import gradio as gr import numpy as np import matplotlib.pyplot as plt import sympy as sp x = sp.symbols('x') # Generate polynomial template def generate_polynomial_template(degree): terms = [f"a{i}*x^{degree - i}" for i in range(degree)] + [f"a{degree}"] return " + ".join(terms) + " = 0" # Solve and plot def solve_polynomial(degree, coeff_string): try: # Parse using sympy for support of pi, e, sqrt, I coeffs = [sp.sympify(s) for s in coeff_string.strip().split()] if len(coeffs) != degree + 1: return f"⚠️ Please enter exactly {degree + 1} coefficients.", None, None poly = sum([coeffs[i] * x**(degree - i) for i in range(degree + 1)]) simplified = sp.simplify(poly) # Factor step-by-step factored_steps = [] current_expr = simplified while True: factored = sp.factor(current_expr) if factored == current_expr: break factored_steps.append(factored) current_expr = factored roots = sp.solve(sp.Eq(simplified, 0), x) root_display = [] for i, r in enumerate(roots): r_simplified = sp.nsimplify(r, rational=True) root_display.append(f"r_{{{i+1}}} = {sp.latex(r_simplified)}") # Build steps steps_output = f"### 🧐 Polynomial Expression\n\n$$ {sp.latex(poly)} = 0 $$\n\n" steps_output += f"### ✏️ Simplified\n\n$$ {sp.latex(simplified)} = 0 $$\n\n" if factored_steps: steps_output += f"### 🪜 Step-by-Step Factorization\n\n" for i, step in enumerate(factored_steps, 1): steps_output += f"**Step {i}:** $$ {sp.latex(step)} = 0 $$\n\n" else: steps_output += f"### 🤷 No further factorization possible\n\n" steps_output += "### 🥮 Roots\n\n$$ " + " \\quad ".join(root_display) + " $$" # Plot f_lambdified = sp.lambdify(x, simplified, modules=["numpy"]) x_vals = np.linspace(-10, 10, 400) y_vals = f_lambdified(x_vals) fig, ax = plt.subplots(figsize=(6, 4)) ax.plot(x_vals, y_vals, label="Polynomial") ax.axhline(0, color='black', linewidth=0.5) ax.axvline(0, color='black', linewidth=0.5) ax.grid(True) ax.set_title("📈 Graph of the Polynomial") ax.set_xlabel("x") ax.set_ylabel("f(x)") # Plot real roots real_roots = [sp.N(r.evalf()) for r in roots if sp.im(r) == 0] for r in real_roots: ax.plot([float(r)], [0], 'ro', label="Real Root") ax.legend() return steps_output, fig, "" except Exception as e: return f"❌ Error: {e}", None, "" # Gradio UI def update_template(degree): return generate_polynomial_template(degree) with gr.Blocks() as demo: gr.Markdown("## 🔢 Polynomial Solver with Step-by-Step Factorization and Graph") with gr.Row(): degree_slider = gr.Slider(1, 8, value=3, step=1, label="Degree of Polynomial") template_display = gr.Textbox(label="Polynomial Template (Fill in Coefficients)", interactive=False) coeff_input = gr.Textbox(label="Enter Coefficients (space-separated, supports pi, e, sqrt(2), I)", placeholder="e.g. 1 -3 sqrt(2) -pi") steps_md = gr.Markdown() plot_output = gr.Plot() error_box = gr.Textbox(visible=False) with gr.Row(): solve_button = gr.Button("Plot Polynomial", variant="primary") degree_slider.change(fn=update_template, inputs=degree_slider, outputs=template_display) solve_button.click(fn=solve_polynomial, inputs=[degree_slider, coeff_input], outputs=[steps_md, plot_output, error_box]) demo.load(fn=update_template, inputs=degree_slider, outputs=template_display) demo.launch()