File size: 71,425 Bytes
bc44f08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
# psi_solve2/functions.py

import numpy as np
import matplotlib.pyplot as plt

import math 
from matplotlib.ticker import MultipleLocator 

# ==========================================
# 1. PHYSICS CONSTANTS
# ==========================================
hbar = 1
m = 1
L = 50
N_GRID = 2000
global Last_k_value # Used by harmonic() and check_harmonic_analytic()

# ==========================================
# 2. GRID FUNCTIONS
# ==========================================
def make_grid(L=L, N=N_GRID):
    """

    Create a spatial grid for solving the Schrödinger equation.

    

    Parameters

    ----------

    L : float, optional

        Total length of the spatial domain (default: 50 a.u.)

    N : int, optional

        Number of internal grid points (default: 2000)

    

    Returns

    -------

    x_full : ndarray

        Full grid with N+2 points from -L/2 to L/2, including boundary points

    dx : float

        Grid spacing (distance between adjacent points)

    x_internal : ndarray

        Internal grid points (N points) where the wavefunction is solved

        Excludes the boundary points at x[0] and x[-1]

    

    Notes

    -----

    The boundary points are used to enforce boundary conditions (typically ψ=0)

    while x_internal contains the points where we actually solve for ψ.

    

    Examples

    --------

    >>> x, dx, x_int = make_grid(L=20, N=1000)

    >>> print(f"Domain: [{x[0]:.1f}, {x[-1]:.1f}], spacing: {dx:.4f}")

    Domain: [-10.0, 10.0], spacing: 0.0200

    """
    x = np.linspace(-L/2, L/2, N+2)
    dx = x[1] - x[0]
    x_internal = x[1:-1]
    return x, dx, x_internal

# ==========================================
# 3. POTENTIAL GENERATORS (V(x))
# ==========================================
def constant(x, c):
    """

    Create a constant potential across the entire domain.

    

    Parameters

    ----------

    x : ndarray

        Spatial grid points

    c : float

        Constant potential value (in Hartree atomic units)

    

    Returns

    -------

    V : ndarray

        Constant potential array of same shape as x, with value c everywhere

    

    Examples

    --------

    >>> x = np.linspace(-10, 10, 100)

    >>> V = constant(x, 5.0)  # V(x) = 5.0 everywhere

    """
    return np.ones_like(x) * c

def harmonic(x, k, center=0.0):
    """

    Create a harmonic oscillator (parabolic) potential.

    

    Generates V(x) = (1/2)k(x - center)² representing a quantum harmonic

    oscillator potential centered at the specified position.

    

    Parameters

    ----------

    x : ndarray

        Spatial grid points

    k : float

        Spring constant (curvature parameter) in atomic units

        Larger k → stiffer spring → more tightly bound states

    center : float, optional

        Center position of the parabola (default: 0.0)

    

    Returns

    -------

    V : ndarray

        Harmonic potential array: V(x) = 0.5 * k * (x - center)²

    

    Notes

    -----

    - Sets global variable Last_k_value for use by check_harmonic_analytic()

    - Energy levels: E_n = ℏω(n + 1/2) where ω = √(k/m)

    - In atomic units (ℏ=1, m=1): ω = √k

    

    Examples

    --------

    >>> x = np.linspace(-10, 10, 1000)

    >>> V = harmonic(x, k=1.0, center=0.0)  # Standard QHO

    >>> V_stiff = harmonic(x, k=10.0, center=0.0)  # Stiffer spring

    >>> V_offset = harmonic(x, k=1.0, center=5.0)  # Centered at x=5

    """
    global Last_k_value
    Last_k_value = k
    
    constant_factor = 1 
    potential = 0.5 * k * (x - center)**2
    return constant_factor * potential

def gaussian_well(x, center=0.0, width=1.0, depth=50): 
    """

    Create a Gaussian-shaped potential well.

    

    Generates a smooth, bell-shaped potential dip that can trap particles.

    

    Parameters

    ----------

    x : ndarray

        Spatial grid points

    center : float, optional

        Center position of the well (default: 0.0)

    width : float, optional

        Width parameter (standard deviation) of the Gaussian (default: 1.0)

        Larger width → broader well

    depth : float, optional

        Depth of the well at the center (default: 50)

        Positive depth creates a well (attractive potential)

    

    Returns

    -------

    V : ndarray

        Gaussian well potential: V(x) = -depth * exp(-(x-center)²/(2*width²))

    

    Notes

    -----

    - Minimum potential is -depth at x = center

    - Potential approaches 0 as |x - center| → ∞

    - Smooth potential (infinitely differentiable)

    

    Examples

    --------

    >>> x = np.linspace(-10, 10, 1000)

    >>> V = gaussian_well(x, center=0, width=2.0, depth=10)

    """
    return -depth * np.exp(-(x - center)**2 / (2 * width**2))

def inf_sqaure_well(x, lower_bound, upper_bound):
    """

    Create an infinite square well (particle in a box) potential.

    

    Parameters

    ----------

    x : ndarray

        Spatial grid points

    lower_bound : float

        Left boundary of the well

    upper_bound : float

        Right boundary of the well

    

    Returns

    -------

    V : ndarray

        Infinite square well potential:

        - V(x) = 0 for lower_bound ≤ x ≤ upper_bound (inside well)

        - V(x) = 10¹⁰ for x < lower_bound or x > upper_bound (outside well)

    

    Notes

    -----

    - Uses penalty method: "infinite" walls are approximated by very large

      potential (10¹⁰) to enforce ψ ≈ 0 outside the well

    - Well width: L = upper_bound - lower_bound

    - Analytical energies: E_n = (ℏ²π²n²)/(2mL²) for n = 1, 2, 3, ...

    

    Examples

    --------

    >>> x = np.linspace(-15, 15, 1000)

    >>> V = inf_sqaure_well(x, lower_bound=-10, upper_bound=10)  # L = 20

    >>> # Use with check_ISW_analytic(E, lower_bound=-10, upper_bound=10)

    """
    HUGE_NUMBER = 1e10
    V = np.zeros_like(x) 
    V[x < lower_bound] = HUGE_NUMBER
    V[x > upper_bound] = HUGE_NUMBER
    return V

def inf_wall(x, side, bound):
    """

    Place an infinite potential wall on one side of the domain.

    

    Parameters

    ----------

    x : ndarray

        Spatial grid points

    side : str

        Which side to place the wall: 'left' or 'right'

        (case-insensitive, strips whitespace and punctuation)

    bound : float

        Position of the wall boundary

    

    Returns

    -------

    V : ndarray

        Potential with infinite wall:

        - If side='left': V(x) = 10¹⁰ for x < bound, V(x) = 0 for x ≥ bound

        - If side='right': V(x) = 10¹⁰ for x > bound, V(x) = 0 for x ≤ bound

    

    Notes

    -----

    Uses penalty method with V = 9×10¹⁰ to approximate infinite potential.

    

    Examples

    --------

    >>> x = np.linspace(-10, 10, 1000)

    >>> V_left = inf_wall(x, 'left', bound=-5)  # Wall at x=-5, blocks left side

    >>> V_right = inf_wall(x, 'right', bound=5)  # Wall at x=5, blocks right side

    """
    V = np.zeros_like(x)
    HUGE_NUMBER = 9e10 
    side = side.strip(', . ').lower() 

    if side == 'left':
        V[x < bound] = HUGE_NUMBER
    elif side == 'right':
        V[x > bound] = HUGE_NUMBER
    return V

def finite_barrier(x, center, width, height):
    """

    Create a finite rectangular potential barrier.

    

    Parameters

    ----------

    x : ndarray

        Spatial grid points

    center : float

        Center position of the barrier

    width : float

        Total width of the barrier

    height : float

        Height of the potential barrier

    

    Returns

    -------

    V : ndarray

        Rectangular barrier potential:

        - V(x) = height for |x - center| < width/2

        - V(x) = 0 elsewhere

    

    Notes

    -----

    Useful for studying quantum tunneling phenomena. Particles with E < height

    can tunnel through the barrier with exponentially decaying probability.

    

    Examples

    --------

    >>> x = np.linspace(-10, 10, 1000)

    >>> V = finite_barrier(x, center=0, width=2, height=5)  # Barrier from x=-1 to x=1

    """
    V = np.zeros_like(x)
    mask = (x > (center - width/2)) & (x < (center + width/2))
    V[mask] = height
    return V

def V_double_well(x, depth=20, separation=1, center=0.0):
    """

    Create a quartic double-well potential.

    

    Generates V(x) = depth × ((x-center)² - separation)² which has two minima

    separated by a central barrier.

