Beasto commited on
Commit
2a12758
·
1 Parent(s): bd5c6fd

Delete hand.xml

Browse files
Files changed (1) hide show
  1. hand.xml +0 -2125
hand.xml DELETED
@@ -1,2125 +0,0 @@
1
- <?xml version="1.0"?>
2
- <opencv_storage>
3
- <A_gest type_id="opencv-haar-classifier">
4
- <size>
5
- 24 24</size>
6
- <stages>
7
- <_>
8
- <!-- stage 0 -->
9
- <trees>
10
- <_>
11
- <!-- tree 0 -->
12
- <_>
13
- <!-- root node -->
14
- <feature>
15
- <rects>
16
- <_>
17
- 3 3 9 16 -1.</_>
18
- <_>
19
- 3 7 9 8 2.</_></rects>
20
- <tilted>0</tilted></feature>
21
- <threshold>-0.0223442204296589</threshold>
22
- <left_val>0.7737345099449158</left_val>
23
- <right_val>-0.9436557292938232</right_val></_></_>
24
- <_>
25
- <!-- tree 1 -->
26
- <_>
27
- <!-- root node -->
28
- <feature>
29
- <rects>
30
- <_>
31
- 0 9 12 5 -1.</_>
32
- <_>
33
- 6 9 6 5 2.</_></rects>
34
- <tilted>0</tilted></feature>
35
- <threshold>-9.3714958056807518e-003</threshold>
36
- <left_val>0.5525149106979370</left_val>
37
- <right_val>-0.9004204869270325</right_val></_></_></trees>
38
- <stage_threshold>-0.3911409080028534</stage_threshold>
39
- <parent>-1</parent>
40
- <next>-1</next></_>
41
- <_>
42
- <!-- stage 1 -->
43
- <trees>
44
- <_>
45
- <!-- tree 0 -->
46
- <_>
47
- <!-- root node -->
48
- <feature>
49
- <rects>
50
- <_>
51
- 12 14 12 10 -1.</_>
52
- <_>
53
- 12 14 6 5 2.</_>
54
- <_>
55
- 18 19 6 5 2.</_></rects>
56
- <tilted>0</tilted></feature>
57
- <threshold>0.0127444602549076</threshold>
58
- <left_val>-0.7241874933242798</left_val>
59
- <right_val>0.5557708144187927</right_val></_></_>
60
- <_>
61
- <!-- tree 1 -->
62
- <_>
63
- <!-- root node -->
64
- <feature>
65
- <rects>
66
- <_>
67
- 2 4 16 8 -1.</_>
68
- <_>
69
- 2 8 16 4 2.</_></rects>
70
- <tilted>0</tilted></feature>
71
- <threshold>-0.0203973893076181</threshold>
72
- <left_val>0.3255875110626221</left_val>
73
- <right_val>-0.9134256243705750</right_val></_></_>
74
- <_>
75
- <!-- tree 2 -->
76
- <_>
77
- <!-- root node -->
78
- <feature>
79
- <rects>
80
- <_>
81
- 9 6 15 14 -1.</_>
82
- <_>
83
- 9 13 15 7 2.</_></rects>
84
- <tilted>0</tilted></feature>
85
- <threshold>1.5015050303190947e-003</threshold>
86
- <left_val>-0.8422530293464661</left_val>
87
- <right_val>0.2950277030467987</right_val></_></_>
88
- <_>
89
- <!-- tree 3 -->
90
- <_>
91
- <!-- root node -->
92
- <feature>
93
- <rects>
94
- <_>
95
- 0 10 10 5 -1.</_>
96
- <_>
97
- 5 10 5 5 2.</_></rects>
98
- <tilted>0</tilted></feature>
99
- <threshold>-9.5540005713701248e-003</threshold>
100
- <left_val>0.2949278056621552</left_val>
101
- <right_val>-0.8186870813369751</right_val></_></_>
102
- <_>
103
- <!-- tree 4 -->
104
- <_>
105
- <!-- root node -->
106
- <feature>
107
- <rects>
108
- <_>
109
- 8 0 16 6 -1.</_>
110
- <_>
111
- 8 0 16 3 2.</_></rects>
112
- <tilted>1</tilted></feature>
113
- <threshold>-9.0454015880823135e-003</threshold>
114
- <left_val>-0.9253956079483032</left_val>
115
- <right_val>0.2449316978454590</right_val></_></_></trees>
116
- <stage_threshold>-0.8027257919311523</stage_threshold>
117
- <parent>0</parent>
118
- <next>-1</next></_>
119
- <_>
120
- <!-- stage 2 -->
121
- <trees>
122
- <_>
123
- <!-- tree 0 -->
124
- <_>
125
- <!-- root node -->
126
- <feature>
