File size: 20,096 Bytes
18b382b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from einops import repeat

from .geometry import unproject_depth


def compute_optimal_rotation_intrinsics_batch(
    rays_origin, rays_target, z_threshold=1e-4, reproj_threshold=0.2, weights=None,
    n_sample = None,
    n_iter=100,
    num_sample_for_ransac=8,
    rand_sample_iters_idx=None,
):
    """
    Args:
        rays_origin (torch.Tensor): (B, N, 3)
        rays_target (torch.Tensor): (B, N, 3)
        z_threshold (float): Threshold for z value to be considered valid.

    Returns:
        R (torch.tensor): (3, 3)
        focal_length (torch.tensor): (2,)
        principal_point (torch.tensor): (2,)
    """
    device = rays_origin.device
    B, N, _ = rays_origin.shape
    z_mask = torch.logical_and(
        torch.abs(rays_target[:, :, 2]) > z_threshold, torch.abs(rays_origin[:, :, 2]) > z_threshold
    ) # (B, N, 1)
    rays_origin = rays_origin.clone()
    rays_target = rays_target.clone()
    rays_origin[:, :, 0][z_mask] /= rays_origin[:, :, 2][z_mask]
    rays_origin[:, :, 1][z_mask] /= rays_origin[:, :, 2][z_mask]
    rays_target[:, :, 0][z_mask] /= rays_target[:, :, 2][z_mask]
    rays_target[:, :, 1][z_mask] /= rays_target[:, :, 2][z_mask]

    rays_origin = rays_origin[:, :, :2]
    rays_target = rays_target[:, :, :2]
    assert weights is not None, "weights must be provided"
    weights[~z_mask] = 0

    A_list = []
    max_chunk_size = 2
    for i in range(0, rays_origin.shape[0], max_chunk_size):
        A = ransac_find_homography_weighted_fast_batch(
            rays_origin[i:i+max_chunk_size],
            rays_target[i:i+max_chunk_size],
            weights[i:i+max_chunk_size],
            n_iter=n_iter,
            n_sample = n_sample,
            num_sample_for_ransac=num_sample_for_ransac,
            reproj_threshold=reproj_threshold,
            rand_sample_iters_idx=rand_sample_iters_idx,
            max_inlier_num=8000,
        )
        A = A.to(device)
        A_need_inv_mask = torch.linalg.det(A) < 0
        A[A_need_inv_mask] = -A[A_need_inv_mask]
        A_list.append(A)

    A = torch.cat(A_list, dim=0)

    R_list = []
    f_list = []
    pp_list = []
    for i in range(A.shape[0]):
        R, L = ql_decomposition(A[i])
        L = L / L[2][2]

        f = torch.stack((L[0][0], L[1][1]))
        pp = torch.stack((L[2][0], L[2][1]))
        R_list.append(R)
        f_list.append(f)
        pp_list.append(pp)

    R = torch.stack(R_list)
    f = torch.stack(f_list)
    pp = torch.stack(pp_list)

    return R, f, pp


# https://www.reddit.com/r/learnmath/comments/v1crd7/linear_algebra_qr_to_ql_decomposition/
def ql_decomposition(A):
    P = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=A.device).float()
    A_tilde = torch.matmul(A, P)
    Q_tilde, R_tilde = torch.linalg.qr(A_tilde)
    Q = torch.matmul(Q_tilde, P)
    L = torch.matmul(torch.matmul(P, R_tilde), P)
    d = torch.diag(L)
    Q[:, 0] *= torch.sign(d[0])
    Q[:, 1] *= torch.sign(d[1])
    Q[:, 2] *= torch.sign(d[2])
    L[0] *= torch.sign(d[0])
    L[1] *= torch.sign(d[1])
    L[2] *= torch.sign(d[2])
    return Q, L

