|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
def extri_intri_to_pose_encoding( |
|
|
extrinsics, |
|
|
intrinsics, |
|
|
image_size_hw=None, |
|
|
): |
|
|
"""Convert camera extrinsics and intrinsics to a compact pose encoding.""" |
|
|
|
|
|
|
|
|
|
|
|
R = extrinsics[:, :, :3, :3] |
|
|
T = extrinsics[:, :, :3, 3] |
|
|
|
|
|
quat = mat_to_quat(R) |
|
|
|
|
|
H, W = image_size_hw |
|
|
fov_h = 2 * torch.atan((H / 2) / intrinsics[..., 1, 1]) |
|
|
fov_w = 2 * torch.atan((W / 2) / intrinsics[..., 0, 0]) |
|
|
pose_encoding = torch.cat([T, quat, fov_h[..., None], fov_w[..., None]], dim=-1).float() |
|
|
|
|
|
return pose_encoding |
|
|
|
|
|
|
|
|
def pose_encoding_to_extri_intri( |
|
|
pose_encoding, |
|
|
image_size_hw=None, |
|
|
): |
|
|
"""Convert a pose encoding back to camera extrinsics and intrinsics.""" |
|
|
|
|
|
T = pose_encoding[..., :3] |
|
|
quat = pose_encoding[..., 3:7] |
|
|
fov_h = pose_encoding[..., 7] |
|
|
fov_w = pose_encoding[..., 8] |
|
|
|
|
|
R = quat_to_mat(quat) |
|
|
extrinsics = torch.cat([R, T[..., None]], dim=-1) |
|
|
|
|
|
H, W = image_size_hw |
|
|
fy = (H / 2.0) / torch.clamp(torch.tan(fov_h / 2.0), 1e-6) |
|
|
fx = (W / 2.0) / torch.clamp(torch.tan(fov_w / 2.0), 1e-6) |
|
|
intrinsics = torch.zeros(pose_encoding.shape[:2] + (3, 3), device=pose_encoding.device) |
|
|
intrinsics[..., 0, 0] = fx |
|
|
intrinsics[..., 1, 1] = fy |
|
|
intrinsics[..., 0, 2] = W / 2 |
|
|
intrinsics[..., 1, 2] = H / 2 |
|
|
intrinsics[..., 2, 2] = 1.0 |
|
|
|
|
|
return extrinsics, intrinsics |
|
|
|
|
|
|
|
|
def quat_to_mat(quaternions: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Quaternion Order: XYZW or say ijkr, scalar-last |
|
|
|
|
|
Convert rotations given as quaternions to rotation matrices. |
|
|
Args: |
|
|
quaternions: quaternions with real part last, |
|
|
as tensor of shape (..., 4). |
|
|
|
|
|
Returns: |
|
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
|
""" |
|
|
i, j, k, r = torch.unbind(quaternions, -1) |
|
|
two_s = 2.0 / (quaternions * quaternions).sum(-1) |
|
|
|
|
|
o = torch.stack( |
|
|
( |
|
|
1 - two_s * (j * j + k * k), |
|
|
two_s * (i * j - k * r), |
|
|
two_s * (i * k + j * r), |
|
|
two_s * (i * j + k * r), |
|
|
1 - two_s * (i * i + k * k), |
|
|
two_s * (j * k - i * r), |
|
|
two_s * (i * k - j * r), |
|
|
two_s * (j * k + i * r), |
|
|
1 - two_s * (i * i + j * j), |
|
|
), |
|
|
-1, |
|
|
) |
|
|
return o.reshape(quaternions.shape[:-1] + (3, 3)) |
|
|
|
|
|
|
|
|
def mat_to_quat(matrix: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Convert rotations given as rotation matrices to quaternions. |
|
|
|
|
|
Args: |
|
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
|
|
|
Returns: |
|
|
quaternions with real part last, as tensor of shape (..., 4). |
|
|
Quaternion Order: XYZW or say ijkr, scalar-last |
|
|
""" |
|
|
if matrix.size(-1) != 3 or matrix.size(-2) != 3: |
|
|
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") |
|
|
|
|
|
batch_dim = matrix.shape[:-2] |
|
|
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( |
|
|
matrix.reshape(batch_dim + (9,)), dim=-1 |
|
|
) |
|
|
|
|
|
q_abs = _sqrt_positive_part( |
|
|
torch.stack( |
|
|
[ |
|
|
1.0 + m00 + m11 + m22, |
|
|
1.0 + m00 - m11 - m22, |
|
|
1.0 - m00 + m11 - m22, |
|
|
1.0 - m00 - m11 + m22, |
|
|
], |
|
|
dim=-1, |
|
|
) |
|
|
) |
|
|
|
|
|
quat_by_rijk = torch.stack( |
|
|
[ |
|
|
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), |
|
|
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), |
|
|
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), |
|
|
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), |
|
|
], |
|
|
dim=-2, |
|
|
) |
|
|
|
|
|
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) |
|
|
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) |
|
|
|
|
|
out = quat_candidates[F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :].reshape( |
|
|
batch_dim + (4,) |
|
|
) |
|
|
|
|
|
out = out[..., [1, 2, 3, 0]] |
|
|
|
|
|
out = standardize_quaternion(out) |
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Returns torch.sqrt(torch.max(0, x)) |
|
|
but with a zero subgradient where x is 0. |
|
|
""" |
|
|
ret = torch.zeros_like(x) |
|
|
positive_mask = x > 0 |
|
|
if torch.is_grad_enabled(): |
|
|
ret[positive_mask] = torch.sqrt(x[positive_mask]) |
|
|
else: |
|
|
ret = torch.where(positive_mask, torch.sqrt(x), ret) |
|
|
return ret |
|
|
|
|
|
|
|
|
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Convert a unit quaternion to a standard form: one in which the real |
|
|
part is non negative. |
|
|
|
|
|
Args: |
|
|
quaternions: Quaternions with real part last, |
|
|
as tensor of shape (..., 4). |
|
|
|
|
|
Returns: |
|
|
Standardized quaternions as tensor of shape (..., 4). |
|
|
""" |
|
|
return torch.where(quaternions[..., 3:4] < 0, -quaternions, quaternions) |
|
|
|
|
|
|
|
|
def cam_quat_xyzw_to_world_quat_wxyz(cam_quat_xyzw, c2w): |
|
|
|
|
|
|
|
|
b, n = cam_quat_xyzw.shape[:2] |
|
|
|
|
|
cam_quat_wxyz = torch.cat( |
|
|
[ |
|
|
cam_quat_xyzw[..., 3:4], |
|
|
cam_quat_xyzw[..., 0:1], |
|
|
cam_quat_xyzw[..., 1:2], |
|
|
cam_quat_xyzw[..., 2:3], |
|
|
], |
|
|
dim=-1, |
|
|
) |
|
|
|
|
|
cam_quat_wxyz_flat = cam_quat_wxyz.reshape(-1, 4) |
|
|
rotmat_cam = quat_to_mat(cam_quat_wxyz_flat).reshape(b, n, 3, 3) |
|
|
|
|
|
rotmat_c2w = c2w[..., :3, :3] |
|
|
rotmat_world = torch.matmul(rotmat_c2w, rotmat_cam) |
|
|
|
|
|
rotmat_world_flat = rotmat_world.reshape(-1, 3, 3) |
|
|
world_quat_wxyz_flat = mat_to_quat(rotmat_world_flat) |
|
|
world_quat_wxyz = world_quat_wxyz_flat.reshape(b, n, 4) |
|
|
return world_quat_wxyz |
|
|
|