127
- <rects>
128
- <_>
129
- 11 9 9 6 -1.</_>
130
- <_>
131
- 14 12 3 6 3.</_></rects>
132
- <tilted>1</tilted></feature>
133
- <threshold>0.0339135192334652</threshold>
134
- <left_val>-0.6010565757751465</left_val>
135
- <right_val>0.5952491760253906</right_val></_></_>
136
- <_>
137
- <!-- tree 1 -->
138
- <_>
139
- <!-- root node -->
140
- <feature>
141
- <rects>
142
- <_>
143
- 15 1 8 10 -1.</_>
144
- <_>
145
- 15 6 8 5 2.</_></rects>
146
- <tilted>0</tilted></feature>
147
- <threshold>-6.3976310193538666e-003</threshold>
148
- <left_val>0.2902083992958069</left_val>
149
- <right_val>-0.9008722901344299</right_val></_></_>
150
- <_>
151
- <!-- tree 2 -->
152
- <_>
153
- <!-- root node -->
154
- <feature>
155
- <rects>
156
- <_>
157
- 12 23 12 1 -1.</_>
158
- <_>
159
- 18 23 6 1 2.</_></rects>
160
- <tilted>0</tilted></feature>
161
- <threshold>3.5964029375463724e-003</threshold>
162
- <left_val>-0.6108912825584412</left_val>
163
- <right_val>0.3585815131664276</right_val></_></_>
164
- <_>
165
- <!-- tree 3 -->
166
- <_>
167
- <!-- root node -->
168
- <feature>
169
- <rects>
170
- <_>
171
- 0 8 16 11 -1.</_>
172
- <_>
173
- 8 8 8 11 2.</_></rects>
174
- <tilted>0</tilted></feature>
175
- <threshold>3.1002631294541061e-004</threshold>
176
- <left_val>0.2521544992923737</left_val>
177
- <right_val>-0.9231098890304565</right_val></_></_></trees>
178
- <stage_threshold>-0.6695849895477295</stage_threshold>
179
- <parent>1</parent>
180
- <next>-1</next></_>
181
- <_>
182
- <!-- stage 3 -->
183
- <trees>
184
- <_>
185
- <!-- tree 0 -->
186
- <_>
187
- <!-- root node -->
188
- <feature>
189
- <rects>
190
- <_>
191
- 12 22 12 2 -1.</_>
192
- <_>
193
- 18 22 6 2 2.</_></rects>
194
- <tilted>0</tilted></feature>
195
- <threshold>8.9982077479362488e-003</threshold>
196
- <left_val>-0.6216139197349548</left_val>
197
- <right_val>0.5311666131019592</right_val></_></_>
198
- <_>
199
- <!-- tree 1 -->
200
- <_>
201
- <!-- root node -->
202
- <feature>
203
- <rects>
204
- <_>
205
- 6 7 10 5 -1.</_>
206
- <_>
207
- 6 7 5 5 2.</_></rects>
208
- <tilted>1</tilted></feature>
209
- <threshold>5.8961678296327591e-003</threshold>
210
- <left_val>0.3589088022708893</left_val>
211
- <right_val>-0.8741096854209900</right_val></_></_>
212
- <_>
213
- <!-- tree 2 -->
214
- <_>
215
- <!-- root node -->
216
- <feature>
217
- <rects>
218
- <_>
219
- 10 8 3 2 -1.</_>
220
- <_>
221
- 10 9 3 1 2.</_></rects>
222
- <tilted>0</tilted></feature>
223
- <threshold>-7.3489747592248023e-005</threshold>
224
- <left_val>0.2021690011024475</left_val>
225
- <right_val>-0.8340616226196289</right_val></_></_>
226
- <_>
227
- <!-- tree 3 -->
228
- <_>
229
- <!-- root node -->
230
- <feature>
231
- <rects>
232
- <_>
233
- 15 15 3 4 -1.</_>
234
- <_>
235
- 15 15 3 2 2.</_></rects>
236
- <tilted>1</tilted></feature>
237
- <threshold>-1.3183970004320145e-003</threshold>
238
- <left_val>-0.8218436241149902</left_val>
239
- <right_val>0.2309758067131043</right_val></_></_></trees>
240
- <stage_threshold>-0.9460288882255554</stage_threshold>
241
- <parent>2</parent>
242
- <next>-1</next></_>
243
- <_>
244
- <!-- stage 4 -->
245
- <trees>
246
- <_>
247
- <!-- tree 0 -->
248
- <_>
249
- <!-- root node -->
250
- <feature>
251
