AhiBucket commited on
Commit
e83ab3c
Β·
verified Β·
1 Parent(s): e8ab9c9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +142 -142
README.md CHANGED
@@ -1,142 +1,142 @@
1
- ---
2
- title: Hand-wave Quantum Solver
3
- emoji: 🌊
4
- colorFrom: blue
5
- colorTo: purple
6
- sdk: streamlit
7
- sdk_version: "1.28.0"
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- # βš›οΈ Quantum Potential Solver
13
-
14
- **Author:** Ahilan Kumaresan
15
- **Institution:** Simon Fraser University
16
- **Field:** Mathematical & Computational Physics
17
-
18
- ---
19
-
20
- ## 🎯 Overview
21
-
22
- An advanced numerical solver for the **Time-Independent SchrΓΆdinger Equation** (TISE) using the Finite Difference Method. This project demonstrates rigorous computational physics methodology with comprehensive verification against analytical solutions and external libraries.
23
-
24
- ## πŸ”¬ Key Features
25
-
26
- ### 1. **Accurate Numerical Solver**
27
- - **Method:** 3-point Central Difference stencil for the Laplacian operator
28
- - **Grid:** Adaptive resolution (1000-2000 points)
29
- - **Units:** Hartree Atomic Units (ℏ=1, m=1)
30
- - **Boundary Conditions:** Dirichlet (infinite walls)
31
-
32
- ### 2. **Multiple Potential Types**
33
- - Infinite Square Well
34
- - Harmonic Oscillator
35
- - Double Well Potential
36
- - Custom potentials via hand gestures (camera input)
37
-
38
- ### 3. **Interactive Visualizations**
39
- - Plotly-based interactive charts
40
- - Wavefunction probability densities
41
- - Energy level diagrams
42
- - Real-time solver performance metrics
43
-
44
- ### 4. **Rigorous Verification**
45
-
46
- #### Analytical Benchmarks
47
- | System | Max Error |
48
- |--------|-----------|
49
- | Infinite Square Well | < 0.003% |
50
- | Harmonic Oscillator | < 0.02% |
51
- | Half-Harmonic Oscillator | < 0.8% |
52
- | Triangular Potential | < 0.003% |
53
-
54
- #### External Library Comparison
55
- - **Cross-verified with QMSolve** (Python quantum mechanics package)
56
- - **Double Well Potential:** Agreement within 0.25%
57
- - Demonstrates accuracy for systems without analytical solutions
58
-
59
- ## πŸ“ Mathematical Foundation
60
-
61
- The solver discretizes the TISE:
62
-
63
- $$\hat{H}\psi(x) = E\psi(x)$$
64
-
65
- $$\left[ -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x) \right]\psi(x) = E\psi(x)$$
66
-
67
- Using finite differences:
68
-
69
- $$\frac{d^2\psi}{dx^2} \approx \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{\Delta x^2}$$
70
-
71
- This transforms the problem into a matrix eigenvalue equation solved via `numpy.linalg.eigh`.