def find_homography_least_squares_weighted_torch(src_pts, dst_pts, confident_weight):
    """
    src_pts: (N,2) source points (torch.Tensor, float32/float64)
    dst_pts: (N,2) target points (torch.Tensor, float32/float64)
    confident_weight: (N,) weights (torch.Tensor)
    Returns: (3,3) homography matrix H (torch.Tensor)
    """
    assert src_pts.shape == dst_pts.shape
    N = src_pts.shape[0]
    if N < 4:
        raise ValueError("At least 4 points are required to compute homography.")
    assert confident_weight.shape == (N,)

    w = confident_weight.sqrt().unsqueeze(1)  # (N,1)

    x = src_pts[:, 0:1]  # (N,1)
    y = src_pts[:, 1:2]  # (N,1)
    u = dst_pts[:, 0:1]
    v = dst_pts[:, 1:2]

    zeros = torch.zeros_like(x)

    # Construct A matrix (2N, 9)
    A1 = torch.cat([-x * w, -y * w, -w, zeros, zeros, zeros, x * u * w, y * u * w, u * w], dim=1)
    A2 = torch.cat([zeros, zeros, zeros, -x * w, -y * w, -w, x * v * w, y * v * w, v * w], dim=1)
    A = torch.cat([A1, A2], dim=0)  # (2N, 9)

    # SVD
    # Note: torch.linalg.svd returns U, S, Vh, where Vh is the transpose of V
    _, _, Vh = torch.linalg.svd(A)
    H = Vh[-1].reshape(3, 3)
    H = H / H[-1, -1]
    return H


def ransac_find_homography_weighted(
    src_pts,
    dst_pts,
    confident_weight,
    n_iter=100,
    sample_ratio=0.2,
    reproj_threshold=3.0,
    num_sample_for_ransac=16,
    random_seed=None,
):
    """
    RANSAC version of weighted Homography estimation.
    Sample 4 points from the top 50% weighted points each time.
    reproj_threshold: points with reprojection error less than this value are inliers
    Returns: best_H
    """
    if random_seed is not None:
        torch.manual_seed(random_seed)
    N = src_pts.shape[0]
    assert N >= 4
    # 1. Select top 50% weighted points
    sorted_idx = torch.argsort(confident_weight, descending=True)
    n_sample = max(num_sample_for_ransac, int(N * sample_ratio))
    candidate_idx = sorted_idx[:n_sample]
    best_inlier_mask = None
    best_score = 0
    for _ in range(n_iter):
        # 2. Randomly sample 4 points
        idx = candidate_idx[torch.randperm(n_sample)[:num_sample_for_ransac]]
        # 3. Compute Homography
        try:
            H = find_homography_least_squares_weighted_torch(
                src_pts[idx], dst_pts[idx], confident_weight[idx]
            )
        except Exception:
            H = torch.eye(3, dtype=src_pts.dtype, device=src_pts.device)
        # 4. Compute reprojection error for all points
        src_homo = torch.cat(
            [src_pts, torch.ones(N, 1, dtype=src_pts.dtype, device=src_pts.device)], dim=1
        )
        proj = (H @ src_homo.T).T
        proj = proj[:, :2] / proj[:, 2:3]
        error = ((proj - dst_pts) ** 2).sum(dim=1).sqrt()  # Euclidean distance
        inlier_mask = error < reproj_threshold
        total_score = (inlier_mask * confident_weight).sum().item()
        n_inlier = inlier_mask.sum().item()
        if n_inlier < 4:
            continue  # At least 4 inliers required for fitting

        if total_score > best_score:
            best_score = total_score
            best_inlier_mask = inlier_mask

