Spaces:
Running
Running
File size: 30,412 Bytes
3bb804c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
"""
Attractor Swarm Node
=====================
"Not one eye looking at the field - many eyes looking at each other AND the field."
This implements the full theory developed by Antti, Claude, ChatGPT, and Gemini:
1. SINGLE ATTRACTOR + OPTIC:
- An attractor observes the field through a coupling kernel K_κ
- Coupling = integration window width = spectral bandwidth
- F_eff(t) = (S * K_κ)(t)
2. MULTIPLE ATTRACTORS + INTER-OPTICS:
- Each attractor i has its own field coupling κ_i
- Each attractor i observes other attractors j through inter-optics κ_ij
- m_ij(t) = O_κij[x_j(t)] - "how sharply does i sample j?"
3. THE THREE REGIMES:
- Low κ: over-integration → soup (structure dies)
- Critical κ: balanced → lattices/stars (maximal structure)
- High κ: bandwidth > Nyquist → stripes (aliasing collapse)
4. COALITION FORMATION:
- When κ_ij rises between a subset, they share high-detail info
- They lock phases → form "super-attractor" coalitions
- This is attention implemented as signal theory
5. HOMEOSTATIC CONTROL:
- κ_ij adapts based on whether j helps i reduce error/increase structure
- The network learns who to couple to, moment by moment
CREATED: December 2025
AUTHORS: Antti + Claude + ChatGPT + Gemini
"""
import numpy as np
import cv2
from collections import deque
from scipy import signal as scipy_signal
from scipy.ndimage import gaussian_filter
import __main__
try:
BaseNode = __main__.BaseNode
QtGui = __main__.QtGui
except AttributeError:
from PyQt6 import QtGui
class BaseNode:
def __init__(self):
self.inputs = {}
self.outputs = {}
def get_blended_input(self, name, mode):
return None
class AttractorSwarmNode(BaseNode):
NODE_CATEGORY = "Consciousness"
NODE_TITLE = "Attractor Swarm"
NODE_COLOR = QtGui.QColor(255, 100, 50) # Orange - swarm intelligence
def __init__(self):
super().__init__()
self.node_title = "Attractor Swarm (Multi-Observer Optics)"
self.inputs = {
'theta_signal': 'signal',
'alpha_signal': 'signal',
'beta_signal': 'signal',
'gamma_signal': 'signal',
'token_stream': 'spectrum',
'global_coupling': 'signal', # Base coupling for all
'adaptation_rate': 'signal', # How fast optics adapt
'lattice_zoom': 'signal',
'lattice_freq': 'signal',
'reset': 'signal'
}
self.outputs = {
'display': 'image',
'swarm_field': 'complex_spectrum', # Combined lattice
'coupling_matrix': 'spectrum', # Who couples to whom
'coalition_labels': 'spectrum', # Which attractors form groups
'dominant_attractor': 'signal', # Which one is "winning"
'global_symmetry': 'signal', # 6-fold symmetry score
'anisotropy': 'signal', # Stripe detection
'criticality_score': 'signal', # How close to critical
}
# === SWARM PARAMETERS ===
self.N = 4 # Number of attractors (one per band initially)
self.field_size = 64
self.epoch = 0
# === ATTRACTOR STATES ===
# Each attractor has a complex state (amplitude + phase)
self.states = np.ones(self.N, dtype=np.complex128)
self.state_phases = np.zeros(self.N)
# === FIELD OBSERVATIONS ===
# What each attractor sees from the raw field
self.field_obs = np.zeros(self.N, dtype=np.complex128)
# === OPTICS MATRICES ===
# κ_i: how each attractor couples to the field
self.field_kappa = np.ones(self.N) * 0.5 # Start at critical
# κ_ij: how attractor i couples to attractor j (inter-optics)
# This is the key new structure
self.inter_kappa = np.ones((self.N, self.N)) * 0.3
np.fill_diagonal(self.inter_kappa, 0) # Don't self-couple
# === INTEGRATION WINDOWS (derived from kappa) ===
# Higher kappa = sharper window = more high-freq detail
self.integration_windows = np.ones(self.N) * 10 # samples
# === HISTORIES FOR WINDOWED INTEGRATION ===
self.history_len = 100
self.band_histories = [deque(maxlen=self.history_len) for _ in range(4)]
