File size: 58,824 Bytes
794cdea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Cross-Verification: psi_solve2 vs QMSolve\n",
    "\n",
    "This notebook compares the results of your custom solver (`psi_solve2`) against the `QMSolve` package.\n",
    "\n",
    "### Units Note\n",
    "**Hartree Atomic Units** are a system of natural units where:\n",
    "- $\\hbar = 1$\n",
    "- $m_e = 1$\n",
    "- $e = 1$\n",
    "- $4\\pi\\epsilon_0 = 1$\n",
    "\n",
    "Your code sets `hbar = 1` and `m = 1`, which means it calculates energy in **Hartrees**.\n",
    "`QMSolve` calculates energy in **eV** (Electron-Volts).\n",
    "\n",
    "**Conversion:** $1 \\text{ Hartree} \\approx 27.211386 \\text{ eV}$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import functions as f\n",
    "from qmsolve import Hamiltonian, SingleParticle \n",
    "\n",
    "# Conversion factor\n",
    "Hartree_to_eV = 27.211386"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Define the Test Case (Double Well)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Simulating Double Well: L=10.0, N=512\n"
     ]
    }
   ],
   "source": [
    "# Parameters\n",
    "L = 10.0\n",
    "N = 512\n",
    "depth = 2.0\n",
    "separation = 1.0\n",
    "center = 0.0\n",
    "m_particle = 1.0\n",
    "\n",
    "print(f\"Simulating Double Well: L={L}, N={N}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Run psi_solve2 (Your Code)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "psi_solve2 Energies (Hartree): [1.40088643 2.0925331  4.45525173 6.91780793 9.87263201]\n"
     ]
    }
   ],
   "source": [
    "# 1. Create Grid\n",
    "x_full, dx, x_internal = f.make_grid(L=L, N=N)\n",
    "\n",
    "# 2. Create Potential\n",
    "V_internal = f.V_double_well(x_internal, depth=depth, separation=separation, center=center)\n",
    "\n",
    "# Pad potential for the solver (walls at edges)\n",
    "V_full = np.zeros_like(x_full)\n",
    "V_full[1:-1] = V_internal\n",
    "V_full[0] = 1e10\n",
    "V_full[-1] = 1e10\n",
    "\n",
    "# 3. Solve\n",
    "T = f.kinetic_operator(N, dx, m=m_particle)\n",
    "E_psi, psi_psi = f.solve(T, V_full, dx)\n",
    "\n",
    "print(\"psi_solve2 Energies (Hartree):\", E_psi[:5])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. Run QMSolve (External Package)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Computing...\n",
      "Took 0.011998414993286133\n",
      "QMSolve Energies (eV): [ 38.16321636  57.08314973 121.53606095 188.76014178 269.3989016 ]\n",
      "QMSolve Energies (Hartree): [1.40247235 2.09776708 4.4663679  6.93680733 9.90022712]\n"
     ]
    }
   ],
   "source": [
    "# Define the same potential function for QMSolve\n",
    "def double_well(particle):\n",
    "    x = particle.x\n",
    "    return depth * ( (x - center)**2 - separation )**2\n",
    "\n",
    "# Setup Hamiltonian\n",
    "H = Hamiltonian(particles = SingleParticle(m = m_particle), \n",
    "                potential = double_well, \n",
    "                spatial_ndim = 1, N = N, extent = L)\n",
    "\n",
    "# Solve\n",
    "eigenstates = H.solve(max_states = 10)\n",
    "E_qm_eV = eigenstates.energies\n",
    "\n",
    "# Convert to Hartree for comparison\n",
    "E_qm_Hartree = E_qm_eV / Hartree_to_eV\n",
    "\n",
    "print(\"QMSolve Energies (eV):\", E_qm_eV[:5])\n",
    "print(\"QMSolve Energies (Hartree):\", E_qm_Hartree[:5])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 4. Compare Results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "n   | psi_solve2   | QMSolve      | % Diff  \n",
      "---------------------------------------------\n",
      "0   | 1.400886     | 1.402472     | 0.1131 %\n",
      "1   | 2.092533     | 2.097767     | 0.2495 %\n",
      "2   | 4.455252     | 4.466368     | 0.2489 %\n",
      "3   | 6.917808     | 6.936807     | 0.2739 %\n",
      "4   | 9.872632     | 9.900227     | 0.2787 %\n"
     ]
    }
   ],
   "source": [
    "print(f\"{'n':<3} | {'psi_solve2':<12} | {'QMSolve':<12} | {'% Diff':<8}\")\n",
    "print(\"-\"*45)\n",
    "\n",
    "for i in range(5):\n",
    "    e1 = E_psi[i]\n",
    "    e2 = E_qm_Hartree[i]\n",
    "    diff_pct = abs(e1 - e2) / e2 * 100\n",
    "    print(f\"{i:<3} | {e1:<12.6f} | {e2:<12.6f} | {diff_pct:<7.4f}%\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 5. Visual Comparison"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAIjCAYAAADFthA8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAlytJREFUeJzt3QeUE2X3x/G79N6lFwVUUBAVLNi72Hvvvb82FLvo366I5bVgo6ivvSAqqGDFDooVLBRBeu8sLf/zezITZkO2ZDc93885czabZJPZySSZO/c+9ykws5ABAAAAQJ6olO4VAAAAAIBUIggCAAAAkFcIggAAAADkFYIgAAAAAHmFIAgAAABAXiEIAgAAAJBXCIIAAAAA5BWCIAAAAAB5hSAIAAAAQF4hCAKwkVNPPdXGjx9vq1evtoULF2bkFmrXrp2FQiE744wz0r0qeWnPPfd0218/EZ/JkyfbsGHDcnYb6z2p9dZ71PfJJ5+4Jd/deuutbtsASD+CICAJjjvuOPdFd+SRR25027hx49xte+2110a3/fPPP/bll1+m9TXZcsstbdCgQTZx4kQ777zz7Pzzz0/r+px00kl2+eWXWybSwekbb7xhM2fOtMLCQps9e7a98847dtRRR6V71VBCUOEvq1atslmzZrmD8+uvv96aNGmSs9ttk002cf/zQw89tNFtuk639e3bd6PbBg8e7E6G1KxZM0VralZQUGCnnXaaffjhhzZ37lz3/HpvffDBB+4zqVq1apYPDj30UPv000/d/758+XL3mfzKK6/YgQceGLlPixYtXGDVrVu3cj/PQQcd5B4DyDcEQUASjB492v3cbbfdilxft25d69Kli61Zs8Z23XXXIre1bt3a2rZtG/nbdFFwVrlyZRd46ADotddeS+v6nHzyyXbFFVfEDBhr1Khhzz//fFrWSweMOkDR6zlgwAC78MIL7f7777c6derYm2++6YK3XPb555+77a+f2ebhhx922U4F+HrNFixYYLfddpvLfu69996WixRM/Pnnnxt9Jok+i2J9Jvm3/fjjj7Zy5cqUrKf2qffff9+GDBlitWrVsgceeMC9Tvfee68LWh9//HG35Lqrr77aZQsVnN5999125ZVXuhMum2++uZ144omR+7Vs2dJ9Fm277bblfq6DDz44ZgAM5Loq6V4BIBcpMzBp0qSNDjh69uzpznIqsIi+zf893UFQ06ZN3c9FixZZplP2JR2OOeYYd+ZUr6OCtLVr10Zu00HbAQccYFWrVrVcVL16dXdmXgdn6dr+FfXFF1+4A0pfv379bJtttnGZB12/1VZbuQxRrtFny+mnn261a9d2mQVRoKEswquvvmqHH364VapUydavX+9ua968uXXo0MGGDh2asnXs37+/9erVy52EeeSRR4rc9uCDD1rHjh1t//33L/ExdBJH/4cCu2yk9b/55pvd/hjM+gSzegASQ8WpLGwD9oEE7wODBw8OFRYWhmrUqBG57rbbbgv9/PPPoVNPPTW0cOHCUEFBQeS2Rx99NLRu3bpQo0aN3O9nnnlmaNSoUaHZs2eHVq1aFfrtt99CF154YZHnGDZsWGjixIkxn/+rr74Kff/990WuO+WUU0JjxowJrVixIjR//vzQSy+9FGrdunXk9smTJ4ei3Xrrre624OXgor8ZOHBg5PczzjjD3XeXXXYJ9evXLzRnzpzQsmXLQm+++WaoSZMmG/19r169Qp9++mloyZIlocWLF4e+++670EknneRu++STTzZaHz2fbmvXrp37Xc8XfLy999479Pnnn7vn1DZ+++23Q506dSpyH/0f0qFDB7fuut+iRYtCzz33XKhmzZqlvra///57aN68eaE6deqUaV/YZJNNQs8880xo1qxZoZUrV4bGjRsXOv3004vcx/9/rr766tDFF1/sXtfly5eHPvjgg8hrdNNNN4WmTZvmXj/9Xw0bNtzotdA+sf/++4d+/PFH91zab4466qgi99Pf3X///W5fXLp0qdvu77//fmibbbYpcr8999zTrdMJJ5wQ+r//+7/Qv//+6/bR+vXrR27TT//+HTt2DL3++uuhmTNnuufWumofq1evXuQ+lStXdv/H33//7fZrrfOdd94ZqlatWsz/Zddddw19++237vG0TU477bSNtm/79u3dUtrr4K/zMcccE/P2E0880d1+xx13FLl+2223ddtH20nba+TIkaGddtop5j4V/Zj++0Gvb7yvU6xtrGXHHXcMDR8+3O2z2kf0/tH7rbT//6yzznKPt++++xZ5v4j+R9l+++0jt2k7SXC9yvLcsf5nvZe1lLR+2s/XrFnjtnVZ3lfR75vLL7/c7Vdr164NdevWrcyfB/oM8D9XSntNRZ/VRxxxROiXX35x+/Cvv/4aOvDAAzf6e+27+jzT66v1Ov/884vdT4JLs2bN3H1uueWWMu3P0fzPxN122y306quvhv755x+3nlOnTg09+OCDRb6T9L/H4t+u7yhtV/2P+j/0Gfbkk0+GGjRoUObXiIVtYJm7DdK+Aixsg5zcB84777yNDmB08KQvEB2wSdeuXSO3/fDDD+5AyP9dB346KNcX0CWXXBIaMWKE+xsdIPv3UTAlPXr0KPLcbdu2jRwY+NfdcMMN7gBWB6UKpm6++WYXoEyaNMkd1Oo++mJ/44033N9ecMEFLmjy1zHeIGjs2LHu/9W664BbBzcvv/xykb/VfbVOOhi//vrrQxdddFHoqaeecgGkbt9vv/3cdtF6al20aB2LC4J0cLd69erQhAkTQr179478jwr4ggdk/oGI1lEH7doeel655557SnxddaAvCmrKsh/ogEOvqwJiBYWXXnpp6LPPPnOP8Z///CdyP