    # 5. Refit Homography using inliers
    H_inlier = find_homography_least_squares_weighted_torch(
        src_pts[best_inlier_mask], dst_pts[best_inlier_mask], confident_weight[best_inlier_mask]
    )

    return H_inlier


def find_homography_least_squares_weighted_torch_batch(
    src_pts_batch, dst_pts_batch, confident_weight_batch
):
    """
    Batch version of weighted least squares Homography
    src_pts_batch: (B, K, 2)
    dst_pts_batch: (B, K, 2)
    confident_weight_batch: (B, K)
    Returns: (B, 3, 3)
    """
    B, K, _ = src_pts_batch.shape
    w = confident_weight_batch.sqrt().unsqueeze(2)  # (B,K,1)
    x = src_pts_batch[:, :, 0:1]
    y = src_pts_batch[:, :, 1:2]
    u = dst_pts_batch[:, :, 0:1]
    v = dst_pts_batch[:, :, 1:2]
    zeros = torch.zeros_like(x)
    A1 = torch.cat([-x * w, -y * w, -w, zeros, zeros, zeros, x * u * w, y * u * w, u * w], dim=2)
    A2 = torch.cat([zeros, zeros, zeros, -x * w, -y * w, -w, x * v * w, y * v * w, v * w], dim=2)
    A = torch.cat([A1, A2], dim=1)  # (B, 2K, 9)
    # SVD: torch.linalg.svd supports batch
    _, _, Vh = torch.linalg.svd(A)
    H = Vh[:, -1].reshape(B, 3, 3)
    H = H / H[:, 2:3, 2:3]
    return H


def ransac_find_homography_weighted_fast(
    src_pts,
    dst_pts,
    confident_weight,
    n_sample,
    n_iter=100,
    reproj_threshold=3.0,
    num_sample_for_ransac=8,
    random_seed=None,
    rand_sample_iters_idx=None,
):
    """
    Batch version of RANSAC weighted Homography estimation.
    Returns: H_inlier
    """
    if random_seed is not None:
        torch.manual_seed(random_seed)
    N = src_pts.shape[0]
    device = src_pts.device
    assert N >= 4
    # 1. Select top weighted points by sample_ratio
    sorted_idx = torch.argsort(confident_weight, descending=True)
    candidate_idx = sorted_idx[:n_sample]  # (n_sample,)
    if rand_sample_iters_idx is None:
        rand_sample_iters_idx = torch.stack(
            [torch.randperm(n_sample, device=device)[:num_sample_for_ransac] for _ in range(n_iter)],
            dim=0,
        )  # (n_iter, num_sample_for_ransac)
    # 2. Generate all sampling groups at once
    # shape: (n_iter, num_sample_for_ransac)
    rand_idx = candidate_idx[rand_sample_iters_idx]  # (n_iter, num_sample_for_ransac)
    # 3. Construct batch input
    src_pts_batch = src_pts[rand_idx]  # (n_iter, num_sample_for_ransac, 2)
    dst_pts_batch = dst_pts[rand_idx]  # (n_iter, num_sample_for_ransac, 2)
    confident_weight_batch = confident_weight[rand_idx]  # (n_iter, num_sample_for_ransac)
    # 4. Batch fit Homography
    H_batch = find_homography_least_squares_weighted_torch_batch(
        src_pts_batch, dst_pts_batch, confident_weight_batch
    )  # (n_iter, 3, 3)
    # 5. Batch evaluate inliers for all H
    src_homo = torch.cat(
        [src_pts, torch.ones(N, 1, dtype=src_pts.dtype, device=src_pts.device)], dim=1
    )  # (N,3)
    src_homo_expand = src_homo.unsqueeze(0).expand(n_iter, N, 3)  # (n_iter, N, 3)
    dst_pts_expand = dst_pts.unsqueeze(0).expand(n_iter, N, 2)  # (n_iter, N, 2)
    confident_weight_expand = confident_weight.unsqueeze(0).expand(n_iter, N)  # (n_iter, N)
    # H_batch: (n_iter, 3, 3)
    proj = torch.bmm(src_homo_expand, H_batch.transpose(1, 2))  # (n_iter, N, 3)
    proj_xy = proj[:, :, :2] / proj[:, :, 2:3]  # (n_iter, N, 2)
    error = ((proj_xy - dst_pts_expand) ** 2).sum(dim=2).sqrt()  # (n_iter, N)
    inlier_mask = error < reproj_threshold  # (n_iter, N)
    total_score = (inlier_mask * confident_weight_expand).sum(dim=1)  # (n_iter,)
    # 6. Select the sampling group with the highest score
    best_idx = torch.argmax(total_score)
    best_inlier_mask = inlier_mask[best_idx]  # (N,)
    inlier_src_pts = src_pts[best_inlier_mask]
    inlier_dst_pts = dst_pts[best_inlier_mask]
    inlier_confident_weight = confident_weight[best_inlier_mask]