72
-
73
- ## πŸ› οΈ Technical Implementation
74
-
75
- - **Language:** Python 3.12
76
- - **Core Libraries:** NumPy, SciPy
77
- - **Visualization:** Plotly, Matplotlib
78
- - **UI Framework:** Streamlit
79
- - **Computer Vision:** MediaPipe (for hand gesture input)
80
-
81
- ## πŸ“Š Verification Scripts
82
-
83
- The project includes comprehensive verification:
84
- - `verify_physics.py`: Analytical benchmarks
85
- - `verify_comparison.py`: QMSolve cross-verification
86
- - `Comparison_Notebook.ipynb`: Jupyter notebook with detailed analysis
87
-
88
- ## πŸŽ“ Academic Applications
89
-
90
- This project demonstrates:
91
- 1. **Numerical Methods:** Finite difference discretization of differential operators
92
- 2. **Linear Algebra:** Eigenvalue problems for Hermitian matrices
93
- 3. **Quantum Mechanics:** Stationary states and energy quantization
94
- 4. **Software Engineering:** Modular design, comprehensive testing, professional documentation
95
-
96
- ## πŸ“– Usage
97
-
98
- ### Interactive Simulator
99
- 1. Select a potential type from the sidebar
100
- 2. Adjust parameters using sliders
101
- 3. View real-time solutions with interactive plots
102
-
103
- ### Verification Dashboard
104
- - Navigate to "Benchmarks & Verification" to see accuracy metrics
105
- - Compare against analytical solutions and QMSolve
106
-
107
- ### Theory Section
108
- - Detailed mathematical background
109
- - Implementation methodology
110
- - Code verification
111
-
112
- ## πŸ”— Repository Structure
113
-
114
- ```
115
- psi_solve2/
116
- β”œβ”€β”€ app.py # Main Streamlit application
117
- β”œβ”€β”€ functions.py # Physics engine (solver + potentials)
118
- β”œβ”€β”€ verify_physics.py # Analytical verification script
119
- β”œβ”€β”€ verify_comparison.py # QMSolve comparison script
120
- β”œβ”€β”€ Comparison_Notebook.ipynb # Jupyter analysis notebook
121
- └── requirements.txt # Python dependencies
122
- ```
123
-
124
- ## πŸ“ Citation
125
-
126
- If you use this solver in your research, please cite:
127
-
128
- ```
129
- Kumaresan, A. (2024). Quantum Potential Solver: A Verified Finite Difference
130
- Implementation for the Time-Independent SchrΓΆdinger Equation.
131
- Simon Fraser University.
132
- ```
133
-
134
- ## πŸ“§ Contact
135
-
136
- **Ahilan Kumaresan**
137
- Mathematical & Computational Physics
138
- Simon Fraser University
139
-
140
- ---
141
-
142
- *This project showcases advanced computational physics methodology suitable for graduate-level research in quantum mechanics and numerical analysis.*
 
1
+ ---
2
+ title: Hand-wave Quantum Solver
3
+ emoji: 🌊
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: streamlit
7
+ sdk_version: "1.28.0"
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ # βš›οΈ Quantum Potential Solver
13
+
14
+ **Author:** Ahilan Kumaresan
15
+ **Institution:** Simon Fraser University
16
+ **Field:** Mathematical & Computational Physics
17
+
18
+ ---
19
+
20
+ ## 🎯 Overview
21
+
22
+ An advanced numerical solver for the **Time-Independent SchrΓΆdinger Equation** (TISE) using the Finite Difference Method. This project demonstrates rigorous computational physics methodology with comprehensive verification against analytical solutions and external libraries.
23
+
24
+ ## πŸ”¬ Key Features
25
+
26
+ ### 1. **Accurate Numerical Solver**
27
+ - **Method:** 3-point Central Difference stencil for the Laplacian operator
28
+ - **Grid:** Adaptive resolution (1000-2000 points)
29
+ - **Units:** Hartree Atomic Units (ℏ=1, m=1)
30
+ - **Boundary Conditions:** Dirichlet (infinite walls)
31
+
32
+ ### 2. **Multiple Potential Types**
33
+ - Infinite Square Well
34
+ - Harmonic Oscillator
35
+ - Double Well Potential
36
+ - Custom potentials via hand gestures (camera input)
37
+
38
+ ### 3. **Interactive Visualizations**
39
+ - Plotly-based interactive charts
40
+ - Wavefunction probability densities
41
+ - Energy level diagrams
42
+ - Real-time solver performance metrics
43
+
44
+ ### 4. **Rigorous Verification**
45
+
46
+ #### Analytical Benchmarks
47
+ | System | Max Error |
48
+ |--------|-----------|
49
+ | Infinite Square Well | < 0.003% |
50
+ | Harmonic Oscillator | < 0.02% |
51
+ | Half-Harmonic Oscillator | < 0.8% |
52
+ | Triangular Potential | < 0.003% |
53
+
54
+ #### External Library Comparison
55
+ - **Cross-verified with QMSolve** (Python quantum mechanics package)
56
+ - **Double Well Potential:** Agreement within 0.25%
57
+ - Demonstrates accuracy for systems without analytical solutions
58
+
59
+ ## πŸ“ Mathematical Foundation
60
+
61
+ The solver discretizes the TISE:
62
+
63
+ $$\hat{H}\psi(x) = E\psi(x)$$
64
+
65
+ $$\left[ -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x) \right]\psi(x) = E\psi(x)$$
66
+
67
+ Using finite differences:
68
+
69
+ $$\frac{d^2\psi}{dx^2} \approx \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{\Delta x^2}$$
70
+
71
+ This transforms the problem into a matrix eigenvalue equation solved via `numpy.linalg.eigh`.
