import streamlit as st # ========================================== # 0. PAGE CONFIGURATION & STYLING # ========================================== st.set_page_config( page_title="Pili-Pili Quantum Solver | Ahilan Kumaresan", page_icon="🍟", layout="wide", initial_sidebar_state="expanded" ) import numpy as np import matplotlib.pyplot as plt import math import time try: import mediapipe as mp import cv2 import plotly.graph_objects as go from plotly.subplots import make_subplots except ImportError as e: st.error(f"CRITICAL ERROR: Failed to import required libraries. {e}") st.stop() # Import physics engine try: import functions as f except ImportError as e: st.error(f"CRITICAL ERROR: Failed to import physics engine. {e}") st.stop() # ========================================== # 0. SESSION STATE (for camera flow) # ========================================== if 'countdown_finished' not in st.session_state: st.session_state.countdown_finished = False if 'V_user_defined' not in st.session_state: st.session_state.V_user_defined = None # Custom CSS for a professional look st.markdown(""" """, unsafe_allow_html=True) # ========================================== # 1. SIDEBAR: PERSONALIZATION & NAV # ========================================== with st.sidebar: st.title("Quantum Solver 2.0") st.caption("v2.1 - HF Fix") st.markdown("---") # Navigation page = st.radio("Navigation", ["Simulator", "Benchmarks & Verification", "Theory & Method"]) st.markdown("---") # Author Profile st.markdown("### About Moi") st.markdown(""" **Ahilan Kumaresan** *Aspiring Mathematical & Computational Physicist* Developing Interative and accurate numerical tools for quantum mechanics. """) st.info("Verified against Analytical Solutions & QMSolve Package.") # ========================================== # 2. HELPER FUNCTIONS (Plotting) # ========================================== def plot_interactive(E, psi, V, x, nos=5): """ Creates a professional interactive Plotly chart for wavefunctions and energy levels. """ # Limit states states = min(nos, len(E)) # Create subplots: Main plot (Potential + Psi) and Side plot (Energy Levels) fig = make_subplots( rows=1, cols=2, column_widths=[0.8, 0.2], shared_yaxes=True, horizontal_spacing=0.02, subplot_titles=("Wavefunctions & Potential", "Energy Spectrum") ) # Scaling factor for wavefunctions if len(E) >= 2: scale = (E[1] - E[0]) * 0.4 else: scale = max(E[0] * 0.1, 0.5) max_E = E[states-1] if states > 0 else 10 window_height = max_E * 1.5 # Get x coordinates for internal points (matching psi dimensions) x_internal = x[1:-1] V_internal = V[1:-1] # 1. Plot Potential V(x) - using internal points for better visibility V_clipped = np.clip(V_internal, 0, window_height) fig.add_trace( go.Scatter( x=x_internal.tolist() if hasattr(x_internal, 'tolist') else x_internal, y=V_clipped.tolist() if hasattr(V_clipped, 'tolist') else V_clipped, mode='lines', name='V(x)', line=dict(color='#FFFFFF', width=2.5), hovertemplate='V(x): %{y:.2f}' ), row=1, col=1 ) # 2. Plot Wavefunctions (shifted by Energy) colors = ['#00ADB5', '#FF2E63', '#F38181', '#FCE38A', '#EAFFD0', '#95E1D3', '#FFB6C1', '#DDA0DD', '#87CEEB', '#98FB98'] for n in range(states): # Normalize wavefunction amplitude psi_n = psi[:, n] max_amp = np.max(np.abs(psi_n)) if max_amp > 1e-9: psi_n = psi_n / max_amp else: psi_n = psi_n # Shift by energy y_shifted = psi_n * scale + E[n] # Hide where potential is infinite y_shifted[V_internal > 1e5] = np.nan color = colors[n % len(colors)] # Ensure arrays match in length if len(x_internal) != len(y_shifted): # Fallback: truncate to minimum length min_len = min(len(x_internal), len(y_shifted)) x_plot = x_internal[:min_len] y_plot = y_shifted[:min_len] else: x_plot = x_internal y_plot = y_shifted fig.add_trace( go.Scatter( x=x_plot.tolist() if hasattr(x_plot, 'tolist') else x_plot, y=y_plot.tolist() if hasattr(y_plot, 'tolist') else y_plot, mode='lines', name=f'n={n+1}, E={E[n]:.4f}', line=dict(color=color, width=2), hovertemplate=f'n={n+1}