    max_inlier_num = 10000
    sorted_idx = torch.argsort(inlier_confident_weight, descending=True)

    # method 1: sort according to confident_weight, and only keep max_inlier_num pts
    # sorted_idx = sorted_idx[:max_inlier_num]

    # method 2: random choose max_inlier_num pts
    sorted_idx = sorted_idx[torch.randperm(len(sorted_idx))[:max_inlier_num]]

    inlier_src_pts = inlier_src_pts[sorted_idx]
    inlier_dst_pts = inlier_dst_pts[sorted_idx]
    inlier_confident_weight = inlier_confident_weight[sorted_idx]
    # 7. Refit Homography using inliers
    H_inlier = find_homography_least_squares_weighted_torch(
        inlier_src_pts, inlier_dst_pts, inlier_confident_weight
    )
    return H_inlier


def ransac_find_homography_weighted_fast_batch(
    src_pts,  # (B, N, 3)
    dst_pts,  # (B, N, 2)
    confident_weight,  # (B, N)
    n_sample,
    n_iter=100,
    reproj_threshold=3.0,
    num_sample_for_ransac=8,
    max_inlier_num=10000,
    random_seed=None,
    rand_sample_iters_idx=None,
):
    """
    Batch version of RANSAC weighted Homography estimation (supports batch).
    Input:
        src_pts: (B, N, 2)
        dst_pts: (B, N, 2)
        confident_weight: (B, N)
    Returns:
        H_inlier: (B, 3, 3)
    """
    if random_seed is not None:
        torch.manual_seed(random_seed)
    B, N, _ = src_pts.shape
    assert N >= 4

    device = src_pts.device

    # 1. Select top weighted points by sample_ratio
    sorted_idx = torch.argsort(confident_weight, descending=True, dim=1)  # (B, N)
    candidate_idx = sorted_idx[:, :n_sample]  # (B, n_sample)

    # 2. Generate all sampling groups at once
    # rand_idx: (B, n_iter, num_sample_for_ransac)
    if rand_sample_iters_idx is None:
        rand_sample_iters_idx = torch.stack(
            [torch.randperm(n_sample, device=device)[:num_sample_for_ransac] for _ in range(n_iter)],
            dim=0,
        )  # (n_iter, num_sample_for_ransac)

    rand_idx = candidate_idx[:, rand_sample_iters_idx]  # (B, n_iter, num_sample_for_ransac)

    # 3. Construct batch input
    # Indexing method below: (B, n_iter, num_sample_for_ransac, ...)
    b_idx = torch.arange(B, device=device).view(B, 1, 1).expand(B, n_iter, num_sample_for_ransac)
    src_pts_batch = src_pts[b_idx, rand_idx]  # (B, n_iter, num_sample_for_ransac, 2)
    dst_pts_batch = dst_pts[b_idx, rand_idx]  # (B, n_iter, num_sample_for_ransac, 2)
    confident_weight_batch = confident_weight[b_idx, rand_idx]  # (B, n_iter, num_sample_for_ransac)

    # 4. Batch fit Homography
    # Need to implement batch version that supports (B, n_iter, num_sample_for_ransac, ...) input
    # Output H_batch: (B, n_iter, 3, 3)
    cB, cN = src_pts_batch.shape[:2]
    H_batch = find_homography_least_squares_weighted_torch_batch(
        src_pts_batch.flatten(0, 1), dst_pts_batch.flatten(0, 1), confident_weight_batch.flatten(0, 1)
    )  # (B, n_iter, 3, 3)
    H_batch = H_batch.unflatten(0, (cB, cN))