self.state_histories = [deque(maxlen=self.history_len) for _ in range(self.N)]
# === ADAPTATION ===
self.adaptation_rate = 0.01
self.symmetry_target = 0.5 # Try to stay near critical
# === METRICS ===
self.symmetry_scores = np.zeros(self.N)
self.anisotropy_scores = np.zeros(self.N)
self.coalition_matrix = np.zeros((self.N, self.N))
# === LATTICE PARAMETERS ===
self.lattice_zoom = 1.0
self.lattice_freq = 4.0
# === FIELDS ===
self.individual_fields = [np.zeros((self.field_size, self.field_size), dtype=np.complex128)
for _ in range(self.N)]
self.combined_field = np.zeros((self.field_size, self.field_size), dtype=np.complex128)
# === DISPLAY ===
self._display = np.zeros((700, 1000, 3), dtype=np.uint8)
# === LABELS ===
self.attractor_names = ['θ-Slow', 'α-Mid', 'β-Fast', 'γ-Ultra']
self.attractor_colors = [(100, 150, 255), (100, 255, 150), (255, 200, 100), (255, 100, 150)]
def _parse_input(self, val):
"""Parse various input formats to float"""
if val is None:
return 0.0
if isinstance(val, (int, float, np.floating)):
return float(val)
if isinstance(val, np.ndarray):
return float(np.mean(np.abs(val))) if val.size > 0 else 0.0
if isinstance(val, (list, tuple)) and len(val) > 0:
return float(val[0]) if not hasattr(val[0], '__len__') else 0.0
return 0.0
def _apply_optic(self, signal_history, kappa):
"""
Apply the optic kernel to a signal history.
This is the core operation: convolution with Gaussian kernel
whose width is controlled by kappa.
High kappa = narrow window = high-freq passes
Low kappa = wide window = averaging/smoothing
"""
if len(signal_history) < 5:
return 0.0 + 0j
sig = np.array(list(signal_history))
n = len(sig)
# Kappa controls window sharpness
# Higher kappa = sharper (smaller sigma)
sigma = max(1.0, 10.0 / (kappa + 0.1))
# Create Gaussian kernel
t = np.arange(n)
center = n - 1 # Weight toward recent
kernel = np.exp(-((t - center) ** 2) / (2 * sigma ** 2))
kernel = kernel / (kernel.sum() + 1e-10)
# Apply kernel (weighted integration)
integrated = np.sum(sig * kernel)
# Estimate phase from recent samples
if len(sig) > 10:
try:
analytic = scipy_signal.hilbert(sig - np.mean(sig))
phase = np.angle(analytic[-1])
amp = np.abs(integrated)
return amp * np.exp(1j * phase)
except:
return integrated + 0j
return integrated + 0j
def _compute_inter_observation(self, i, j):
"""
Compute how attractor i observes attractor j through their inter-optic.
m_ij(t) = O_κij[x_j(t)]
"""
if len(self.state_histories[j]) < 5:
return 0.0 + 0j
kappa_ij = self.inter_kappa[i, j]
# Get j's state history as real values for integration
j_history = [np.abs(s) for s in self.state_histories[j]]
return self._apply_optic(j_history, kappa_ij)
def _create_attractor_field(self, attractor_idx):
"""
Create the lattice field for one attractor based on its state
and its coupling to others.
"""
size = self.field_size
span = np.pi * self.lattice_zoom
x = np.linspace(-span, span, size)
y = np.linspace(-span, span, size)
X, Y = np.meshgrid(x, y)
field = np.zeros((size, size), dtype=np.complex128)
# This attractor's state
state = self.states[attractor_idx]
amp = np.abs(state)
phase = np.angle(state)
# Base frequency modulated by attractor index
base_freq = self.lattice_freq * (1 + attractor_idx * 0.2)
# 6 waves at 60° for hexagonal lattice
for i in range(6):
angle = i * np.pi / 3 + phase
# Modulate amplitude by inter-coupling
# Attractors that are strongly coupled contribute more
coupling_boost = 1.0
for j in range(self.N):
if j != attractor_idx:
coupling_boost += 0.2 * self.inter_kappa[attractor_idx, j] * np.abs(self.states[j])
wave_amp = amp * coupling_boost / self.N
kx = base_freq * np.cos(angle)
ky = base_freq * np.sin(angle)
wave = wave_amp * np.exp(1j * (kx * X + ky * Y))
field += wave
return field
def _compute_symmetry_score(self, field):
"""
Compute 6-fold symmetry score from field.