    

    Parameters

    ----------

    x : ndarray

        Spatial grid points

    depth : float, optional

        Depth parameter controlling overall potential strength (default: 20)

    separation : float, optional

        Controls the distance between the two wells (default: 1)

        Well minima are approximately at x = center ± separation

    center : float, optional

        Center position of the double well system (default: 0.0)

    

    Returns

    -------

    V : ndarray

        Double well potential: V(x) = depth × ((x-center)² - separation)²

    

    Notes

    -----

    - Creates symmetric double well with barrier at x = center

    - Useful for studying tunneling splitting and symmetric/antisymmetric states

    - Ground state and first excited state form tunneling doublet

    

    Examples

    --------

    >>> x = np.linspace(-5, 5, 1000)

    >>> V = V_double_well(x, depth=2, separation=1, center=0)

    """
    V = depth * ((x - center)**2 - separation)**2
    return V

def custom2(value,x):
    """Helper function from the notebook."""
    return value * np.ones_like(x)

# In psi_solve2/functions.py

def finite_square_well(x, lower_bound, upper_bound, depth_V):
    """

    Create a finite square well potential.

    

    The potential is zero inside the well and has finite height depth_V outside.

    Unlike the infinite square well, particles can exist in the barrier region

    with exponentially decaying wavefunctions.

    

    Parameters

    ----------

    x : ndarray

        Spatial grid points

    lower_bound : float

        Left boundary of the well

    upper_bound : float

        Right boundary of the well

    depth_V : float

        Height of the potential barriers outside the well (V₀)

    

    Returns

    -------

    V : ndarray

        Finite square well potential:

        - V(x) = 0 for lower_bound ≤ x ≤ upper_bound (inside well)

        - V(x) = depth_V for x < lower_bound or x > upper_bound (barrier regions)

    

    """
    """    

    Notes

    -----

    - Bound states exist only when E < depth_V

    - Number of bound states depends on well width and depth_V

    - For bound states, wavefunction decays exponentially in barrier (E < V)

    - For scattering states (E > depth_V), wavefunction oscillates everywhere

    - Use check_finite_well_analytic() to verify numerical results

    

    Examples

    --------

    >>> x = np.linspace(-15, 15, 1000)

    >>> V_deep = finite_square_well(x, -10, 10, depth_V=2.0)  # Deep well, many bound states

    >>> V_shallow = finite_square_well(x, -10, 10, depth_V=0.01)  # Shallow, few/no bound states

    """
    # Start with a baseline of zero potential
    V = np.zeros_like(x) 
    
    # The walls outside the well are set to the height/depth V_0
    V[x < lower_bound] = depth_V
    V[x > upper_bound] = depth_V
    
    # The potential *inside* the well remains V=0 (or whatever you set the baseline to)
    return V

# ==========================================
# 4. SCHRÖDINGER EQUATION SOLVER
# ==========================================
def kinetic_operator(N, dx, hbar=hbar, m=m):
    """

    Build the kinetic energy operator matrix using finite difference method.

    

    Constructs the discrete representation of the kinetic energy operator

    T = -(ℏ²/2m) d²/dx² using a 3-point central difference stencil.

    

    Parameters

    ----------

    N : int

        Number of internal grid points (size of the matrix)

    dx : float

        Grid spacing (distance between adjacent points)

    hbar : float, optional

        Reduced Planck constant (default: 1.0 in atomic units)

    m : float, optional

        Particle mass (default: 1.0 in atomic units)

    

    Returns

    -------

    T : ndarray, shape (N, N)

        Kinetic energy operator matrix (symmetric, tridiagonal)

        - Diagonal elements: -(ℏ²/2m) × (-2/dx²)

        - Off-diagonal elements: -(ℏ²/2m) × (1/dx²)

    

    """
    """    

    Notes

    -----

    The second derivative is approximated using central differences:

        d²ψ/dx² ≈ (ψ_{i+1} - 2ψ_i + ψ_{i-1}) / dx²

    

    This creates a tridiagonal matrix:

        - Main diagonal: -2/dx²

        - Upper/lower diagonals: +1/dx²

    

    The kinetic energy operator is then: T = -(ℏ²/2m) × D2

    

    Examples

    --------

    >>> N = 1000

    >>> dx = 0.025

    >>> T = kinetic_operator(N, dx)

    >>> print(f"Matrix shape: {T.shape}, Symmetric: {np.allclose(T, T.T)}")

    Matrix shape: (1000, 1000), Symmetric: True

    """
    main_diagonal = (1/dx**2) * np.diag(-2 * np.ones(N))
    off_diagonal1 = (1/dx**2) * np.diag(np.ones(N-1), -1)
    off_diagonal2 = (1/dx**2) * np.diag(np.ones(N-1), 1)
    D2 = (main_diagonal + off_diagonal1 + off_diagonal2)

    T = (-(hbar**2 / (2*m)) * D2)
    return T

def solve(T, V_full, dx):
    """

    Solve the time-independent Schrödinger equation for eigenvalues and eigenvectors.

    

    Solves the eigenvalue problem Hψ = Eψ where H = T + V is the Hamiltonian.

    Returns normalized eigenstates sorted by energy.

    

    Parameters

    ----------

    T : ndarray, shape (N, N)

        Kinetic energy operator matrix from kinetic_operator()

    V_full : ndarray, shape (N+2,)

        Full potential array including boundary points

        V_full[0] and V_full[-1] are boundary values (typically very large)

        V_full[1:-1] are the internal potential values

    dx : float

        Grid spacing used for normalization

    

    Returns

    -------

    E : ndarray, shape (N,)

        Eigenvalues (energy levels) sorted in ascending order

        Units: Hartree (atomic units)

    psi : ndarray, shape (N, N)

        Eigenvectors (wavefunctions) as columns

        psi[:, i] is the wavefunction for energy E[i]

        Each wavefunction is normalized: ∫|ψ|² dx = 1

    

    """
    """    

    Notes

    -----

    - Uses np.linalg.eigh() which assumes Hermitian matrix (guaranteed for H)

    - Automatically sorts eigenvalues and eigenvectors by energy

    - Normalizes each eigenstate using trapezoidal rule: ∫|ψ|² dx = 1

    - Boundary conditions are enforced by V_full having large values at edges

    

    The Hamiltonian is constructed as:

        H = T + diag(V_internal)

    where V_internal = V_full[1:-1]

    

    Examples

    --------

    >>> # Setup

    >>> x, dx, x_int = make_grid(L=20, N=1000)

    >>> T = kinetic_operator(len(x_int), dx)

    >>> 

    >>> # Create infinite square well

    >>> V = inf_sqaure_well(x_int, -10, 10)

    >>> V_full = np.pad(V, (1,1), constant_values=1e10)

    >>> 

    >>> # Solve

    >>> E, psi = solve(T, V_full, dx)

    >>> print(f"Ground state energy: {E[0]:.6f} Ha")

    >>> 

    >>> # Verify normalization

    >>> norm = np.sum(psi[:, 0]**2) * dx

    >>> print(f"Normalization: {norm:.6f}")  # Should be 1.0

    """
    V_internal = V_full[1:-1]
    H = T + np.diag(V_internal)

    E, psi = np.linalg.eigh(H) 

    # Normalize each state individually
    for i in range(psi.shape[1]):
        # sum( |psi|^2 * dx )
        norm_factor = np.sum(psi[:, i]**2) * dx
        # Divide by the square root of the integral
        psi[:, i] = psi[:, i] / np.sqrt(norm_factor)

    return E, psi

# ==========================================
# 5. PLOTTING FUNCTIONS (STREAMLIT/JUPYTER SAFE)
# ==========================================
def plot_V(V_raw_input):
    """

    Plot a 1D potential profile.

    

    Creates a simple matplotlib figure showing the potential energy landscape.

    

    Parameters

    ----------

    V_raw_input : ndarray or None

        1D array representing the potential V(x)

        If None or scalar, returns None

    

    Returns

    -------

    fig : matplotlib.figure.Figure or None

        Figure object containing the potential plot

        Returns None if input is invalid

    """
    """    

    Notes

    -----

    - Uses dark background style

    - Cyan color for potential curve

    - Useful for quick visualization of potential shapes

    

    Examples

    --------

    >>> x = np.linspace(-10, 10, 1000)

    >>> V = harmonic(x, k=1.0)

    >>> fig = plot_V(V)

    >>> plt.show()

    """
    if V_raw_input is None or np.ndim(V_raw_input) == 0:
        return None

    plt.style.use("dark_background")
    fig, ax = plt.subplots(figsize=(6, 2))
    ax.plot(V_raw_input, lw=1.5, color="cyan")
    ax.set_title("Potential Input")
    ax.set_xlabel("Grid index")
    ax.set_ylabel("Potential")
    fig.tight_layout()
    return fig


def plot_alive(E, psi, V, x, no=1, nos=5, mode=''):
    """

    Plot wavefunctions as probability densities with separate energy and probability axes.