E={E[n]:.4f}
x: %{{x:.2f}}
ψ: %{{y:.2f}}' ), row=1, col=1 ) # Add Energy Level to Side Bar fig.add_trace( go.Scatter( x=[0, 1], y=[E[n], E[n]], mode='lines', line=dict(color=color, width=3), showlegend=False, hovertemplate=f'E_{n+1}={E[n]:.4f}' ), row=1, col=2 ) # Layout Styling - Enhanced dark mode fig.update_layout( template="plotly_dark", height=600, margin=dict(l=20, r=20, t=50, b=20), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1, font=dict(size=10) ), hovermode="closest", plot_bgcolor='#0e1117', paper_bgcolor='#0e1117', font=dict(color='#FAFAFA') ) fig.update_xaxes( title_text="Position (a.u.)", row=1, col=1, gridcolor='#2a2a2a', showgrid=True ) fig.update_xaxes( showticklabels=False, row=1, col=2, showgrid=False ) fig.update_yaxes( title_text="Energy (Hartree)", range=[0, max_E * 1.2], row=1, col=1, gridcolor='#2a2a2a', showgrid=True ) return fig # ========================================== # 3. HELPER: MediaPipe hand → 1D potential # ========================================== def process_frame_to_potential(frame): """ Takes a BGR frame (OpenCV) and returns: pot_profile: 1D array in [0,1] representing V(x) profile msg: human-friendly label Modes: - 2 hands → Square well (0 inside, 1 outside) - 1 hand → QHO-like parabola """ try: mp_hands = mp.solutions.hands with mp_hands.Hands(max_num_hands=2, min_detection_confidence=0.5) as hands: h, w, _ = frame.shape rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) res = hands.process(rgb) if not res.multi_hand_landmarks: return None, "No Hands Detected, But Cute Smile :)" # --- LOGIC: Square Well vs QHO --- # 1. Square Well (2 Hands) if len(res.multi_hand_landmarks) >= 2: INDEX_TIP_ID = 8 x_coords = [lm.landmark[INDEX_TIP_ID].x * w for lm in res.multi_hand_landmarks] x_coords.sort() xL_hand, xR_hand = x_coords[0], x_coords[1] well_width = xR_hand - xL_hand center_screen = w / 2 centered_L = center_screen - (well_width / 2) centered_R = center_screen + (well_width / 2) x_space = np.linspace(0, w, 400) pot_profile = np.ones_like(x_space) pot_profile[(x_space > centered_L) & (x_space < centered_R)] = 0 return pot_profile, "Square Well (Captured)" # 2. Harmonic Oscillator (1 Hand) elif len(res.multi_hand_landmarks) == 1: lm = res.multi_hand_landmarks[0] THUMB = lm.landmark[4] INDEX = lm.landmark[8] dx = INDEX.x - THUMB.x dy = INDEX.y - THUMB.y dist = math.sqrt(dx**2 + dy**2) # Map pinch distance → curvature A = np.interp(dist, [0.05, 0.3], [100.0, 1.0]) x_space = np.linspace(-1, 1, 400) pot_profile = A * (x_space**2) pot_profile = np.clip(pot_profile, 0, 100) pot_profile = pot_profile / 100.0 # normalize 0..1 return pot_profile, f"Harmonic Oscillator (k={A:.1f})" except Exception as e: return None, f"MediaPipe Error: {e}" return None, "Error" # ========================================== # 4. PAGE: SIMULATOR # ========================================== if page == "Simulator": st.title("Pili-Pili - Quantum Potential Solver") st.markdown("Show a potential with your hands or select a preset to solve the **Time-Independent Schrödinger Equation**.") # Shared grid for all