///0f+rA44rrrgidPvtt7uDFwW0OjAfPXq0+/uHHnrIbbdnn312o9dC//uCBQtCd911l3uMn376yR0Ualv69+vevXvor7/+cvfRfuoHVzpIbNGixUYHWVofrZcer0+fPi5QjD5Ar1q1qgtSFChpXzv77LPd9td+rP0x+qBLB2d6vQcNGuR+V5Ac/b+MHz/eBVT637XfK4DX/73VVlttdN9YB7HxBkFVqlRxB/Y6cPWv03Mp8Jk+fXroxhtvDF177bXu/9QBoQKC6H2qrEFQWV6nWEGQDuq1T3z55ZehK6+80n0+KKjWdTvssEOJ///mm2++0ftYr73WRZd1kHzZZZdFbtMBsyiIj+e5yxsE+Z+ZJ598cpk/Z/33jfZRBRp6fbRebdq0KfPnQbxBkAJXf3/Qe1jPqyDLP4GlpUuXLm5fmjJlinvP6L7al7W9SguCFHjob3USK/pER3Bp2rSpe/1E3yv+Z+Rmm23mbn/44YdD7777bui6665z2/bpp592n8N67/mPsfPOO7sTLeL/vRb/dn0uahsOGDDABXF33323ez/ofa33S1lfJxa2gWXmNkj7CrCwDXJyH+jcubP7YtGXn38GXF8e/plsfSHqIFCXlVHQl5O+aPy/D56t8xedgdUXrv973bp13cGYgozg/fSFr4NFHQjodx2E6vEVaATvt/XWW7svuOD1/hd/48aNi9w33iDoww8/LHI/BQBaBz8roJ86s/7111+HqlevXux21BnzWAcosYIgHajrTGXwwEFBnA4udbAd/T9GBzIKAOfOnVvi63rYYYe5v9WBVln2Ax0kRR/Y6eBBB5LKfvnZJP//UeYvmDlRlsQ/8NI+5F//4osvuoPPYAbFz+QFz9xrH9EBmwI+/zr9TTAL6T+/9iUdVEUfhGufi94fow/Qdea9pABDizJNogOr4PX33Xefu36vvfba6H/R2Wz/OmUSY+3viQqCtGg76yDZ/13Bmbazf2CppXnz5m7fVRYkep8qaxBUltcpVhD0xx9/uM+B4HPotVFgpoPZ0raB3h8fffRR5Hc9lh9M6yTFK6+8ErlNwaCeL97nLm8QpM8Iic5IKsDW55G/BIMN/32jzFR0prmsnwfxBkHaH4KZRz2m6IRPcL9Rxtb/DNaiDJQ+A0sLgrT07dvX3U/fGe+99577jN5uu+02up9OaER/DgZfm+jrFJAFvxu0KLMVa52UyRI/M+8vBxxwQMzrWdgGlmXbgMYIQJJokPW8efMiY31Ud69B81999ZX7XT/9gcgaK1SlSpUi44E0CNhXr149a9y4sX322WeuRl+/y9KlS2348OF2/PHHF3nuE044wb755hubNm2a+/3oo492NfKq+9fj+IvGPfz1119JGQz+1FNPbTQOQ/+j3zZXdf36P+65556EjC3R+IXtttvOdbYLtvX+5Zdf7KOPPnKDf6M9+eSTG62jOoSpgUVxgtu+LPS8GiP20ksvRa7TGCKNd9DzRLc/1jijJUuWRH7/9ttv3c8XXnjB1q1bV+R6jc9p1apVkb+fPn26vfXWW5HftZ4aZL799ttbs2bN3HX+mB7RftGoUSNbtmyZ/fHHH+5+0dQgI7g/xrJ48WL3U2MYiusk5r8GGtsRpDE5csghhxS5/rfffivyntD7SevYvn37IvfbbLPN3JII2g7+669to/Fdb7/9tmtr7dP75n//+597b5e0r5SkLK9TNA1+32KLLdxzB9/HGuMzatQo22OPPdyYw5Ko++ROO+3k/jfdd+edd458Juk2/zNJr6Gez9/+iXju0vjvLb0G0fuNXnt/UVOUaBrLpdsq8nlQViNHjnRjPoOPqf3f3y+1bfU+0H7jfwbLhAkTXIe7slCjAjVXUVMKPdZdd91lP/zwg40dO9Y6depUpscIvmc19kuvl15rrZ+2TVm6nGpsqLZX8DXXOmh/zdUmIsgfBEFAEukLRwcZOjjQwYVanarNqX+bf8Dh/wwe8O2yyy7uy0cHBPqC1Re8ugRJ/fr1I/dTy1R1lVMgJfoi7tGjh7vep45C+uL7+++/ixxMaNEgcL8ZQiJNnTq1yO/+gUjDhg3dTwVz8uuvvybk+fzgSgfJsQJSDSbWgUA86xiLH6CU9eBX66VAM3puEK1TcL2LWyc/uAgeTAWvj15XvcbR1BVMNt10U/dT+6M67ul6BaDz5893+4IC9eC+5QsGAMWZMmWKC2bUwliPNWLECLv44osjB7b+/6pALnod9b7Qti9tW4juV9LrU1E6UeEHuNpndJBf3D6lAext2rQp1/OU5XWKpvexKFiKfh9ru6uzWqzXL0ifMdp3FdSos2GDBg0ibfn1maSgWq+DAiU19/A/kxLx3KXxt7tegyCt33777eeW4oKI6H20PJ8HZVXafuk/tt730WKtT3FefvllF1zqcXXS6MUXX3RBsrrG6QRIabRvDhw40L2/1QhDr5XfzbEsr5Vec+0f6iwY/ZprH0rG9waQSnSHA5JIBxDquNS1a1cX6PhnXEWX1UlMLU51Rllnhv0vcgUyOruqM4dXXXWVOwDW2XudvdTvCmh8+kLUF5yyQV9//bX7qQPNYGtrv+OT5oMIZhN80Wde46EDwVhiPY9U9GxxIpVnHfWaiF7TVK5TIrfnDTfcYHfccYc9++yzrguVWkRr/9B8McF9y1fW9si9e/d2Z96POOIIl0FRtkvz7+hEgPZvX1kni0z1PqRMpbId5QnMi/ufint/lIf/2mg7a76xWEp7Lwfb9+szRQfI/j6tx9RniW7zM2v+/RPx3KXx10PB2c8//xy5Xgfd+jwUtTaPpSItvON97VK9Xyo4VPZJizrenXnmmS5ILak9vV4vnURTllftxbVt9doqyFVmN9b7PNZj6ATFKaecEvN2BUdANiMIApIoeMChICg4UaFKClSuoHl59IWmuTF8hx12mDuzqgAqmAGIVX6wYsUKe/fdd13pggIklcKprEslWD5ln/SFpiAr1tnJstCBss4KBulMsSbrKw8/I6YDHv9yLGU9YPZLZDTZazSVj+gLW9uqorT9dEChA3218fVbDZe0Xmq/rAOk4P/il7TEKu2pCLUQjqYDez9bI8cee6x9/PHHdu655xa5n17fYElReSiA0HLnnXe67KSCfc2hpGBL/6sOLHWG2T/gFZ1R1tnuRG+LeGm76Ay+n23QPqPXt7h9SgfD/vvTzyLqDLufpZPo7FY8r1M0/32ibKQfFMRLJVV+oKMsoE6c+PT/fP/99+6zSkGQDoD9z4tEPHdpVNqrUlEddKvsriLi+TzQaxf92VbSa1ca/7H97FlQrPWJx5gxY1wQ5H/uFvf5qJM0ei61RA/OpaZsWrTiHkOvue6vTFxp5bBANqIcDkgifWHpDKW+1DUZajATpLOwOiC55JJLXPlHsBTOP9MYPLOosqKzzjor5vOo9E1n+HRQqzKXYCmcaPJOHVwUNyu4zhaWRl+IKs0I0iSGOnteHpoDQwdUyhSUVNqhA7aylG5onIbq588444wi9996661dViIYZFaUtqPGDj3zzDMxzxardMUf36Ln1QGLglOf/uayyy5zZ3g1ziuRtB8cddRRkd9VtqIDIW0bHdT6+1f0WWsFANpHy0vPE70tNFZCz+W/vv5rED35rYJ3ee+998r13MqcRo8TipcCVZ2kULD/2GOPueuUHdN+qoA3eECsoE3zQ+k965dw+UFC8D2igEr7Y3lfp2g6caIyOmVjVKYXTftkafR6aDyZAp3o7LTod/0Pyt75ZXKJeu7SKKB87rnnXMZbn4sVybbE83mg105BUDC7qzFFwdcnHtpvFEgfeeSRRcolFXzFmvcnmsZjafvHomx+sKzOPwkTHcTF+g4RnbiJ5j9G9OesxpDq810nMKLpvV7R8kcg3cgEAUmk0gWdWdVBhc6k6UAi+oBDBxUSDIJ04KWztCp1GzBggAuSVHc/Z84cVz4XTV/oCihUXqdgJzgRpGgQ70033eSaEGi8gQbs6uBNZ3v1Ra8mBv7g9OLogF/r8vrrr7syC40f0Rd6eUsi9PyaBV0lWdpGOvOrM7J6XB086mynaJtphnStn+6nkhtlvmK55ppr3Nlknd3W4+pgQsGGzswnckZ0HRzogEnbVAOM1fRAZ541aFgTPersqQY1i7btBRdc4MrEunfv7s7yK+DQmXgdkFS0hCiaDo70v++www7uYPrss892A+2DAbS2nwI5HXBqH9T/okC9pIxcafbZZx/773//68owNbZFB0+nnXaaOxjz90eVOGk7aHvooE0B4I477uheazUJ+PTTT8v13H5moqzNEXbffXeXadWBnF4zBQPKumo/0fshGIToNVZQq/fn448/7t5fWn8Fdtdee22R96z2AW37+++/3/3f2vZ6f8TKKJTldYp1xl4nOrSPq2mExnuozFABlbLE+gzQ/1Ea/S96vSQY6Ij2B5VL+vdL9HOXRgGyXkftS3rf6zNQn3sKsvQ6KUte1nE1Zf080NgblYxpH1QJpz5/LrroIrcf6z1bHnp/6bNAWXntN3o/6Lm17fQZVxI9v9ZZi8bWKTjU+0VBlb5LtJ5+SaLes/rcVLZVn6kKaBTkKtOqoFXfCXqN9PpokudY4+n87yX97wretO/qRJrK7dQ8RvuDTq5pH9d3mjJcqjzQ51f0dw2QbdLeoo6FbZDL+4Df4lhzvETfduSRR7rb1G63UqVKRW479NBD3ZwSarOquXyuueYaN4FqdOtZf3n++edjtqYOLmrJq4kD1XZViyb9VHtUzR9SWotstVTWHBH+5Kdqlas2scW1yFbr1rJM/Kj/U9tG82Koze0333zjJuf0b69Vq1bohRdecHOqlGWy1H322Sf0xRdfRB5v6NChxU6WGv0/xmrtW9KieVPeeust14ZXrcbV3lrPpzbawftpnhW1Ida2U3tdzQkTvd7BSR/L0tY51nYOTsKpfUftpPUaR/+tWmSrzbRaMms7aXtp8s/oNsYltZSOfj033XRT13Jc8w9pn9VksprsV69H8O/U5lvztaitsuZO0kSOJU2WGv28sVotx9si26fn12umVtdqQRxrMl8tmkhU+7tammvf1/+l+VWi76cWxmr5rtdY88No/p/SJkst6XUq7j2jduSa30rt3PW3ejy1t9b+WJb9Vs8r2mejJwdWO2m1UJZY8w6V5bnL2yLbX/RZqMfQPGPaj7Seeu+otbfmqgm21C/ufRPP54EWzc+k+cr02ml+KrW0L2my1Oi/j/4c1LL77ru7uX70mPFMlqr3yDnnnOPabOtxtZ2136l9uv5PtQwP3l+fN5onSdsp+Jmo/1PfB9pvtf00BYPfzjv4+aPtrTmF9F7wX/vg45977rnu/9A21HeVPr80n5paxZfl9WRhG1iGboMC7wIAIMtpzJfG4+hsOQAAKB5jggAAAADkFYIgAAAAAHmFIAgAAABAXklrEKTuKRp/F1z8WdQBAPFRVy3GAwEAkAUtsjWINzh5l9qPAgAAAEDOBkEKeoqbGA4AAAAAci4I0qRbmnBNE0lqYjDNHq+JwWKpVq3aRjPLa6Z7zfANAAAAIL/VrVvXZsyYUer90jpPkGZTrlOnjpv9uUWLFm6MkGY27tKlS8xZ1HV7Imd9BwAAAJBbFE+UFghl1GSp9evXt3/++ceuuuoqe+6550rNBCnSUxZJ/+jSpUtTvLYAckH37t2tVq1atm7dOvvqq6/SvTpAXtpiiy2sWbNm7vLYsWNtxYoV6V4lAFnIjw3q1atXamyQ9nK4oMWLF9uff/5pHTt2jHn76tWr3RJN/yRBEIDy8D871J2SzxEgPVauXBkJfBYtWmSFhYW8FADyZ56g2rVrW4cOHWzmzJnpXhUAeUIZICkoKHALgNSrXLly5PL69et5CQDkdhB0//332x577GHt2rWznj172ltvveUOSF566aV0rhaAPBI84AoeiAFInUqVKm10YgIAkimt5XCtW7d2AU/jxo1t7ty5Nnr0aNt5551t3rx56VwtAHkaBAUPxACkDpkgAHkVBJ100knpfHoAKHLWmUwQkB7+CQiyQJlJpcINGjRwg84pG0a6+GN3NW5QlysqoxojAECqkQkC0s8/AcF4oMyzySab2HnnnWedOnVK96oAzoQJE+zpp592VWQVQRAEIK8FzzxTDgekB5mgzFSlShW788473dyNjz/+uM2ZM4dsHdJ6sqRp06Z2/PHHu/3y4osvtrVr15b78QiCAOQ1GiMA6UcmKDNpIvsaNWrYAw884KYwAdJt0qRJtmDBArvpppusefPm9u+//5b7sRgFDCCvUQ4HpB+ZoMx+XZi3CZnE3x8rOo6XIAhAXqMxApBeGmjvH2wzJghAqhAEAchrZIKA9GKOIADpQBAEIK/RGAFIL+YIQr5r166da/ncrVu3Mv/NwIED7a233krqeuU6giAAeY3GCEDmBEHME4REUZCgwEKLxpD89ddfdvPNN5dpHMkZZ5xhCxcuTMqLESt4mTZtmhvk/+uvvyblOREb3eEA5DXK4YDMKYdjTBASafjw4XbWWWdZ9erV7eCDD7bHHnvM1qxZY/fcc09GbWjt97Nnz073auQdMkEA8hqNEYD0IhOEZFEGSMHF1KlT7cknn7SRI0fa4Ycfbg0aNLDBgwe7VsvLly+3999/3zp27Oj+Zs8997RBgwa5+/iZpFtvvdXdVq1aNbv//vtdW2bNnfTNN9+4+0dnkA444AD7/fffbenSpS4QU5ZH9DhnnnmmHXnkkZHH1t9Hl8PpxMAzzzzj2kGvWLHCTQ76n//8hx0lwcgEAchrZIKA9CITlH26d+/uAoJUWr16tY0dO7ZCj7Fy5Upr3LixC3I233xzFxAtWbLE7r33XhcIbbXVVvbVV1/Z5ZdfbrfffrttueWW7u8U8Mh///tfd58TTzzRZsyYYUcddZSNGDHCunbtan///be7T61atax379522mmnue+XF154wc2zdOqpp7qfnTt3tnr16rkMlSgQa9my5UbvCQVaxx13nM2fP9922WUXe+qpp2zmzJn22muvVWgbYAOCIAB5jcYIQHqRCco+CoBUYpZN9t13XzvwwANdZkbBiwKLr7/+2t12yimnuHE5ytC8/vrrtnjxYpeZCZaotWnTxgUubdu2dcGI9OvXz3r16uWuv/HGGyPb5sILL3RZHD9wuuWWW