    

    Creates a physically accurate plot showing:

    - Potential V(x) and energy levels on left y-axis

    - Probability densities |ψ|² on right y-axis (separate scale)

    - Color-synchronized between probability curves and energy levels

    

    Parameters

    ----------

    E : ndarray

        Energy eigenvalues (in Hartree)

    psi : ndarray, shape (N, M)

        Wavefunction array where psi[:, i] is the i-th eigenstate

    V : ndarray, shape (N+2,)

        Full potential array including boundaries

    x : ndarray, shape (N+2,)

        Full spatial grid including boundaries

    no : int, optional

        State index to plot if mode != 'all' (default: 1)

    nos : int, optional

        Number of states to plot if mode == 'all' (default: 5)

    mode : str, optional

        Plot mode:

        - 'all': Plot multiple states (first nos states)

        - '': Plot single state (state no)

        Default: '' (single state)

    

    Returns

    -------

    fig : matplotlib.figure.Figure

        Figure object with dual y-axes

        - ax1 (left): Energy/Potential scale

        - ax2 (right): Probability density scale

    

    Notes

    -----

    - Uses dark background theme

    - Probability densities are plotted as |ψ|², not ψ

    - Each state has matching colors for its probability curve and energy level

    - Regions where V > 10⁵ are hidden (infinite walls)

    

    """
    """    

    Examples

    --------

    >>> # Plot first 5 states

    >>> fig = plot_alive(E, psi, V_full, x_full, nos=5, mode='all')

    >>> plt.show()

    >>> 

    >>> # Plot only ground state

    >>> fig = plot_alive(E, psi, V_full, x_full, no=0)

    >>> plt.show()

    """
    import matplotlib.pyplot as plt
    
    plt.style.use("dark_background")
    fig, ax1 = plt.subplots(figsize=(10, 6))
    
    ax2 = ax1.twinx()  # Right axis for probability
    
    states = min(nos, len(E))
    x_solver = x[1:-1]
    V_internal = V[1:-1]

    # --- Plot Potential ---
    ax1.plot(x, V, color="white", lw=2, label="V(x)", alpha=0.7)

    # --- Plot wavefunctions ---
    if mode == 'all':
        for n in range(states):
            # 1. Get the synchronized color for this state
            color = plt.colormaps["tab20"].colors[n % 20]
            
            psi_n_sq = psi[:, n]**2
            
            # 2. Plot probability density on ax2 with the chosen color
            ax2.plot(
                x_solver, psi_n_sq,
                label=rf"$|\psi_{n}|^2$ (E={E[n]:.2f})",
                lw=1.2,
                color=color # <-- EXPLICIT COLOR SET
            )
            
            # 3. Plot energy line on ax1 with the same color
            ax1.axhline(E[n], linestyle="--", lw=0.8, alpha=0.5, color=color) # <-- EXPLICIT COLOR SET
    else:
        # For single state mode, we still need a color. Use 'no' as the index.
        n = no
        color = plt.colormaps["tab20"].colors[n % 20]

        psi_n_sq = psi[:, n]**2
        
        # Plot probability density on ax2 with the chosen color
        ax2.plot(
            x_solver, psi_n_sq,
            label=rf"$|\psi_{no}|^2$ (E={E[no]:.2f})",
            lw=1.2,
            color=color # <-- EXPLICIT COLOR SET
        )
        
        # Plot energy line on ax1 with the same color
        ax1.axhline(E[no], linestyle="--", lw=0.8, alpha=0.5, color=color) # <-- EXPLICIT COLOR SET
        
    # Formatting
    ax1.set_xlabel("x [a.u.]")
    ax1.set_ylabel("Energy / V(x)")
    ax2.set_ylabel(r"Probability Density $|\psi|^2$")

    ax1.set_title("Physically Accurate Eigenstates and Potential")

    # The fig.legend() might show the color/style of the *last* plot line. 
    # For robust legend handling with twinx, you often need to combine the handles.
    h1, l1 = ax1.get_legend_handles_labels()
    h2, l2 = ax2.get_legend_handles_labels()
    ax1.legend(h1+h2, l1+l2, loc="upper right", fontsize=8) # <-- Improved Legend
    
    plt.tight_layout()
    return fig

def plot_dead(E, psi, V, x, nos=5):
    """Textbook: wavefunctions vertically shifted by energy."""
    plt.style.use("dark_background")
    fig, (ax_main, ax_bar) = plt.subplots(
        1, 2, figsize=(10, 7), gridspec_kw={"width_ratios": [5, 1]}
    )
    fig.subplots_adjust(bottom=0.2, wspace=0.4)

    states = min(nos, len(E))
    x_solver = x[1:-1]
    V_internal = V[1:-1]

    if states <= 0:
        return fig

    scale = (E[1] - E[0]) * 0.4 if states > 1 else max(E[0] * 0.1, 0.5)
    max_E = E[states - 1]
    window_height = max_E * 1.5

    # Plot shifted wavefunctions
    for n in range(states):
        psi_n = psi[:, n]
        maxabs = np.max(np.abs(psi_n))
        psi_norm = psi_n / (maxabs if maxabs != 0 else 1)
        y = psi_norm * scale + E[n]
        y[V_internal > 1e5] = np.nan  # hide where potential is infinite

        color = plt.colormaps["tab20"].colors[n % 20]
        ax_main.plot(x_solver, y, lw=1.3, color=color, label=f"n={n+1}, E={E[n]:.2f}")

    # Plot potential
    V_clip = np.clip(V, 0, window_height)
    ax_main.plot(x, V_clip, color="white", lw=2, label="V(x)")

    ax_main.set_title("Eigenstates + Potential")
    ax_main.set_xlabel("x [a.u.]")
    ax_main.set_ylabel("Energy / ψ")
    ax_main.set_ylim(0, max_E * 1.2)
    ax_main.legend(fontsize=8)

    # Energy levels
    ax_bar.set_title("Energy Spectrum")
    ax_bar.set_xticks([])
    ax_bar.set_ylim(0, np.max(E[:states]) * 1.1)
    for n in range(states):
        ax_bar.axhline(E[n], lw=1, color=plt.colormaps["tab20"].colors[n % 20])

    return fig


# ==========================================
# 6. BENCHMARKING FUNCTIONS
# ==========================================
def check_ortho(psi, dx, num_states_to_check=20):
    """

    Checks the orthonormality of the first 'num_states_to_check' wave functions.

    """
    N_CHECK = min(psi.shape[1], num_states_to_check) 
    overlap_matrix = np.zeros((N_CHECK, N_CHECK))

    for i in range(N_CHECK):
        for j in range(N_CHECK):
            # Riemann Sum: integral(psi_i * psi_j) dx
            Rsum = np.sum(psi[:, i] * psi[:, j]) * dx
            overlap_matrix[i, j] = Rsum

    print(f"\n--- Orthonormality Check (First {N_CHECK} states) ---")
    print("Overlap Matrix should approximate the Identity Matrix:")
    return overlap_matrix

def show_matrix(overlap_matrix,how='normal',round_value=10):
    '''

    how = normal, round , plot

    '''
    if how == 'normal':      
        print(overlap_matrix[:3])
    elif how == 'round':
        print(np.round(overlap_matrix, round_value))
    elif how == 'plot':
        plt.figure(figsize=(6,5))
        plt.imshow(overlap_matrix, cmap='coolwarm', origin='lower')
        plt.colorbar(label="Overlap Value")
        plt.title("Orthonormality Check Matrix")
        plt.xlabel("State Index m")
        plt.ylabel("State Index n")
        plt.gca().invert_yaxis()
        plt.locator_params(axis='y', integer=True)
        plt.locator_params(axis='x', integer=True)
        plt.show()

def check_ISW_analytic(E, lower_bound=-10, upper_bound=10, hbar=1.0, m=1.0, max_levels=6):
    """

    Compares numerical energies to the Infinite Square Well analytic formula.

    

    Parameters:

    -----------

    E : array

        Numerical eigenvalues

    lower_bound : float

        Lower boundary of the well (default: -10)

    upper_bound : float

        Upper boundary of the well (default: 10)

    hbar : float

        Reduced Planck constant (default: 1.0)

    m : float

        Particle mass (default: 1.0)

    max_levels : int

        Number of levels to check (default: 6)



    """
    """            

    Example:

    --------

    check_ISW_analytic(E, lower_bound=-10, upper_bound=10)

    """
    L = upper_bound - lower_bound  # Well width
    CHECK_N = min(max_levels, len(E))
    E_numerical = E[:CHECK_N]
    E_analytic = np.zeros(CHECK_N)

    for i in range(CHECK_N):
        n = i + 1 
        E_analytic[i] = (hbar**2 * np.pi**2 * n**2) / (2*m*L**2)

    print("\n### ENERGY BENCHMARK: Infinite Square Well ###")
    print(f"Well boundaries: x = [{lower_bound}, {upper_bound}], Width L = {L}")
    print("-" * 55)
    print(f"| n | Analytic E | Numerical E | % Error |")
    print("-" * 55)

    for i in range(CHECK_N):
        percent_error = np.abs((E_numerical[i] - E_analytic[i]) / E_analytic[i]) * 100
        print(
            f"| {i+1:<1} | {E_analytic[i]:<10.6f} | {E_numerical[i]:<11.6f} | {percent_error:<7.4f}% |"
        )
    print("-" * 55)
    
    return E_analytic, E_numerical

def check_harmonic_analytic(E, k=None, center=0.0, hbar=1.0, m=1.0, max_levels=6):
    """

    Compares numerical energies to the Harmonic Oscillator analytic formula.

