Spaces:
Running
Running
File size: 14,401 Bytes
3bb804c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from numpy.polynomial.legendre import legval
from scipy.interpolate import RectBivariateSpline
from scipy.linalg import pinv
from scipy.spatial.distance import pdist, squareform
from .._fiff.meas_info import _simplify_info
from .._fiff.pick import pick_channels, pick_info, pick_types
from ..surface import _normalize_vectors
from ..utils import _validate_type, logger, verbose, warn
def _calc_h(cosang, stiffness=4, n_legendre_terms=50):
"""Calculate spherical spline h function between points on a sphere.
Parameters
----------
cosang : array-like | float
cosine of angles between pairs of points on a spherical surface. This
is equivalent to the dot product of unit vectors.
stiffness : float
stiffnes of the spline. Also referred to as ``m``.
n_legendre_terms : int
number of Legendre terms to evaluate.
"""
factors = [
(2 * n + 1) / (n ** (stiffness - 1) * (n + 1) ** (stiffness - 1) * 4 * np.pi)
for n in range(1, n_legendre_terms + 1)
]
return legval(cosang, [0] + factors)
def _calc_g(cosang, stiffness=4, n_legendre_terms=50):
"""Calculate spherical spline g function between points on a sphere.
Parameters
----------
cosang : array-like of float, shape(n_channels, n_channels)
cosine of angles between pairs of points on a spherical surface. This
is equivalent to the dot product of unit vectors.
stiffness : float
stiffness of the spline.
n_legendre_terms : int
number of Legendre terms to evaluate.
Returns
-------
G : np.ndrarray of float, shape(n_channels, n_channels)
The G matrix.
"""
factors = [
(2 * n + 1) / (n**stiffness * (n + 1) ** stiffness * 4 * np.pi)
for n in range(1, n_legendre_terms + 1)
]
return legval(cosang, [0] + factors)
def _make_interpolation_matrix(pos_from, pos_to, alpha=1e-5):
"""Compute interpolation matrix based on spherical splines.
Implementation based on [1]
Parameters
----------
pos_from : np.ndarray of float, shape(n_good_sensors, 3)
The positions to interpolate from.
pos_to : np.ndarray of float, shape(n_bad_sensors, 3)
The positions to interpolate.
alpha : float
Regularization parameter. Defaults to 1e-5.
Returns
-------
interpolation : np.ndarray of float, shape(len(pos_from), len(pos_to))
The interpolation matrix that maps good signals to the location
of bad signals.
References
----------
[1] Perrin, F., Pernier, J., Bertrand, O. and Echallier, JF. (1989).
Spherical splines for scalp potential and current density mapping.
Electroencephalography Clinical Neurophysiology, Feb; 72(2):184-7.
"""
pos_from = pos_from.copy()
pos_to = pos_to.copy()
n_from = pos_from.shape[0]
n_to = pos_to.shape[0]
# normalize sensor positions to sphere
_normalize_vectors(pos_from)
_normalize_vectors(pos_to)
# cosine angles between source positions
cosang_from = pos_from.dot(pos_from.T)
cosang_to_from = pos_to.dot(pos_from.T)
G_from = _calc_g(cosang_from)
G_to_from = _calc_g(cosang_to_from)
assert G_from.shape == (n_from, n_from)
assert G_to_from.shape == (n_to, n_from)
if alpha is not None:
G_from.flat[:: len(G_from) + 1] += alpha
C = np.vstack(
[
np.hstack([G_from, np.ones((n_from, 1))]),
np.hstack([np.ones((1, n_from)), [[0]]]),
]
)
C_inv = pinv(C)
interpolation = np.hstack([G_to_from, np.ones((n_to, 1))]) @ C_inv[:, :-1]
assert interpolation.shape == (n_to, n_from)
return interpolation
def _do_interp_dots(inst, interpolation, goods_idx, bads_idx):
"""Dot product of channel mapping matrix to channel data."""
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..io import BaseRaw
_validate_type(inst, (BaseRaw, BaseEpochs, Evoked), "inst")
inst._data[..., bads_idx, :] = np.matmul(
interpolation, inst._data[..., goods_idx, :]
)
@verbose
def _interpolate_bads_eeg(inst, origin, exclude=None, ecog=False, verbose=None):
if exclude is None:
exclude = list()
bads_idx = np.zeros(len(inst.ch_names), dtype=bool)
goods_idx = np.zeros(len(inst.ch_names), dtype=bool)
picks = pick_types(inst.info, meg=False, eeg=not ecog, ecog=ecog, exclude=exclude)
inst.info._check_consistency()
bads_idx[picks] = [inst.ch_names[ch] in inst.info["bads"] for ch in picks]
if len(picks) == 0 or bads_idx.sum() == 0:
return
goods_idx[picks] = True
goods_idx[bads_idx] = False
pos = inst._get_channel_positions(picks)
# Make sure only EEG are used
bads_idx_pos = bads_idx[picks]
goods_idx_pos = goods_idx[picks]
# test spherical fit
distance = np.linalg.norm(pos - origin, axis=-1)
distance = np.mean(distance / np.mean(distance))
if np.abs(1.0 - distance) > 0.1:
warn(
"Your spherical fit is poor, interpolation results are "
"likely to be inaccurate."