72
+
73
+ ## πŸ› οΈ Technical Implementation
74
+
75
+ - **Language:** Python 3.12
76
+ - **Core Libraries:** NumPy, SciPy
77
+ - **Visualization:** Plotly, Matplotlib
78
+ - **UI Framework:** Streamlit
79
+ - **Computer Vision:** MediaPipe (for hand gesture input)
80
+
81
+ ## πŸ“Š Verification Scripts
82
+
83
+ The project includes comprehensive verification:
84
+ - `verify_physics.py`: Analytical benchmarks
85
+ - `verify_comparison.py`: QMSolve cross-verification
86
+ - `Comparison_Notebook.ipynb`: Jupyter notebook with detailed analysis
87
+
88
+ ## πŸŽ“ Academic Applications
89
+
90
+ This project demonstrates:
91
+ 1. **Numerical Methods:** Finite difference discretization of differential operators
92
+ 2. **Linear Algebra:** Eigenvalue problems for Hermitian matrices
93
+ 3. **Quantum Mechanics:** Stationary states and energy quantization
94
+ 4. **Software Engineering:** Modular design, comprehensive testing, professional documentation
95
+
96
+ ## πŸ“– Usage
97
+
98
+ ### Interactive Simulator
99
+ 1. Select a potential type from the sidebar
100
+ 2. Adjust parameters using sliders
101
+ 3. View real-time solutions with interactive plots
102
+
103
+ ### Verification Dashboard
104
+ - Navigate to "Benchmarks & Verification" to see accuracy metrics
105
+ - Compare against analytical solutions and QMSolve
106
+
107
+ ### Theory Section
108
+ - Detailed mathematical background
109
+ - Implementation methodology
110
+ - Code verification
111
+
112
+ ## πŸ”— Repository Structure
113
+
114
+ ```
115
+ psi_solve2/
116
+ β”œβ”€β”€ app.py # Main Streamlit application
117
+ β”œβ”€β”€ functions.py # Physics engine (solver + potentials)
118
+ β”œβ”€β”€ verify_physics.py # Analytical verification script
119
+ β”œβ”€β”€ verify_comparison.py # QMSolve comparison script
120
+ β”œβ”€β”€ Comparison_Notebook.ipynb # Jupyter analysis notebook
121
+ └── requirements.txt # Python dependencies
122
+ ```
123
+
124
+ ## πŸ“ Citation
125
+
126
+ If you use this solver in your research, please cite:
127
+
128
+ ```
129
+ Kumaresan, A. (2024). Quantum Potential Solver: A Verified Finite Difference
130
+ Implementation for the Time-Independent SchrΓΆdinger Equation.
131
+ Simon Fraser University.
132
+ ```
133
+
134
+ ## πŸ“§ Contact
135
+
136
+ **Ahilan Kumaresan**
137
+ Mathematical & Computational Physics
138
+ Simon Fraser University
139
+
140
+ ---
141
+
142
+ *This project showcases advanced computational physics methodology suitable for graduate-level research in quantum mechanics and numerical analysis.*