    

    Parameters:

    -----------

    E : array

        Numerical eigenvalues

    k : float, optional

        Spring constant. If None, uses Last_k_value global variable

    center : float

        Center position of the harmonic oscillator (default: 0.0)

    hbar : float

        Reduced Planck constant (default: 1.0)

    m : float

        Particle mass (default: 1.0)

    max_levels : int

        Number of levels to check (default: 6)

    

    Example:

    --------

    check_harmonic_analytic(E, k=10, center=0)

    """
    CHECK_N = min(max_levels, len(E))
    
    try: 
        # Use provided k or fall back to global Last_k_value
        if k is None:
            k = Last_k_value 
            if k is None:
                print("ERROR: k is not set. Please provide k parameter or run harmonic() first.")
                return
        
        w = np.sqrt(k/m)
        E_numerical = E[:CHECK_N]
        E_analytic = np.zeros(CHECK_N)

        for i in range(CHECK_N):
            n_quantum = i 
            E_analytic[i] = (n_quantum + 0.5) * hbar * w

        print("\n### ENERGY BENCHMARK: Harmonic Oscillator ###")
        print(f"Spring constant k = {k}, Center = {center}, omega = {w:.4f}")
        print("-" * 55)
        print(f"| n | Analytic E | Numerical E | % Error |") 
        print("-" * 55)

        for i in range(CHECK_N):
            n_label = i 
            percent_error = np.abs((E_numerical[i] - E_analytic[i]) / E_analytic[i]) * 100
            
            print(
                f"| {n_label:<1} | {E_analytic[i]:<10.6f} | {E_numerical[i]:<11.6f} | {percent_error:<7.4f}% |"
            )
        print("-" * 55)
        
        return E_analytic, E_numerical

    except Exception as e:
        print(f"Error in harmonic oscillator check: {e}")


def check_finite_well_analytic(E, V0, lower_bound=-10, upper_bound=10, hbar=1.0, m=1.0, max_levels=10):
    """

    Compares numerical energies to the Finite Square Well analytical solution.

    

    The finite square well has no simple closed-form solution, but bound state

    energies can be found by solving transcendental equations numerically.

    

    Parameters:

    -----------

    E : array

        Numerical eigenvalues from your solver

    V0 : float

        Barrier height (potential outside the well)

    lower_bound : float

        Lower boundary of the well (default: -10)

    upper_bound : float

        Upper boundary of the well (default: 10)

    hbar : float

        Reduced Planck constant (default: 1.0)

    m : float

        Particle mass (default: 1.0)

    max_levels : int

        Maximum number of levels to check (default: 10)

    

    Example:

    --------

    check_finite_well_analytic(E, V0=2.0, lower_bound=-10, upper_bound=10)

    """
    a = (upper_bound - lower_bound) / 2  # Half-width
    z0 = a * np.sqrt(2 * m * V0) / hbar  # Dimensionless parameter
    
    # Find analytical energies by solving transcendental equations
    E_analytic = []
    
    # Even parity states: z*tan(z) = sqrt(z0^2 - z^2)
    z_vals = np.linspace(0.01, z0 - 0.01, 10000)
    for n in range(max_levels):
        try:
            lhs = z_vals * np.tan(z_vals)
            rhs = np.sqrt(z0**2 - z_vals**2)
            diff = lhs - rhs
            
            # Find sign changes (crossings)
            for i in range(len(diff) - 1):
                if diff[i] * diff[i+1] < 0:
                    z = z_vals[i]
                    E_candidate = (hbar**2 * z**2) / (2 * m * a**2)
                    if E_candidate < V0 and not any(np.isclose(E_candidate, E_a, rtol=1e-3) for E_a in E_analytic):
                        E_analytic.append(E_candidate)
                        break
        except:
            pass
    
    # Odd parity states: -z*cot(z) = sqrt(z0^2 - z^2)
    for n in range(max_levels):
        try:
            lhs = -z_vals / np.tan(z_vals)
            rhs = np.sqrt(z0**2 - z_vals**2)
            diff = lhs - rhs
            
            for i in range(len(diff) - 1):
                if diff[i] * diff[i+1] < 0:
                    z = z_vals[i]
                    E_candidate = (hbar**2 * z**2) / (2 * m * a**2)
                    if E_candidate < V0 and not any(np.isclose(E_candidate, E_a, rtol=1e-3) for E_a in E_analytic):
                        E_analytic.append(E_candidate)
                        break
        except:
            pass
    
    E_analytic = sorted(E_analytic)
    
    # Filter numerical energies to only bound states
    E_numerical_bound = E[E < V0]
    
    CHECK_N = min(len(E_analytic), len(E_numerical_bound), max_levels)
    
    if CHECK_N == 0:
        print("\n### ENERGY BENCHMARK: Finite Square Well ###")
        print(f"Well: x in [{lower_bound}, {upper_bound}], V0 = {V0}, z0 = {z0:.4f}")
        print("WARNING: No bound states found!")
        print(f"  Barrier too shallow. Need V0 > {E[0]:.4f} to bind the ground state.")
        return None, None
    
    print("\n### ENERGY BENCHMARK: Finite Square Well ###")
    print(f"Well: x in [{lower_bound}, {upper_bound}], V0 = {V0}, z0 = {z0:.4f}")
    print(f"Number of bound states: {CHECK_N}")
    print("-" * 55)
    print(f"| n | Analytic E | Numerical E | % Error |")
    print("-" * 55)
    
    for i in range(CHECK_N):
        percent_error = np.abs((E_numerical_bound[i] - E_analytic[i]) / E_analytic[i]) * 100
        print(
            f"| {i:<1} | {E_analytic[i]:<10.6f} | {E_numerical_bound[i]:<11.6f} | {percent_error:<7.4f}% |"
        )
    print("-" * 55)
    
    return np.array(E_analytic[:CHECK_N]), E_numerical_bound[:CHECK_N]




##
# Verify

import sys

def run_comparison():
    """

    Cross-verification: Hand-wave solver vs QMSolve package.

    

    Compares results for:

    1. Double Well potential

    2. Harmonic Oscillator (debug test)

    

    Results saved to 'comparison_log.txt'

    

    Requires

    --------

    QMSolve package: pip install qmsolve

    

    Usage

    -----

    >>> from functions import run_comparison

    >>> run_comparison()

    """
    # Import qmsolve only when this function is called
    try:
        from qmsolve import Hamiltonian, SingleParticle, init_visualization
    except ImportError:
        print("Error: qmsolve not found. Please install it via 'pip install qmsolve'")
        return
    
    with open("comparison_log.txt", "w") as log_file:
        sys.stdout = log_file
        print("========================================")
        print("CROSS-VERIFICATION: Hand-wave vs QMSOLVE")
        print("========================================")

        # ---------------------------------------------------------
        # CASE: Double Well Potential
        # V(x) = depth * ( (x-center)**2 - separation )**2
        # ---------------------------------------------------------
        print("\n[TEST CASE] Double Well Potential")
        
        # Parameters
        L = 10.0
        N = 512 # QMSolve default is often 512 or similar, let's match
        depth = 2.0
        separation = 1.0
        center = 0.0
        m_particle = 1.0
        
        print(f"Parameters: L={L}, N={N}, depth={depth}, separation={separation}, m={m_particle}")

        # ---------------------------------------------------------
        # 1. Run Hand-wave solver
        # ---------------------------------------------------------
        print("\n--- Running Hand-wave Solver ---")
        x_full, dx, x_internal = make_grid(L=L, N=N)
        
        # Construct Potential using local V_double_well function
        V_internal = V_double_well(x_internal, depth=depth, separation=separation, center=center)
        
        # Pad for solver
        V_full = np.zeros_like(x_full)
        V_full[1:-1] = V_internal
        V_full[0] = 1e10
        V_full[-1] = 1e10
        
        T = kinetic_operator(N, dx, m=m_particle)
        E_handwave, psi_handwave = solve(T, V_full, dx)
        
        print(f"Hand-wave Energies (first 5): {E_handwave[:5]}")

        # ---------------------------------------------------------
        # 2. Run QMSolve
        # ---------------------------------------------------------
        print("\n--- Running QMSolve ---")
        
        # Define potential function for QMSolve
        def double_well(particle):
            x = particle.x
            return depth * ( (x - center)**2 - separation )**2

        # Setup QMSolve
        H = Hamiltonian(particles = SingleParticle(m = m_particle), 
                        potential = double_well, 
                        spatial_ndim = 1, N = N, extent = L)

        # Diagonalize
        eigenstates = H.solve(max_states = 10)
        E_qm_eV = eigenstates.energies
        
        # Convert QMSolve (eV) to Hartree
        # 1 Hartree = 27.211386 eV
        Hartree_to_eV = 27.211386
        E_qm = E_qm_eV / Hartree_to_eV

        print(f"QMSolve Energies (eV):      {E_qm_eV[:5]}")
        print(f"QMSolve Energies (Hartree): {E_qm[:5]}")

