File size: 19,217 Bytes
2d541d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
import streamlit as st
# ==========================================
# 0. PAGE CONFIGURATION & STYLING
# ==========================================
st.set_page_config(
page_title="Pili-Pili Quantum Solver | Ahilan Kumaresan",
page_icon="🍟",
layout="wide",
initial_sidebar_state="expanded"
)
import numpy as np
import matplotlib.pyplot as plt
import math
import time
try:
import mediapipe as mp
import cv2
import plotly.graph_objects as go
from plotly.subplots import make_subplots
except ImportError as e:
st.error(f"CRITICAL ERROR: Failed to import required libraries. {e}")
st.stop()
# Import physics engine
try:
import functions as f
except ImportError as e:
st.error(f"CRITICAL ERROR: Failed to import physics engine. {e}")
st.stop()
# ==========================================
# 0. SESSION STATE (for camera flow)
# ==========================================
if 'countdown_finished' not in st.session_state:
st.session_state.countdown_finished = False
if 'V_user_defined' not in st.session_state:
st.session_state.V_user_defined = None
# Custom CSS for a professional look
st.markdown("""
<style>
.main {
background-color: #0e1117;
}
.stButton>button {
width: 100%;
border-radius: 5px;
height: 3em;
background-color: #262730;
color: white;
border: 1px solid #4b4b4b;
}
.stButton>button:hover {
border-color: #00ADB5;
color: #00ADB5;
}
h1, h2, h3 {
color: #00ADB5;
font-family: 'Helvetica Neue', sans-serif;
}
</style>
""", unsafe_allow_html=True)
# ==========================================
# 1. SIDEBAR: PERSONALIZATION & NAV
# ==========================================
with st.sidebar:
st.title("Quantum Solver 2.0")
st.caption("v2.1 - HF Fix")
st.markdown("---")
# Navigation
page = st.radio("Navigation", ["Simulator", "Benchmarks & Verification", "Theory & Method"])
st.markdown("---")
# Author Profile
st.markdown("### About Moi")
st.markdown("""
**Ahilan Kumaresan**
*Aspiring Mathematical & Computational Physicist*
Developing Interative and accurate numerical tools for quantum mechanics.
""")
st.info("Verified against Analytical Solutions & QMSolve Package.")
# ==========================================
# 2. HELPER FUNCTIONS (Plotting)
# ==========================================
def plot_interactive(E, psi, V, x, nos=5):
"""
Creates a professional interactive Plotly chart for wavefunctions and energy levels.
"""
# Limit states
states = min(nos, len(E))
# Create subplots: Main plot (Potential + Psi) and Side plot (Energy Levels)
fig = make_subplots(
rows=1, cols=2,
column_widths=[0.8, 0.2],
shared_yaxes=True,
horizontal_spacing=0.02,
subplot_titles=("Wavefunctions & Potential", "Energy Spectrum")
)
# Scaling factor for wavefunctions
if len(E) >= 2:
scale = (E[1] - E[0]) * 0.4
else:
scale = max(E[0] * 0.1, 0.5)
max_E = E[states-1] if states > 0 else 10
window_height = max_E * 1.5
# Get x coordinates for internal points (matching psi dimensions)
x_internal = x[1:-1]
V_internal = V[1:-1]
# 1. Plot Potential V(x) - using internal points for better visibility
V_clipped = np.clip(V_internal, 0, window_height)
fig.add_trace(
go.Scatter(
x=x_internal.tolist() if hasattr(x_internal, 'tolist') else x_internal,
y=V_clipped.tolist() if hasattr(V_clipped, 'tolist') else V_clipped,
mode='lines',
name='V(x)',
line=dict(color='#FFFFFF', width=2.5),
hovertemplate='V(x): %{y:.2f}<extra></extra>'
),
row=1, col=1
)
# 2. Plot Wavefunctions (shifted by Energy)
colors = ['#00ADB5', '#FF2E63', '#F38181', '#FCE38A', '#EAFFD0',
'#95E1D3', '#FFB6C1', '#DDA0DD', '#87CEEB', '#98FB98']
for n in range(states):
# Normalize wavefunction amplitude
psi_n = psi[:, n]
max_amp = np.max(np.abs(psi_n))
if max_amp > 1e-9:
psi_n = psi_n / max_amp
else:
psi_n = psi_n