    # 5. Batch evaluate inliers for all H
    src_homo = torch.cat(
        [src_pts, torch.ones(B, N, 1, dtype=src_pts.dtype, device=src_pts.device)], dim=2
    )  # (B, N, 3)
    src_homo_expand = src_homo.unsqueeze(1).expand(B, n_iter, N, 3)  # (B, n_iter, N, 3)
    dst_pts_expand = dst_pts.unsqueeze(1).expand(B, n_iter, N, 2)  # (B, n_iter, N, 2)
    confident_weight_expand = confident_weight.unsqueeze(1).expand(B, n_iter, N)  # (B, n_iter, N)

    # H_batch: (B, n_iter, 3, 3)
    # Need to reshape H_batch to (B*n_iter, 3, 3), src_homo_expand to (B*n_iter, N, 3)
    H_batch_flat = H_batch.reshape(-1, 3, 3)
    src_homo_expand_flat = src_homo_expand.reshape(-1, N, 3)
    proj = torch.bmm(src_homo_expand_flat, H_batch_flat.transpose(1, 2))  # (B*n_iter, N, 3)
    proj_xy = proj[:, :, :2] / proj[:, :, 2:3]  # (B*n_iter, N, 2)
    proj_xy = proj_xy.reshape(B, n_iter, N, 2)
    error = ((proj_xy - dst_pts_expand) ** 2).sum(dim=3).sqrt()  # (B, n_iter, N)
    inlier_mask = error < reproj_threshold  # (B, n_iter, N)
    total_score = (inlier_mask * confident_weight_expand).sum(dim=2)  # (B, n_iter)

    # 6. Select the sampling group with the highest score
    best_idx = torch.argmax(total_score, dim=1)  # (B,)
    best_inlier_mask = inlier_mask[torch.arange(B, device=device), best_idx]  # (B, N)

    # 7. Refit Homography using inliers
    H_inlier_list = []
    for b in range(B):
        mask = best_inlier_mask[b]
        inlier_src_pts = src_pts[b][mask]  # (?, 3)
        inlier_dst_pts = dst_pts[b][mask]  # (?, 2)
        inlier_confident_weight = confident_weight[b][mask]  # (?)

        sorted_idx = torch.argsort(inlier_confident_weight, descending=True)
        # # method 1: sort according to confident_weight, and only keep max_inlier_num pts
        # sorted_idx = sorted_idx[:max_inlier_num]
        # method 2: random choose max_inlier_num pts
        if len(sorted_idx) > max_inlier_num:
            # random choose from first 95% confident pts
            keep_len = max(int(len(sorted_idx) * 0.95), max_inlier_num)
            sorted_idx = sorted_idx[:keep_len]
            perm = torch.randperm(len(sorted_idx), device=device)[:max_inlier_num]
            sorted_idx = sorted_idx[perm]
        inlier_src_pts = inlier_src_pts[sorted_idx]
        inlier_dst_pts = inlier_dst_pts[sorted_idx]
        inlier_confident_weight = inlier_confident_weight[sorted_idx]

        H_inlier = find_homography_least_squares_weighted_torch(
            inlier_src_pts, inlier_dst_pts, inlier_confident_weight
        )  # (3, 3)
        H_inlier_list.append(H_inlier)
    H_inlier = torch.stack(H_inlier_list, dim=0)  # (B, 3, 3)
    return H_inlier

def get_params_for_ransac(N, device):
    n_iter=100
    sample_ratio=0.3
    num_sample_for_ransac=8
    n_sample = max(num_sample_for_ransac, int(N * sample_ratio))
    rand_sample_iters_idx = torch.stack(
            [torch.randperm(n_sample, device=device)[:num_sample_for_ransac] for _ in range(n_iter)],
            dim=0,
        )  # (n_iter, num_sample_for_ransac)
    return n_iter, num_sample_for_ransac, n_sample, rand_sample_iters_idx