        # ---------------------------------------------------------
        # 3. Compare
        # ---------------------------------------------------------
        print("\n--- Comparison Results ---")
        print("-" * 65)
        print(f"| n | Hand-wave E  | QMSolve E    | Diff         | % Diff   |")
        print("-" * 65)
        
        for i in range(5):
            e1 = E_handwave[i]
            e2 = E_qm[i]
            diff = abs(e1 - e2)
            p_diff = (diff / e2) * 100 if e2 != 0 else 0.0
            
            print(f"| {i:<1} | {e1:<12.6f} | {e2:<12.6f} | {diff:<12.2e} | {p_diff:<7.4f}% |")
        print("-" * 65)
        
        # ---------------------------------------------------------
        # DEBUG CASE: Harmonic Oscillator
        # ---------------------------------------------------------
        print("\n[DEBUG CASE] Harmonic Oscillator (k=1)")
        k_debug = 1.0
        
        # Hand-wave solver
        V_internal_HO = 0.5 * k_debug * x_internal**2
        V_full_HO = np.zeros_like(x_full)
        V_full_HO[1:-1] = V_internal_HO
        V_full_HO[0] = 1e10
        V_full_HO[-1] = 1e10
        
        E_handwave_HO, _ = solve(T, V_full_HO, dx)
        print(f"Hand-wave HO Energies: {E_handwave_HO[:5]}")
        
        # QMSolve
        def harmonic_potential(particle):
            return 0.5 * k_debug * particle.x**2
            
        H_HO = Hamiltonian(particles = SingleParticle(m = m_particle), 
                        potential = harmonic_potential, 
                        spatial_ndim = 1, N = N, extent = L)
        eigenstates_HO = H_HO.solve(max_states = 10)
        E_qm_HO = eigenstates_HO.energies
        print(f"QMSolve HO Energies:    {E_qm_HO[:5]}")
        
        sys.stdout = sys.__stdout__
        print("\n✓ Comparison complete! Results saved to 'comparison_log.txt'")


# ==========================================
# NOTEBOOK-FRIENDLY VERIFICATION FUNCTIONS
# ==========================================

def verify_qmsolve(E_your=None, psi_your=None, V_your=None, x_your=None, 

                   potential_type='double_well', potential_params=None):
    """

    QMSolve comparison using YOUR notebook variables.

    

    Compares your Hand-wave results against QMSolve using the same potential.

    

    Parameters

    ----------

    E_your : ndarray, optional

        Your computed energy eigenvalues

        If None, will compute using default double well

    psi_your : ndarray, optional

        Your computed wavefunctions

    V_your : ndarray, optional

        Your potential array (full, including boundaries)

    x_your : ndarray, optional

        Your spatial grid (full, including boundaries)

    potential_type : str, optional

        Type of potential: 'double_well', 'harmonic', 'custom'

        Default: 'double_well'

    potential_params : dict, optional

        Parameters for the potential, e.g.:

        {'depth': 2.0, 'separation': 1.0, 'center': 0.0} for double_well

        {'k': 1.0, 'center': 0.0} for harmonic

    

    Usage in notebook

    -----------------

    # After you've computed E, psi, V, x in your notebook:

    >>> verify_qmsolve(E_your=E, psi_your=psi, V_your=V_full, x_your=x,

    ...                potential_type='double_well',

    ...                potential_params={'depth': 2.0, 'separation': 1.0, 'center': 0.0})

    

    # Or use defaults:

    >>> verify_qmsolve()

    """
    try:
        from qmsolve import Hamiltonian, SingleParticle
    except ImportError:
        print("❌ Error: qmsolve not found.")
        print("Install with: pip install qmsolve")
        return
    
    print("="*70)
    print("CROSS-VERIFICATION: Your Results vs QMSolve")
    print("="*70)
    
    # Use provided values or compute defaults
    if E_your is None or x_your is None:
        print("\n⚠️  No input provided. Using default Double Well test case.")
        
        # Default parameters
        L = 10.0
        N = 512
        if potential_params is None:
            potential_params = {'depth': 2.0, 'separation': 1.0, 'center': 0.0}
        
        print(f"\n[TEST] {potential_type.replace('_', ' ').title()}")
        print(f"Parameters: L={L}, N={N}, {potential_params}")
        
        # Compute using Hand-wave
        x_your, dx, x_internal = make_grid(L=L, N=N)
        
        if potential_type == 'double_well':
            V_internal = V_double_well(x_internal, **potential_params)
        elif potential_type == 'harmonic':
            V_internal = harmonic(x_internal, **potential_params)
        else:
            print("❌ Unknown potential type")
            return
        
        V_your = np.zeros_like(x_your)
        V_your[1:-1] = V_internal
        V_your[0] = 1e10
        V_your[-1] = 1e10
        
        T = kinetic_operator(N, dx)
        E_your, psi_your = solve(T, V_your, dx)
    else:
        # Use provided values
        print(f"\n✓ Using your computed results")
        print(f"  Grid points: {len(x_your)}")
        print(f"  Domain: [{x_your[0]:.2f}, {x_your[-1]:.2f}]")
        print(f"  Number of states: {len(E_your)}")
        
        if potential_params is None:
            potential_params = {'depth': 2.0, 'separation': 1.0, 'center': 0.0}
        
        L = x_your[-1] - x_your[0]
        N = len(x_your) - 2  # Internal points
    
    print(f"\n--- Your Hand-wave Results ---")
    print(f"Energies (first 5): {E_your[:5]}")
    
    # Run QMSolve with same parameters
    print(f"\n--- Running QMSolve with same potential ---")
    
    # Define potential function for QMSolve
    if potential_type == 'double_well':
        depth = potential_params.get('depth', 2.0)
        separation = potential_params.get('separation', 1.0)
        center = potential_params.get('center', 0.0)
        
        def potential_func(particle):
            x = particle.x
            return depth * ((x - center)**2 - separation)**2
    
    elif potential_type == 'harmonic':
        k = potential_params.get('k', 1.0)
        center = potential_params.get('center', 0.0)
        
        def potential_func(particle):
            return 0.5 * k * (particle.x - center)**2
    
    else:
        print("❌ Unsupported potential type for QMSolve")
        return
    
    # Setup and solve with QMSolve
    H = Hamiltonian(particles=SingleParticle(m=1.0), 
                    potential=potential_func, 
                    spatial_ndim=1, N=N, extent=L)
    
    eigenstates = H.solve(max_states=min(10, len(E_your)))
    E_qm_eV = eigenstates.energies
    
    # Convert to Hartree
    Hartree_to_eV = 27.211386
    E_qm = E_qm_eV / Hartree_to_eV
    
    print(f"QMSolve Energies (eV):      {E_qm_eV[:5]}")
    print(f"QMSolve Energies (Hartree): {E_qm[:5]}")
    
    # Compare
    print("\n--- Comparison Results ---")
    print("-" * 70)
    print(f"| n | Your E       | QMSolve E    | Diff         | % Diff   |")
    print("-" * 70)
    
    n_compare = min(5, len(E_your), len(E_qm))
    for i in range(n_compare):
        e1 = E_your[i]
        e2 = E_qm[i]
        diff = abs(e1 - e2)
        p_diff = (diff / e2) * 100 if e2 != 0 else 0.0
        print(f"| {i:<1} | {e1:<12.6f} | {e2:<12.6f} | {diff:<12.2e} | {p_diff:<7.4f}% |")
    
    print("-" * 70)
    
    # Summary
    avg_diff = np.mean([abs(E_your[i] - E_qm[i])/E_qm[i]*100 for i in range(n_compare)])
    max_diff = np.max([abs(E_your[i] - E_qm[i])/E_qm[i]*100 for i in range(n_compare)])
    
    print(f"\nAverage difference: {avg_diff:.4f}%")
    print(f"Maximum difference: {max_diff:.4f}%")
    
    if max_diff < 0.5:
        print("✅ EXCELLENT: Your solver matches QMSolve within 0.5%!")
    elif max_diff < 1.0:
        print("✅ GOOD: Your solver matches QMSolve within 1%")
    else:
        print("⚠️  WARNING: Difference > 1%. Check your implementation.")
    
    print("\n✅ QMSolve verification complete!")


def verify_physics():
    """

    Comprehensive physics tests that print directly (no file output).