# Shift by energy
y_shifted = psi_n * scale + E[n]
# Hide where potential is infinite
y_shifted[V_internal > 1e5] = np.nan
color = colors[n % len(colors)]
# Ensure arrays match in length
if len(x_internal) != len(y_shifted):
# Fallback: truncate to minimum length
min_len = min(len(x_internal), len(y_shifted))
x_plot = x_internal[:min_len]
y_plot = y_shifted[:min_len]
else:
x_plot = x_internal
y_plot = y_shifted
fig.add_trace(
go.Scatter(
x=x_plot.tolist() if hasattr(x_plot, 'tolist') else x_plot,
y=y_plot.tolist() if hasattr(y_plot, 'tolist') else y_plot,
mode='lines',
name=f'n={n+1}, E={E[n]:.4f}',
line=dict(color=color, width=2),
hovertemplate=f'n={n+1}<br>E={E[n]:.4f}<br>x: %{{x:.2f}}<br>ψ: %{{y:.2f}}<extra></extra>'
),
row=1, col=1
)
# Add Energy Level to Side Bar
fig.add_trace(
go.Scatter(
x=[0, 1], y=[E[n], E[n]],
mode='lines',
line=dict(color=color, width=3),
showlegend=False,
hovertemplate=f'E_{n+1}={E[n]:.4f}<extra></extra>'
),
row=1, col=2
)
# Layout Styling - Enhanced dark mode
fig.update_layout(
template="plotly_dark",
height=600,
margin=dict(l=20, r=20, t=50, b=20),
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
font=dict(size=10)
),
hovermode="closest",
plot_bgcolor='#0e1117',
paper_bgcolor='#0e1117',
font=dict(color='#FAFAFA')
)
fig.update_xaxes(
title_text="Position (a.u.)",
row=1, col=1,
gridcolor='#2a2a2a',
showgrid=True
)
fig.update_xaxes(
showticklabels=False,
row=1, col=2,
showgrid=False
)
fig.update_yaxes(
title_text="Energy (Hartree)",
range=[0, max_E * 1.2],
row=1, col=1,
gridcolor='#2a2a2a',
showgrid=True
)
return fig
# ==========================================
# 3. HELPER: MediaPipe hand → 1D potential
# ==========================================
def process_frame_to_potential(frame):
"""
Takes a BGR frame (OpenCV) and returns:
pot_profile: 1D array in [0,1] representing V(x) profile
msg: human-friendly label
Modes:
- 2 hands → Square well (0 inside, 1 outside)
- 1 hand → QHO-like parabola
"""
try:
mp_hands = mp.solutions.hands
with mp_hands.Hands(max_num_hands=2, min_detection_confidence=0.5) as hands:
h, w, _ = frame.shape
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
res = hands.process(rgb)
if not res.multi_hand_landmarks:
return None, "No Hands Detected, But Cute Smile :)"
# --- LOGIC: Square Well vs QHO ---
# 1. Square Well (2 Hands)
if len(res.multi_hand_landmarks) >= 2:
INDEX_TIP_ID = 8
x_coords = [lm.landmark[INDEX_TIP_ID].x * w for lm in res.multi_hand_landmarks]
x_coords.sort()
xL_hand, xR_hand = x_coords[0], x_coords[1]
well_width = xR_hand - xL_hand
center_screen = w / 2
centered_L = center_screen - (well_width / 2)
centered_R = center_screen + (well_width / 2)
x_space = np.linspace(0, w, 400)
pot_profile = np.ones_like(x_space)
pot_profile[(x_space > centered_L) & (x_space < centered_R)] = 0
return pot_profile, "Square Well (Captured)"
# 2. Harmonic Oscillator (1 Hand)
elif len(res.multi_hand_landmarks) == 1:
lm = res.multi_hand_landmarks[0]
THUMB = lm.landmark[4]
INDEX = lm.landmark[8]
dx = INDEX.x - THUMB.x
dy = INDEX.y - THUMB.y
dist = math.sqrt(dx**2 + dy**2)
# Map pinch distance → curvature
A = np.interp(dist, [0.05, 0.3], [100.0, 1.0])
x_space = np.linspace(-1, 1, 400)
pot_profile = A * (x_space**2)
pot_profile = np.clip(pot_profile, 0, 100)
pot_profile = pot_profile / 100.0 # normalize 0..1
return pot_profile, f"Harmonic Oscillator (k={A:.1f})"
except Exception as e:
return None, f"MediaPipe Error: {e}"
return None, "Error"
# ==========================================
# 4. PAGE: SIMULATOR
# ==========================================
if page == "Simulator":
st.title("Pili-Pili - Quantum Potential Solver")
st.markdown("Show a potential with your hands or select a preset to solve the **Time-Independent Schrödinger Equation**.")