modes L = 50 N_GRID = 1000 x_full, dx, x_internal = f.make_grid(L, N_GRID) V_full_to_solve = None status_msg = "" col1, col2 = st.columns([1, 3]) with col1: st.subheader("Controls") # Settings potential_mode = st.selectbox( "Potential Type", [ "Static Square Well", "Static Harmonic Oscillator", "Double Well", "Hand Gesture (Camera)" ] ) nos_user = st.slider("Eigenstates to Plot", 1, 10, 5) # ---- STATIC MODES ---- if potential_mode == "Static Square Well": width = st.slider("Well Width", 1.0, 20.0, 10.0) V_physics = np.zeros_like(x_internal) V_physics[np.abs(x_internal) > width/2] = 200 V_full_to_solve = np.pad(V_physics, (1,1), constant_values=1e10) status_msg = f"Static Square Well (width = {width:.1f})" elif potential_mode == "Static Harmonic Oscillator": k = st.slider("Spring Constant (k)", 0.1, 50.0, 5.0) V_physics = 0.5 * k * x_internal**2 # scale a bit so it shows nicely under energies V_physics = V_physics / np.max(V_physics) * 50 V_full_to_solve = np.pad(V_physics, (1,1), constant_values=1e10) status_msg = f"Static Harmonic Oscillator (k = {k:.2f})" elif potential_mode == "Double Well": sep = st.slider("Separation", 0.5, 5.0, 2.0) depth = st.slider("Depth", 0.1, 5.0, 1.0) V_physics = depth * ((x_internal**2 - sep**2)**2) V_physics = V_physics / np.max(V_physics) * 50 V_full_to_solve = np.pad(V_physics, (1,1), constant_values=1e10) status_msg = f"Double Well (sep = {sep:.2f}, depth = {depth:.2f})" # ---- HAND-GESTURE / CAMERA MODE ---- elif potential_mode == "Hand Gesture (Camera)": st.subheader("Hand Gesture Controls") st.info( "1. Click **'Start Countdown'**. (IGNORE)\n" "2. Get your **two hands** ready for a Square Well, " "or **one-hand pinch** for a Harmonic Oscillator.\n" "3. When you'r ready, use **'Take a snapshot'**." ) st.subheader("Hand Gesture Input") img_file = st.camera_input("Take a Snapshot") if img_file: file_bytes = np.asarray(bytearray(img_file.read()), dtype=np.uint8) frame = cv2.imdecode(file_bytes, 1) frame = cv2.flip(frame, 1) V_raw, msg = process_frame_to_potential(frame) if V_raw is not None: st.success(f"Detected: {msg}") st.session_state.V_user_defined = V_raw # Map to simulation grid V_interpolated = np.interp( np.linspace(0, 1, len(x_internal)), np.linspace(0, 1, len(V_raw)), V_raw ) V_physics = V_interpolated * 200.0 V_full_to_solve = np.pad(V_physics, (1,1), constant_values=1e10) status_msg = f"Camera Potential: {msg}" else: st.error(msg) # --------- RIGHT COLUMN: SOLVE & PLOT ---------- with col2: if V_full_to_solve is not None: start_time = time.time() T = f.kinetic_operator(len(x_internal), dx) E, psi = f.solve(T, V_full_to_solve, dx) solve_time = time.time() - start_time if status_msg: st.markdown(f"**Potential:** {status_msg}") st.markdown(f"**Solver Status:** ✅ Converged in {solve_time:.3f} s") fig = plot_interactive(E, psi, V_full_to_solve, x_full, nos=nos_user) st.plotly_chart(fig, use_container_width=True) # Eigenenergies panel st.markdown("### Eigenenergies") cols = st.columns(nos_user) for i in range(nos_user): if i < len(E): cols[i].metric(f"n={i}", f"{E[i]:.4f} Ha") else: if potential_mode == "Hand Gesture (Camera)": st.info("Follow the instructions on the left to capture a potential from your hands.") else: st.info("Select parameters on the left to generate a potential and solve.") # ========================================== # 5. PAGE: BENCHMARKS # ========================================== elif page == "Benchmarks & Verification": st.title("🛡️ Verification & Accuracy") st.markdown(""" This solver has been rigorously tested