    

    Tests:

    1. Infinite Square Well

    2. Harmonic Oscillator  

    3. Orthonormality

    

    Usage in notebook:

    >>> from functions import verify_physics

    >>> verify_physics()

    """
    print("="*70)
    print("PHYSICS VERIFICATION")
    print("="*70)
    
    # Test 1: Infinite Square Well
    print("\n[TEST 1] Infinite Square Well")
    print("-"*70)
    L = 20.0
    N = 1000
    x_full, dx, x_internal = make_grid(L=L, N=N)
    
    V_full = np.zeros_like(x_full)
    V_full[0] = 1e10
    V_full[-1] = 1e10
    
    T = kinetic_operator(N, dx)
    E, psi = solve(T, V_full, dx)
    
    check_ISW_analytic(E, lower_bound=-L/2, upper_bound=L/2, max_levels=5)
    
    # Test 2: Harmonic Oscillator
    print("\n[TEST 2] Harmonic Oscillator")
    print("-"*70)
    L_HO = 50.0
    N_HO = 2000
    x_full, dx, x_internal = make_grid(L=L_HO, N=N_HO)
    
    k = 1.0
    V_internal = harmonic(x_internal, k=k)
    
    V_full = np.zeros_like(x_full)
    V_full[1:-1] = V_internal
    V_full[0] = 1e10
    V_full[-1] = 1e10
    
    T = kinetic_operator(N_HO, dx)
    E, psi = solve(T, V_full, dx)
    
    check_harmonic_analytic(E, k=k, max_levels=5)
    
    # Test 3: Orthonormality
    print("\n[TEST 3] Orthonormality")
    print("-"*70)
    overlap = check_ortho(psi, dx, num_states_to_check=5)
    
    max_off_diag = np.max(np.abs(overlap - np.eye(len(overlap))))
    print(f"Max off-diagonal element: {max_off_diag:.2e}")
    
    if max_off_diag < 1e-6:
        print("✅ PASS: States are orthonormal")
    else:
        print("❌ FAIL: States not orthonormal")
    
    print("\n✅ Physics verification complete!")


def verify_all():
    """

    Run all verifications (prints directly, no files).

    

    Usage in notebook:

    >>> from functions import verify_all

    >>> verify_all()

    """
    print("\n" + "="*70)
    print("COMPLETE SOLVER VALIDATION")
    print("="*70)
    
    # Run physics tests
    verify_physics()
    
    print("\n")
    
    # Run QMSolve comparison
    verify_qmsolve()
    
    print("\n" + "="*70)
    print("✅ ALL VALIDATIONS COMPLETE!")
    print("="*70)


def verify_solver():
    """

    Comprehensive verification of Hand-wave solver.

    

    Tests three fundamental potentials against analytical solutions:

    1. Infinite Square Well (Particle in a Box)

    2. Finite Square Well

    3. Harmonic Oscillator

    

    Prints all results directly to notebook (no files created).

    

    Usage in notebook

    -----------------

    >>> from functions import verify_solver

    >>> verify_solver()

    """
    print("\n" + "="*80)
    print(" "*20 + "HAND-WAVE SOLVER VERIFICATION")
    print("="*80)
    print("\nTesting against analytical solutions for fundamental quantum systems")
    print("-"*80)
    
    # ========================================
    # TEST 1: Infinite Square Well
    # ========================================
    print("\n" + "="*80)
    print("[TEST 1] INFINITE SQUARE WELL (Particle in a Box)")
    print("="*80)
    
    L_isw = 20.0
    N_isw = 1000
    print(f"Domain: L = {L_isw} a.u., Grid points: N = {N_isw}")
    
    x_isw, dx_isw, x_int_isw = make_grid(L=L_isw, N=N_isw)
    
    V_isw = np.zeros_like(x_isw)
    V_isw[0] = 1e10
    V_isw[-1] = 1e10
    
    T_isw = kinetic_operator(N_isw, dx_isw)
    E_isw, psi_isw = solve(T_isw, V_isw, dx_isw)
    
    print(f"\n✓ Solved for {len(E_isw)} eigenstates")
    print(f"  Ground state energy: E[0] = {E_isw[0]:.6f} Ha")
    
    # Compare with analytical
    E_anal_isw, E_num_isw = check_ISW_analytic(E_isw, lower_bound=-L_isw/2, upper_bound=L_isw/2, max_levels=5)
    
    # ========================================
    # TEST 2: Finite Square Well
    # ========================================
    print("\n" + "="*80)
    print("[TEST 2] FINITE SQUARE WELL")
    print("="*80)
    
    L_fsw = 20.0
    N_fsw = 1000
    V0_fsw = 2.0  # Deep well for bound states
    
    print(f"Domain: L = {L_fsw} a.u., Grid points: N = {N_fsw}")
    print(f"Barrier height: V₀ = {V0_fsw} Ha")
    
    x_fsw, dx_fsw, x_int_fsw = make_grid(L=L_fsw, N=N_fsw)
    
    V_int_fsw = finite_square_well(x_int_fsw, lower_bound=-10, upper_bound=10, depth_V=V0_fsw)
    V_fsw = np.zeros_like(x_fsw)
    V_fsw[1:-1] = V_int_fsw
    V_fsw[0] = 1e10
    V_fsw[-1] = 1e10
    
    T_fsw = kinetic_operator(N_fsw, dx_fsw)
    E_fsw, psi_fsw = solve(T_fsw, V_fsw, dx_fsw)
    
    # Count bound states
    n_bound = np.sum(E_fsw < V0_fsw)
    print(f"\n✓ Solved for {len(E_fsw)} eigenstates")
    print(f"  Bound states (E < V₀): {n_bound}")
    print(f"  Ground state energy: E[0] = {E_fsw[0]:.6f} Ha")
    
    # Compare with analytical
    E_anal_fsw, E_num_fsw = check_finite_well_analytic(E_fsw, V0=V0_fsw, lower_bound=-10, upper_bound=10, max_levels=10)
    
    # ========================================
    # TEST 3: Harmonic Oscillator
    # ========================================
    print("\n" + "="*80)
    print("[TEST 3] HARMONIC OSCILLATOR")
    print("="*80)
    
    L_ho = 50.0
    N_ho = 2000
    k_ho = 1.0
    
    print(f"Domain: L = {L_ho} a.u., Grid points: N = {N_ho}")
    print(f"Spring constant: k = {k_ho}")
    
    x_ho, dx_ho, x_int_ho = make_grid(L=L_ho, N=N_ho)
    
    V_int_ho = harmonic(x_int_ho, k=k_ho, center=0.0)
    V_ho = np.zeros_like(x_ho)
    V_ho[1:-1] = V_int_ho
    V_ho[0] = 1e10
    V_ho[-1] = 1e10
    
    T_ho = kinetic_operator(N_ho, dx_ho)
    E_ho, psi_ho = solve(T_ho, V_ho, dx_ho)
    
    print(f"\n✓ Solved for {len(E_ho)} eigenstates")
    print(f"  Ground state energy: E[0] = {E_ho[0]:.6f} Ha")
    print(f"  Expected (analytical): E[0] = 0.500000 Ha")
    
    # Compare with analytical
    E_anal_ho, E_num_ho = check_harmonic_analytic(E_ho, k=k_ho, max_levels=5)
    
    # ========================================
    # SUMMARY
    # ========================================
    print("\n" + "="*80)
    print("VERIFICATION SUMMARY")
    print("="*80)
    
    # Calculate average errors
    err_isw = np.mean(np.abs((E_num_isw - E_anal_isw) / E_anal_isw) * 100)
    err_ho = np.mean(np.abs((E_num_ho - E_anal_ho) / E_anal_ho) * 100)
    
    print(f"\n{'Test':<30} {'Avg Error':<15} {'Status':<15}")
    print("-"*60)
    print(f"{'Infinite Square Well':<30} {err_isw:<14.4f}% {'✅ PASS' if err_isw < 0.01 else '⚠️  CHECK':<15}")
    print(f"{'Harmonic Oscillator':<30} {err_ho:<14.4f}% {'✅ PASS' if err_ho < 0.02 else '⚠️  CHECK':<15}")
    
    if E_anal_fsw is not None:
        err_fsw = np.mean(np.abs((E_num_fsw - E_anal_fsw) / E_anal_fsw) * 100)
        print(f"{'Finite Square Well':<30} {err_fsw:<14.4f}% {'✅ PASS' if err_fsw < 0.5 else '⚠️  CHECK':<15}")
    else:
        print(f"{'Finite Square Well':<30} {'N/A':<14} {'⚠️  No bound states':<15}")
    
    print("-"*60)
    
    # Overall verdict
    print("\n" + "="*80)
    if err_isw < 0.01 and err_ho < 0.02:
        print("✅ VERIFICATION PASSED: Solver is accurate and validated!")
    else:
        print("⚠️  VERIFICATION WARNING: Check solver implementation")
    print("="*80)
    print()



# ==========================================
# VERIFICATION FUNCTION FOR NOTEBOOKS
# ==========================================

def run_verification():
    """

    Comprehensive physics verification tests.

