--- title: Hand-wave Quantum Solver emoji: 🌊 colorFrom: blue colorTo: purple sdk: streamlit sdk_version: "1.28.0" app_file: app.py pinned: false --- # βš›οΈ Quantum Potential Solver **Author:** Ahilan Kumaresan **Institution:** Simon Fraser University **Field:** Mathematical & Computational Physics --- ## 🎯 Overview An advanced numerical solver for the **Time-Independent SchrΓΆdinger Equation** (TISE) using the Finite Difference Method. This project demonstrates rigorous computational physics methodology with comprehensive verification against analytical solutions and external libraries. ## πŸ”¬ Key Features ### 1. **Accurate Numerical Solver** - **Method:** 3-point Central Difference stencil for the Laplacian operator - **Grid:** Adaptive resolution (1000-2000 points) - **Units:** Hartree Atomic Units (ℏ=1, m=1) - **Boundary Conditions:** Dirichlet (infinite walls) ### 2. **Multiple Potential Types** - Infinite Square Well - Harmonic Oscillator - Double Well Potential - Custom potentials via hand gestures (camera input) ### 3. **Interactive Visualizations** - Plotly-based interactive charts - Wavefunction probability densities - Energy level diagrams - Real-time solver performance metrics ### 4. **Rigorous Verification** #### Analytical Benchmarks | System | Max Error | |--------|-----------| | Infinite Square Well | < 0.003% | | Harmonic Oscillator | < 0.02% | | Half-Harmonic Oscillator | < 0.8% | | Triangular Potential | < 0.003% | #### External Library Comparison - **Cross-verified with QMSolve** (Python quantum mechanics package) - **Double Well Potential:** Agreement within 0.25% - Demonstrates accuracy for systems without analytical solutions ## πŸ“ Mathematical Foundation The solver discretizes the TISE: $$\hat{H}\psi(x) = E\psi(x)$$ $$\left[ -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x) \right]\psi(x) = E\psi(x)$$ Using finite differences: $$\frac{d^2\psi}{dx^2} \approx \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{\Delta x^2}$$ This transforms the problem into a matrix eigenvalue equation solved via `numpy.linalg.eigh`. ## πŸ› οΈ Technical Implementation - **Language:** Python 3.12 - **Core Libraries:** NumPy, SciPy - **Visualization:** Plotly, Matplotlib - **UI Framework:** Streamlit - **Computer Vision:** MediaPipe (for hand gesture input) ## πŸ“Š Verification Scripts The project includes comprehensive verification: - `verify_physics.py`: Analytical benchmarks - `verify_comparison.py`: QMSolve cross-verification - `Comparison_Notebook.ipynb`: Jupyter notebook with detailed analysis ## πŸŽ“ Academic Applications This project demonstrates: 1. **Numerical Methods:** Finite difference discretization of differential operators 2. **Linear Algebra:** Eigenvalue problems for Hermitian matrices 3. **Quantum Mechanics:** Stationary states and energy quantization 4. **Software Engineering:** Modular design, comprehensive testing, professional documentation ## πŸ“– Usage ### Interactive Simulator 1. Select a potential type from the sidebar 2. Adjust parameters using sliders 3. View real-time solutions with interactive plots ### Verification Dashboard - Navigate to "Benchmarks & Verification" to see accuracy metrics - Compare against analytical solutions and QMSolve ### Theory Section - Detailed mathematical background - Implementation methodology - Code verification ## πŸ”— Repository Structure ``` psi_solve2/ β”œβ”€β”€ app.py # Main Streamlit application β”œβ”€β”€ functions.py # Physics engine (solver + potentials) β”œβ”€β”€ verify_physics.py # Analytical verification script β”œβ”€β”€ verify_comparison.py # QMSolve comparison script β”œβ”€β”€ Comparison_Notebook.ipynb # Jupyter analysis notebook └── requirements.txt # Python dependencies ``` ## πŸ“ Citation If you use this solver in your research, please cite: ``` Kumaresan, A. (2024). Quantum Potential Solver: A Verified Finite Difference Implementation for the Time-Independent SchrΓΆdinger Equation. Simon Fraser University. ``` ## πŸ“§ Contact **Ahilan Kumaresan** Mathematical & Computational Physics Simon Fraser University --- *This project showcases advanced computational physics methodology suitable for graduate-level research in quantum mechanics and numerical analysis.*