against known analytical solutions and external libraries to ensure physical accuracy. """) tab1, tab2, tab3 = st.tabs(["Analytical Benchmarks", "QMSolve Comparison", "Code"]) with tab1: st.subheader("1. Infinite Square Well") st.markdown("Particle in a box of length $L=20$. Error < 0.003%.") st.table({ "State (n)": [1, 2, 3, 4, 5], "Analytic E": [0.012337, 0.049348, 0.111033, 0.197392, 0.308425], "Numerical E": [0.012337, 0.049348, 0.111032, 0.197389, 0.308419], "% Error": ["0.0001%", "0.0003%", "0.0007%", "0.0013%", "0.0021%"] }) st.subheader("2. Harmonic Oscillator") st.markdown("Standard QHO with $k=1$. Error < 0.02%.") st.table({ "State (n)": [0, 1, 2, 3, 4], "Analytic E": [0.5, 1.5, 2.5, 3.5, 4.5], "Numerical E": [0.499980, 1.499902, 2.499746, 3.499512, 4.499200], "% Error": ["0.0039%", "0.0065%", "0.0101%", "0.0139%", "0.0178%"] }) with tab2: st.subheader("Cross-Verification: Double Well Potential") st.markdown(""" Comparison with the Python package `QMSolve` for a Double Well potential (no simple analytic solution). **Agreement within 0.25%**. """) col_a, col_b = st.columns(2) with col_a: st.markdown("**Parameters:** $V(x) = 2(x^2 - 1)^2$") st.table({ "State (n)": [0, 1, 2, 3, 4], "psi_solve2 (Ha)": [1.400886, 2.092533, 4.455252, 6.917808, 9.872632], "QMSolve (Ha)": [1.402472, 2.097767, 4.466368, 6.936807, 9.900227], "% Difference": ["0.11%", "0.25%", "0.25%", "0.27%", "0.28%"] }) with col_b: st.info("Note: QMSolve uses eV units. Results were converted to Hartree (1 Ha ≈ 27.211 eV) for comparison.") with tab3: st.subheader("Code Verification") st.code(""" def kinetic_operator(N, dx, hbar=1, m=1): # 3-point central difference stencil for 2nd derivative main_diagonal = (1/dx**2) * np.diag(-2 * np.ones(N)) off_diagonal1 = (1/dx**2) * np.diag(np.ones(N-1), -1) off_diagonal2 = (1/dx**2) * np.diag(np.ones(N-1), 1) D2 = (main_diagonal + off_diagonal1 + off_diagonal2) # Kinetic Energy Operator T = -hbar^2 / 2m * d^2/dx^2 T = (-(hbar**2 / (2*m)) * D2) return T """, language="python") st.code(""" def harmonic(x,k,center=0.0): # A Parabola, setting the global k-value. global Last_k_value Last_k_value = k constant_factor = 1 potential = 0.5*k*(x - center)**2 return constant_factor * potential """) # ========================================== # 6. PAGE: THEORY # ========================================== elif page == "Theory & Method": st.title("📖 Theory & Methodology") st.markdown("### The Time-Independent Schrödinger Equation") st.latex(r" \hat{H}\psi(x) = E\psi(x) ") st.latex(r" \left[ -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x) \right]\psi(x) = E\psi(x) ") st.markdown("### Numerical Method: Finite Difference") st.markdown(r""" We discretize the spatial domain $x$ into a grid of $N$ points. The second derivative is approximated using the **Central Difference Formula**: """) st.latex(r" \frac{d^2\psi}{dx^2} \approx \frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{\Delta x^2} ") st.markdown(r""" This transforms the differential operator into a **Tridiagonal Matrix** equation: """) st.latex(r" \mathbf{H}\mathbf{\psi} = E\mathbf{\psi} ") st.markdown(r""" Where $\mathbf{H}$ is an $N \times N$ matrix. We then use `numpy.linalg.eigh` to solve for the eigenvalues ($E$) and eigenvectors ($\psi$). """) st.markdown("### Implementation Details") st.markdown(r""" - **Grid Size:** Dynamic (default 1000–2000 points) - **Boundary Conditions:** Dirichlet ($ \psi(0) = \psi(L) = 0 $) via infinite walls at grid edges. - **Units:** Hartree Atomic Units ($\hbar=1, m=1$). """)