# Shared grid for all modes
L = 50
N_GRID = 1000
x_full, dx, x_internal = f.make_grid(L, N_GRID)
V_full_to_solve = None
status_msg = ""
col1, col2 = st.columns([1, 3])
with col1:
st.subheader("Controls")
# Settings
potential_mode = st.selectbox(
"Potential Type",
[
"Static Square Well",
"Static Harmonic Oscillator",
"Double Well",
"Hand Gesture (Camera)"
]
)
nos_user = st.slider("Eigenstates to Plot", 1, 10, 5)
# ---- STATIC MODES ----
if potential_mode == "Static Square Well":
width = st.slider("Well Width", 1.0, 20.0, 10.0)
V_physics = np.zeros_like(x_internal)
V_physics[np.abs(x_internal) > width/2] = 200
V_full_to_solve = np.pad(V_physics, (1,1), constant_values=1e10)
status_msg = f"Static Square Well (width = {width:.1f})"
elif potential_mode == "Static Harmonic Oscillator":
k = st.slider("Spring Constant (k)", 0.1, 50.0, 5.0)
V_physics = 0.5 * k * x_internal**2
# scale a bit so it shows nicely under energies
V_physics = V_physics / np.max(V_physics) * 50
V_full_to_solve = np.pad(V_physics, (1,1), constant_values=1e10)
status_msg = f"Static Harmonic Oscillator (k = {k:.2f})"
elif potential_mode == "Double Well":
sep = st.slider("Separation", 0.5, 5.0, 2.0)
depth = st.slider("Depth", 0.1, 5.0, 1.0)
V_physics = depth * ((x_internal**2 - sep**2)**2)
V_physics = V_physics / np.max(V_physics) * 50
V_full_to_solve = np.pad(V_physics, (1,1), constant_values=1e10)
status_msg = f"Double Well (sep = {sep:.2f}, depth = {depth:.2f})"
# ---- HAND-GESTURE / CAMERA MODE ----
elif potential_mode == "Hand Gesture (Camera)":
st.subheader("Hand Gesture Controls")
st.info(
"1. Click **'Start Countdown'**. (IGNORE)\n"
"2. Get your **two hands** ready for a Square Well, "
"or **one-hand pinch** for a Harmonic Oscillator.\n"
"3. When you'r ready, use **'Take a snapshot'**."
)
st.subheader("Hand Gesture Input")
img_file = st.camera_input("Take a Snapshot")
if img_file:
file_bytes = np.asarray(bytearray(img_file.read()), dtype=np.uint8)
frame = cv2.imdecode(file_bytes, 1)
frame = cv2.flip(frame, 1)
V_raw, msg = process_frame_to_potential(frame)
if V_raw is not None:
st.success(f"Detected: {msg}")
st.session_state.V_user_defined = V_raw
# Map to simulation grid
V_interpolated = np.interp(
np.linspace(0, 1, len(x_internal)),
np.linspace(0, 1, len(V_raw)),
V_raw
)
V_physics = V_interpolated * 200.0
V_full_to_solve = np.pad(V_physics, (1,1), constant_values=1e10)
status_msg = f"Camera Potential: {msg}"
else:
st.error(msg)
# --------- RIGHT COLUMN: SOLVE & PLOT ----------
with col2:
if V_full_to_solve is not None:
start_time = time.time()
T = f.kinetic_operator(len(x_internal), dx)
E, psi = f.solve(T, V_full_to_solve, dx)
solve_time = time.time() - start_time
if status_msg:
st.markdown(f"**Potential:** {status_msg}")
st.markdown(f"**Solver Status:** ✅ Converged in {solve_time:.3f} s")
fig = plot_interactive(E, psi, V_full_to_solve, x_full, nos=nos_user)
st.plotly_chart(fig, use_container_width=True)
# Eigenenergies panel
st.markdown("### Eigenenergies")
cols = st.columns(nos_user)
for i in range(nos_user):
if i < len(E):
cols[i].metric(f"n={i}", f"{E[i]:.4f} Ha")
else:
if potential_mode == "Hand Gesture (Camera)":
st.info("Follow the instructions on the left to capture a potential from your hands.")
else:
st.info("Select parameters on the left to generate a potential and solve.")
# ==========================================
# 5. PAGE: BENCHMARKS
# ==========================================
elif page == "Benchmarks & Verification":
st.title("🛡️ Verification & Accuracy")
st.markdown("""
This solver has been rigorously tested against known analytical solutions and external libraries to ensure physical accuracy.