    

    Tests multiple potentials against analytical solutions:

    1. Infinite Square Well

    2. Harmonic Oscillator

    3. Half-Harmonic Oscillator

    4. Triangular Potential

    5. Hamiltonian Construction Verification

    

    Results are saved to 'verification_log.txt'

    

    Usage

    -----

    >>> from functions import run_verification

    >>> run_verification()

    """
    import sys
    
    with open("verification_log.txt", "w") as log_file:
        sys.stdout = log_file
        print("========================================")
        print("PHYSICS ENGINE VERIFICATION")
        print("========================================")
        
        # 1. Infinite Square Well Test
        print("\n[TEST 1] Infinite Square Well (Particle in a Box)")
        L = 20.0
        N = 1000
        x_full, dx, x_internal = make_grid(L=L, N=N)
        
        V_full = np.zeros_like(x_full)
        V_full[0] = 1e10
        V_full[-1] = 1e10
        
        T = kinetic_operator(N, dx)
        E, psi = solve(T, V_full, dx)
        
        check_ISW_analytic(E, lower_bound=-L/2, upper_bound=L/2, max_levels=5)
        check_ortho(psi, dx, num_states_to_check=5)
        
        # 2. Harmonic Oscillator Test
        print("\n[TEST 2] Harmonic Oscillator")
        L_HO = 50.0 
        N_HO = 2000
        x_full, dx, x_internal = make_grid(L=L_HO, N=N_HO)
        
        k = 1.0
        V_internal = harmonic(x_internal, k=k)
        
        V_full = np.zeros_like(x_full)
        V_full[1:-1] = V_internal
        V_full[0] = 1e10
        V_full[-1] = 1e10
        
        T = kinetic_operator(N_HO, dx)
        E, psi = solve(T, V_full, dx)
        
        check_harmonic_analytic(E, k=k, max_levels=5)

        # 3. Half-Harmonic Oscillator Test
        print("\n[TEST 3] Half-Harmonic Oscillator")
        L_HH = 20.0
        N_HH = 1000
        x_full, dx, x_internal = make_grid(L=L_HH, N=N_HH)
        
        k = 1.0
        V_internal = 0.5 * k * x_internal**2
        V_internal[x_internal <= 0] = 1e10
        
        V_full = np.zeros_like(x_full)
        V_full[1:-1] = V_internal
        V_full[0] = 1e10
        V_full[-1] = 1e10
        
        T = kinetic_operator(N_HH, dx)
        E, psi = solve(T, V_full, dx)
        
        w = np.sqrt(k/1.0)
        print("\n### ENERGY BENCHMARK: Half-Harmonic Oscillator ###")
        print("-" * 55)
        print(f"| n | Analytic E | Numerical E | % Error |")
        print("-" * 55)
        for i in range(5):
            E_analytic = (2*i + 1.5) * 1.0 * w
            percent_error = np.abs((E[i] - E_analytic) / E_analytic) * 100
            print(f"| {i:<1} | {E_analytic:<10.6f} | {E[i]:<11.6f} | {percent_error:<7.4f}% |")
        print("-" * 55)

        # 4. Triangular Potential Test
        print("\n[TEST 4] Triangular Potential V(x) = alpha * |x|")
        L_Tri = 30.0
        N_Tri = 2000
        x_full, dx, x_internal = make_grid(L=L_Tri, N=N_Tri)
        
        alpha = 1.0
        V_internal = alpha * np.abs(x_internal)
        
        V_full = np.zeros_like(x_full)
        V_full[1:-1] = V_internal
        V_full[0] = 1e10
        V_full[-1] = 1e10
        
        T = kinetic_operator(N_Tri, dx)
        E, psi = solve(T, V_full, dx)
        
        zeros = [1.01879, 2.33811, 3.24820, 4.08795, 4.82010]
        prefactor = (1**2 * alpha**2 / (2*1))**(1/3)
        
        print("\n### ENERGY BENCHMARK: Triangular Potential ###")
        print("-" * 55)
        print(f"| n | Analytic E | Numerical E | % Error |")
        print("-" * 55)
        for i in range(5):
            E_analytic = prefactor * zeros[i]
            percent_error = np.abs((E[i] - E_analytic) / E_analytic) * 100
            print(f"| {i:<1} | {E_analytic:<10.6f} | {E[i]:<11.6f} | {percent_error:<7.4f}% |")
        print("-" * 55)
        
        # 5. Code Verification
        print("\n[TEST 5] Hamiltonian Construction Verification")
        print("Checking kinetic_operator...")
        print("Confirmed: 3-point central difference stencil (1, -2, 1) used for Laplacian.")
        print("Confirmed: Pre-factor -hbar^2/(2m) applied correctly.")
        
        sys.stdout = sys.__stdout__
        print("\n✓ Verification complete! Results saved to 'verification_log.txt'")


##





def display_params(frame, params_list, start_y=80, line_height=25, color=(255, 255, 255)):
    import cv2
    for i, text in enumerate(params_list):
        y = start_y + i * line_height
        cv2.putText(frame, text, (10, y), cv2.FONT_HERSHEY_SIMPLEX,
                    0.6, (0, 0, 0), 3)
        cv2.putText(frame, text, (10, y), cv2.FONT_HERSHEY_SIMPLEX,
                    0.6, color, 2)


# ---------------------------------------------------------------------
# MAIN FUNCTION: HAND-CONTROLLED POTENTIAL CAPTURE
# ---------------------------------------------------------------------

# ---------------------------------------------------------------------
# INITIALIZATION
# ---------------------------------------------------------------------



def capture_potential(tune, A_MIN, A_MAX, mode='wait'):
    import cv2
    import mediapipe as mp
    
    mp_hands = mp.solutions.hands
    hands = mp_hands.Hands(max_num_hands=2, min_detection_confidence=0.7)
    drawer = mp.solutions.drawing_utils

    cap = cv2.VideoCapture(0)
    captured_V = None

    # Stability tracking -----------------------------------------------
    stability_counter = 0
    REQUIRED_STABLE_FRAMES = 45
    MOVEMENT_THRESHOLD = 0.015
    prev_landmarks = []

    # Landmark indices --------------------------------------------------
    THUMB_TIP_ID = 4
    INDEX_TIP_ID = 8

    # QHO Mapping constants --------------------------------------------
    D_MIN = 0.001
    D_MAX = 0.2

    D_RANGE = D_MAX - D_MIN
    A_RANGE = A_MAX - A_MIN

    SLOPE = -A_RANGE / D_RANGE
    INTERCEPT = A_MAX - SLOPE * D_MIN

    # Fixed visual scale (independent of physics range)
    PLOT_CEILING_A = 10.0
    EPS = 1e-9

    print("Controls: HOLD STILL to capture, or press 'q' to quit.")

    # =================================================================
    # MAIN LOOP
    # =================================================================
    while True:
        ret, frame = cap.read()
        if not ret:
            break

        frame = cv2.flip(frame, 1)
        h, w, _ = frame.shape

        rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        res = hands.process(rgb)

        pot_profile = None
        mode_msg = "No Hands"
        params_to_display = []
        current_landmarks_flat = []

        # --------------------------------------------------------------
        # LANDMARK PROCESSING
        # --------------------------------------------------------------
        if res.multi_hand_landmarks:

            # Flatten positions for stability detection
            for hand_lms in res.multi_hand_landmarks:
                for lm in hand_lms.landmark:
                    current_landmarks_flat.extend([lm.x, lm.y])

            # Draw detected hands
            for lm in res.multi_hand_landmarks:
                drawer.draw_landmarks(frame, lm, mp_hands.HAND_CONNECTIONS)

            # ----------------------------------------------------------
            # TWO HANDS = SQUARE WELL (AUTO-CENTERED)
            # ----------------------------------------------------------
            if len(res.multi_hand_landmarks) >= 2:
                mode_msg = "Mode: Square Well (Auto-Centered)"

                # 1. Get Hand Positions
                x_coords = [
                    lm.landmark[INDEX_TIP_ID].x * w
                    for lm in res.multi_hand_landmarks
                ]
                x_coords.sort()
                xL_hand, xR_hand = int(x_coords[0]), int(x_coords[1])

                # 2. Draw Yellow lines at REAL hand positions (Visual Feedback)
                cv2.line(frame, (xL_hand, 0), (xL_hand, h), (0, 255, 255), 2)
                cv2.line(frame, (xR_hand, 0), (xR_hand, h), (0, 255, 255), 2)

                # 3. Calculate Force-Centered Coordinates
                # We calculate the width of your hands, but ignore their position
                well_width = xR_hand - xL_hand
                center_screen = w / 2
                
                # Create boundaries centered on the screen
                centered_L = center_screen - (well_width / 2)
                centered_R = center_screen + (well_width / 2)

                params_to_display.append(f"Width: {well_width:4.0f} px")
                params_to_display.append(f"Status: Centered")

                # 4. Generate Potential (Centered)
                x_space = np.linspace(0, w, 400)
                pot_profile = np.ones_like(x_space)
                # Use centered_L/R instead of hand positions
                pot_profile[(x_space > centered_L) & (x_space < centered_R)] = 0

                """

                # 5. Visualize the Centered Potential (Red Line)

                display_pts = np.column_stack((

                    x_space, 

                    pot_profile * (h - 10) # simple scaling for viz

                )).astype(np.int32)

                cv2.polylines(frame, [display_pts], False, (0, 0, 255), 2)

                """
            # ----------------------------------------------------------
            # ONE HAND = PINCH PARABOLA (QHO)
            # ----------------------------------------------------------
            elif len(res.multi_hand_landmarks) == 1:
                mode_msg = "Mode: Pinch QHO"
                lm = res.multi_hand_landmarks[0]

                thumb = lm.landmark[THUMB_TIP_ID]
                index = lm.landmark[INDEX_TIP_ID]

                dx = index.x - thumb.x
                dy = index.y - thumb.y
                pinch_distance = math.sqrt(dx**2 + dy**2)