High score = hexagonal/star pattern (critical regime)
Low score = stripes or soup
"""
# FFT of magnitude
mag = np.abs(field)
fft = np.fft.fftshift(np.fft.fft2(mag))
power = np.abs(fft) ** 2
# Sample at 60° intervals around center
center = self.field_size // 2
radius = self.field_size // 4
angles = np.arange(0, 360, 60) * np.pi / 180
samples = []
for angle in angles:
x = int(center + radius * np.cos(angle))
y = int(center + radius * np.sin(angle))
if 0 <= x < self.field_size and 0 <= y < self.field_size:
samples.append(power[y, x])
if len(samples) < 6:
return 0.0
samples = np.array(samples)
# High symmetry = all samples similar
mean_power = np.mean(samples)
if mean_power < 1e-10:
return 0.0
std_power = np.std(samples)
symmetry = 1.0 - (std_power / (mean_power + 1e-10))
return max(0, min(1, symmetry))
def _compute_anisotropy(self, field):
"""
Compute anisotropy (stripe-ness) of field.
High anisotropy = collapsed into stripes (over-coupled)
Low anisotropy = isotropic (soup or lattice)
"""
mag = np.abs(field)
# Compute directional gradients
gx = np.abs(np.diff(mag, axis=1)).mean()
gy = np.abs(np.diff(mag, axis=0)).mean()
# Anisotropy = difference between directional gradients
total = gx + gy + 1e-10
anisotropy = abs(gx - gy) / total
return anisotropy
def _detect_coalitions(self):
"""
Detect which attractors form coalitions based on:
- High inter-coupling
- Phase synchrony
- Similar symmetry scores
"""
coalition = np.zeros((self.N, self.N))
for i in range(self.N):
for j in range(i + 1, self.N):
# Coupling strength
coupling = (self.inter_kappa[i, j] + self.inter_kappa[j, i]) / 2
# Phase coherence
phase_diff = np.abs(np.angle(self.states[i]) - np.angle(self.states[j]))
phase_coherence = np.cos(phase_diff)
# Symmetry similarity
sym_diff = np.abs(self.symmetry_scores[i] - self.symmetry_scores[j])
sym_similarity = 1.0 - sym_diff
# Coalition score
score = coupling * (0.5 + 0.3 * phase_coherence + 0.2 * sym_similarity)
coalition[i, j] = score
coalition[j, i] = score
self.coalition_matrix = coalition
return coalition
def _adapt_optics(self):
"""
Homeostatic adaptation of optics.
Rule: if attractor j helps attractor i maintain critical regime,
increase κ_ij. Otherwise decrease.
"""
for i in range(self.N):
# Target: maximize symmetry, minimize anisotropy
reward_i = self.symmetry_scores[i] - self.anisotropy_scores[i]
# Field coupling: try to stay near critical
error = self.symmetry_target - self.symmetry_scores[i]
self.field_kappa[i] += self.adaptation_rate * error
self.field_kappa[i] = np.clip(self.field_kappa[i], 0.1, 2.0)
# Inter-coupling: strengthen connections that help
for j in range(self.N):
if i == j:
continue
# How much does j's influence correlate with i's reward?
j_influence = np.abs(self.states[j]) * self.inter_kappa[i, j]
# Simple rule: if both have good symmetry, strengthen
j_reward = self.symmetry_scores[j] - self.anisotropy_scores[j]
combined = reward_i * j_reward
self.inter_kappa[i, j] += self.adaptation_rate * combined
self.inter_kappa[i, j] = np.clip(self.inter_kappa[i, j], 0.05, 1.0)
def step(self):
self.epoch += 1
# === GET INPUTS ===
theta = self._parse_input(self.get_blended_input('theta_signal', 'sum'))
alpha = self._parse_input(self.get_blended_input('alpha_signal', 'sum'))
beta = self._parse_input(self.get_blended_input('beta_signal', 'sum'))
gamma = self._parse_input(self.get_blended_input('gamma_signal', 'sum'))
global_coupling = self._parse_input(self.get_blended_input('global_coupling', 'sum'))
adaptation = self._parse_input(self.get_blended_input('adaptation_rate', 'sum'))
zoom = self._parse_input(self.get_blended_input('lattice_zoom', 'sum'))
freq = self._parse_input(self.get_blended_input('lattice_freq', 'sum'))
reset = self._parse_input(self.get_blended_input('reset', 'sum'))
token_stream = self.get_blended_input('token_stream', 'sum')
# Handle reset
if reset > 0.5:
self.states = np.ones(self.N, dtype=np.complex128)
self.inter_kappa = np.ones((self.N, self.N)) * 0.3
np.fill_diagonal(self.inter_kappa, 0)
self.field_kappa = np.ones(self.N) * 0.5
return
# Update parameters
if global_coupling > 0:
self.field_kappa[:] = global_coupling
if adaptation > 0:
self.adaptation_rate = adaptation
if zoom > 0:
self.lattice_zoom = np.clip(zoom, 0.25, 8.0)
if freq > 0:
self.lattice_freq = np.clip(freq, 1.0, 16.0)
# Extract from token stream
if token_stream is not None:
try:
if isinstance(token_stream, np.ndarray) and len(token_stream) >= 4:
theta = float(token_stream[0]) if theta == 0 else theta
alpha = float(token_stream[1]) if alpha == 0 else alpha
beta = float(token_stream[2]) if beta == 0 else beta
gamma = float(token_stream[3]) if gamma == 0 else gamma
except:
pass
# === UPDATE HISTORIES ===
bands = [theta, alpha, beta, gamma]
for i, b in enumerate(bands):
self.band_histories[i].append(b)
# === FIELD OBSERVATIONS ===
# Each attractor observes the field through its optic
for i in range(self.N):
self.field_obs[i] = self._apply_optic(self.band_histories[i], self.field_kappa[i])
# === INTER-ATTRACTOR OBSERVATIONS ===
inter_obs = np.zeros((self.N, self.N), dtype=np.complex128)
for i in range(self.N):
for j in range(self.N):
if i != j:
inter_obs[i, j] = self._compute_inter_observation(i, j)
# === STATE UPDATE ===
# Each attractor's state is pulled by:
# 1. Its field observation
# 2. Its observations of other attractors
eta_field = 0.3 # Field coupling strength
eta_inter = 0.2 # Inter-attractor coupling strength
for i in range(self.N):
# Field pull
field_pull = eta_field * self.field_kappa[i] * self.field_obs[i]
# Inter-attractor pull
inter_pull = 0j
for j in range(self.N):
if i != j:
inter_pull += eta_inter * self.inter_kappa[i, j] * inter_obs[i, j]
# Update state
self.states[i] = (1 - eta_field - eta_inter) * self.states[i] + field_pull + inter_pull
# Normalize to prevent blowup
if np.abs(self.states[i]) > 10:
self.states[i] = self.states[i] / np.abs(self.states[i]) * 10
# === RECORD STATE HISTORIES ===
for i in range(self.N):
self.state_histories[i].append(self.states[i])
# === CREATE INDIVIDUAL FIELDS ===
for i in range(self.N):
self.individual_fields[i] = self._create_attractor_field(i)
# === COMPUTE METRICS ===
for i in range(self.N):
self.symmetry_scores[i] = self._compute_symmetry_score(self.individual_fields[i])
self.anisotropy_scores[i] = self._compute_anisotropy(self.individual_fields[i])
# === COMBINE FIELDS ===
# Weighted by symmetry score - better observers contribute more
self.combined_field = np.zeros((self.field_size, self.field_size), dtype=np.complex128)
total_weight = 0
for i in range(self.N):
weight = self.symmetry_scores[i] + 0.1 # Avoid zero weight
self.combined_field += weight * self.individual_fields[i]
total_weight += weight
self.combined_field /= (total_weight + 1e-10)
# === DETECT COALITIONS ===
self._detect_coalitions()
# === ADAPT OPTICS ===
if self.adaptation_rate > 0:
