of weighted Homography estimation.
Sample 4 points from the top 50% weighted points each time.
reproj_threshold: points with reprojection error less than this value are inliers
Returns: best_H
"""
if random_seed is not None:
torch.manual_seed(random_seed)
N = src_pts.shape[0]
assert N >= 4
# 1. Select top 50% weighted points
sorted_idx = torch.argsort(confident_weight, descending=True)
n_sample = max(num_sample_for_ransac, int(N * sample_ratio))
candidate_idx = sorted_idx[:n_sample]
best_inlier_mask = None
best_score = 0
for _ in range(n_iter):
# 2. Randomly sample 4 points
idx = candidate_idx[torch.randperm(n_sample)[:num_sample_for_ransac]]
# 3. Compute Homography
try:
H = find_homography_least_squares_weighted_torch(
src_pts[idx], dst_pts[idx], confident_weight[idx]
)
except Exception:
H = torch.eye(3, dtype=src_pts.dtype, device=src_pts.device)
# 4. Compute reprojection error for all points
src_homo = torch.cat(
[src_pts, torch.ones(N, 1, dtype=src_pts.dtype, device=src_pts.device)], dim=1
)
proj = (H @ src_homo.T).T
proj = proj[:, :2] / proj[:, 2:3]
error = ((proj - dst_pts) ** 2).sum(dim=1).sqrt() # Euclidean distance
inlier_mask = error < reproj_threshold
total_score = (inlier_mask * confident_weight).sum().item()
n_inlier = inlier_mask.sum().item()
if n_inlier < 4:
continue # At least 4 inliers required for fitting
if total_score > best_score:
best_score = total_score
best_inlier_mask = inlier_mask
# 5. Refit Homography using inliers
H_inlier = find_homography_least_squares_weighted_torch(
src_pts[best_inlier_mask], dst_pts[best_inlier_mask], confident_weight[best_inlier_mask]
)
return H_inlier
def find_homography_least_squares_weighted_torch_batch(
src_pts_batch, dst_pts_batch, confident_weight_batch
):
"""
Batch version of weighted least squares Homography
src_pts_batch: (B, K, 2)
dst_pts_batch: (B, K, 2)
confident_weight_batch: (B, K)
Returns: (B, 3, 3)
"""
B, K, _ = src_pts_batch.shape
w = confident_weight_batch.sqrt().unsqueeze(2) # (B,K,1)
x = src_pts_batch[:, :, 0:1]
y = src_pts_batch[:, :, 1:2]
u = dst_pts_batch[:, :, 0:1]
v = dst_pts_batch[:, :, 1:2]
zeros = torch.zeros_like(x)
A1 = torch.cat([-x * w, -y * w, -w, zeros, zeros, zeros, x * u * w, y * u * w, u * w], dim=2)
A2 = torch.cat([zeros, zeros, zeros, -x * w, -y * w, -w, x * v * w, y * v * w, v * w], dim=2)
A = torch.cat([A1, A2], dim=1) # (B, 2K, 9)
# SVD: torch.linalg.svd supports batch
_, _, Vh = torch.linalg.svd(A)
H = Vh[:, -1].reshape(B, 3, 3)
H = H / H[:, 2:3, 2:3]
return H
def ransac_find_homography_weighted_fast(
src_pts,
dst_pts,
confident_weight,
n_sample,
n_iter=100,
reproj_threshold=3.0,
num_sample_for_ransac=8,
random_seed=None,
rand_sample_iters_idx=None,
):
"""
Batch version of RANSAC weighted Homography estimation.