- <rects>
252
- <_>
253
- 4 18 20 6 -1.</_>
254
- <_>
255
- 4 18 10 3 2.</_>
256
- <_>
257
- 14 21 10 3 2.</_></rects>
258
- <tilted>0</tilted></feature>
259
- <threshold>5.8955969288945198e-003</threshold>
260
- <left_val>-0.7554979920387268</left_val>
261
- <right_val>0.3239434063434601</right_val></_></_>
262
- <_>
263
- <!-- tree 1 -->
264
- <_>
265
- <!-- root node -->
266
- <feature>
267
- <rects>
268
- <_>
269
- 3 1 20 14 -1.</_>
270
- <_>
271
- 3 1 10 7 2.</_>
272
- <_>
273
- 13 8 10 7 2.</_></rects>
274
- <tilted>0</tilted></feature>
275
- <threshold>8.6170788854360580e-003</threshold>
276
- <left_val>-0.7028874754905701</left_val>
277
- <right_val>0.2782224118709564</right_val></_></_>
278
- <_>
279
- <!-- tree 2 -->
280
- <_>
281
- <!-- root node -->
282
- <feature>
283
- <rects>
284
- <_>
285
- 2 11 3 9 -1.</_>
286
- <_>
287
- 3 14 1 3 9.</_></rects>
288
- <tilted>0</tilted></feature>
289
- <threshold>-1.5837070532143116e-003</threshold>
290
- <left_val>-0.7751926779747009</left_val>
291
- <right_val>0.2773326933383942</right_val></_></_>
292
- <_>
293
- <!-- tree 3 -->
294
- <_>
295
- <!-- root node -->
296
- <feature>
297
- <rects>
298
- <_>
299
- 0 4 12 20 -1.</_>
300
- <_>
301
- 0 4 6 10 2.</_>
302
- <_>
303
- 6 14 6 10 2.</_></rects>
304
- <tilted>0</tilted></feature>
305
- <threshold>7.9292394220829010e-003</threshold>
306
- <left_val>-0.7723438143730164</left_val>
307
- <right_val>0.2167312055826187</right_val></_></_>
308
- <_>
309
- <!-- tree 4 -->
310
- <_>
311
- <!-- root node -->
312
- <feature>
313
- <rects>
314
- <_>
315
- 16 15 6 2 -1.</_>
316
- <_>
317
- 16 15 6 1 2.</_></rects>
318
- <tilted>1</tilted></feature>
319
- <threshold>-1.4443190302699804e-003</threshold>
320
- <left_val>-0.8843228220939636</left_val>
321
- <right_val>0.2078661024570465</right_val></_></_>
322
- <_>
323
- <!-- tree 5 -->
324
- <_>
325
- <!-- root node -->
326
- <feature>
327
- <rects>
328
- <_>
329
- 11 8 7 2 -1.</_>
330
- <_>
331
- 11 9 7 1 2.</_></rects>
332
- <tilted>0</tilted></feature>
333
- <threshold>-4.8251380212605000e-004</threshold>
334
- <left_val>0.2337501049041748</left_val>
335
- <right_val>-0.6776664853096008</right_val></_></_>
336
- <_>
337
- <!-- tree 6 -->
338
- <_>
339
- <!-- root node -->
340
- <feature>
341
- <rects>
342
- <_>
343
- 20 15 4 6 -1.</_>
344
- <_>
345
- 22 15 2 6 2.</_></rects>
346
- <tilted>0</tilted></feature>
347
- <threshold>8.0077340826392174e-003</threshold>
348
- <left_val>-0.3731102049350739</left_val>
349
- <right_val>0.5163818001747131</right_val></_></_></trees>
350
- <stage_threshold>-1.0588489770889282</stage_threshold>
351
- <parent>3</parent>
352
- <next>-1</next></_>
353
- <_>
354
- <!-- stage 5 -->
355
- <trees>
356
- <_>
357
- <!-- tree 0 -->
358
- <_>
359
- <!-- root node -->
360
- <feature>
361
- <rects>
362
- <_>
363
- 14 19 1 2 -1.</_>
364
- <_>
365
- 14 20 1 1 2.</_></rects>
366
- <tilted>0</tilted></feature>
367
- <threshold>-5.8145709772361442e-005</threshold>
368
- <left_val>0.3404448032379150</left_val>
369
- <right_val>-0.6792302131652832</right_val></_></_>
370
- <_>
371
- <!-- tree 1 -->
372
- <_>
373
- <!-- root node -->
374
- <feature>
375
- <rects>
376
- <_>
377
- 0 6 2 7 -1.</_>
378
- <_>
379