self._adapt_optics()
# === UPDATE DISPLAY ===
self._update_display()
def _update_display(self):
"""Create comprehensive visualization"""
img = np.zeros((700, 1000, 3), dtype=np.uint8)
img[:] = (20, 25, 30)
# === TITLE ===
cv2.putText(img, "ATTRACTOR SWARM - Multi-Observer Optics", (20, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 150, 50), 2)
cv2.putText(img, f"Epoch: {self.epoch} | N={self.N} attractors", (20, 55),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (150, 150, 200), 1)
# === INDIVIDUAL ATTRACTOR PANELS ===
panel_size = 100
panel_y = 80
for i in range(self.N):
panel_x = 20 + i * (panel_size + 30)
# Label
cv2.putText(img, self.attractor_names[i], (panel_x, panel_y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, self.attractor_colors[i], 1)
# Field visualization
field = self.individual_fields[i]
mag = np.abs(field)
phase = np.angle(field)
hsv = np.zeros((self.field_size, self.field_size, 3), dtype=np.uint8)
hsv[:, :, 0] = ((phase + np.pi) / (2 * np.pi) * 180).astype(np.uint8)
hsv[:, :, 1] = 200
hsv[:, :, 2] = (mag / (mag.max() + 1e-10) * 255).astype(np.uint8)
field_color = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
field_resized = cv2.resize(field_color, (panel_size, panel_size))
img[panel_y:panel_y + panel_size, panel_x:panel_x + panel_size] = field_resized
# Metrics
cv2.putText(img, f"Sym: {self.symmetry_scores[i]:.2f}",
(panel_x, panel_y + panel_size + 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, (200, 200, 200), 1)
cv2.putText(img, f"Ani: {self.anisotropy_scores[i]:.2f}",
(panel_x, panel_y + panel_size + 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, (200, 200, 200), 1)
cv2.putText(img, f"κ: {self.field_kappa[i]:.2f}",
(panel_x, panel_y + panel_size + 45),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, (200, 200, 200), 1)
# === COMBINED FIELD ===
combined_x, combined_y = 550, 80
combined_size = 180
cv2.putText(img, "COMBINED FIELD", (combined_x, combined_y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 200), 1)
mag = np.abs(self.combined_field)
phase = np.angle(self.combined_field)
hsv = np.zeros((self.field_size, self.field_size, 3), dtype=np.uint8)
hsv[:, :, 0] = ((phase + np.pi) / (2 * np.pi) * 180).astype(np.uint8)
hsv[:, :, 1] = 200
hsv[:, :, 2] = (mag / (mag.max() + 1e-10) * 255).astype(np.uint8)
combined_color = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
combined_resized = cv2.resize(combined_color, (combined_size, combined_size))
img[combined_y:combined_y + combined_size, combined_x:combined_x + combined_size] = combined_resized
# Global metrics
global_sym = self._compute_symmetry_score(self.combined_field)
global_ani = self._compute_anisotropy(self.combined_field)
cv2.putText(img, f"Global Sym: {global_sym:.3f}", (combined_x, combined_y + combined_size + 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 200), 1)
cv2.putText(img, f"Global Ani: {global_ani:.3f}", (combined_x, combined_y + combined_size + 40),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 200), 1)
# Criticality score
criticality = global_sym * (1 - global_ani)
cv2.putText(img, f"CRITICALITY: {criticality:.3f}", (combined_x, combined_y + combined_size + 65),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 100) if criticality > 0.3 else (255, 100, 100), 1)
# === INTER-COUPLING MATRIX ===
matrix_x, matrix_y = 780, 80
cell_size = 40
cv2.putText(img, "INTER-OPTICS κ_ij", (matrix_x, matrix_y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (200, 200, 150), 1)
for i in range(self.N):
for j in range(self.N):
x = matrix_x + j * cell_size
y = matrix_y + i * cell_size
val = self.inter_kappa[i, j]
intensity = int(val * 255)
if i == j:
color = (40, 40, 40)
else:
color = (intensity, intensity // 2, 50)
cv2.rectangle(img, (x, y), (x + cell_size - 2, y + cell_size - 2), color, -1)
cv2.putText(img, f"{val:.1f}", (x + 5, y + 25),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1)
# === COALITION MATRIX ===
coal_x, coal_y = 780, 280
cv2.putText(img, "COALITIONS", (coal_x, coal_y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (200, 200, 150), 1)
for i in range(self.N):
for j in range(self.N):
x = coal_x + j * cell_size
y = coal_y + i * cell_size