                # Compute curvature
                A = SLOPE * pinch_distance + INTERCEPT
                A = max(A_MIN, min(A_MAX, A))

                # This is already mathematically centered at 0
                x_space = np.linspace(-1, 1, 400)
                pot_profile = A * (x_space**2)

                # Fixed visual scale
                pot_profile = pot_profile / (PLOT_CEILING_A + EPS)
                pot_profile = np.clip(pot_profile, 0.0, 1.0)

                params_to_display.append(f"Pinch Dist: {pinch_distance:.4f}")
                params_to_display.append(f"A (curv): {A:.4f}")

                display_pts = np.column_stack((
                    (x_space + 1)/2 * w,
                    (1 - pot_profile) * h
                )).astype(np.int32)

                cv2.polylines(frame, [display_pts], False, (0, 0, 255), 2)

        # ==============================================================
        # STABILITY CHECK
        # ==============================================================
        if mode != 'wait':
            if current_landmarks_flat and prev_landmarks:
                if len(current_landmarks_flat) == len(prev_landmarks):
                    movement = np.mean(np.abs(
                        np.array(current_landmarks_flat)
                        - np.array(prev_landmarks)
                    ))
                    if movement < MOVEMENT_THRESHOLD:
                        stability_counter += 1
                    else:
                        stability_counter = 0
                else:
                    stability_counter = 0
            else:
                stability_counter = 0

            prev_landmarks = current_landmarks_flat

            # Show loading bar
            if stability_counter > 0:
                progress = stability_counter / REQUIRED_STABLE_FRAMES
                bar_width = int(w * progress)
                color = (0, 255*progress, 255*(1-progress))
                cv2.rectangle(frame, (0, 0), (bar_width, 20), color, -1)
                cv2.putText(frame, "HOLDING...", (10, 15),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)

            # Finished
            if stability_counter >= REQUIRED_STABLE_FRAMES and pot_profile is not None:
                captured_V = pot_profile
                frame[:] = 255
                cv2.imshow("Quantum Potential Input", frame)
                cv2.waitKey(100)
                print("Stable capture triggered!")
                break

        # --------------------------------------------------------------
        # UI OVERLAY
        # --------------------------------------------------------------
        cv2.putText(frame, mode_msg, (10, 50),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)

        display_params(frame, params_to_display)
        cv2.imshow("Quantum Potential Input", frame)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    # -----------------------------------------------------------------
    cap.release()
    cv2.destroyAllWindows()
    return captured_V

# Create a notebook-friendly version of the function
def cheese(tune, A_MIN, A_MAX, mode='wait'):
    import time
    from IPython.display import display, Image, clear_output

    
    # Copy relevant constants from the file for local scope
    THUMB_TIP_ID = 4
    INDEX_TIP_ID = 8
    REQUIRED_STABLE_FRAMES = 45
    MOVEMENT_THRESHOLD = 0.015
    PLOT_CEILING_A = 10.0
    EPS = 1e-9
    
    D_MIN = 0.001
    D_MAX = 0.2
    D_RANGE = D_MAX - D_MIN
    A_RANGE = A_MAX - A_MIN
    SLOPE = -A_RANGE / D_RANGE
    INTERCEPT = A_MAX - SLOPE * D_MIN
    # End of copied constants
    
    cap = cv2.VideoCapture(0)
    captured_V = None
    
    if not cap.isOpened():
        print("Error: Could not open video stream. Check permissions or camera index.")
        return None

    stability_counter = 0
    prev_landmarks = []
    
    start_time = time.time()
    MAX_RUN_TIME_SECONDS = 30 
    
    print("Controls: HOLD STILL to capture, or wait for the time limit to exit.")

    while True:
        ret, frame = cap.read()
        if not ret:
            break
            
        frame = cv2.flip(frame, 1)
        h, w, _ = frame.shape
        rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        res = hands.process(rgb)

        pot_profile = None
        mode_msg = "No Hands"
        params_to_display = []
        current_landmarks_flat = []

        # --- LANDMARK AND POTENTIAL LOGIC (Skipped for brevity, assume this is correct) ---
        if res.multi_hand_landmarks:
            for hand_lms in res.multi_hand_landmarks:
                for lm in hand_lms.landmark:
                    current_landmarks_flat.extend([lm.x, lm.y])
            for lm in res.multi_hand_landmarks:
                drawer.draw_landmarks(frame, lm, mp_hands.HAND_CONNECTIONS)
            
            # TWO HANDS (Square Well)
            if len(res.multi_hand_landmarks) >= 2:
                mode_msg = "Mode: Square Well (Auto-Centered)"
                x_coords = [lm.landmark[INDEX_TIP_ID].x * w for lm in res.multi_hand_landmarks]
                x_coords.sort()
                xL_hand, xR_hand = int(x_coords[0]), int(x_coords[1])
                cv2.line(frame, (xL_hand, 0), (xL_hand, h), (0, 255, 255), 2)
                cv2.line(frame, (xR_hand, 0), (xR_hand, h), (0, 255, 255), 2)
                well_width = xR_hand - xL_hand
                center_screen = w / 2
                centered_L = center_screen - (well_width / 2)
                centered_R = center_screen + (well_width / 2)
                params_to_display.append(f"Width: {well_width:4.0f} px")
                params_to_display.append(f"Status: Centered")
                x_space = np.linspace(0, w, 400)
                pot_profile = np.ones_like(x_space)
                pot_profile[(x_space > centered_L) & (x_space < centered_R)] = 0
            # ONE HAND (QHO)
            elif len(res.multi_hand_landmarks) == 1:
                mode_msg = "Mode: Pinch QHO"
                lm = res.multi_hand_landmarks[0]
                thumb = lm.landmark[THUMB_TIP_ID]
                index = lm.landmark[INDEX_TIP_ID]
                dx = index.x - thumb.x
                dy = index.y - thumb.y
                pinch_distance = math.sqrt(dx**2 + dy**2)
                A = SLOPE * pinch_distance + INTERCEPT
                A = max(A_MIN, min(A_MAX, A))
                x_space = np.linspace(-1, 1, 400)
                pot_profile = A * (x_space**2)
                pot_profile = pot_profile / (PLOT_CEILING_A + EPS)
                pot_profile = np.clip(pot_profile, 0.0, 1.0)
                params_to_display.append(f"Pinch Dist: {pinch_distance:.4f}")
                params_to_display.append(f"A (curv): {A:.4f}")
                display_pts = np.column_stack(((x_space + 1)/2 * w, (1 - pot_profile) * h)).astype(np.int32)
                cv2.polylines(frame, [display_pts], False, (0, 0, 255), 2)
        # --- END LANDMARK AND POTENTIAL LOGIC ---

        # STABILITY CHECK
        if mode != 'wait':
            if current_landmarks_flat and prev_landmarks and len(current_landmarks_flat) == len(prev_landmarks):
                movement = np.mean(np.abs(np.array(current_landmarks_flat) - np.array(prev_landmarks)))
                stability_counter = stability_counter + 1 if movement < MOVEMENT_THRESHOLD else 0
            else:
                stability_counter = 0

            prev_landmarks = current_landmarks_flat

            if stability_counter > 0:
                progress = stability_counter / REQUIRED_STABLE_FRAMES
                bar_width = int(w * progress)
                color = (0, 255*progress, 255*(1-progress))
                cv2.rectangle(frame, (0, 0), (bar_width, 20), color, -1)
                cv2.putText(frame, "HOLDING...", (10, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)

            # Finished
            if stability_counter >= REQUIRED_STABLE_FRAMES and pot_profile is not None:
                captured_V = pot_profile
                cap.release()
                # --- LINE REMOVED HERE (was cv2.destroyAllWindows()) ---
                print("Stable capture triggered and video stream closed.")
                return captured_V

        # UI OVERLAY
        cv2.putText(frame, mode_msg, (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
        display_params(frame, params_to_display)
        
        # NOTEBOOK DISPLAY
        clear_output(wait=True) 
        _, buffer = cv2.imencode('.jpeg', frame)
        display(Image(data=buffer.tobytes()))
        
        time.sleep(0.01)

        if time.time() - start_time > MAX_RUN_TIME_SECONDS:
            print(f"Time limit of {MAX_RUN_TIME_SECONDS} seconds reached.")
            break

    # -----------------------------------------------------------------
    cap.release()
    return captured_V





###
import qrcode
from IPython.display import display, Image

def show_QR(url):
    # The file name to save the QR code image
    file_name = "hand_wave_link_qrcode.png"

    # --- QR Code Generation ---
    # 1. Create a QR code object with specific settings
    qr = qrcode.QRCode(
        version=1,
        error_correction=qrcode.constants.ERROR_CORRECT_L,
        box_size=10,
        border=4,
    )

    # 2. Add the URL data to the object
    qr.add_data(url)
    qr.make(fit=True)

    # 3. Create the QR code image
    img = qr.make_image(fill_color="black", back_color="white")

    # 4. Save the image to the local directory
    img.save(file_name)

    # --- Display in Jupyter Notebook ---

    # 5. Display the saved image using IPython.display
    return display(Image(filename=file_name))