Returns: H_inlier
"""
if random_seed is not None:
torch.manual_seed(random_seed)
N = src_pts.shape[0]
device = src_pts.device
assert N >= 4
# 1. Select top weighted points by sample_ratio
sorted_idx = torch.argsort(confident_weight, descending=True)
candidate_idx = sorted_idx[:n_sample] # (n_sample,)
if rand_sample_iters_idx is None:
rand_sample_iters_idx = torch.stack(
[torch.randperm(n_sample, device=device)[:num_sample_for_ransac] for _ in range(n_iter)],
dim=0,
) # (n_iter, num_sample_for_ransac)
# 2. Generate all sampling groups at once
# shape: (n_iter, num_sample_for_ransac)
rand_idx = candidate_idx[rand_sample_iters_idx] # (n_iter, num_sample_for_ransac)
# 3. Construct batch input
src_pts_batch = src_pts[rand_idx] # (n_iter, num_sample_for_ransac, 2)
dst_pts_batch = dst_pts[rand_idx] # (n_iter, num_sample_for_ransac, 2)
confident_weight_batch = confident_weight[rand_idx] # (n_iter, num_sample_for_ransac)
# 4. Batch fit Homography
H_batch = find_homography_least_squares_weighted_torch_batch(
src_pts_batch, dst_pts_batch, confident_weight_batch
) # (n_iter, 3, 3)
# 5. Batch evaluate inliers for all H
src_homo = torch.cat(
[src_pts, torch.ones(N, 1, dtype=src_pts.dtype, device=src_pts.device)], dim=1
) # (N,3)
src_homo_expand = src_homo.unsqueeze(0).expand(n_iter, N, 3) # (n_iter, N, 3)
dst_pts_expand = dst_pts.unsqueeze(0).expand(n_iter, N, 2) # (n_iter, N, 2)
confident_weight_expand = confident_weight.unsqueeze(0).expand(n_iter, N) # (n_iter, N)
# H_batch: (n_iter, 3, 3)
proj = torch.bmm(src_homo_expand, H_batch.transpose(1, 2)) # (n_iter, N, 3)
proj_xy = proj[:, :, :2] / proj[:, :, 2:3] # (n_iter, N, 2)
error = ((proj_xy - dst_pts_expand) ** 2).sum(dim=2).sqrt() # (n_iter, N)
inlier_mask = error < reproj_threshold # (n_iter, N)
total_score = (inlier_mask * confident_weight_expand).sum(dim=1) # (n_iter,)
# 6. Select the sampling group with the highest score
best_idx = torch.argmax(total_score)
best_inlier_mask = inlier_mask[best_idx] # (N,)
inlier_src_pts = src_pts[best_inlier_mask]
inlier_dst_pts = dst_pts[best_inlier_mask]
inlier_confident_weight = confident_weight[best_inlier_mask]
max_inlier_num = 10000
sorted_idx = torch.argsort(inlier_confident_weight, descending=True)
# method 1: sort according to confident_weight, and only keep max_inlier_num pts
# sorted_idx = sorted_idx[:max_inlier_num]
# method 2: random choose max_inlier_num pts
sorted_idx = sorted_idx[torch.randperm(len(sorted_idx))[:max_inlier_num]]
inlier_src_pts = inlier_src_pts[sorted_idx]
inlier_dst_pts = inlier_dst_pts[sorted_idx]
inlier_confident_weight = inlier_confident_weight[sorted_idx]
# 7. Refit Homography using inliers
H_inlier = find_homography_least_squares_weighted_torch(
inlier_src_pts, inlier_dst_pts, inlier_confident_weight
)
return H_inlier
def ransac_find_homography_weighted_fast_batch(
src_pts, # (B, N, 3)
dst_pts, # (B, N, 2)
confident_weight, # (B, N)
n_sample,
n_iter=100,
reproj_threshold=3.0,
num_sample_for_ransac=8,
max_inlier_num=10000,
random_seed=None,
rand_sample_iters_idx=None,
):
"""
Batch version of RANSAC weighted Homography estimation (supports batch).
Input:
src_pts: (B, N, 2)
dst_pts: (B, N, 2)
confident_weight: (B, N)
Returns:
H_inlier: (B, 3, 3)
"""
if random_seed is not None:
torch.manual_seed(random_seed)
B, N, _ = src_pts.shape
assert N >= 4
device = src_pts.device
# 1. Select top weighted points by sample_ratio
sorted_idx = torch.argsort(confident_weight, descending=True, dim=1) # (B, N)
candidate_idx = sorted_idx[:, :n_sample] # (B, n_sample)
# 2. Generate all sampling groups at once
# rand_idx: (B, n_iter, num_sample_for_ransac)
if rand_sample_iters_idx is None:
rand_sample_iters_idx = torch.stack(
[torch.randperm(n_sample, device=device)[:num_sample_for_ransac] for _ in range(n_iter)],
dim=0,
) # (n_iter, num_sample_for_ransac)
rand_idx = candidate_idx[:, rand_sample_iters_idx] # (B, n_iter, num_sample_for_ransac)