9xlZZ0UiGnblVT+tnbtWuvbt2/k9ylTpljPnj3t+OOPJwhKIIIgAHmNxghAepEJyj7KymTDcx566KGuJK1q1apuP/vf//5nb775prv+22+/jdxP2Zg//vjDZWmKo2xPlSpV7M8//yxyvQIaZWt8CnT8AEgUMDVt2jTudb/44ovt7LPPdkFXzZo1XXA1bty4uB8HxSMIApDXKIcD0otMUPapaFlaqnzyySd20UUXuQBK5WvK/B922GHleqw6deq4DI1KAaO7GPrlcqLGC0HKKAUD/bI44YQTXOnc1Vdf7bJVCuSuueYa22mnncq17oiNIAhAXqMxApBeZIKQLMrKTJw4sch148ePd5khBRR+OVyjRo3c+B81MxAFTdGttH/88UeXCVJWZ/To0eVep1iPHW3XXXd1Y5OeeOKJyHUdOnQo93MiNrrDAchrZIKA9CIThFRSA4O3337bnn76aRdsbLPNNq55wfTp023o0KGRMTh169a1ffbZxzVSUDma5hnS/YYMGeLGFG266aa2ww472HXXXefab5eVHlvPucUWW7jHVmAVTc/Vo0cP12VODRzUpEHPhcQiCAKQ1wiCgPQiE4RUUyMDlfS9++67LhtUUFDgAhmVu4muUxbmlVdesXnz5tm1114b+TsFQWqIoDFECqYUnKgFd1kp+NLfjhkzxj22ArFoAwYMcGOX9Pwau6Rg6fHHH0/gFoAUqFwxWzeFonS1NlSrQdVLAkB57LHHHu5ATHXd+mICkDrt27d3g79FA78XLVrE5s8Qmr/m//7v/+zmm2+2f/75J92rA5S6X8YTG5AJApD3/GxQvINXAVQcmSAA6cA3PoC85zdHIAgCUo8xQQDSgSAIQN7zM0GldewBkIQDkUAGNrr1MAAkC0EQgLxHJghIn+DJh2CjEgBIJoIgAHmPTBCQPmSCAKQDQRCAvEebbCB9yAQBSAeCIAB5LzgOgeYIQHrGBOlkRCiUtbN2AMgyBEEA8l4wE0RzBCC1/Pcc44EApBJBEIC8F8wEEQQB6ckE0RkOQCoRBAHIe4wJAtKHTBAyzSeffGL9+/dP+vPsueeergS0fv36lgk+++wzO+mkk9K6Dl9//bUdffTRKXkugiAAeY9MEJA+ZIKQaXQQfvPNN1s2Ovfcc+3zzz+3BQsWuOWjjz6yHXbYodS/O+yww6xZs2b28ssvJ3X9jj32WBs/frytXLnSfv75ZzvooIOK3H7HHXfYPffcYwUFBZZsBEEA8h6NEYD0IROETLNw4UJbtmyZZaO99trLXnrpJdt7772tZ8+eNm3aNPvwww+tZcuWJf7df/7zHxs4cGBSm5NofbRuzz77rG233Xb29ttvu2XrrbeO3Gf48OFWt27djYKjZCAIApD3aIwApAdzBCFZ5WyPPvqoWxYtWmRz586122+/vch9LrroIvvzzz9dRmLWrFn22muvlascrqTHqVatmj388MM2e/Zsd/sXX3xhPXr0iPk4OvBfsWKF9erVq8j1Rx55pC1ZssRq1qzpfm/durW98sorLlCbP3++CyLatWsXuf+pp55qTzzxhP3000/2xx9/uMyQ3mf77rtvsf9DkyZNbJ999rFhw4YVuV4B0TnnnGNvvvmmLV++3P2fyhiV1+WXX24jRoywBx54wCZMmGC33HKL/fDDD3bppZcW+T5+//337cQTT7Rkq5L0ZwCADEc5HJAezBGUpZ580qxRo9Q+54IFZhdeWOa7n3HGGS7jsOOOO7rA46mnnrKpU6faM888Y927d7dHHnnETjvtNPvqq6+sUaNGtvvuu8e9SqU9zn333WfHHHOMW5d//vnHrr32Wvvggw+sY8eOLogJWrp0qb377rt28sknu0DBd8opp7hAR0FUlSpV3N9r3IyeZ+3atXbTTTe5+2+zzTa2Zs2ajdaxVq1aVrVqVVcaV5zddtvNBWAqU4t26623uvW+5ppr7LLLLrMXX3zRBV3++mu9S/LCCy+4QNHPBD344INFbtf/o0Av6LvvvrPrrrvOko0gCEDeoxwOSA8yQVlKAdAmm1gmUxnYlVde6S4rg9G1a1f3u4Kgtm3busyGgg6VvSk4GjduXNzPUdLjKPjQwf+ZZ54ZCWrOO+8823///V12RdmQaAownn/+eZf1UdCj7NAhhxxiRx11lLv9hBNOcO8ZZXd8Z511lst2qQxO43+i3XvvvTZjxgwbOXJksf9Hu3btXLYqVincoEGDIuOEbrjhBpfNUWCp4EW23XbbEreRsli+5s2bu+cJ0u+6Pkjr26ZNGzcuKJnleQRBAPIe5XBAepAJylIlZBUy5Tm/+eabIr8re3L11Ve7IELBgjIzkyZNcgGKlrfeessFHvEo6XE6dOjgyuG+/PLLyP2VuVGWo3PnzjEfT2VgyuYcfvjhruRNWSQFEX4A061bN5dFis6+1KhRwz1fdBDUp08fV1amAKmwsLDY/6NmzZq2atWqmLepeYFP2aLFixdb06ZNI9dNnDjREk3bT58N1atXL3a9EoEgCEDeoxwOSA8yQVkqjrK0TKSszfbbb++CgwMOOMCNF+rbt6/roqaD/EQ8TnkoAHr99dddSZyCIP+n/x1Vp04dGzt2rCuRi6ZxT0EK+FRStt9++9kvv/xS4vPOmzfPGjZsWOw6BSkzE3zfxlMOpzFT6kAXpN91fZDKCrVtkxkACUEQgLxHORyQHmSCkCw77bRTkd933nln++uvvyKZf33ujxo1yi233XabKylTcwBlcuJR3OOoXEzZl1133dWVyYnG9ChAeuihh4p9PJXEKaOz1VZbucfRmB+fmgioJG7OnDklBh8av3PjjTfagQce6IKm0vz444+uJK1BgwZu/eMRTzmcsnFq0KBmET6VB+r6oC5durh1SjaCIAB5j3I4ID3IBCFZNF6nX79+NmDAAJet0aB+ZUdE42zat2/v5tPRAP+DDz7Y7YvqphaPkh5HpWPq0nb//fe7pgQKhNRgQGOF1LChOHosZUYUDE2ePNmVz/l0nQKcoUOHus5q//77rxvPo3mN1IRh+vTp7jmUkVIWacqUKZHMizIrGr8Uy48//uiyQQrY3nvvvbi2QTzlcAp+NCHrVVdd5Z5HpXpqWnH++ecXuZ+aPqitd7LRIhtA3qMcDkgPMkFIliFDhrixLgoiHnvsMXcArg5xomyHAoePP/7YdUS78MIL7aSTTrLff/89ruco7XFUjvbGG2+4ZgfK4mg8j7IzpWVbNJeOMiwKeqLHyuyxxx4uoFLbaj2nAiqNCfIzLio901gaPa+CKX/p3bt3iScCBw4cGLPMLpGU8VFwpqBHLbw1cao6w/3222+R+2g+o1122cWtTyqEsnWpW7duSPQz3evCwjZgH8jefaBGjRqhvfbayy2dO3dO+/qwsA3yZR9o1qxZ5L3XqlWrtK8PS9Ft0K5du9CQIUPcz2zaNp988kmof//+aV+PbHsvzps3L9S2bdu0rsc999wTGjBgQLn3y3hiAzJBAPIe5XBA+svhgu9DAKk1e/Zs17pbZYTppPFON998c0qeizFBAPIe5XBA+svhgu9DIBNoEtHhw4cXe7vm8cklQ4cOTfcqbDSZajIRBAHIe8Ez0MEz0wCSi0wQkmHvvfdOyOOMGTOm1O5nyF4EQQDynuY9UCCkA7LgmWkAyUUmCJlM89QkYzJQZAZOeQJAoBSHIAhI4UEIY4IApAlBEAAEgiDK4YDUIRMEIF0IggAg0JmKTBCQnkwQjREApBJBEABQDgekBZOlAkgXgiAACARBBQUFbgGQgoMQMkEA0oQgCACiJmqkJA5IDTJByEcDBw60t956K+nPU7VqVfvrr7+sZ8+eSX+uktZh8uTJ1r17d8s0BEEAEDUegSAISG0myG9TDyRK69at7dlnn7Xp06dbYWGhTZkyxR566CFr1KhRkft98sknbv/r06fPRo/x7rvvuttuvfXWyHWbbrqpvfjii+5xV65cadOmTbO3337bttxyy4x78S688EIXgHz99ddJfZ6LL77YPY+2xzfffGM77LBD5LY1a9bYAw88YPfee69lGoIgAIgKgugQB6SGf8KBAAiJtNlmm7mJTjfffHM76aSTrGPHji4g2HfffV1A0LBhwyL3nzp1qp155plFrmvZsqW7/4wZMyLXValSxT766COrX7++HX300S7wOeGEE+yXX36xBg0aZNyLeOmll7pAMJmOP/54e/DBB+22226z7bff3n766Sf74IMPbJNNNoncR0HjbrvtZltttZVlEoIgAKAcDkhrJojOcNmnVglL9TjuW6MM943XY489ZqtXr7YDDjjAPv/8c5etGTFihO23337WqlUru/POOzfK+DRp0sR22WWXyHVnnHGGffjhhzZnzpzIdVtvvbULqJT5+Pbbb13w9NVXX9nNN9/sfvd16dLFRo0aZStWrLB58+bZgAEDrHbt2jHX9bzzznNZpeixqMouBQOYww8/3MaOHeuyLZrA9ZZbbimxakHlZx06dLD33nsvcl27du1cZuuoo46yjz/+2JYvX27jxo2znXfe2crrqquusqefftoGDRpk48ePd8Gm/u+zzz47cp9FixbZl19+aSeeeKJlEoIgAKAcDkgLMkHZa3kJyxtR951Twn2HR913Soz7xENZngMPPNAef/xxW7VqVZHbZs+e7bISyt4EKWDS9WeddVbkOmWGnnvuuSL3mzt3rgvYjz322GIrBmrVquUyIQsXLnRlYccdd5wLvv773//GvP9rr71mjRs3tr333rvI/9CrVy+3TqIsypAhQ+zhhx922ZQLLrjArd+NN95Y7HbYfffd7c8//7Rly5ZtdJuCwAceeMC23XZbd5+XXnop8l5s06aNLV26tMTl+uuvj4z3UbA1cuTIyGMryNLv0eOQvvvuO7dOmYQgCAAohwPScxBCJggJphI47VfKSsSi6zUuKFiuJQp4VNqlIEYH6yp5U4YoSKVx//nPf+z22293QY6yPTfddJMrv/OdfPLJVqNGDTv99NPtt99+c2OOVJZ22mmnWdOmTTdaH2VJhg8f7v7OpyBLGST9rWhM0j333OMCIY29UZCh7JOCoeIo6xMs5QtSAPT++++7pgl6bI1zUobL/x8VHJW0PPnkk+6+yp6pRFDBZZB+b968+UbbTuuUSaqkewUAIBPQHQ5IPTJB2St2cVfYhhGWYRsf+m8Q3Q5jU0uM0qY6UPYn6Oeff3ZBgQIQZWWef/75mGWayjApGNlrr71cGZkyPTfccIMrV1Nw0rlzZzcuRiVhPpWCaV/XGKJgeZ1PGR+VlKnMTut1yimn2Msvv+yyKtKtWzfbddddi2R+9Hg1a9Z0i0rkoun66ExY8H/1zZw50/1UgPbHH3+4/1nldommdVSAmUnIBAEA5XBAygXn5GJMUPZZUcJSGMd9ow/TY90nHn///bc7qaVgJBZdr0Bk8eLFG92mbNAll1ziAqHoUrgglZgpS6QskAKUL774wl0ur2HDhrn3wiGHHOK62ikT5ZfCSZ06dVzGJpiN6dq1q8veFBfoKJMU3QAi2LHN5wdaflY2nnI4PcfatWutWbNmFqTfZ82aVeQ6Zd9UTphJyAQBAOVwQMoxRxCSYcGCBa6Dm7Iq/fv3LxIk6OBcWRY1Tojlf//7nysVUyanuHK6WCZMmBBpqqC/03gdZT38bJCyOAr0lWmJRS2833zzTbduCmx0vx9//DFy+w8//OCySPFkaPT3F110kcVrhlcOV9o29oMpNWtQF72hQ4e66xTM6ffoMVBqFhH8nzIBQRAAUA4HpFxwYDmZICSSxuCoa5saFChDo3E06ux2//33u0YAGtMTi8bntGjRokimJEhZH7WCVqnc77//7krX9txzT9cJzZ8HRxkc3Wfw4MHWt29fN/bo0UcfdX8TqxTOp79Tdknr+cILLxS5Teur29SN7vXXX3eZLq2LAguNDYpF44mUQdLjaWxSWa2LsxxO7bH1v6oluZofXHHFFa4TniaEDVJ2q7h1TRfK4QCAcjgg5cgEIVlUEqfObJMmTbJXX33V/vnnH9ciWwGQsjJqDV0clckFx/ME/fvvv27SVZWmqSW2MjSXX365+91vu62xL+pOp/Kv77//3gUtaqCgwKwkalmtDEunTp1cRipIrboPPfRQ1/Jbj6kJSa+88kr3fxVHj/XWW2+57FIyvfrqq9a7d28XqKndtrJI6mwXDPg0dkqNJrQtMk0oW5e6deuGRD/TvS4sbAP2gezeBxo2bBjaa6+93LLZZpulfX1Y2Aa5vg/UqVMn8p7bYost0r4+LBtvg3bt2oWGDBnifmb79unbt29oyZIloZ122int65KqpWvXrqFZs2aFateundb1ePnll0PXX399SvbLeGIDMkEAQCYISDnK4ZBKKk1Te2tlJUrrHJcrfvnlF+vTp0+RFt6pVrVqVbceGp+VaRgTBAAEQUDKUQ6HVBs0aFDebXSN10mnNWvWREoFMw2ZIACIaoxQ3EzgAJITBNEYAUCq8U0PAGSCgJQjCAKQTgRBAMA8QUDKEQRlPn8izSpVGD2BzOHvj/7+WV4EQQDAPEFAytEYIfPNnz/f/VTbZiBT+PvjvHnzKvQ4hPYA4J1R0rggHZgFz1ADSA4aI2Q+zafz6aef2vHHH+9+nzBhgq1duzbdq4U8zgB16tTJ7Y/aL4ubz6nMj5ewNQOALKfB2QqCaIwAJB/lcNlh4MCB7ucJJ5yQ7lUBHAVA/n5ZEQRBABDVIY5MEJB8BEHZkyV/7rnn7OWXX7YmTZrkzRw7yMx9USVwFc0A+QiCACCqTS9BEJB8BEHZRQeeU6dOTfdqAAlDYwQAiAqCKIcDko/GCADSiSAIAKLK4XRwRskHkFw0RgCQTgRBABBj1npK4oDkohwOQDoRBAFAjCCIkjggNUGQ354eAFKJIAgAPMEDMTJBQHL577HgyQcASBWCIADwUA4HpI6fbSUIApAOBEEA4KEcDkh9JohSOADpQBAEAB7K4YDUoRwOQDoRBAGAh3I4IDXUgp5yOADpRBAEAB7K4YDUoD02gHQjCAIAD+VwQGoQBAFIt4wJgvr06ePmCujfv3+6VwVAnqIcDkiN4DxcNEYAkLdBUI8ePeyCCy6wn376Kd2rAiCPUQ4HpAaZIACW70FQ7dq17cUXX7TzzjvPFi5cmO7VAZDHKIcDUoMgCIDlexD02GOP2XvvvWejRo0q9b7VqlWzunXrFlkAIFEohwNSgyAIQLpVSeeTn3DCCbb99tvbDjvsUKb7X3/99da3b9+krxeA/EQ5HJAaBEEA8jYT1Lp1a3v44YftlFNOscLCwjL9zd1332316tWLLK1atUr6egLIH5TDAalBYwQAeZsJ6t69uzVr1sx++OGHDStTpYrtsccedumll1r16tU36hizevVqtwBAMlAOB6QGmSAAeRsEaQxQly5dilw3cOBAmzBhgt177720zASQcpTDAalBEAQgb4OgZcuW2W+//VbkuuXLl9v8+fM3uh4AUoFyOCA1CIIAWL53hwOATKEJm/1AKHiQBiCxCIIA5HV3uGh77713ulcBQJ5TSZwGbQcHbgNIrOD7K1iGCgCpwrc8AASQCQJSmwmKboIEAKlAEAQAAf5ZacrhgOShHA5AuhEEAUAAQRCQfARBANKNIAgAYgRBBQUFjAsCkoQgCEC6EQQBQAATpgKpa4yg8UDqyggAqUYQBAABBEFA6jJBNEUAkC4EQQAQQBAEpC4Ioj02gHQhCAKAAIIgIPkIggCkG0EQAAQQBAHJRxAEIN0IggAggCAISPKBR6VKrvti9PsNAFKJIAgAAgiCgNR0hhMaIwBIF4IgAAggCAKSizmCAGQCgiAACCAIApKLIAhAJiAIAoAAgiAguQiCAGQCgiAACCAIApKLIAhAJiAIAoAAgiAgyQceNEYAkAEIggAggCAISC4yQQAyAUEQAAQQBAHJRRAEIBMQBAFAAEEQkFwEQQAyAUEQAAQEJ28MHqwBSAyCIACZgCAIAAJCoVAkG0QQBCThwIPGCAAyAEEQAETxg6DgwRqAxCATBCAT8A0PAFHIBAHJQxAEIBMQBAFAFIIgIHkIggBkAoIgACghCCooKGD7AAlEEAQgExAEAUAJbbIZFwQkLwgKdmMEgFQiCAKAKMwVBCTxwCPQcCT4XgOAVCIIAoAoBEFA8jNBygKpJT0ApANBEABEIQgCkh8EkQUCkE4EQQAQhSAISB6CIACZgCAIAKIQBAHJQxAEIBMQBAFAFIIgIHkIggBkAoIgAIgSbNsbbOcLoGKYIwhApiAIAoAoZIKA5CAIApApCIIAIApBEJAcBEEAMgVBEABEIQgCkoMgCECmIAgCgCgEQUByVKlSJXJ57dq1bGYAaUMQBABRCIKA5CATBCBTEAQBQBSCICA5CIIAZAqCIACIQhAEJAdBEIBMQRAEAFEIgoDkIAgCkCkIggAgxmSpoVDIXWayVCBxCIIAZAqCIAAoIRtEEAQkDkEQgExBEAQAMRAEAYlHi2wAmYIgCABiIAgCEo9MEIBMQRAEADEQBAGJRxAEIFMQBAFACUFQQUGBVarERyWQCARBADIF3+wAEANtsoHEIwgCkCkIggAgBoIgIHlBUPD9BQDpQBAEADEQBAHJ6w5HEAQg3QiCACAGgiAgeZmgtWvXsnkBpBVBEADEQBAEJB7lcAAyBUEQAMRAEAQk+ICjUiXXbTH6/QUA6UAQBAAxEAQBiUVnOACZhCAIAGIgCAISiyAIQCYhCAKAUoIgJksFKo4gCEAmIQgCgBjIBAHJaY8d/f4CgHQgCAKAGAiCgORlgmiRDSDdCIIAoJQgKHgGG0D5UA4HIJMQBAFADGSCgMQiCAKQSQiCACAGgiAgsQiCAGQSgiAAiIEgCEgsgiAAmYQgCACKCYJCoZC7zJggoOIIggBkEoIgACglGxQ8eANQPsGTCXSHA5BuBEEAUAz/QI0gCKg4MkEAMglBEACUkgmiHA6oOIIgAJmEIAgAikE5HJA4BEEAsj4Iql+/vp1zzjl21113WcOGDd112223nbVs2TLR6wcAaRMct0BJHFAxBEEAMknc06B37drVRo4caYsXL7ZNN93Unn76aVu4cKEdffTR1rZtWzvjjDOSs6YAkMY22SqJC/4OoHxB0Pr16yOdFwEgazJBDz74oA0aNMi22GILW7VqVeT6999/3/bYY49Erx8ApA1zBQGJD4I4mQAgK4OgHXbYwQYMGLDR9dOnT7fmzZsnar0AIO0ohwMSx28wQntsAFkZBBUWFlq9evU2ul6Zoblz5yZqvQAg48rhAJQfmSAAWR0EvfPOO3bLLbdEDghU19umTRu799577Y033kjGOgJAWlAOByRGQUGBVaoUPuSgHA5AVgZBV199tdWpU8fmzJljNWvWtM8++8z+/vtvW7p0qd14443JWUsASAPK4YDEoDMcgEwTd33HkiVL7IADDrBdd93VttlmGxcQ/fDDDzZq1KjkrCEApAnlcEBiEAQByDTlLnL/8ssv3QIAuYpyOCAxCIIAZGUQdNlll5X5AR999NGKrA8AZAzK4YDECDYWYUwQgKwJgq688soiv2+yySZWq1YtW7Rokfu9QYMGtmLFCjdOiCAIQK6gHA5IfCaIFtkAsqYxQvv27SOLmh+MGzfOOnfubI0bN3aLLmtc0M0335z8NQaAFKEcDkgMyuEAZH13uP/7v/9z5XF//vln5DpdVrbojjvuSPT6AUDaBM9YM08QUH4EQQCyPghq0aJFzIMBfcA1a9YsUesFAGlHJghIDIIgAFkfBKkV9oABA2y77baLXLf99tvbE088YSNHjkz0+gFAWoMgTQgdfRAHID4EQQCyPgg6++yzbdasWTZmzBhbtWqVW7777jubPXu2nXvuuXE91oUXXmg//fSTLV682C1fffWV9erVK95VAoCkZ4MohwPKjyAIQNbPEzRv3jw75JBDbPPNN7dOnTq56yZMmGB//fVX3E/+77//2nXXXef+tqCgwM444wwbOnSoyzL9/vvvcT8eACQjCFIARCYIKD9aZAPImclSFbiUJ/AJevfdd4v8ftNNN9lFF11kO++8M0EQgIzKBBEEAeVHi2wAWR8EPfvssyXefs4555RrRSpVqmTHHXec1a5d277++uuY96lWrZpVr1498nvdunXL9VwAEG+HOIIgoPwohwOQ9UFQw4YNi/xetWpV69Kli5sw9eOPP457BfS3Cnpq1Khhy5Yts6OOOsrGjx8f877XX3+99e3bN+7nAICKZoJUsqsDOWa7B+JHEAQg64Ogo48+eqPrdHCg7nATJ06MewX++OMP23bbba1+/fp27LHH2uDBg23PPfeMGQjdfffd9uCDDxbJBE2fPj3u5wSA8rbJJggC4seYIABZ3x0uFrWQVXCiCVPjtWbNGhc8/fDDD3bDDTe4bnGXX355zPuuXr3ali5dWmQBgGRiwlQgcZmg9evXuwUAciIIkg4dOiSkhazGBgXH/QBAOjFhKlBx/vFB8KQCAKRT3FFLv379NiqFa9GihWubrVK2eNx11102fPhwmzp1qittO/nkk22vvfayAw88MN7VAoCkIAgCEpcJopwUQNYGQZrDJ0hp7blz59rVV19tzz33XFyP1bRpUxsyZIgLojRZ6s8//+wCoJEjR8a7WgCQFJTDARVHJghA1gdB++yzT8Ke/Nxzz03YYwFAMpAJAipe5q6qkej3EwBk1ZigUaNGuU5u0VTOptsAIJcQBAEVExwvzJggAFkbBGnMjiYtjaZ5fnbfffdErRcAZATK4YCKIQgCkNXlcF27do1c3mqrrWzBggVFBjz26tWLOXsA5BwyQUDFMFEqgKwOgsaNG+fmA9Ly8ccfb3T7ypUr7bLLLkv0+gFAWhEEARVDJghAVgdBm222mRvYOGnSJNtxxx1dR7jgJKZz5sxhAjQAOYdyOKBiyAQByOogSHP5RH+YAUCuIxMEVAyZIABZGwQddthhblJTnRHV5ZIMGzYsUesGAGlHEARUDJkgAFkbBL399tvWvHlzVwKny8XReKHgGR8AyKUgiM83IH5kggBkoirxnsWhHA5APtHJHQVC+uzj8w+IH5kgADkxTxAA5Gs2iCAIiB+ZIABZmwmKp/X1o48+WpH1AYCMo/GQmiSacjggfgRBALI2CLryyivLXDZCEAQg15AJAsqPcjgAWRsEtW/fPvlrAgAZHgRprrRKlSoxJxoQBzJBADIRY4IAoBRMmApUPBO0fv16VzECAFkbBJ199tn2yy+/2KpVq9yiy+ecc07i1w4AMgBzBQEVzwQFTyYAQLrFPanPbbfdZldddZUb+/P111+763r27Gn9+/e3tm3b2q233pqM9QSAtCEIAiqeCQq+jwAg64Kgiy66yM477zx7+eWXI9cNGzbMfv75ZxcYEQQByDWUwwHlRyYIQE6Uw1WtWtXGjBmz0fVjx46lfSyAnEQmCCgfNRJRQ5Ho9xEAZF0Q9Pzzz7tsULTzzz/fXnzxxUStFwBkDDJBQPnQGQ5AzpTDiZogHHDAAfbNN9+433faaSc3HmjIkCHWr1+/yP2uvvrqxK0pAKQJmSCgfAiCAORMENSlSxf74Ycf3OUOHTq4n/PmzXOLbvPRBhNAriATBJQPE6UCyJkgaJ999knOmgBAhiIIAsqHTBCATMVkqQBQCoIgoHzIBAHImUxQ9erV7bLLLrO9997bmjZt6jq/BHXv3j2R6wcAaceYIKB8yAQByJkg6Nlnn3VNEV5//XX77rvvGPsDIOeRCQLKh0wQgJwJgg499FA7+OCD7auvvkrOGgFAhiEIAsqHTBCAnBkTNH36dFu6dGly1gYAMpC6XfolccGDOgAlIxMEIGeCIM39c++997p5gQAg37JBBEFA2ZEJApCp4j6lOWbMGKtRo4ZNmjTJVqxYYWvWrClye+PGjRO5fgCQEfxMUPDMNoCSEQQByJkg6KWXXrJWrVrZDTfcYLNnz6YxAoC8ywQVFBTw2QeUAeVwAHImCNpll12sZ8+e9vPPPydnjQAgw5sj6MAu+DuA2MgEAciZMUETJkywmjVrJmdtACBD0SEOKH8maP369WRPAWR3EHTddddZv379bM8997RGjRpZ3bp1iywAkA+ZIABlzwSROQWQ9eVwI0aMcD9HjRpV5Hq/Rp7OSQByuTGC8DkHlI1/wiD4/gGArAyC9t577+SsCQBkMMrhgPiRCQKQM0HQ559/XuxtW2+9dUXXBwAyEkEQEJ9KlSq5KpHo9w8AZOWYoGh16tSx8847z7799lv76aefErNWAJBhCIKA+ATLRimHA5AzQdDuu+9ugwYNspkzZ1rv3r3t448/tp133jmxawcAGSJ4EEdjBKB0tMcGkDPlcM2aNbMzzzzTzjnnHKtXr569+uqrVr16dTvyyCNt/PjxyVtLAEgzMkFAfJgoFUBOZILeeecd++OPP2ybbbaxK664wlq2bGn/+c9/krt2AJAhCIKA+JAJApATmaCDDjrIHnnkEXviiSfs77//Tu5aAUCGIQgC4kMmCEBOZIJ22203Nxnq2LFj7ZtvvrFLLrnEGjdunNy1A4AMQRAExIdMEICcCILU/e3888+3Fi1a2IABA+zEE0+0GTNmuBaY+++/v+sSBwC5isYIQHzIBAHIqe5wK1assIEDB7rucF27drV+/frZddddZ3PmzLGhQ4cmZy0BIM1CoVAkEAqe4QYQG5kgADk7T9Cff/5pffr0sdatW9tJJ52UuLUCgAwuiSMIAkpHEAQgpydLlfXr17ss0BFHHJGIhwOAjEQQBJQvCFqzZg2bDkBGoaYDAOIMgjTWoaCgwJXIZbOGZrarypzNbLmZLTCzqWZWmO4Vy7Mv4abeolZDlb3rFTJM9F6PbFW1atWYjUUAIBMQBAFAOZsjZMOB3eZmdoCZ7WNmXc3sPjN7xrutg5kNi/E3081M018PNLP/pXh9c5naB1U3s/ne793N7JsSvoifNLOLvMsKjm4ys0/N7AtVYFjmoxwOQCYjCAKAcrbJztQgSFmFM8zsHDPbMuq2rQOX55nZ92ZW08xqm9km3oF6K2/5KOoxbzCzUWb2sZc5QskKzGxbMzvYzA4xsx3N7AEzu867fbL3Jay9aK73evh7VA0z+yvqdevrXZ5tZm+Z2dNm9kMWBEEqmdcCAFkZBN12221u3M8PP2TyRy4A5PdcQVuY2a8qRfJ+V2nbl15A862Z/RK47xTvwDxIJVntvazR14Hr9zOzy71lpZmNMLM3vEzSkhT8X9kU+OxmZiebmUbJtoi6Xdk3n8oPW5vZDHUfLOVxVR43xAummpnZhd7yiZndb2bDLfP475FMPVkAIL+V+VtcHeCGDx9uq1evtmHDhtk777xjo0aNYrAjgLyRqUFQQeAg+k+vZKqulyl41cyWxfFY871FGaKgP8zscTM70DuQP8pbVpvZB2Z2jXeffKe94m0za+T9vswLQN/3Asd/Y5QelsV4L7unx9/bzE43sxO8y3t7r4WeN5MQBAHIie5w55xzjjVv3ty1wl66dKk99NBDNm/ePHv99dfttNNOs4YNNcQWAPIjCApOBJlOJ3qZnyaB6w4zs55m9lycAVBJxprZJWbW0cy6mdntZvabmVXzshPBbFAbb+xLrmvnlbYNi8rYPOtt+wO8zNrR3jis6ACoPNZ6QdVpXsaun5mNNrN3LPP47xEyQQCyvkW2OiGNHj3azQ3UqVMn22mnnezbb7+1Cy64wGbMmGGfffaZXX311dayZcvkrTEAZEBjhHRnghp7Z/5fMrOtzOzqwG3J7u72s5ndamZdzKyzmZ1rZjMDtz/njVvxA4HMCBcTt90v9JoTqJzwbjM71Mx2CtznWm881kdepixZFFT1NrM9Ao0SNJbodTPbztJL7w91UBSCIAA5N0/QhAkT7P7777fddtvN2rRpY4MHD7bdd9+diVMB5KRMKYfb3svMHOEdZN9sZrekaV0meF3kfNW9bFF9MzvLK5XTmJf/eu24w4fF2UdBzrtesPeEN+5nvdck4hyvXC1dguOJtC8c43Wd0/itdKEzHIBMl7BvcZXGPffcc24BgFyUCUHQGV7rZL972DFRzQ7SrdAr01LAc5KZHed1lrvEW17ymgZkOnXMqxVoZ13DK/szLwBV6/CXvQAvk/TzsnMaI/SQ11Xu4kDXuVQhCAKQ05kgAMgn6Q6CNBh+kHdArjEgO2RYABTMTIz2gp6WXjMFrfdiMxsZuF9zdR41s06WGdQi/Eyv692cqOyayt+u99a1h5k9mIEBkN9xTmOQrlD5ppmd53WOa5Di9SAIApDpMqe9EQBk2WSpqfaOF/QM9Q7QS2urnAkUNn7oLRdGlcMd7/0ft