- 1 6 1 7 2.</_></rects>
380
- <tilted>0</tilted></feature>
381
- <threshold>-1.1419489746913314e-003</threshold>
382
- <left_val>0.3598371148109436</left_val>
383
- <right_val>-0.5890597105026245</right_val></_></_>
384
- <_>
385
- <!-- tree 2 -->
386
- <_>
387
- <!-- root node -->
388
- <feature>
389
- <rects>
390
- <_>
391
- 8 0 10 2 -1.</_>
392
- <_>
393
- 8 0 5 2 2.</_></rects>
394
- <tilted>1</tilted></feature>
395
- <threshold>5.8654937893152237e-003</threshold>
396
- <left_val>-0.9622359871864319</left_val>
397
- <right_val>0.1721540987491608</right_val></_></_>
398
- <_>
399
- <!-- tree 3 -->
400
- <_>
401
- <!-- root node -->
402
- <feature>
403
- <rects>
404
- <_>
405
- 5 8 16 7 -1.</_>
406
- <_>
407
- 13 8 8 7 2.</_></rects>
408
- <tilted>0</tilted></feature>
409
- <threshold>1.1028599692508578e-004</threshold>
410
- <left_val>-0.7706093192100525</left_val>
411
- <right_val>0.2389315962791443</right_val></_></_>
412
- <_>
413
- <!-- tree 4 -->
414
- <_>
415
- <!-- root node -->
416
- <feature>
417
- <rects>
418
- <_>
419
- 2 9 14 12 -1.</_>
420
- <_>
421
- 9 9 7 12 2.</_></rects>
422
- <tilted>0</tilted></feature>
423
- <threshold>0.0145609602332115</threshold>
424
- <left_val>0.1552716046571732</left_val>
425
- <right_val>-0.8984915018081665</right_val></_></_></trees>
426
- <stage_threshold>-0.7966647148132324</stage_threshold>
427
- <parent>4</parent>
428
- <next>-1</next></_>
429
- <_>
430
- <!-- stage 6 -->
431
- <trees>
432
- <_>
433
- <!-- tree 0 -->
434
- <_>
435
- <!-- root node -->
436
- <feature>
437
- <rects>
438
- <_>
439
- 2 11 6 10 -1.</_>
440
- <_>
441
- 2 11 3 5 2.</_>
442
- <_>
443
- 5 16 3 5 2.</_></rects>
444
- <tilted>0</tilted></feature>
445
- <threshold>3.9159432053565979e-003</threshold>
446
- <left_val>-0.7370954751968384</left_val>
447
- <right_val>0.2886646091938019</right_val></_></_>
448
- <_>
449
- <!-- tree 1 -->
450
- <_>
451
- <!-- root node -->
452
- <feature>
453
- <rects>
454
- <_>
455
- 0 3 4 9 -1.</_>
456
- <_>
457
- 2 3 2 9 2.</_></rects>
458
- <tilted>0</tilted></feature>
459
- <threshold>-4.6402178704738617e-003</threshold>
460
- <left_val>0.3129867017269135</left_val>
461
- <right_val>-0.5601897239685059</right_val></_></_>
462
- <_>
463
- <!-- tree 2 -->
464
- <_>
465
- <!-- root node -->
466
- <feature>
467
- <rects>
468
- <_>
469
- 7 10 10 8 -1.</_>
470
- <_>
471
- 12 10 5 8 2.</_></rects>
472
- <tilted>0</tilted></feature>
473
- <threshold>-4.2656981386244297e-003</threshold>
474
- <left_val>-0.8286197781562805</left_val>
475
- <right_val>0.2132489979267120</right_val></_></_>
476
- <_>
477
- <!-- tree 3 -->
478
- <_>
479
- <!-- root node -->
480
- <feature>
481
- <rects>
482
- <_>
483
- 8 16 16 8 -1.</_>
484
- <_>
485
- 8 16 8 4 2.</_>
486
- <_>
487
- 16 20 8 4 2.</_></rects>
488
- <tilted>0</tilted></feature>
489
- <threshold>7.9925684258341789e-003</threshold>
490
- <left_val>-0.6752548217773438</left_val>
491
- <right_val>0.2340082973241806</right_val></_></_>
492
- <_>
493
- <!-- tree 4 -->
494
- <_>
495
- <!-- root node -->
496
- <feature>
497
- <rects>
498
- <_>
499
- 4 13 6 3 -1.</_>
500
- <_>
501
- 6 15 2 3 3.</_></rects>
502
- <tilted>1</tilted></feature>
503
- <threshold>-6.2725958414375782e-003</threshold>
504