)
pos_good = pos[goods_idx_pos] - origin
pos_bad = pos[bads_idx_pos] - origin
logger.info(f"Computing interpolation matrix from {len(pos_good)} sensor positions")
interpolation = _make_interpolation_matrix(pos_good, pos_bad)
logger.info(f"Interpolating {len(pos_bad)} sensors")
_do_interp_dots(inst, interpolation, goods_idx, bads_idx)
@verbose
def _interpolate_bads_ecog(inst, *, origin, exclude=None, verbose=None):
_interpolate_bads_eeg(inst, origin, exclude=exclude, ecog=True, verbose=verbose)
def _interpolate_bads_meg(
inst, mode="accurate", *, origin, verbose=None, ref_meg=False
):
return _interpolate_bads_meeg(
inst, mode, ref_meg=ref_meg, eeg=False, origin=origin, verbose=verbose
)
@verbose
def _interpolate_bads_nan(
inst,
*,
ch_type,
ref_meg=False,
exclude=(),
verbose=None,
):
info = _simplify_info(inst.info)
picks_type = pick_types(info, ref_meg=ref_meg, exclude=exclude, **{ch_type: True})
use_ch_names = [inst.info["ch_names"][p] for p in picks_type]
bads_type = [ch for ch in inst.info["bads"] if ch in use_ch_names]
if len(bads_type) == 0 or len(picks_type) == 0:
return
# select the bad channels to be interpolated
picks_bad = pick_channels(inst.info["ch_names"], bads_type, exclude=[])
inst._data[..., picks_bad, :] = np.nan
@verbose
def _interpolate_bads_meeg(
inst,
mode="accurate",
*,
meg=True,
eeg=True,
ref_meg=False,
exclude=(),
origin,
method=None,
verbose=None,
):
from ..forward import _map_meg_or_eeg_channels
if method is None:
method = {"meg": "MNE", "eeg": "MNE"}
bools = dict(meg=meg, eeg=eeg)
info = _simplify_info(inst.info)
for ch_type, do in bools.items():
if not do:
continue
kw = dict(meg=False, eeg=False)
kw[ch_type] = True
picks_type = pick_types(info, ref_meg=ref_meg, exclude=exclude, **kw)
picks_good = pick_types(info, ref_meg=ref_meg, exclude="bads", **kw)
use_ch_names = [inst.info["ch_names"][p] for p in picks_type]
bads_type = [ch for ch in inst.info["bads"] if ch in use_ch_names]
if len(bads_type) == 0 or len(picks_type) == 0:
continue
# select the bad channels to be interpolated
picks_bad = pick_channels(inst.info["ch_names"], bads_type, exclude=[])
# do MNE based interpolation
if ch_type == "eeg":
picks_to = picks_type
bad_sel = np.isin(picks_type, picks_bad)
else:
picks_to = picks_bad
bad_sel = slice(None)
info_from = pick_info(inst.info, picks_good)
info_to = pick_info(inst.info, picks_to)
mapping = _map_meg_or_eeg_channels(info_from, info_to, mode=mode, origin=origin)
mapping = mapping[bad_sel]
_do_interp_dots(inst, mapping, picks_good, picks_bad)
@verbose
def _interpolate_bads_nirs(inst, exclude=(), verbose=None):
from mne.preprocessing.nirs import _validate_nirs_info
if len(pick_types(inst.info, fnirs=True, exclude=())) == 0:
return
# Returns pick of all nirs and ensures channels are correctly ordered
picks_nirs = _validate_nirs_info(inst.info)
nirs_ch_names = [inst.info["ch_names"][p] for p in picks_nirs]
nirs_ch_names = [ch for ch in nirs_ch_names if ch not in exclude]
bads_nirs = [ch for ch in inst.info["bads"] if ch in nirs_ch_names]
if len(bads_nirs) == 0:
return
picks_bad = pick_channels(inst.info["ch_names"], bads_nirs, exclude=[])
bads_mask = [p in picks_bad for p in picks_nirs]
chs = [inst.info["chs"][i] for i in picks_nirs]
locs3d = np.array([ch["loc"][:3] for ch in chs])
dist = pdist(locs3d)
dist = squareform(dist)
for bad in picks_bad:
dists_to_bad = dist[bad]
# Ignore distances to self
dists_to_bad[dists_to_bad == 0] = np.inf
# Ignore distances to other bad channels
dists_to_bad[bads_mask] = np.inf
# Find closest remaining channels for same frequency
closest_idx = np.argmin(dists_to_bad) + (bad % 2)
inst._data[bad] = inst._data[closest_idx]
# TODO: this seems like a bug because it does not respect reset_bads
inst.info["bads"] = [ch for ch in inst.info["bads"] if ch in exclude]