val = self.coalition_matrix[i, j]
intensity = int(val * 255)
color = (50, intensity, intensity // 2)
cv2.rectangle(img, (x, y), (x + cell_size - 2, y + cell_size - 2), color, -1)
# === STATE DISPLAY ===
state_x, state_y = 20, 280
cv2.putText(img, "ATTRACTOR STATES", (state_x, state_y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 150), 1)
for i in range(self.N):
y = state_y + 25 + i * 30
amp = np.abs(self.states[i])
phase = np.angle(self.states[i])
# Amplitude bar
bar_width = int(min(amp * 50, 150))
cv2.rectangle(img, (state_x, y), (state_x + bar_width, y + 15), self.attractor_colors[i], -1)
# Phase indicator
phase_x = state_x + 160 + int(20 * np.cos(phase))
phase_y = y + 7 + int(7 * np.sin(phase))
cv2.circle(img, (phase_x, phase_y), 4, (255, 255, 255), -1)
cv2.putText(img, f"{self.attractor_names[i]}: |{amp:.1f}| ∠{np.degrees(phase):.0f}°",
(state_x + 200, y + 12),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, self.attractor_colors[i], 1)
# === FIELD KAPPA DISPLAY ===
kappa_x, kappa_y = 20, 420
cv2.putText(img, "FIELD COUPLING κ_i (integration windows)", (kappa_x, kappa_y),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (200, 200, 150), 1)
for i in range(self.N):
y = kappa_y + 20 + i * 25
kappa = self.field_kappa[i]
bar_width = int(kappa * 100)
# Color based on regime
if kappa < 0.3:
color = (150, 150, 100) # Low - soup
regime = "SOUP"
elif kappa > 0.8:
color = (100, 100, 200) # High - stripes
regime = "STRIPES"
else:
color = (100, 200, 100) # Critical
regime = "CRITICAL"
cv2.rectangle(img, (kappa_x, y), (kappa_x + bar_width, y + 15), color, -1)
cv2.putText(img, f"{self.attractor_names[i]}: κ={kappa:.2f} [{regime}]",
(kappa_x + 120, y + 12),
cv2.FONT_HERSHEY_SIMPLEX, 0.3, color, 1)
# === THEORY BOX ===
theory_y = 560
cv2.putText(img, "OPTICS OF INFORMATION:", (20, theory_y),
cv2.FONT_HERSHEY_SIMPLEX, 0.4, (150, 200, 150), 1)
cv2.putText(img, "F_eff(t) = (S * K_kappa)(t) | kappa = integration window = spectral bandwidth",
(20, theory_y + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (120, 150, 120), 1)
cv2.putText(img, "Low kappa -> averaging -> soup | Critical kappa -> interference -> lattice | High kappa -> aliasing -> stripes",
(20, theory_y + 40), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (120, 150, 120), 1)
cv2.putText(img, "Multiple attractors can tune optics BETWEEN each other -> coalition formation -> attention",
(20, theory_y + 60), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (120, 150, 120), 1)
# === DOMINANT ATTRACTOR ===
dominant = np.argmax(self.symmetry_scores)
cv2.putText(img, f"Dominant: {self.attractor_names[dominant]}", (750, theory_y + 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, self.attractor_colors[dominant], 1)
# === PARAMETERS ===
cv2.putText(img, f"zoom={self.lattice_zoom:.1f} | freq={self.lattice_freq:.1f} | adapt={self.adaptation_rate:.3f}",
(20, 680), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (100, 100, 100), 1)
self._display = img
def get_output(self, name):
if name == 'display':
return self._display
elif name == 'swarm_field':
return self.combined_field
elif name == 'coupling_matrix':
return self.inter_kappa.flatten()
elif name == 'coalition_labels':
# Simple coalition detection: threshold the matrix
labels = np.zeros(self.N)
for i in range(self.N):
labels[i] = np.argmax(self.coalition_matrix[i, :])
return labels
elif name == 'dominant_attractor':
return float(np.argmax(self.symmetry_scores))
elif name == 'global_symmetry':
return float(self._compute_symmetry_score(self.combined_field))
elif name == 'anisotropy':
return float(self._compute_anisotropy(self.combined_field))
elif name == 'criticality_score':
sym = self._compute_symmetry_score(self.combined_field)
ani = self._compute_anisotropy(self.combined_field)
return float(sym * (1 - ani))
return None
def get_display_image(self):
h, w = self._display.shape[:2]
return QtGui.QImage(self._display.data, w, h, w * 3,
QtGui.QImage.Format.Format_RGB888)
def get_config_options(self):
return [
("Adaptation Rate", "adaptation_rate", self.adaptation_rate, None),
("Lattice Zoom", "lattice_zoom", self.lattice_zoom, None),
("Lattice Freq", "lattice_freq", self.lattice_freq, None),
] |