- <left_val>-0.7839264273643494</left_val>
505
- <right_val>0.2019792944192886</right_val></_></_>
506
- <_>
507
- <!-- tree 5 -->
508
- <_>
509
- <!-- root node -->
510
- <feature>
511
- <rects>
512
- <_>
513
- 13 3 11 18 -1.</_>
514
- <_>
515
- 13 12 11 9 2.</_></rects>
516
- <tilted>0</tilted></feature>
517
- <threshold>-0.0288890209048986</threshold>
518
- <left_val>-0.7889788150787354</left_val>
519
- <right_val>0.1651563942432404</right_val></_></_>
520
- <_>
521
- <!-- tree 6 -->
522
- <_>
523
- <!-- root node -->
524
- <feature>
525
- <rects>
526
- <_>
527
- 10 7 5 4 -1.</_>
528
- <_>
529
- 10 9 5 2 2.</_></rects>
530
- <tilted>0</tilted></feature>
531
- <threshold>-1.5122259501367807e-003</threshold>
532
- <left_val>0.1971655040979385</left_val>
533
- <right_val>-0.7596625089645386</right_val></_></_>
534
- <_>
535
- <!-- tree 7 -->
536
- <_>
537
- <!-- root node -->
538
- <feature>
539
- <rects>
540
- <_>
541
- 11 17 6 3 -1.</_>
542
- <_>
543
- 13 18 2 1 9.</_></rects>
544
- <tilted>0</tilted></feature>
545
- <threshold>4.3620187789201736e-003</threshold>
546
- <left_val>0.1344974040985107</left_val>
547
- <right_val>-0.9309347271919251</right_val></_></_>
548
- <_>
549
- <!-- tree 8 -->
550
- <_>
551
- <!-- root node -->
552
- <feature>
553
- <rects>
554
- <_>
555
- 12 7 12 17 -1.</_>
556
- <_>
557
- 15 7 6 17 2.</_></rects>
558
- <tilted>0</tilted></feature>
559
- <threshold>-3.2192119397222996e-003</threshold>
560
- <left_val>0.2437663972377777</left_val>
561
- <right_val>-0.6044244170188904</right_val></_></_></trees>
562
- <stage_threshold>-1.0856239795684814</stage_threshold>
563
- <parent>5</parent>
564
- <next>-1</next></_>
565
- <_>
566
- <!-- stage 7 -->
567
- <trees>
568
- <_>
569
- <!-- tree 0 -->
570
- <_>
571
- <!-- root node -->
572
- <feature>
573
- <rects>
574
- <_>
575
- 14 18 1 2 -1.</_>
576
- <_>
577
- 14 19 1 1 2.</_></rects>
578
- <tilted>0</tilted></feature>
579
- <threshold>-4.3883759644813836e-005</threshold>
580
- <left_val>0.3130159080028534</left_val>
581
- <right_val>-0.6793813705444336</right_val></_></_>
582
- <_>
583
- <!-- tree 1 -->
584
- <_>
585
- <!-- root node -->
586
- <feature>
587
- <rects>
588
- <_>
589
- 3 11 6 12 -1.</_>
590
- <_>
591
- 3 11 3 6 2.</_>
592
- <_>
593
- 6 17 3 6 2.</_></rects>
594
- <tilted>0</tilted></feature>
595
- <threshold>6.2022951897233725e-004</threshold>
596
- <left_val>-0.8423554897308350</left_val>
597
- <right_val>0.1801322996616364</right_val></_></_>
598
- <_>
599
- <!-- tree 2 -->
600
- <_>
601
- <!-- root node -->
602
- <feature>
603
- <rects>
604
- <_>
605
- 22 13 2 7 -1.</_>
606
- <_>
607
- 23 13 1 7 2.</_></rects>
608
- <tilted>0</tilted></feature>
609
- <threshold>1.0972339659929276e-003</threshold>
610
- <left_val>-0.4771775007247925</left_val>
611
- <right_val>0.3450973927974701</right_val></_></_>
612
- <_>
613
- <!-- tree 3 -->
614
- <_>
615
- <!-- root node -->
616
- <feature>
617
- <rects>
618
- <_>
619
- 16 15 1 2 -1.</_>
620
- <_>
621
- 16 15 1 1 2.</_></rects>
622
- <tilted>1</tilted></feature>
623
- <threshold>-2.6349889230914414e-004</threshold>
624
- <left_val>-0.7629253864288330</left_val>
625
- <right_val>0.2153723984956741</right_val></_></_>
626
- <_>
627
- <!-- tree 4 -->
628
- <_>