return inst
def _find_seeg_electrode_shaft(pos, tol_shaft=0.002, tol_spacing=1):
# 1) find nearest neighbor to define the electrode shaft line
# 2) find all contacts on the same line
# 3) remove contacts with large distances
dist = squareform(pdist(pos))
np.fill_diagonal(dist, np.inf)
shafts = list()
shaft_ts = list()
for i, n1 in enumerate(pos):
if any([i in shaft for shaft in shafts]):
continue
n2 = pos[np.argmin(dist[i])] # 1
# https://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
shaft_dists = np.linalg.norm(
np.cross((pos - n1), (pos - n2)), axis=1
) / np.linalg.norm(n2 - n1)
shaft = np.where(shaft_dists < tol_shaft)[0] # 2
shaft_prev = None
for _ in range(10): # avoid potential cycles
if np.array_equal(shaft, shaft_prev):
break
shaft_prev = shaft
# compute median shaft line
v = np.median(
[
pos[i] - pos[j]
for idx, i in enumerate(shaft)
for j in shaft[idx + 1 :]
],
axis=0,
)
c = np.median(pos[shaft], axis=0)
# recompute distances
shaft_dists = np.linalg.norm(
np.cross((pos - c), (pos - c + v)), axis=1
) / np.linalg.norm(v)
shaft = np.where(shaft_dists < tol_shaft)[0]
ts = np.array([np.dot(c - n0, v) / np.linalg.norm(v) ** 2 for n0 in pos[shaft]])
shaft_order = np.argsort(ts)
shaft = shaft[shaft_order]
ts = ts[shaft_order]
# only include the largest group with spacing with the error tolerance
# avoid interpolating across spans between contacts
t_diffs = np.diff(ts)
t_diff_med = np.median(t_diffs)
spacing_errors = (t_diffs - t_diff_med) / t_diff_med
groups = list()
group = [shaft[0]]
for j in range(len(shaft) - 1):
if spacing_errors[j] > tol_spacing:
groups.append(group)
group = [shaft[j + 1]]
else:
group.append(shaft[j + 1])
groups.append(group)
group = [group for group in groups if i in group][0]
ts = ts[np.isin(shaft, group)]
shaft = np.array(group, dtype=int)
shafts.append(shaft)
shaft_ts.append(ts)
return shafts, shaft_ts
@verbose
def _interpolate_bads_seeg(
inst, exclude=None, tol_shaft=0.002, tol_spacing=1, verbose=None
):
if exclude is None:
exclude = list()
picks = pick_types(inst.info, meg=False, seeg=True, exclude=exclude)
inst.info._check_consistency()
bads_idx = np.isin(np.array(inst.ch_names)[picks], inst.info["bads"])
if len(picks) == 0 or bads_idx.sum() == 0:
return
pos = inst._get_channel_positions(picks)
# Make sure only sEEG are used
bads_idx_pos = bads_idx[picks]
shafts, shaft_ts = _find_seeg_electrode_shaft(
pos, tol_shaft=tol_shaft, tol_spacing=tol_spacing
)
# interpolate the bad contacts
picks_bad = list(np.where(bads_idx_pos)[0])
for shaft, ts in zip(shafts, shaft_ts):
bads_shaft = np.array([idx for idx in picks_bad if idx in shaft])
if bads_shaft.size == 0:
continue
goods_shaft = shaft[np.isin(shaft, bads_shaft, invert=True)]
if goods_shaft.size < 4: # cubic spline requires 3 channels
msg = "No shaft" if shaft.size < 4 else "Not enough good channels"
no_shaft_chs = " and ".join(np.array(inst.ch_names)[bads_shaft])
raise RuntimeError(
f"{msg} found in a line with {no_shaft_chs} "
"at least 3 good channels on the same line "
f"are required for interpolation, {goods_shaft.size} found. "
f"Dropping {no_shaft_chs} is recommended."
)
logger.debug(
f"Interpolating {np.array(inst.ch_names)[bads_shaft]} using "
f"data from {np.array(inst.ch_names)[goods_shaft]}"
)
bads_shaft_idx = np.where(np.isin(shaft, bads_shaft))[0]
goods_shaft_idx = np.where(~np.isin(shaft, bads_shaft))[0]
z = inst._data[..., goods_shaft, :]
is_epochs = z.ndim == 3
if is_epochs:
z = z.swapaxes(0, 1)
z = z.reshape(z.shape[0], -1)
y = np.arange(z.shape[-1])
out = RectBivariateSpline(x=ts[goods_shaft_idx], y=y, z=z)(
x=ts[bads_shaft_idx], y=y
)
if is_epochs:
out = out.reshape(bads_shaft.size, inst._data.shape[0], -1)
out = out.swapaxes(0, 1)
inst._data[..., bads_shaft, :] = out
|