3jja0Z6y8fevDmpoNbfe3mTye4UdWYw2D5cpW/3WPZ42Mz+9rJV+3kdA/fz5iJKBYIgAJmOIAgAsiQTtMg7UNc8PdkoumHDeK+zmjJFm3oNFrTIRG+SUbX8Ni/7taoCz13Ha+TQ2msc4Hs0KhM11lund73L2ew9ryxxhJeRU6aLIAgAwuL+Fq9Vq5atWLEi3j8DgKyXjiBIg/B/8sYBWRYHQLF85C0ae7O7l6nY1+tstmnUHDoPe22hJ3vLHK8t91LvpyYM9Z3iPZ4O/Ft5iyYY9bffW16pmLziPddngSYOueRnL9NVI8XNG8gEAch0cX+Lz54921599VXXAOHLLzUPOQDkh1S3yH7IKyFT6DXKa4SQi1Z4AYgWaegN7l8euM+mXrOCrbwlmsbo+K/OIV5ThlgtpX/xxsf4DQ/6Wu7zs2m+bc1sUtTcTolGEAQg08X9LX7qqafamWeeaR9//LFNmTLFBUNDhgyxmTODs0QAQO7RXGnKBukAL9lB0M2BFsfn5HAAFMtCM/sq6joFNm3NbDNvaWRm9cysrvezciAIesc78J8eWKZ6j5vv9vXml/rezA5K4pxSBEEAMl3c3+JDhw51S5MmTey0005zAdH//d//2QcffOAConfeeafI2VIAyCX6fNMBXjIbI6ic63bvsjqsDUnaM2WPtV72Qktp1AwAsc33mjzsbWbPm9mJgYlWE4kgCEDOtsjWvED9+/e3bt262VVXXWX77befvf766zZjxgy77bbbrGZNFS4AQG6OC0pWJkhjWfzZ1u41s8eT8izIV+PM7EgvA6Q5nP4vSc9DEAQgZ4Ogpk2b2jXXXGO//fab3XPPPS4A2nfffe3qq6+2o48+2t5+Wwl3AMjNIEiZoIKCYMPnitNAfn1yVjOz17x5aYBE+8TMzvIu31DM+KmKIggCkOniPpV51FFH2VlnnWUHHnig/f777/b444/bCy+8YIsXaxq8sK+++srGj09lHxoASE+HuDVr1iTssdWZ7D4zO8ybGDUb5gFCdnrJzLp6gfaz3pizMUkIgtavX+8WAMj6TNDAgQNdyduuu+5q2223nT322GNFAiDR7XfeeWci1xMA8qJNtkrg9qzgnDhAWdzkzYmk4vWrErzJ/PdG8P0CAJkk7m/wFi1a2MqVJc9UsWrVKrv9dn9YLwDkjmQEQZos9AuvVbTQWgapsN5rwnG+1449kQiCAGS6KuX5YKtbV01JN24dW1hYmNDSEADINMHPuEQEQTt6Z+MnmNkeZraowo8IlJ0mm+2X4A2msXIEQQByrhxu0aJFtnDhwo0WXa8MkeYO6tu3b8IHDANApmWCqlatWqHHque1c9aj/EYAhDTTftjfzPaq4OME28dTDgcgU8V9GlPzAmm8z6BBg+y7775z1+244452xhln2B133GGbbLKJ9e7d22WF7r777mSsMwDkRDncU97En5r75oIErBtQEdeY2RVe6+yuFZhcNnhygCAIQKaK+xtcwY7aYL/2mhq4hr377rv2yy+/2AUXXODmC5o6dardeOONBEEAck6igqCzzewEldd5LYqXJGj9gPJSFug0M+tkZk96+2d5BN8XlMgDyJlyuF122cV+/PHHja7XdT179nSXR48ebW3btk3MGgJABgke1JW3HK69mT0c6NAVzqkD6aWWR6d6gfnx3uXyYI4gADkZBE2bNs3OOeecja7XdbpNGjdu7MYJAUCuSUQmSJ246pjZZ2Z2fwLXDaiosWZ2m3f5v2ZWntOZBEEAskHc3+Aa76NSuIMOOsi+//57d12PHj2sU6dOduyxx7rfd9hhB3vllVcSv7YAkANB0EXe2farmRAVGegeMztYlR9mNsTM9vHaaZcVQRCAbBD3N/iwYcNsyy23dON/9FOGDx9uRx55pP3zzz/u9yefVDUxAOSeRJTDTTezYxK4TkAirfPGBo0zs+3MrLPXvbCsCIIA5FwQpA+2ESNG2IUXXmg33HBD8tYKADLU+vXr3VKpUqW4MkG6565eCRyQ6dSx8EQv+Amf3iw7giAAOTcmSGUg22yzTfLWBgCyqCQuniDoejP71MzuS+J6AYn0fjkCICEIApCTjRFeeOGFmI0RACDfSuLKWg63tZnd7F3+IYnrBSTLvmZ2ehnvSxAEICfHBOnD7eyzz3bzAY0dO9aWL19e5HbNIQQA+ZAJqly5shUUFFgoFCr2vgXepKgKl4aa2cspXE8gEfYws5Fmpm/7L8xscin3JwgCkJNBUJcuXeyHH8LnMrfYYosit5V0IAAAudohrqQJIS/0umwtNbNLUrR+QCIp8PnY6xL3jJcVKglBEICcDIL22UcfgwCQv6I7xBUXBLX02g37Y4LUFQ7INjq9eZ6Z/eIFQrr8dBmCoHXr1nFyFEDujAnydejQwQ444ACrUaNGuZ/8uuuus++++86WLFlis2fPtrfeemuj7BIAZOtcQZpssp6ZfW1mT6Ro3YBkdYvze8I+YGatSriv/54Ivk8AIOuDoEaNGtnIkSPtzz//tPfff99atGjhrn/22WftgQf00Vh2e+65pz322GO288472/777+/OqH744YdWq1ateFcLADIuCPqfmU01s/PjnGwSyESPegF9PS/ALw5BEICcDIL69+/vSj/atm1rK1asiFz/yiuvWK9eveJ6rIMOOsgGDx5sv//+u/3888925plnWrt27ax79+7xrhYAZNyEqa8ra25mv6ZovfKRTpo1a9bMWrVqZS1btrR69eq5ZhVIvPVeQK+9/0gz2y3GfbTt1TBEyAQByKkxQSqBO/DAA2369KLV7X/99ZcLYCqifv367ueCBQti3l6tWjWrXr165Pe6detW6PkAIBmZIBUJr/LvyyZOiubNm1vr1q2tTp06MYPUmTNn2tSpUzkQTzAF9H3MbJqZjY5xO00RAORsJqh27dpFMkDBMrnCwsJyr4jOHj300EM2evRo++03zVG9seuvv96NH/KX6EAMANIdBPU0sylmdjIvRVJoHOp2221nnTp1ihkA+dk5VSvsuOOO1rhxY16JBOvvZTljIQgCkLNB0BdffGGnn356kbbYCmCuvfZa++STT8q9IhobpPbbJ554YrH3ufvuu12pg7+o/AEAMqUcrqrXNauZ10ULidWgQQNXLu1XDYhOiE2aNMmVVWus6pw5c2z9+vWR6oGuXbtWuEoBxWvsTQYc6/1AORyAnCqHU7AzatQo69Gjh/uCue+++2zrrbd2maBdd921XCvx6KOP2qGHHmp77LFHidmd1atXuwUAMjET1Mc7IJxjZtekad1yVcOGDV1AU6lS+NydKhIU9CxatKjI/WbMmOHKpjfffHNr0qSJu26zzTZz41QULCFxdjKzYSphN7NuZlYY9X4oaf4sAMi6TJBK1dTGWmVrQ4cOdeVxb775pitPKM8XjAKgo446ys0/NGWKikgAIPuCIDX3v8m77nIzW5imdctFGv+pSgE/AJo/f76NHTt2owDIp9LsX3/91SZOnBi5TuVxWpA4E7wmCVsG9v1gJoggCEBOZYL88oO77rqrwk+uEriTTz7ZjjjiCFu6dKnr8COLFy+2Vav8YcUAkNnlcOpF9pSZqW3L+2b2clrXLreo4kABkN9xbO7cua70TaXYpZk2bZqbsNOff659+/YugzRv3rykr3c+WGxml5rZm14W9FUF/5TDAcjlIEj12Bpw2rRp08iZOd/zzz9f5se5+OKL3c/PPvusyPVqla3W2QCQiXQAroNrHZgrE3S25j0zs+X6XEv3yuUQjTfdaqutIl1BlfkpawAULI9ToKqSOFFDhTFjxnCiLUHe8pajvPFwJ3vBqpAJApBTQZDG7rz44ouuK48yQsEvI12OJwhiLgcA2VwS5wdBKgeSm83snzSvVy5p06aNa4Ygqg5QOXY8AZDvn3/+caXbOnGn16tz5842bty4cj0WNnap1whEY4TOWr7cRnnXEwQByKkxQf369bPnnnvOBUEaqKqGCP5CK1IA+cI/wFOW4VrvAPCRdK9UDlHQsummm7rLClbGjx9foYNqNVHwy6xVzUB30cSZ4ZXDyVXz51szbzvTHQ5ATgVB+uJ45JFHbOXKlclZIwDIAv4BnkqCtXxnZuvSvVI5RON4/HJrTXqqsaIVfb0USPnZH5XHBSffRsVoTNznGhPXsKEt80riyAQByKkg6IMPPnDtsQEgn1UrLLQ+48db85UrN5owFRXTvHnzyFxAOuGmcrZEUCClMUKiUsaOHTsm5HFhptByPzO7Z7PNbHnVqi7YJBMEIJPF/c393nvv2f333+8Gq/7yyy8bnekZNkyzBgBAbrt05kzrtWiRbbl0qQ2rUoU5zBJEwYnfxMAvY/MnP02EyZMn2yabbOK6zumngq2KZpkQpqMB/4TA2jVrXLdEzR0EADkRBD39tPq/mN1yyy0b3aYzP5wRBZDrdjazU7w5av7bsaNVSVCmAmatW7eOlKmplfXChYmdcUnZCQVCW24ZbmehbJDmHEJiaIxcs5Ur7fIJE9w8QuqcCAA5UQ6ns3TFLQRAAHJdNTN71vvwHN68uf3QqBGffQmi7xB1hPNPqpVnAu6ymDVrli1btiwyEWuTJk2S8jz5Rh1f9Ro2Xr3adlq82M4ys33TvVIAkKggCADy2Q1mtpWZzalUyZ7o0CFy9hsVp8Y7/sk0BSqa2DQZFGApG+Tzu9ChYvzX7vf69e2VRo3c5QFmVpMNCyCbgyCNBapXr17k9z59+kQGropaZGsOBwDIVVub2fXe5Rvq1LGlXvBDFrziVE2gUjg/SElUM4TizJ8/3811J5ryQeODUDHBkwH9Gje2aWam0wR92bAAsjkIOvDAA4u0E73hhhtc4ONzEwZ6NdYAkIuu88rh3jazt7w2wEIQVHEtW7aMHETPnj07MqdPMk2ZMiVy2S/DQ2KCoMWhkF3sXb7KzLZjwwLI1iBItb4l/Q4Aue5cM7vVzC5RJyxvniChHK5iNB9QcCyQ5gVKhQULFkTGBqnSIVjdgPgFTwaoc+y7ZvaK14HpGWX72KgAMghjggCgjNTu93Yz00wzwTlQyARVTIsWLVzLapk7d27SxgLFMm2airbC/HI8lE/wZIA/fcblZqb+frU05osNCyAbgyCdnfNn2g5eBwC5TDnvM2KcxSYISmxDBF+qskC+OXPmWGFheDYbdYmrWZNh/IkIgvz3x2xvEtVt9dom4PUCgJTPE6Tyt0GDBkW+LGrUqGFPPvmkLV++3P0eHC8EALniP2b2kJmdHtXuNxgEUQ5Xfg0bNrRatZQnMFu0aFGkPC1VdDJv+vTp1r59e/c9p2zQX3/9ldJ1yNVyON8PaVofAEhIEDR48OAiv7/wwgsb3WfIkCFlfTgAyHidzOxu7/KrMQ6eFQjpwI9yuIo1RPApGEmHGTNmWLt27VyHuubNm7v22cEgF+Uvh4suPblGk+B6c20BQFYEQWefzbzPAPLrw1GndVQcNcKb7ySaDvQUAJEJKh9VEPgTla5evdrmzdPhceop4NG8RCrLUyDUrFmztAVkuVYOF3S8md1jZhrx9YWZ/Zni9QOAIBojAEAMmg9oB29Q9znFbCH/bLcCITpmli8L5G83ZWPSOc5Uzx9s1IDElcP51ClupNck4YV4zsICQBIQBAFAlO3N7GbvsuY62XB4XJR/oKcDeUri4qNt5gcbCn5mzpyZ1v1Q41uDk6fWrVs3reuTzZmg9evX27p16za6XSHumWpN7p1guCUN6wgAPoIgAIjytA7ovHFAL5ewdYJnuymJi4/K4Py22CqD85vupFMwECMbFD//REBJ46lUZHiBd/kGM9ulHM8DAIlAEAQAUU4ys2FmdlEpW4YgqPw07iZWKVo6qV22n8Fo2rSpm8QVZeefCIhVChf0upoteW3nVRZHzg1AOvAJDwBRNGD7cK9spyQEQeU/WG7cuLG7rAyQWmNnAgVACoT8rMYmm2yS7lXKGgoY1VSiLEGQXGZmk5VxM7MdU7B+ABCNIAgAzKyrme0Z55YgCCofZVn8hgizZ8/OqIm3KYkrn+CYuLK0F1/qdYvb2cxGlfM5AaAiCIIA5L3a3vifUd6BWVkRBFW8FE5BUCZRcwR/EvAGDRq4icFR8TmCYhljZj+xcQGkCUEQgLw3wJsYdWacZ6UJguJXq1Ytq1evnru8dOnSSMCRSfySOD9rhYrPEVSaHt57L1wkCQDJRxAEIK/1NrNTdODmNUSYH8ffEgTlVhbIRxCU+DmCSjsQGWRm+3gZWeYPApAKBEEA8taBZnavd/kKMxsd598TBJU/CNI4oGCwkUlWrlxZZM4gZa+Q+HI433qvDHWpFwg9yMYGkAIEQQDy0hbeHECVvHmBHivHY6jsxx/UzzxBpVMZnD/GZsGCBbZ69WrLVGSDUlsO97uZnRroHHdu3I8AAPEhCAKQl47TwHcv+3NJOR9DAZB/wEcQVLpgy+m5c+daJlMQ5Ae4wRI+JL4czveOmd3sXX7CzA5gYwNIIoIgAHnpTm8y1KN10FaBx/EP+AiCyh4ErV+/3ubNm2eZTFkqf/6imjVrWt26TOmZrHK46PelJlBVSPWGmXUp9yMBQMkYfwggrz7wNDuNf4j2ZAIe0z/g05lwzX2TSXPeZGop3MKFC8tVMpWObFDDhg0jXeLUzQ7JKYfz6d1ztpk119gsM5vEBgeQJGSCAOQFzWX/PzN7V4PdE/i4NEfIvVK44Hr6QW1w/ZGccrjI35vZkWZ2lJmtYGMDSBKCIAB5EQA9740D2tPMtk/gYxMElY0fRCioyPRSuGBGwy+JUxZLneJQciZo3bp1rtyxojR71LrA79eaWUs2PoAEIggCkPMB0EBvDiD1IjvWzD5P4OMTBJVO42myrRQuVtaqSZMmaV2XbMgEJeO1vcFrZf8JgRCABCIIApCzaniDq0/zJkM9wSuHSySCoNJpPE22lcL55s/fMH0uQVDxqlWrlpBSuFjUKOEfr639V2a2ecKfAUA+IggCkJPqmdkIMzvCzFaZ2TFm9nYSnocgqHR+8JBNpXC+wsLCIhOnqlMcivKbgkgy5n6a6pWx/mlm7czsywSXtALITwRBAHJSI6+97mJvvhHNQZIMBEElq1WrViRw0PiaZGQKki0YuJENSl577JIoE7SbmY3V+DIz+8xrngAA5UUQBCAnTfGyPzqD/EUSn4cgqGTBoCFYWpZNGBdUtlK4ZGWCIq+Dme1tZh95HR5fYowQgApgniAAOXNGp4+ZjTOz4d51OlucbARBJWvcuHHWB0ErV6605cuXW+3atd18RzroT+bBfrZJRSbIp5maDjKz+83sdzObkdRnA5DLCIIAZL22XgvsPbzyt85mNjNFz00QVPLBsYIGURChYCJbqSROQZDGvii7NWMGh9+xMkGpKHdU6+yroq7b0cwamNmHSX92ALmCcjgAWf0BdpGZ/ewFQDpLfFkKAyC/JbA/oWbwjDjCWSB/wHy2ZoFijQtq1EgjzuAL7vfpyJDV8SZC/sDMBphZQ14aAGVAEAQgK3U3s6/N7HEzq++1zu3mZYRSzT/7TRBUfClctnWFi7Z06dLIAX7Dhg2tUiW+PtNRDheL2t+/710+38z+MLMzzCwcfgNAbHyKA8g6mjn+G68ERuVvl5jZ7mY2OU3rQxC0MQUJfsZEwYOCiGy3YMEC97Ny5crWoIGKr5COcrhoaoH/H+8z4Feve9wgM/vRzA7hJQJQDIIgAFmhQ+CyRmMM8bI+W3rZoPVpXDf/wE8Hx2QIwhQkaHv4pXB+yWA2C5b0BbNc+S7d5XC+0Wa2nZld650c6eZNjqyTJQAQjSAIQMaqZWaneF3e/vYCHt+5Zna6mc229KM5Qm52hYuVCfKDOcYFbRwErV+/3tatU9uC9FnrdY5rb2b3evODfRe4XXMLtU7j+gHIHHSHA5BRapvZ/t7ByjHeoGdRrqWnV+8vmZRXiA6CCgsLLd/5QZAOjBcuXGi5QAf4mvBVY4I0Aawmgl2xYoXlO78cLpPahqtw8bqo6xp4cwtpbT8xs9e8TNH0NK0jgPQiCAKQMVS+8q2ZVQ9cN9ErfXsmg+cEIRNUlIKDGjVquMuLFy9Oe3YgkZTVUhDkB3oEQRsyQekYDxSPpt5Ywr3MbF9vMW/s0Odeh7lg1ghAbiMIApASdb0ylE5mtpW3bG1mX3qNDcyb/FCDnP81s2HemVp1fct0BEFFBUvF/GYCuSL4/ygImjZtmuV7AOS3Qc/0IOhPM9vbzNqZ2YlmdpiXXd7OW34LBEFdzOxU7zNpvNd0Jbv7GwKIRhCUSHXrmlUPnsMuo5IGDJf3tmx9rvIOns6E50r09kvlc/l/E/hbHdZoWHt1b9EtwaKmbc2sppnpfH89r011fa/kRON0ngrcd7Z3Fra0D6E1KZ7oNFEIgvInCFLmR5O+qhyufv36VqVKFTdXVL7KlKYI8fjHGy+kpYmXEdrVK5Hz7WZmfaL+zj9BM8277Xvv+i29YGqRma2MsSiDvTLweacttq6gILKY2q0HfwaXWNd5QWdKpPK5kN3mZd9pAoKgBHpoyy3txIkq3omty3PP2TyvrerdTz1l57zvz2ywsR5PPmlTmzd3l28ZPNgue/PNYu+7+yOP2IR2Ordlds1LL9l1L6nqObb977/fftgyPLz80jfftNsHDiz2voffeaeN3mYbd/mc996zfk88Uex9T7jlFvtgx3APnpNGjrQn+/cv9r5n9uljb+2hqS3Njhg92l64885i73vRlVfaCwcc4C4f8N139uattxZ736svusgGHH64u7zbzz/bh9dcU+x9bzznHOt//PHu8vZ//GFfXqYpNmO789RT7Y7TNQTfrNM//9hP52pIfmz9jz3WrrvgAne57axZ9vepOpcY24DDDrPLLr/cXW68eLHNPvroYu/7/P7721nXhSvca65aZcsOPrjY+76xxx52fN++kd9De+vcZ2zv77STHXLPPZHflx50kNVZpa/6jX3ctavtq8fV2d61a23kBRdY4+XLY97328aN7amdd1btkI6Cbenff1vT9evdQcJf3tlVf1EpSlC2BUBCELSBuuP57aM1Nmp5MftItpfEtW7d2mVA9L9m+xxI2TxHUEXplXvFW4LUavu/3kmZzl5bfp3w6egtNbt3N9t8c7M6dWyfv/+2xz/9tNjnOOT6691nrVWrZqd/9JE9q+9HnXDyTjq5hhKVKtm6UMhOvOUWG7qbQjCzoz/7zJ69X20eNggFgpILr7zSXt1nH3e517ff2gt33VX0voHLvS+6yAb36uUu7/7TT/a69x0RfDz//n3PPDPyXdr9jz/s3euvL/Z/u+/EEyPfpZ2nTLGPr7qq2Ps+evTRdpf3ndhu1iz75uKLi73vswcfbDd537VNFywo8Xv3pX33tasuCdcT1Fmxwv4q4Xv37d12s4u8day0bp1NP+64Yu/7YY8edsYNN0R+/+eEE6xaMfv46K5d7bjbbov8Pv70063BsmUx7zt2iy3s0MD37tjzz7eWxXyGjG/XzvYJHE+NvvRS6zAjdmH4P82a2c6B47QPe/e2rpMmxbzvnIYNrduzz0Z+f/vGG22n8cp5bmxZzZq2+YsvRn5/6fbbba9x44rcZ2Ht2q66I9sQBCVQvcJCa1bCAOCCwFn2OitX2iaL1cQztkqB+9ZeudKaLFlS7H0rr9/QHLjm6tXWqIT5OIL3rb5mjTUs5k0qVQJ1/Hrj1y/hYCZ436pr11q9EgYLB++ry8UddEffV+teu4z3rbR+vdsWZbmvvgJqlPDlXeS+oZBVK+Gsb3D7StUSxkJoHUv62+L2Hfe3JWR7ou+bKO5QJ3CGf3KrVrZg+XIrrFrVltSubYu9ZVGdOvZX69Zm3hej7DVnjvuQXK79TeVDWv7912zyZLM//tDpdctmBEEbKCjw24TnSle4aMpuKQjys175HAQF5wjKlkxQidTWvX17G92xo41u08ZMr3ObNlZ1k02s1ZIl1nruXGszZ4793qOHdnb3JzNGj7b3Vq50B7363qlZWBhevMvLmzY1q18/cpIgmj7PdUCu74vg57e+axqU8L1bNep7t3EJxwnVA6+NHrfpIp2Siq1W4HtWj9u8hOOa4HeyvitLuq+Oe3yVS7lv3cB3grZPSfetF9hGBaXcN/o4pqT7Rm97Hd/puCmWhlHHXdq+xR2LRV+/yaJFxa6HgpUgHQsWd9/lNVWbsUHjEu4bDH79dSruvkuiGv00jHFf7SfZqCDDmizFpW7durZkyRKrV69eRkzE16pXL2uw2WbF3j6hSRNb582b0XzpUmuoD4RiUs1/N2pka6qEY9Smy5ZZo8CHhxP4u8kNGrgDUWm8YoVbYioosKkNGtgq774NV6ywJiUcfP5br56t1BdcQYHVV9AW/WEcWIcZ9erZCu/LsO6qVbZJCY87u04dW+6VDdYuLLSmJXzIz61Tx5bpvgUF7gtF2yLW/yULatWypd5gbH1QNSshwFtUs6Yt8T4w9OYtct+o12RJ9eqR+1ZZv96albCvaV0Xe/fVh7xb32JeY22vxbXUBNqsINbjBv5uZdWqkfvq7GHM7eAprFJlw321/yxZEv7Ai7EeqytXdoGLr0nUOmh/Laxe3Qpr1rR12rbad2ItFaHgb+pUs99/N/vtN7MxY8zmzLFsoiYAOyvzpS8tHSDpf8lTm2++ubVq1cpd/vXXX3MyQND8R7vuuqs7oFVp3Lffqp1HfmrZsqVtscUW7vKECRNs1qxZllX0eb399maqeujc2Uz/S3nK2oMUnCjo8LLm7rJ+rlljlVetshorV1rltWvdd4QCh8qBZV7t2rZCn6mhkAsamiuw8bJGLkAKZJBm1akT+c6rU1jogjTxP+mDAZXuu9D7XtD37qZRQVDw20H31XpIrdWrrX0JJa2za9d239PmnUzsWMJ959aqZbM1bMALxLaIdZLEW+f5tWrZTO++2kadSvgcWVizpk2vVy9ycnGruXOLve/iGjVsmheQ6rm6lPBds7R6dfsnMCny1nPmFHuScXm1ajY5ELB0nju32BOben0nBU4objlvXrEnTFdVqWJ/B6Yb2GLePKtWzH31ff5nExV4hnWcP99qFBOcrK1UySZsommFw/Qa1yomwFtfUGC/K5D3bLpwodWJOuGxbu1aG/+M2hdlV2xAEASgYhSs68tVi7449VNfSPqQ16IPcP9ny5bh20ozZYrZ11+bffyx2d+aISiz6WB4D6/EUy2Ux0WVCuSTnXbayY2X0Xw6o0ePzqnOcEHbbrttpOxPQZCCoXy06aabukV++eWX7Mj+6bNor73Mdt3VrGvX8GdYSXTApxIkHVzr/9OiM+H6qcBDJ6V0Mk8n//QzFzJiQJaKJwiiHA5AxehMkw4ESijFKEJn4VRm0rZt+Kyrzr62b1/0QEQHVVpOOimcJfrwQ7P33lOEkZGvlmr6NTheg+SD5UH5RsGPllxsjR2rJM4PgtQyO1+DoKxpjKD11ImKQw4x69Yt3HAglunTldIKL//8Ey7dVbaghHJlANmJIAhAamksnJZffzXzm4MocFBAtN12ZmqwocDIKx11wZIGxZ5xhtlnn5m9/LJZCQ1I0kUHgPkeBPnz5+RiV7howQlgNS5oRjGDlXNdxjdG0EkXNZ059NAiYxqLBD0qZxw7NlyOW8JYXQC5hSAIQPrpDLKCIi3PPx8+cNFZW3W288/a6mBrv/3Cy+jRZkOGmP2lXnOZwT8AVCCk8jhlh/I5CAoGCblIZRZ6zRUEKCOkTnEqAcw3waA/o4IgZelOOMHsiCPC436ClN355JNwua2yPQDyEkEQgMyjs7HDhoUXtYpXu1a1BfcHtKqFrBaVyT31VLg2P82CpUA6MFxVQifDXKQgwA+CdDC8rITmHblCgV7Tpk1d4OvXoedrJkiljxlR/qiy2mOOMdO0BoEGMa5s94svzN5+2+znn9O5hgAyBEEQgMymblMKdAYNCgdCJ59s5ne10RxSu+8ezgq9+mpa6/aDQZAODPMtCKpTp44LBvzmEPmQFVHJn4IgvyQun4OgjMgCae4ezb2mMYc+vS/ffddM8+flYKdCAOVHEAQgO+hgRmdx1SBB9f1nnhnuNKdSF01Qq/K5u+8Ol7pkQCYo3+TTeKBYJX/6/6eoq2GeZf/8ICitTRH0GXDhheGMsU8nRPRZMXhwRmSKAWSeYtqjAECG0hnnt94yO+20cFDkl+ComcLTT4cHQacBQVD+jAfyFWoiTG+eM7Vj9TNh+UL/rwKhtGaCttrKTPOTBAMglbvpxMiDDxIAASgWQRCA7KTSo4cfNrvssnAbbdEkh/r95ps1g2lKVyefgyA1gqjvjddSq+h8KgX0Az4FA37L7HyR9qYIRx5p9tBD4fnHRG3KFfioJC4L5hcDkF4EQQCy2/jxZuefb/b66xuu22cfsyeeKDo2IMmCB4H5FgQpAFIglE9ZoFilfxoXlE/SNkeQ3l833BAOdvx1+OWXcCt9NVMBgDIgCAKQ/QoLzR57zOymm8Kzt4smW330UbMuXVKyCvmcCQoe/OdbEKRJYf126MFxUfkgLXMEaRxgv35m+++/4TrNHXbFFWZ5OlcTgPIhCAKQO7780uyii8wmTQr/rhKtBx4Id5BLcXe4fBI8+FdnuHyittAKhKRmzZpuyRcpL4dr0cLsv//dcGJjxQqzW281GzAgrZ0hAWQngiAAueXff8PjgsaM2TBOqG/fcHvtJFI2YK3mIsmzTJACPrXHDk4gmm+C2a98GheU0nI4ZXYVAPklrmp3/Z//mH3+eXKfF0DOIggCkHt0hvj6680++CD8u8arXHNNuLV2EvkHgvkUBAWzQPlWCldcq+x8kbJyuPbtzfr3V91l+He1Ir/kErOJE5P3nAByHkEQgNykrMw994QnUfVdfbXZEUckPQhS62C/UUCuIwjSMLRlkSxgPmWCgsF+0jJBHTqEO77521WNUJTpnTMnOc8HIG/kx7c0gPylLnGaLd6nAdQHHpiUp8rHDnF+EKRyQH9sTL4JhUKRsVB63WvXrm35IOljglq3Do/p89qv2++/hzO6fvMTAKgAgiAAue+pp8xefHHD7zqQ6tkz4U+Tbx3i1ASghjcfU7BLWj4KNoTIl2yQv48rAEr4a9+kidn992/IAP36a/h9601OCwAVRRAEID9oVvk33wxfrlw53FUqwe2z861DHKVwsYOgfBkX5AdBCS+FU6ON++4za948/LvG/lx3XXisHwAkCEEQgPyh7lKjRm3oGnfnnWatWiXs4fMtExTMeORba+xY44L8kjBtl4KCAstllStXdkvCg6AqVcz+7//MNtss/Pv06WbXXksGCEDCEQQByB+hULhZwnffbZh48a67wmeeEyBfgyDNlaP22PnODwTVGMNvG56rktYUQWP2tt02fHnBgnAApJ8AkGAEQQDyi7p43XbbhglV27YNzyPkndWuiHxqjFCrVq3I/6iDfzUHyHf5NF9QdWVSEx0EHXec2SGH+A9qdtNNZjNmJOaxASAKQRCA/KOxBTfcoKPW8O/du5tdfHGFHzafMkGUwuV3c4SEZ4J22MHswgs3/H7vveF22ACQJARBAPLT7Nlmt9wSPuMsRx9tts8+FXpIgqD8tmLFCissLMyLcUEJDYKaNTO78cbwpMYyeLDZxx9XcA0BoGQEQQDyl9ruPvLIht979zbbdNNyP5zaBPuTZuZ6d7jgeCA1BUDRbJCaBtStWzdnN0vCgiC9T1SO6s8F9OWX4SAIAJKMIAhAfnvvPbPhw8OXa9YMjxeqVavcD+cfEOZyORzjgYqXL62yExYEXXqpWadOGzrB3X13uIEJACQZQRAAPPSQ2d9/b2iUcPnl5d4m/gGhOoRV8st7cgzjgYqXL80RgkGQXwIYt732Mjv8cP9BwnN3MRkqgBTJzW9oAIiHAhcdgPllXQccYLbffuXahvnQIY4gqHirVq1yi9SvXz9nA2F/3w6WgMalaVOzq68ueiJCk6ICQIrk5qczAMRLrXh1IBacr8SfsT4O+dAcwQ+CdPDLeKDis0EKgOppLqoc5O/b5SqFU2Co7oz+XEqawHjEiASvIQCUjCAIAHw6GPvww/Dl2rWLdqwqo1wPgoLjgRYvXsz8QHnYKltd7/zGH+UKgk46yaxbt/DlWbPM+vdP8BoCQOkIggAg6OGHN0zQ2KWL2emnx7V9cj0IohSudLkeBGm/9tt/xx0Ede5sdtZZ4cvr1pndeSfjgACkBUEQAERPpHrHHeEDNDn11HAwVEbBQeLVq1fPuW1LEFS2fWDlypXussrhcm1cULmbIqj7orKrlSuHf3/hhXCbegBIg7R+Mu++++72zjvv2PTp011JxRFHHJHO1QGAMM1