629
- <!-- root node -->
630
- <feature>
631
- <rects>
632
- <_>
633
- 0 5 22 18 -1.</_>
634
- <_>
635
- 0 14 22 9 2.</_></rects>
636
- <tilted>0</tilted></feature>
637
- <threshold>-0.0542980991303921</threshold>
638
- <left_val>-0.8849576711654663</left_val>
639
- <right_val>0.1730009019374847</right_val></_></_>
640
- <_>
641
- <!-- tree 5 -->
642
- <_>
643
- <!-- root node -->
644
- <feature>
645
- <rects>
646
- <_>
647
- 13 19 3 3 -1.</_>
648
- <_>
649
- 14 20 1 1 9.</_></rects>
650
- <tilted>0</tilted></feature>
651
- <threshold>-2.1721520461142063e-003</threshold>
652
- <left_val>-0.8367894887924194</left_val>
653
- <right_val>0.1638997048139572</right_val></_></_>
654
- <_>
655
- <!-- tree 6 -->
656
- <_>
657
- <!-- root node -->
658
- <feature>
659
- <rects>
660
- <_>
661
- 15 0 5 2 -1.</_>
662
- <_>
663
- 15 1 5 1 2.</_></rects>
664
- <tilted>0</tilted></feature>
665
- <threshold>-1.6347350319847465e-003</threshold>
666
- <left_val>0.3731253147125244</left_val>
667
- <right_val>-0.4079189002513886</right_val></_></_>
668
- <_>
669
- <!-- tree 7 -->
670
- <_>
671
- <!-- root node -->
672
- <feature>
673
- <rects>
674
- <_>
675
- 5 15 4 5 -1.</_>
676
- <_>
677
- 5 15 2 5 2.</_></rects>
678
- <tilted>1</tilted></feature>
679
- <threshold>-2.9642079025506973e-003</threshold>
680
- <left_val>-0.7973154187202454</left_val>
681
- <right_val>0.1886135041713715</right_val></_></_></trees>
682
- <stage_threshold>-0.8849025964736939</stage_threshold>
683
- <parent>6</parent>
684
- <next>-1</next></_>
685
- <_>
686
- <!-- stage 8 -->
687
- <trees>
688
- <_>
689
- <!-- tree 0 -->
690
- <_>
691
- <!-- root node -->
692
- <feature>
693
- <rects>
694
- <_>
695
- 12 16 2 8 -1.</_>
696
- <_>
697
- 12 20 2 4 2.</_></rects>
698
- <tilted>0</tilted></feature>
699
- <threshold>-2.6686030905693769e-003</threshold>
700
- <left_val>0.2950133979320526</left_val>
701
- <right_val>-0.6534382104873657</right_val></_></_>
702
- <_>
703
- <!-- tree 1 -->
704
- <_>
705
- <!-- root node -->
706
- <feature>
707
- <rects>
708
- <_>
709
- 0 18 2 4 -1.</_>
710
- <_>
711
- 1 18 1 4 2.</_></rects>
712
- <tilted>0</tilted></feature>
713
- <threshold>-7.9764809925109148e-004</threshold>
714
- <left_val>0.3938421010971069</left_val>
715
- <right_val>-0.4435322880744934</right_val></_></_>
716
- <_>
717
- <!-- tree 2 -->
718
- <_>
719
- <!-- root node -->
720
- <feature>
721
- <rects>
722
- <_>
723
- 8 3 12 4 -1.</_>
724
- <_>
725
- 8 3 12 2 2.</_></rects>
726
- <tilted>1</tilted></feature>
727
- <threshold>-5.1704752258956432e-003</threshold>
728
- <left_val>-0.7686781883239746</left_val>
729
- <right_val>0.2110860049724579</right_val></_></_>
730
- <_>
731
- <!-- tree 3 -->
732
- <_>
733
- <!-- root node -->
734
- <feature>
735
- <rects>
736
- <_>
737
- 6 17 3 2 -1.</_>
738
- <_>
739
- 7 18 1 2 3.</_></rects>
740
- <tilted>1</tilted></feature>
741
- <threshold>-1.5294969780370593e-003</threshold>
742
- <left_val>-0.8944628238677979</left_val>
743
- <right_val>0.1583137959241867</right_val></_></_>
744
- <_>
745
- <!-- tree 4 -->
746
- <_>
747
- <!-- root node -->
748
- <feature>
749
- <rects>
750
- <_>
751
- 1 0 10 6 -1.</_>
752
- <_>
753
- 6 0 5 6 2.</_></rects>
754
- <tilted>0</tilted></feature>
755