def camray_to_caminfo(camray, confidence=None, reproj_threshold=0.2, training=False):
    """
    Args:
        camray: (B, S, num_patches_y, num_patches_x, 6)
        confidence: (B, S, num_patches_y, num_patches_x)
    Returns:
        R: (B, S, 3, 3)
        T: (B, S, 3)
        focal_lengths: (B, S, 2)
        principal_points: (B, S, 2)
    """
    if confidence is None:
        confidence = torch.ones_like(camray[:, :, :, :, 0])
    B, S, num_patches_y, num_patches_x, _ = camray.shape
    # identity K, assume imw=imh=2.0
    I_K = torch.eye(3, dtype=camray.dtype, device=camray.device)
    I_K[0, 2] = 1.0
    I_K[1, 2] = 1.0
    # repeat I_K to match camray
    I_K = I_K.unsqueeze(0).unsqueeze(0).expand(B, S, -1, -1)

    cam_plane_depth = torch.ones(
        B, S, num_patches_y, num_patches_x, 1, dtype=camray.dtype, device=camray.device
    )
    I_cam_plane_unproj = unproject_depth(
        cam_plane_depth,
        I_K,
        c2w=None,
        ixt_normalized=True,
        num_patches_x=num_patches_x,
        num_patches_y=num_patches_y,
    )  # (B, S, num_patches_y, num_patches_x, 3)

    camray = camray.flatten(0, 1).flatten(1, 2)  # (B*S, num_patches_y*num_patches_x, 6)
    I_cam_plane_unproj = I_cam_plane_unproj.flatten(0, 1).flatten(
        1, 2
    )  # (B*S, num_patches_y*num_patches_x, 3)
    confidence = confidence.flatten(0, 1).flatten(1, 2)  # (B*S, num_patches_y*num_patches_x)

    # Compute optimal rotation to align rays
    N = camray.shape[-2]
    device = camray.device
    n_iter, num_sample_for_ransac, n_sample, rand_sample_iters_idx = get_params_for_ransac(N, device)

    # Use batch processing (confidence is guaranteed to be not None at this point)
    if training:
        camray = camray.clone().detach()
        I_cam_plane_unproj = I_cam_plane_unproj.clone().detach()
        confidence = confidence.clone().detach()
    R, focal_lengths, principal_points = compute_optimal_rotation_intrinsics_batch(
        I_cam_plane_unproj,
        camray[:, :, :3],
        reproj_threshold=reproj_threshold,
        weights=confidence,
        n_sample = n_sample,
        n_iter=n_iter,
        num_sample_for_ransac=num_sample_for_ransac,
        rand_sample_iters_idx=rand_sample_iters_idx,
    )

    T = torch.sum(camray[:, :, 3:] * confidence.unsqueeze(-1), dim=1) / torch.sum(
        confidence, dim=-1, keepdim=True
    )

    R = R.reshape(B, S, 3, 3)
    T = T.reshape(B, S, 3)
    focal_lengths = focal_lengths.reshape(B, S, 2)
    principal_points = principal_points.reshape(B, S, 2)

    return R, T, 1.0 / focal_lengths, principal_points + 1.0

def get_extrinsic_from_camray(camray, conf, patch_size_y, patch_size_x, training=False):
    pred_R, pred_T, pred_focal_lengths, pred_principal_points = camray_to_caminfo(
        camray, confidence=conf.squeeze(-1), training=training
    )

    pred_extrinsic = torch.cat(
        [
            torch.cat([pred_R, pred_T.unsqueeze(-1)], dim=-1),
            repeat(
                torch.tensor([0, 0, 0, 1], dtype=pred_R.dtype, device=pred_R.device),
                "c -> b s 1 c",
                b=pred_R.shape[0],
                s=pred_R.shape[1],
            ),
        ],
        dim=-2,
    )  # B, S, 4, 4
    return pred_extrinsic, pred_focal_lengths, pred_principal_points