UP2hQ+LIO2Pr0UURTpq0TPCjM5UwQ44HKPi5IDRJySTC4jysTdO65Zq1ahS8r+BkyJAlrBwBZEATVrl3bfvrpJ7vkkkvSuRoAsLH//W/DWerWrcMHcGUQPCjMtUwQ44HKLpdL4oL7dZkzQSqDO/LI8GV1z9N8QOvXJ2kNAaB0VSyNRowY4RYAyDg6QLvvPrOnnw5ngY4+2uzzz81++aXUFtlqG6wMQK5lgiiFK7tcDoLiLoerUsXsmms2NBl57rkN4+4AIE0qZdsHb926dYssAJA006aZPfts+LIO4K69tkxlcX42KNcyQQRBZad9YIXGl5m576rK/jiYfCyHUze4zTYLX/7jD7M33kji2gFADgZB119/vS1ZsiSyaCwRACSVDtiCZXHnnFPqn/hnx9VGOJcGxTMeqHzZoFybLyiuTFDbtuHmIqJmI/ffTxkcgIyQVd/Od999t/si8ZdW/gBLAEh2WZx/sHfMMWZdu+ZdcwTGA8UvV0vi/EyQyj7VIKNYaqPdu7feBOHfX3nFbOLEFK0lAORQEKS0+9KlS4ssAJDysjgd2HmTRRb3WeXLlZI4SuHil+tBUKlZoMMO23DCQJUbgwenYO0AIAeDIABIa1ncb79tKPE55ZS8miuoYcOGMQ/uUbZxQapeyIVxQSrtq6JGB6UFQU2amJ1//obfH3hAGyQFawgAWdIiu1u3bm6RzTbbzF1u06ZNOlcLAGKXxelAzi//Oflks3bt8qYcjvFA5eMHjAUFBTkxLqjMTRGuuEJf8uHL771nNm5cCtYOALIkCOrRo4eNGzfOLdK/f393+fbbb0/nagFAbFOmmL38cviyyuGuvjo87iHHy+F0wkpNHmTx4sVucmvkZ0lcmZoi7LGH2a67hi8vWGD25JMpWjsAyJIg6LPPPnNnx6KXs846K52rBQDFe/55s3//DV/WeIdDD835TBDjgRITBAVLCnM2E1Snjtnll2/4/eGHzZYtS9HaAUDZMSYIAOKhA78HH9zwu8Y9NG6c05mgYBC0cOHCtK5LttG+sHz58pyZLyi4P8fMBF14oVmjRuHLo0eHJxgGgAxEEAQA8frxR7Phwzec+b700iI3r1u3ztasWeMu16hRI6fGA/kH9CjfuKD69evnbhC03XZmhxwSvqzsj7JAAJChCIIAoDw0zsEvddprL7Nddilys3+AmO3lcMHxQDqYZzxQfo8LCgb1q1at2nCD9nONkfM99ZTZvHkpXjsAKDuCIAAojyVLzB57bMPvGgdRs+ZGQZBaCmdzIMR4oIrLpSDIzwQpGC4yJuj00838Ccx//tns3XfTtIYAUDYEQQBQXiNHmn3/ffhy06Zm55yTc3MFEQRVnEojc2VckL8vKwCKZAU7dDA78cTwZQVGaiVPB0EAGY4gCAAqon9/1QWFLx91lFmnThuVCuVCEMR4oIrJhXFBwaxmJMivVMnsmmvM/MDuhRfMpk1L41oCQNkQBAFARcycaTZokPeJWsmsd293QBjMBGVrcwTGAyVOLpTEBcs6I0H+MceYbbll+PLkyWYvvZSmtQOA+BAEAUBFvfaa2V9/bSgNOu64nCiHoxQucXIhCAoG827/btHC7Oyzw1esX292//1KGaZvBQEgDgRBAFBROgDs10+9scO/n3mmrQxMjEkQhFwYFxTcj1cpCLrqKkVG4Sveests/Pj0rRwAxIkgCAAS4Y8/zN58M3y5enUrvOQSC+VIEMR4oMTI9nFBwf14yc47m/XoEf5l1iyzZ59N34oBQDkQBAFAojz3XPiAULp3t+lbbZW1Y4IYD5TckriGgUxh1nWGq1XLlp52WtHmICtXpm/FAKAcCIIAIFE0WPyhhyK/Tj74YHfAqAHlOvufTRgPlHjZPi7ID+b/7tXLrF69DW3iv/suvSsGAOVAEAQAifTtt2Yff+wurqtd2yYecIALgLJtwtRgpiJ48I6KjQtatmyZu1ynTh2rUqVK1mWC5m++uc3p2jV8xeLFZv/9b7pXCwDKhSAIABJNB4ZLl7qLs7t1swXt22ddSZw/ZiV44I78HhdUpV49+/OQQzZc8dhj4UAIALIQQRAAJNrChWZPPhn5VQeO1f3yoSygLEXVqlXdZbJAiZWtJXHKWk078EAr9AO37783++ijdK8WAJQbQRAAJMPw4Vbl99/dxVWNGtmqE07Imu3MeKDkWRzInGRTEFR1++1t+o47ussFao/94IPpXiUAqBCCIABIhlDIqj3yiBV4k0cu0WByTaSaBQiCkicrxwVVq2aFl18e+bXBG29s6IIIAFmKIAgAkmT1xInW7osvwr9ocszrrlNdUUZvb41V8YOg4ASfyONxQWedZetbtnQX602dalWHDUv3GgFAhREEAUCSaJLRlp99ZrVnzw5f0bGj2SmnZPz8QH52gvFAyZFV44I6dzY77jh3UVnNLd95xwqZEwhADiAIAoAkWr18uXV6+22zdevCV5x6ajgYylC0xk5NEBQKhTI/CFJzjGuvDWcxzWyzTz+12vPn2yrNhwUAWY4gCACSSAeMdWfNsnajR4evUJYlg8viGA+UmgyhX2aY0eOCTjvNbNNN3cVa06ZZ66++csHb6tWr071mAFBhBEEAkET+WfN2n39ulSZPDl+pBgk6wMwwwTEqOtBlPFBqxgVlZDZoq63MTj45fHnNGtty6FCrFAq5/dnPYgFANiMIAoAUBEGV1q+3Bpo7yOsW58YGbbFFRm37YFaC8UDJtVBzSXkyLgiqWdPshhsiZXCVXnzR6s+f7y5TCgcgVxAEAUASBQ8a66pBwvPPh3/RAeaNN5rVqJEx259SuNTOF5Sx44IuucSsVavw5V9/tZpvvRW5qVBzBAFADiAIAoAUBUE1dYb9xRfNJkwIX9G2rdlll2XM9icISu24IH++oGBHvrTbbTezQw4JX16xwuzuu61W9eqRm1fSGQ5AjiAIAoAkCh40uiBIXeLuuEM3hK88+GCzvffOuPFAK3QAjPwaF9SokVnv3ht+f/RRsxkzrEYgW0kQBCBXEAQBQBKtW7cu0k0rcjA5fbrZQw9tuNNVV5k1b57W14HxQHk+X1BBgVmfPmb+5K2ff242YsSG4N1DEAQgVxAEAUCS+QeO1atXt0qVvI/dDz80GzkyfLlOnfD4IP+2NGB+oDwfF6ROcDvuGL48b55Zv36Rm4JBEI0RAOQKgiAASHVJnK9/f1du5HTpYnb22Wl7LRgPlN5xQcrEVdXkpOmw7bZmZ50Vvrx+vRsHZEuWbLTPan3XrFmTnnUEgAQjCAKAVDdH8GncjcYHBdtm7757yl8PxgNlRkmcPyYr5eOAbr450g7bBg82++GHIvuGMphCKRyAXEIQBADpygTJ+PFmAwZs+P2668zatUvpa1KvXj2r7B0EB+evQY6PC1LmqW/fcCAk33+/oYW7R+PYFAgJQRCAXEIQBABJFjx4DHbainj99Q3jg2rVMrv9dvVNTst4IIKg9I0LCr4OKXHllWZdu4Yvz51rduedZt66+GiKACBXEQQBQDozQb4HHjCbOHHD/EE6Q++XKCUZQVDmzBeUsnFBxx1ndtBB4csq17zpJkVkG92NpggAchVBEAAkmQaT62C3xCCosDA8NsM/EO3Rw+zqq5P+2qgMTuVwormBCrUeSKlg9i0lJXG77mp24YUbfr/3XrM//4x5VzJBAHIVQRAApDAbpHK4SJvsaDNnhs/Ie/MKuTP1p52W1PXSQbc/5oNSuDwYF7TNNma33LKhHbsaIXz6abF3r6XyTA8T6ALIJVXSvQIAkA90AFm3bl0XcOjs+vLly2Pf8ddfze66K1wOJ2qbvXSp2dtv53cpnMZSaULZFi3CP5W90rgpZdb0U4Gcsm1q4awgUkGn5rvRWBf9nDMn/DODxwVp30hqENShQ3jcT7Vq4d81Dk1BUAn8IEiZTH/SXwDIBQRBAJACwbPoOrAsNgiSzz4ze+IJs4suCv9++eXhA/x3301aEKSD8GBGIq3UrWzLLTcsm29u1rhxxR9Xc99MmhReNP7ql1/Mpk2zdFu3bp0tWbLEtcjWuCC1pE54WaI6Dt53X3hiXvnmG7N77tmoEUKQMpa0xwaQqwiCACDFQVCx44KCXn01nOE4/fQNnbzWrTMbPjxh66QDXB10iw7C/XFLKacDc03Y2b272fbbhxtDJIOyR3oeLb4FC8x+/tnsp5/Mvvtuw+S1KaYsnD9PkALTWbNmJTYDdP/9euAN2cbbbgvvTyXQfuqXSlIKByDXEAQBQIo7xAXHWZRo4MBw6dKJJ4bHcFx7rVnduuEAKdtL4RT47LGH2b77mnXrVnInPDWLmDo1PGbKXxS8aJsqo6YAUwf02lbqrqZF26lJkw1L69Zmm21mtskmG2ed9torvMiUKWZff2321Vdmv/9utn69pYK2/6abbpr4IGiLLcIBkNf8wv74w+yGG8Id4UrBeCAAuYwgCADSUA5XZppItUoVs2OPDf+uEjmVhj35ZImlTBkZBGlczy67mO2zj9mOO4aDlWjKRmkCWWUrdMCuJZFZEQUDCoY6dw4HX126bCgREwUiWk46KTyGSE0DPv44vE5J5GfiqlSpYo38yUsrSttajTb8zONvv5n16RMOHMuAIAhALiMIAoAUWL9+va1atcp1h4srCJLHHgtnQ845J/z78cebtWwZHtNRxgPakoIgf0xKUiiA22GHcMZHB+WxSgGnTw9nXn74IVyWFsiaJZz+Tz2HlpdfDmfYOnYMl+Jp/bbaakPnNGWQFHxqUZncJ5+YjRplNnlywlfLH5PVpEkTN1dQnTp1IvMHlYuyh+edt+F/0f97/fVxbdtg2SblcAByDUEQAKSIDiQVBOlsvw50NX9Qmb3wQrgE7KqrwqVju+0WzhLdeuuGSVbjoLFA1bwuYTr41kF4wujAW62YFfio5M0vxQpSlsUPKpTtSReVu2mOHC0vvWSmcTk77xzevspW+Z3UFHSeckp40fZWZzWtu7rPJciCBQtcECTKBpUrCFIZoPYRv7xPtJ5qihBndzc/WNe+ESznBIBcQBAEACkMgvxSJwUhcXdje//98EH3jTeGD9ZbtQpniQYNCo8TimP8SlJK4Tp1Cpe67b13OIsSKwvz+efhg3I1I0jReJu4KOP2wQfhRU0jdt89/D+pYYM/bkmNBrQo06L/QwGROvpVJHMT9Tro9ZmqcVDx2G67cLYnOO5J48qGDCnX+vhBkDrVKZMJALmEIAgAUiRYUlSuIEi+/97sggvC8wgp6KhePfy7DtT79StzViU47kQZiAq1XtZzK+ujoCyaMggqdVOgMGZMeMxPtlCp4YgR4UVB4557hv9PjSPyM15+t7n//CfcdloBnhorxJPl8yjb4pdMqlOcWlSXKfjQGDEFZAceWDTgfOABsy++sPJ2DlTGUkps5w4AWYogCABSJHgwGfe4oKDZs8MH3TrwPeaY8MG45tJRswRlWjQBpubCKYYOrv12zDrLH/d4DzUWUECgxetoVoQCALWb9gOCMnQiy3jK0mjCWi0qjVMwtN9+G9p5q2xOpX9alBFSZkgNFTQWp5RW1EEKSFu2bOleI02cWmKAqjLDI48Mj/8JjrUaOzY8XqwCk8P6rdOFIAhALiIIAoAUCR5MBg8yy0WBxuOPhw+0e/cOl2eJfyD+7bfhOYWUhYnKStSrV88qe6VdZSqF0wG2sh09eoSbHLRps/F9lLEYNy4c+CgQq2BpWEZTk4Tnnw8vakGtYEjZMH9CV3WbO+SQ8KLtoAyYskQKDEvZ3no9FAT52bqYQZCe89BDzQ44IJwJ9C1davbcc2ZDh1a4cyBBEIBcRxAEACmiFsjKvAQnKa2wCRPC5XCHHRYetO+Pxdlpp/Cisih1Xfvxx3Db6X//tcb+wXqsUjhlNFq0MGvf3mzLLcOtpNUxzSuN2ijw0WMq6FGTg4qU1WUrv6mCsnAak7P//uFxRH6mTwFRcB4ijfP55Zdwy23NSaQlEBwrCFIjAk1SGilZVFCk10JleOpg17x50XVQpumdd8JjwxLU5Y8gCECu01TQCWwJlFp169Z1bV11VnOpzoABQIbbZpttIge3X331la2Os2NXiRTAHH54uEQu+kA5eLeFC63aypVWec0aWzJvnoX0dzpoV4lcrIYG0QfcOohXuZfGm8yfn7j1zxXKzvTsGQ5Y1GHOKz0slrJFCiA1RmzdOqtTu7ZVqlnTVteubav0umh+pVgUPKlZxptvJnYuJVPH8O7uO1YB2RdffEFjBAA5FxuQCQKAFJfEBTvEJTQI0mO9/rrZG2+EsxK9eoXbPattcvBuDRu6JdLYoDTTpoVLujTWRCVvDJQvWWFheJJVLRqvpUyaXgeVFKqULXqSWGWLtHjji0osJFRpozJ7o0eHs29JeC2UhfLHrKlZA53hAOQigiAASOO4oIS1pw7SeBAdKGvxJwNVi+fNNrOq7dtbqGVLW6vsgj+Rph9A6azZzJnhRYGPOs2p1Ks8XexQtGRQiyjrpq5+KjdUUwktCoq1RJVIVlmxwiovXmyFmpzVfy2UhUtyEKrudP6YMZoiAMhVBEEAkELBg8o6OvufyslANZVP165uTJDqoMeMG2fLlVlQ97Y4OpihAhRsam4hLdE07kqBaUGB7dijh9WqWtVlYb788ktbl8LXh/FAAPJB4DQgACAVQZDGWaQsCApQ22V/ktTVhYW2XBkeBWUEQJlBcygpSCostEWaFNd7zdQqO9U19b5ludzlD0BeIwgCgBTSmX0/G6Qz7jrITRUFQP7zVWiCVCTd/EDDiWA3v1QIBucEQQByFUEQAKSYf2CpAegJa5VdBpGWy1EH2cg8ixYtijQkSHUQ5GeC1qxZY6tyYaJbAIiBIAgAUix4dj2VJXH+wbQOrpPSkAEJozFACoQkofNKlaJatWpuEbJAAHIZQRAApFhw7oLg+ItkUrClrl+yePHilA60R/kEs3VNSpu/KUEohQOQLwiCACAPMkGbbLJJ5PJcb9A9Mtu8efNivn7JFAzKmYQcQC4jCAKAFFMWZsWKFZEgSGODks3PJKgzXfDgGpmrsLDQzXzu7yc1a9ZM+nPSGQ5AviAIAoA08M+yq1tbsrNBtWrViowp0UH1arVhRlYIBqypKImrV6+e+7l27dpIoA4AuYggCADSwD/DHzzwTJbgwTNZoOwSLF1