- <threshold>-6.3780639320611954e-003</threshold>
756
- <left_val>0.3393965959548950</left_val>
757
- <right_val>-0.4529472887516022</right_val></_></_>
758
- <_>
759
- <!-- tree 5 -->
760
- <_>
761
- <!-- root node -->
762
- <feature>
763
- <rects>
764
- <_>
765
- 12 9 3 2 -1.</_>
766
- <_>
767
- 12 10 3 1 2.</_></rects>
768
- <tilted>0</tilted></feature>
769
- <threshold>-2.6243639877066016e-004</threshold>
770
- <left_val>0.2850841879844666</left_val>
771
- <right_val>-0.4983885884284973</right_val></_></_>
772
- <_>
773
- <!-- tree 6 -->
774
- <_>
775
- <!-- root node -->
776
- <feature>
777
- <rects>
778
- <_>
779
- 11 1 12 11 -1.</_>
780
- <_>
781
- 11 1 6 11 2.</_></rects>
782
- <tilted>1</tilted></feature>
783
- <threshold>0.0361888185143471</threshold>
784
- <left_val>0.2132015973329544</left_val>
785
- <right_val>-0.7394319772720337</right_val></_></_>
786
- <_>
787
- <!-- tree 7 -->
788
- <_>
789
- <!-- root node -->
790
- <feature>
791
- <rects>
792
- <_>
793
- 21 13 2 10 -1.</_>
794
- <_>
795
- 21 18 2 5 2.</_></rects>
796
- <tilted>0</tilted></feature>
797
- <threshold>7.7682351693511009e-003</threshold>
798
- <left_val>-0.4052247107028961</left_val>
799
- <right_val>0.4112299978733063</right_val></_></_>
800
- <_>
801
- <!-- tree 8 -->
802
- <_>
803
- <!-- root node -->
804
- <feature>
805
- <rects>
806
- <_>
807
- 15 16 1 2 -1.</_>
808
- <_>
809
- 15 16 1 1 2.</_></rects>
810
- <tilted>1</tilted></feature>
811
- <threshold>-2.3738530580885708e-004</threshold>
812
- <left_val>-0.7753518819808960</left_val>
813
- <right_val>0.1911296993494034</right_val></_></_>
814
- <_>
815
- <!-- tree 9 -->
816
- <_>
817
- <!-- root node -->
818
- <feature>
819
- <rects>
820
- <_>
821
- 0 11 8 8 -1.</_>
822
- <_>
823
- 0 11 4 4 2.</_>
824
- <_>
825
- 4 15 4 4 2.</_></rects>
826
- <tilted>0</tilted></feature>
827
- <threshold>4.2231627739965916e-003</threshold>
828
- <left_val>-0.7229338884353638</left_val>
829
- <right_val>0.1739158928394318</right_val></_></_></trees>
830
- <stage_threshold>-1.0250910520553589</stage_threshold>
831
- <parent>7</parent>
832
- <next>-1</next></_>
833
- <_>
834
- <!-- stage 9 -->
835
- <trees>
836
- <_>
837
- <!-- tree 0 -->
838
- <_>
839
- <!-- root node -->
840
- <feature>
841
- <rects>
842
- <_>
843
- 11 11 7 6 -1.</_>
844
- <_>
845
- 11 13 7 2 3.</_></rects>
846
- <tilted>0</tilted></feature>
847
- <threshold>2.9137390665709972e-003</threshold>
848
- <left_val>-0.5349493026733398</left_val>
849
- <right_val>0.3337337076663971</right_val></_></_>
850
- <_>
851
- <!-- tree 1 -->
852
- <_>
853
- <!-- root node -->
854
- <feature>
855
- <rects>
856
- <_>
857
- 12 17 3 3 -1.</_>
858
- <_>
859
- 13 18 1 1 9.</_></rects>
860
- <tilted>0</tilted></feature>
861
- <threshold>-1.6270120395347476e-003</threshold>
862
- <left_val>-0.8804692029953003</left_val>
863
- <right_val>0.1722342073917389</right_val></_></_>
864
- <_>
865
- <!-- tree 2 -->
866
- <_>
867
- <!-- root node -->
868
- <feature>
869
- <rects>
870
- <_>
871
- 0 9 2 2 -1.</_>
872
- <_>
873
- 1 9 1 2 2.</_></rects>
874
- <tilted>0</tilted></feature>
875
- <threshold>-2.9037619242444634e-004</threshold>
876
- <left_val>0.2734786868095398</left_val>
877
- <right_val>-0.5733091235160828</right_val></_></_>