# 3. Construct batch input
# Indexing method below: (B, n_iter, num_sample_for_ransac, ...)
b_idx = torch.arange(B, device=device).view(B, 1, 1).expand(B, n_iter, num_sample_for_ransac)
src_pts_batch = src_pts[b_idx, rand_idx] # (B, n_iter, num_sample_for_ransac, 2)
dst_pts_batch = dst_pts[b_idx, rand_idx] # (B, n_iter, num_sample_for_ransac, 2)
confident_weight_batch = confident_weight[b_idx, rand_idx] # (B, n_iter, num_sample_for_ransac)
# 4. Batch fit Homography
# Need to implement batch version that supports (B, n_iter, num_sample_for_ransac, ...) input
# Output H_batch: (B, n_iter, 3, 3)
cB, cN = src_pts_batch.shape[:2]
H_batch = find_homography_least_squares_weighted_torch_batch(
src_pts_batch.flatten(0, 1), dst_pts_batch.flatten(0, 1), confident_weight_batch.flatten(0, 1)
) # (B, n_iter, 3, 3)
H_batch = H_batch.unflatten(0, (cB, cN))
# 5. Batch evaluate inliers for all H
src_homo = torch.cat(
[src_pts, torch.ones(B, N, 1, dtype=src_pts.dtype, device=src_pts.device)], dim=2
) # (B, N, 3)
src_homo_expand = src_homo.unsqueeze(1).expand(B, n_iter, N, 3) # (B, n_iter, N, 3)
dst_pts_expand = dst_pts.unsqueeze(1).expand(B, n_iter, N, 2) # (B, n_iter, N, 2)
confident_weight_expand = confident_weight.unsqueeze(1).expand(B, n_iter, N) # (B, n_iter, N)
# H_batch: (B, n_iter, 3, 3)
# Need to reshape H_batch to (B*n_iter, 3, 3), src_homo_expand to (B*n_iter, N, 3)
H_batch_flat = H_batch.reshape(-1, 3, 3)
src_homo_expand_flat = src_homo_expand.reshape(-1, N, 3)
proj = torch.bmm(src_homo_expand_flat, H_batch_flat.transpose(1, 2)) # (B*n_iter, N, 3)
proj_xy = proj[:, :, :2] / proj[:, :, 2:3] # (B*n_iter, N, 2)
proj_xy = proj_xy.reshape(B, n_iter, N, 2)
error = ((proj_xy - dst_pts_expand) ** 2).sum(dim=3).sqrt() # (B, n_iter, N)
inlier_mask = error < reproj_threshold # (B, n_iter, N)
total_score = (inlier_mask * confident_weight_expand).sum(dim=2) # (B, n_iter)
# 6. Select the sampling group with the highest score
best_idx = torch.argmax(total_score, dim=1) # (B,)
best_inlier_mask = inlier_mask[torch.arange(B, device=device), best_idx] # (B, N)
# 7. Refit Homography using inliers
H_inlier_list = []
for b in range(B):
mask = best_inlier_mask[b]
inlier_src_pts = src_pts[b][mask] # (?, 3)
inlier_dst_pts = dst_pts[b][mask] # (?, 2)
inlier_confident_weight = confident_weight[b][mask] # (?)