MdhCkMWN+U4Tg/gkAuYggCADSQM0JfPXr10/qczEeKHutXLkyMq+U9hM/SEmGYDBOEAQg1xEEAUAa6MDW79CWzEyQ2iv74zzUkIF5X7JPqrJBBEEA8glBEACkgRoU+OOCgmVIiUYWKLeCoGR2iSMIApBPCIIAIE2CJUfJKokjCMqNrKHK4qRBgwZJCZgrV64cyRjq+dQYAQByGUEQAGTAuCAd3CaaWir7wZUObOn2lb3mzJnjfqqdetOmTZOSBfJbtQf3SwDIVQRBAJAmixYtcmVxyQqCmjVrFrk8a9ashD8+Umf27NkxX9dEadiwYeTywoULE/74AJBpCIIAIE3UGMEfF6R5fBJd5tS8eXP3U4FW8CAa2UdZPL98UmVr/rxPiRIMwhWcA0CuIwgCgDQKnnVPZDZIZXBquOA/BxOkZr9kZYOqVKlSZDzQmjVrEvbYAJCpCIIAII2CZ92DJUmJygIJWaDcGRfkl08qCPLH8CQiYPYfi1I4APmCIAgA0kiD0NevX+8uN2rUKCGPWalSpUhXOJXczZs3LyGPi/RShmb+/PmR+Z8SlTls3Lhx5DJBEIB8QRAEAGmkAMg/8AxObFoRmlBTJU7+HDP+pKzIfsEGF8FsXyKCIO2LjAcCkC8IggAgzYKZmuBZ+fJq2bJl5DJd4XLLggULImN2lO2rWrVqhR5PQbeCb1EwTsAMIF8QBAFAmvklTokIgtQ1zC+TUkcxzuznFmVrZs6cGSl7bNGiRYUeL7i/UTYJIJ8QBAFAmqlzm98qW2fmNclpebVq1Spyefr06QlZP2SWGTNmRBok6PWuSIMEf+xYdDAOALmOIAgAMqTzV0XbH6s0yh8norImSuFy06pVq1xZnKiULRjIxKNOnTqR+YbUoIM26gDyCUEQAGRg++PyaN26tSuR8rMFjO/IXdOmTYtcbtu2bbkeI9hYgYAZQL4hCAKADFBYWBgZv6NyOM3dEg91g/NL4TRu5N9//03KeiIzaF9ZsmRJJKMT71gyldA1bdo0sr+oiyAA5BOCIADIEMGz8cGxPWXRpk2bSFtsTY6qoAq5berUqZHLm222WVxjgxQAVatWLTIWaO3atUlZRwDIVARBAJAhdDbeH5ehcR41atQo099pXIhK4fyz+v/8809S1xOZQd3c/IYaygb5mZ2yBs0+GmgAyEcEQQCQIRTA+AekOqsfPFAtSfv27a1y5crusv5eA+eRHyZOnFhkP/CzgSVp2LChC5pEJXW0UQeQjwiCACCDBBsaaNLTWrVqlXh/jQXxGyloEs1giRRynwIYv7W1MoIKhEqi4LpDhw4xGywAQD4hCAKADKJAxj8w1QHr5ptvXux9ddC75ZZbRn7/+++/3d8jv/z1119FAucmTZoUe1/d7meBVErHBKkA8lVGBEEXX3yxTZ482VauXGnffPON7bDDDuleJQBIG2Vz/JI2lS7FaoGs8rett946Mrhd88aoIQLyj/aVYFlc586dI4FOkCbiDWaBFDz5bdkBIN+kPQg6/vjj7cEHH7TbbrvNtt9+e/vpp5/sgw8+KPfkbwCQC2OD/vzzz8jvKnEKjg9SC+3tttvO6tWrFzkIHj9+fFrWFZlTRukHwQqQt9122yIZIbVc79q1a2QeKY0d81tsA0A+Uj/NtJ4GUubn+++/t8suuyy8QgUFrhTk0UcftXvvvbfEv9VZLX2I60DA75ADALlCGaDgGA8FO+oep88+vx2yyt/GjRtny5cvT+OaIhMowOnWrVuROaZWrFjhSuWUGfL3GY0j0glHskAAck08sUHpbWSSqGrVqta9e3e7++67I9fpQ3nkyJHWs2fPje6vsg/VwAf/0eBPAMglCxcudIPe/SxQdJMEBUUaB6SDXz4HIZMmTbJOnTpFJk+N3mcWL17syi1jlcsBQLaL57swrUGQUvVq5xldx67f9SEe7frrr7e+fftudD1zHAAAAADwg6GMzgTFSxkjjR8KatSokRsQjMzeERWotmrVirJFsM+AzxlkBL6bwP6Su+9tjZMsTVqDILXmXLt2bWSOC59+nzVr1kb3Vy28P5u6j7FA2UOvFa8X2GfA5wwyCd9NYH/JLWU91kxrdzgN6B07dqztu+++kes0cFO/f/311+lcNQAAAAA5Ku3lcCpvGzx4sI0ZM8a+++47u+KKK6x27do2cODAdK8aAAAAgByU9iDo1VdfdXMC3X777da8eXPX6rVXr142Z86cdK8aEqSwsNA1tNBPgH0GycDnDNhnkEx8xuSetM8TBAAAAACplNYxQQAAAACQagRBAAAAAPIKQRAAAACAvEIQBAAAACCvEAQhLapVq2Y//vijhUIh69atG68CYmrXrp0988wzNmnSJFuxYoX9/fffrtNg1apV2WKIuPjii23y5Mm2cuVK++abb2yHHXZg6yCm6667zk3HsWTJEps9e7a99dZbtsUWW7C1UGZ9+vRxxy79+/dnq2U5giCkxX333WczZsxg66NEnTp1skqVKtkFF1xgW2+9tV155ZV24YUX2l133cWWg3P88ce7+eZuu+0223777e2nn36yDz74wE29AETbc8897bHHHrOdd97Z9t9/f3dC5cMPP7RatWqxsVCqHj16uO8jfc4gN6hFNgvbIGX7QK9evUK///57qHPnziHp1q0b+x/7X5n3gd69e4cmTpzIPsM+4/aBb775JvToo49G9oeCgoLQv//+G+rTpw/7CPtIqftAkyZN3PfQ7rvvzv7C/lLiPlC7du3QH3/8Edp3331Dn3zySah///7sM5bd8QOZIKRU06ZN7emnn7bTTjvNlTcB8apfv74tWLCADQd3Fr979+42cuTIyNZQmYp+79mzJ1sIZfo8ET5TUBplEN977z0bNWoUGytHVEn3CiC/DBo0yJ588kkbO3asG+8BxKNDhw522WWXWe/evdlwsCZNmliVKlXc2I4g/a5SSqAkBQUF9tBDD9no0aPtt99+Y2OhWCeccIIrt2W8YW4hE4QKu/vuu93Z15KWLbfc0h281q1b190f+a2s+0xQy5YtbcSIEfbaa6+5ZgkAUNEz+126dLETTzyRDYlitW7d2h5++GE75ZRTrLCwkC2VQwq8ujigQmdjGzduXOJ91N3r1VdftcMOO8wd4Pp0Fnft2rX24osv2plnnsmrkCfKus+sWbPGXW7RooV9+umnrvOX9pPgPoT8LodTWe2xxx5rQ4cOLZJxbtCggR155JFpXT9krkcffdSOOOII22OPPWzKlCnpXh1kMO0nb7/9tjtWCR67rF+/3i3Vq1d3P5Gd0j4wiSU/tkGbNm1CW2+9dWTZf//93YDUo48+OtSqVau0rx9LZm6Dli1busGo//vf/0KVKlVK+/qwZF5jhEceeaRIY4Rp06bRGCEDXptMXdRIQ80zOnbsmPZ1Ycn8bVCnTp0ixy5avvvuu9CQIUPc5XSvH4uVexswJggpM23atCK/L1u2zP2cOHGiTZ8+nVcCG1EJnDJA//zzjxsHFGx7HD0OBPlJ7bEHDx5sY8aMcfO/XHHFFVa7dm0bOHBgulcNGVoCd/LJJ7uz+0uXLrVmzZq56xcvXmyrVq1K9+ohA+lYJXrM2PLly23+/PmMJctyBEEAMpbm8dh8883dEh0oa1AzoDJbBce33367NW/e3MaNG2e9evWyOXPmsHEQc2Jd+eyzz4pcrzJbBdMA8gdjggAAAADkFbrDAQAAAMgrBEEAAAAA8gpBEAAAAIC8QhAEAAAAIK8QBAEAAADIKwRBAAAAAPIKQRAAAACAvEIQBAAAACCvEAQBADLGnnvuaaFQyOrXr1/i/SZPnmyXX355StZpyJAhdv3115f5/nfffbc98sgjSV0nAEDFhVjYBuwD7APsA+wDZd0HBg4cGPIVFhaG/vrrr9DNN98cqly5coX3o6pVq4aaNWsW+f2MM84ILVy4cKP7NWnSJFSzZs2k77fbbLNNaN68eaHatWuX+W8aN24cWrx4cWizzTbjfcX7in2AfYB9wDJzG5AJAgDEbfjw4da8eXPbfPPNrV+/fta3b1+75pprKrwl16xZY7Nnzy71fvPmzbOVK1dasl122WX22muv2fLly8v8N/Pnz7cPPvjALrrooqSuGwCg/AiCAABxKywsdMHK1KlT7cknn7SRI0fa4Ycf7m5r0KCBDR482BYsWOCCh/fff986duwY+du2bdvaO++8425ftmyZ/frrr3bQQQdtVA6ny4MGDXKPp+u03HrrrTHL4dq0aWNvv/22LV261BYvXmyvvPKKNW3aNHK7/u7HH3+0U0891f3tokWL7KWXXrI6deoU/wVZqZIde+yxNmzYsMh1W265pfufTjrppMh1xx13nK1YscI6d+4cuU5/c+KJJ7JnAUCGIggCAFSYsjLVqlVzlxW49OjRwwVFPXv2tIKCAhcIValSxd3+2GOPWfXq1W2PPfawrl27Wp8+fVwwFO2rr75ygY6CGmWdtDzwwAMb3U+PP3ToUGvUqJELnPbff39r3769C4SCOnToYEceeaQdeuihbtF9r7vuumL/p2222cYFYGPGjIlc98cff1jv3r3t8ccfd4FXq1atXBCo/2H8+PGR+3333Xfu9nbt2pVziwIAki3tNXksbAP2AfYB9oHsGhP01ltvRX7fd999QytXrgzdd999oY4dO7qxQj179ozc3qhRo9Dy5ctDxx57rPv9p59+Ct1yyy0xH3vPPfd0f1+/fv0SxwRNnjw5dPnll7vL++23X2jNmjWh1q1bR27v3Lmze5wePXq432+99dbQsmXLQnXq1Inc59577w19/fXXxf6fRxxxhHvcWLcNGzYs9Nlnn4U++uij0IgRIza6vW7duu7599hjj7S/XixsA/YB9gH2AdtoG4RPywEAEAdlUlR6VrVqVVc29r///c+NC9p3333duJ5vv/02cl+VvSmD4peLqXPaE088YQcccIAro3vjjTfsl19+Kff21+NOmzbN/v3338h1ysosXLjQ3eZncqZMmVIk4zRz5swiJXPRatas6cr+Yjn77LPtzz//tPXr19vWW2+90e3+eKVatWqV+/8CACQP5XAAgLh98skntu2227rGCAoWzjzzTDcupiyeffZZV672/PPPu3I4BSmXXnpp0l8FBWdBGmOkAK6k5gu1a9d2gV60bt26udu0tGjRYqPbVZonc+fOTci6AwASiyAIABA3NQeYOHGiy8CsW7euSAZGQcNOO+1UJCBQQ4Hff/89cp2yNgMGDLBjjjnGdZc777zzYj7P6tWrrXLlyiWui55T429at24duU4ZoIYNGxZ5zniNGzfO/dxqq62KXK/H1binO++80/188cUXrUaNGkXu06VLF7fuv/32W7mfHwCQPARBAICE+fvvv12Xtqefftp23XVX11zghRdesOnTp7vmBdK/f39XCrfpppvadtttZ3vvvXeRpgJBKmGrW7eu7bPPPta4cWOXdYqmkjqV0ykY0ePtsMMOboLTTz/91MaOHVvu/0WZIP39brvtVuR6NUJQ8HfHHXfYVVdd5YK06IYNu+++u33xxRe2atWqcj8/ACB5CIIAAAl11llnueDh3Xffta+//tp1bzv44INt7dq17nYFDeoQp8BnxIgRbmzNxRdfHPOx9PcaP6RObwpKrr322pj3O+KII9wYoM8//9wFRZMmTbITTjihwv/LM888Y6ecckrk99NOO839L/qpDJhKANV2W5msXr16Re6n9tgKBAEAmanA65AAAACiqMxNTR0UUH3zzTdl2j4KhlTipyxYsFQQAJA5yAQBAFAMlbOdfvrp1qRJkzJvIzVLUDaMAAgAMheZIAAAAAB5hUwQAAAAgLxCEAQAAAAgrxAEAQAAAMgrBEEAAAAA8gpBEAAAAIC8QhAEAAAAIK8QBAEAAADIKwRBAAAAAPIKQRAAAAAAyyf/D18nr8NtaBs+AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1000x600 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.style.use('dark_background')\n",
    "plt.figure(figsize=(10, 6))\n",
    "\n",
    "# Plot Potential\n",
    "plt.plot(x_full, V_full, color='gray', alpha=0.5, label='Potential', linewidth=2)\n",
    "\n",
    "# Plot psi_solve2 wavefunction (State n=0)\n",
    "scale = 1.0\n",
    "psi_0_psi = psi_psi[:, 0] / np.max(np.abs(psi_psi[:, 0])) # Normalize max to 1 for plotting\n",
    "plt.plot(x_internal, psi_0_psi * scale + E_psi[0], 'c-', label='psi_solve2 (n=0)', linewidth=2)\n",
    "\n",
    "# Plot QMSolve wavefunction (State n=0)\n",
    "# QMSolve stores wavefunctions in eigenstates.array\n",
    "psi_0_qm = eigenstates.array[0]\n",
    "psi_0_qm = psi_0_qm / np.max(np.abs(psi_0_qm)) # Normalize max to 1\n",
    "# QMSolve grid\n",
    "x_qm = np.linspace(-L/2, L/2, N)\n",
    "plt.plot(x_qm, psi_0_qm * scale + E_qm_Hartree[0], 'r--', label='QMSolve (n=0)')\n",
    "\n",
    "plt.ylim(0, 5)\n",
    "plt.xlabel('Position (x)')\n",
    "plt.ylabel('Energy / Amplitude')\n",
    "plt.title('Wavefunction Comparison: Double Well Ground State')\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}