""")
tab1, tab2, tab3 = st.tabs(["Analytical Benchmarks", "QMSolve Comparison", "Code"])
with tab1:
st.subheader("1. Infinite Square Well")
st.markdown("Particle in a box of length $L=20$. Error < 0.003%.")
st.table({
"State (n)": [1, 2, 3, 4, 5],
"Analytic E": [0.012337, 0.049348, 0.111033, 0.197392, 0.308425],
"Numerical E": [0.012337, 0.049348, 0.111032, 0.197389, 0.308419],
"% Error": ["0.0001%", "0.0003%", "0.0007%", "0.0013%", "0.0021%"]
})
st.subheader("2. Harmonic Oscillator")
st.markdown("Standard QHO with $k=1$. Error < 0.02%.")
st.table({
"State (n)": [0, 1, 2, 3, 4],
"Analytic E": [0.5, 1.5, 2.5, 3.5, 4.5],
"Numerical E": [0.499980, 1.499902, 2.499746, 3.499512, 4.499200],
"% Error": ["0.0039%", "0.0065%", "0.0101%", "0.0139%", "0.0178%"]
})
with tab2:
st.subheader("Cross-Verification: Double Well Potential")
st.markdown("""
Comparison with the Python package `QMSolve` for a Double Well potential (no simple analytic solution).
**Agreement within 0.25%**.
""")
col_a, col_b = st.columns(2)
with col_a:
st.markdown("**Parameters:** $V(x) = 2(x^2 - 1)^2$")
st.table({
"State (n)": [0, 1, 2, 3, 4],
"psi_solve2 (Ha)": [1.400886, 2.092533, 4.455252, 6.917808, 9.872632],
"QMSolve (Ha)": [1.402472, 2.097767, 4.466368, 6.936807, 9.900227],
"% Difference": ["0.11%", "0.25%", "0.25%", "0.27%", "0.28%"]
})
with col_b:
st.info("Note: QMSolve uses eV units. Results were converted to Hartree (1 Ha ≈ 27.211 eV) for comparison.")
with tab3:
st.subheader("Code Verification")
st.code("""
def kinetic_operator(N, dx, hbar=1, m=1):
# 3-point central difference stencil for 2nd derivative
main_diagonal = (1/dx**2) * np.diag(-2 * np.ones(N))
off_diagonal1 = (1/dx**2) * np.diag(np.ones(N-1), -1)
off_diagonal2 = (1/dx**2) * np.diag(np.ones(N-1), 1)
D2 = (main_diagonal + off_diagonal1 + off_diagonal2)
# Kinetic Energy Operator T = -hbar^2 / 2m * d^2/dx^2
T = (-(hbar**2 / (2*m)) * D2)
return T
""", language="python")
st.code("""
def harmonic(x,k,center=0.0):
# A Parabola, setting the global k-value.
global Last_k_value
Last_k_value = k
constant_factor = 1
potential = 0.5*k*(x - center)**2
return constant_factor * potential
""")
# ==========================================
# 6. PAGE: THEORY
# ==========================================
elif page == "Theory & Method":
st.title("📖 Theory & Methodology")
st.markdown("### The Time-Independent Schrödinger Equation")
st.latex(r" \hat{H}\psi(x) = E\psi(x) ")
st.latex(r" \left[ -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x) \right]\psi(x) = E\psi(x) ")
st.markdown("### Numerical Method: Finite Difference")
st.markdown(r"""
We discretize the spatial domain $x$ into a grid of $N$ points. The second derivative is approximated using the **Central Difference Formula**:
""")
st.latex(r" \frac{d^2\psi}{dx^2} \approx \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{\Delta x^2} ")
st.markdown(r"""
This transforms the differential operator into a **Tridiagonal Matrix** equation:
""")
st.latex(r" \mathbf{H}\mathbf{\psi} = E\mathbf{\psi} ")
st.markdown(r"""
Where $\mathbf{H}$ is an $N \times N$ matrix. We then use `numpy.linalg.eigh` to solve for the eigenvalues ($E$) and eigenvectors ($\psi$).
""")
st.markdown("### Implementation Details")
st.markdown(r"""
- **Grid Size:** Dynamic (default 1000–2000 points)
- **Boundary Conditions:** Dirichlet ($ \psi(0) = \psi(L) = 0 $) via infinite walls at grid edges.
- **Units:** Hartree Atomic Units ($\hbar=1, m=1$).
""")
|