sorted_idx = torch.argsort(inlier_confident_weight, descending=True)
# # method 1: sort according to confident_weight, and only keep max_inlier_num pts
# sorted_idx = sorted_idx[:max_inlier_num]
# method 2: random choose max_inlier_num pts
if len(sorted_idx) > max_inlier_num:
# random choose from first 95% confident pts
keep_len = max(int(len(sorted_idx) * 0.95), max_inlier_num)
sorted_idx = sorted_idx[:keep_len]
perm = torch.randperm(len(sorted_idx), device=device)[:max_inlier_num]
sorted_idx = sorted_idx[perm]
inlier_src_pts = inlier_src_pts[sorted_idx]
inlier_dst_pts = inlier_dst_pts[sorted_idx]
inlier_confident_weight = inlier_confident_weight[sorted_idx]
H_inlier = find_homography_least_squares_weighted_torch(
inlier_src_pts, inlier_dst_pts, inlier_confident_weight
) # (3, 3)
H_inlier_list.append(H_inlier)
H_inlier = torch.stack(H_inlier_list, dim=0) # (B, 3, 3)
return H_inlier
def get_params_for_ransac(N, device):
n_iter=100
sample_ratio=0.3
num_sample_for_ransac=8
n_sample = max(num_sample_for_ransac, int(N * sample_ratio))
rand_sample_iters_idx = torch.stack(
[torch.randperm(n_sample, device=device)[:num_sample_for_ransac] for _ in range(n_iter)],
dim=0,
) # (n_iter, num_sample_for_ransac)
return n_iter, num_sample_for_ransac, n_sample, rand_sample_iters_idx
def camray_to_caminfo(camray, confidence=None, reproj_threshold=0.2, training=False):
"""
Args:
camray: (B, S, num_patches_y, num_patches_x, 6)
confidence: (B, S, num_patches_y, num_patches_x)
Returns:
R: (B, S, 3, 3)
T: (B, S, 3)
focal_lengths: (B, S, 2)
principal_points: (B, S, 2)
"""
if confidence is None:
confidence = torch.ones_like(camray[:, :, :, :, 0])
B, S, num_patches_y, num_patches_x, _ = camray.shape
# identity K, assume imw=imh=2.0
I_K = torch.eye(3, dtype=camray.dtype, device=camray.device)
I_K[0, 2] = 1.0
I_K[1, 2] = 1.0
# repeat I_K to match camray
I_K = I_K.unsqueeze(0).unsqueeze(0).expand(B, S, -1, -1)
cam_plane_depth = torch.ones(
B, S, num_patches_y, num_patches_x, 1, dtype=camray.dtype, device=camray.device
)
I_cam_plane_unproj = unproject_depth(
cam_plane_depth,
I_K,
c2w=None,
ixt_normalized=True,
num_patches_x=num_patches_x,
num_patches_y=num_patches_y,
) # (B, S, num_patches_y, num_patches_x, 3)
camray = camray.flatten(0, 1).flatten(1, 2) # (B*S, num_patches_y*num_patches_x, 6)
I_cam_plane_unproj = I_cam_plane_unproj.flatten(0, 1).flatten(
1, 2
) # (B*S, num_patches_y*num_patches_x, 3)
confidence = confidence.flatten(0, 1).flatten(1, 2) # (B*S, num_patches_y*num_patches_x)
# Compute optimal rotation to align rays
N = camray.shape[-2]
device = camray.device
n_iter, num_sample_for_ransac, n_sample, rand_sample_iters_idx = get_params_for_ransac(N, device)
# Use batch processing (confidence is guaranteed to be not None at this point)
if training:
camray = camray.clone().detach()
I_cam_plane_unproj = I_cam_plane_unproj.clone().detach()
confidence = confidence.clone().detach()
R, focal_lengths, principal_points = compute_optimal_rotation_intrinsics_batch(
I_cam_plane_unproj,
camray[:, :, :3],
reproj_threshold=reproj_threshold,
weights=confidence,
n_sample = n_sample,
n_iter=n_iter,
num_sample_for_ransac=num_sample_for_ransac,
rand_sample_iters_idx=rand_sample_iters_idx,
)
T = torch.sum(camray[:, :, 3:] * confidence.unsqueeze(-1), dim=1) / torch.sum(
confidence, dim=-1, keepdim=True
)
R = R.reshape(B, S, 3, 3)
T = T.reshape(B, S, 3)
focal_lengths = focal_lengths.reshape(B, S, 2)
principal_points = principal_points.reshape(B, S, 2)
return R, T, 1.0 / focal_lengths, principal_points + 1.0
def get_extrinsic_from_camray(camray, conf, patch_size_y, patch_size_x, training=False):
pred_R, pred_T, pred_focal_lengths, pred_principal_points = camray_to_caminfo(
camray, confidence=conf.squeeze(-1), training=training
)
pred_extrinsic = torch.cat(
[
torch.cat([pred_R, pred_T.unsqueeze(-1)], dim=-1),
repeat(
torch.tensor([0, 0, 0, 1], dtype=pred_R.dtype, device=pred_R.device),
"c -> b s 1 c",
b=pred_R.shape[0],
s=pred_R.shape[1],
),
],
dim=-2,
) # B, S, 4, 4
return pred_extrinsic, pred_focal_lengths, pred_principal_points
|