878
- <_>
879
- <!-- tree 3 -->
880
- <_>
881
- <!-- root node -->
882
- <feature>
883
- <rects>
884
- <_>
885
- 13 17 1 2 -1.</_>
886
- <_>
887
- 13 18 1 1 2.</_></rects>
888
- <tilted>0</tilted></feature>
889
- <threshold>-1.4552129869116470e-005</threshold>
890
- <left_val>0.2491019070148468</left_val>
891
- <right_val>-0.5995762944221497</right_val></_></_>
892
- <_>
893
- <!-- tree 4 -->
894
- <_>
895
- <!-- root node -->
896
- <feature>
897
- <rects>
898
- <_>
899
- 7 0 17 18 -1.</_>
900
- <_>
901
- 7 9 17 9 2.</_></rects>
902
- <tilted>0</tilted></feature>
903
- <threshold>0.0141834802925587</threshold>
904
- <left_val>0.1507173925638199</left_val>
905
- <right_val>-0.8961830139160156</right_val></_></_>
906
- <_>
907
- <!-- tree 5 -->
908
- <_>
909
- <!-- root node -->
910
- <feature>
911
- <rects>
912
- <_>
913
- 8 11 8 2 -1.</_>
914
- <_>
915
- 8 11 8 1 2.</_></rects>
916
- <tilted>1</tilted></feature>
917
- <threshold>-5.8600129705155268e-005</threshold>
918
- <left_val>0.1771630048751831</left_val>
919
- <right_val>-0.7106314897537231</right_val></_></_>
920
- <_>
921
- <!-- tree 6 -->
922
- <_>
923
- <!-- root node -->
924
- <feature>
925
- <rects>
926
- <_>
927
- 18 17 6 7 -1.</_>
928
- <_>
929
- 21 17 3 7 2.</_></rects>
930
- <tilted>0</tilted></feature>
931
- <threshold>7.3492531664669514e-003</threshold>
932
- <left_val>-0.5106546878814697</left_val>
933
- <right_val>0.2574213147163391</right_val></_></_>
934
- <_>
935
- <!-- tree 7 -->
936
- <_>
937
- <!-- root node -->
938
- <feature>
939
- <rects>
940
- <_>
941
- 2 19 8 1 -1.</_>
942
- <_>
943
- 6 19 4 1 2.</_></rects>
944
- <tilted>0</tilted></feature>
945
- <threshold>-1.7738100141286850e-003</threshold>
946
- <left_val>-0.8705360293388367</left_val>
947
- <right_val>0.1460683941841126</right_val></_></_></trees>
948
- <stage_threshold>-0.9740471243858337</stage_threshold>
949
- <parent>8</parent>
950
- <next>-1</next></_>
951
- <_>
952
- <!-- stage 10 -->
953
- <trees>
954
- <_>
955
- <!-- tree 0 -->
956
- <_>
957
- <!-- root node -->
958
- <feature>
959
- <rects>
960
- <_>
961
- 12 10 10 6 -1.</_>
962
- <_>
963
- 12 10 5 3 2.</_>
964
- <_>
965
- 17 13 5 3 2.</_></rects>
966
- <tilted>0</tilted></feature>
967
- <threshold>-8.5521116852760315e-003</threshold>
968
- <left_val>0.3413020968437195</left_val>
969
- <right_val>-0.4556924998760223</right_val></_></_>
970
- <_>
971
- <!-- tree 1 -->
972
- <_>
973
- <!-- root node -->
974
- <feature>
975
- <rects>
976
- <_>
977
- 5 20 18 4 -1.</_>
978
- <_>
979
- 5 20 9 2 2.</_>
980
- <_>
981
- 14 22 9 2 2.</_></rects>
982
- <tilted>0</tilted></feature>
983
- <threshold>2.9570560436695814e-003</threshold>
984
- <left_val>-0.5616099834442139</left_val>
985
- <right_val>0.2246744036674500</right_val></_></_>
986
- <_>
987
- <!-- tree 2 -->
988
- <_>
989
- <!-- root node -->
990
- <feature>
991
- <rects>
992
- <_>
993
- 1 10 22 5 -1.</_>
994
- <_>
995
- 12 10 11 5 2.</_></rects>
996
- <tilted>0</tilted></feature>
997
- <threshold>-0.0195402801036835</threshold>
998
- <left_val>-0.8423789739608765</left_val>
999
- <right_val>0.1363316029310226</right_val></_></_>
1000
- <_>
1001
- <!-- tree 3 -->
1002
- <_>
1003
- <!-- root node -->
1004
- <feature>
1005
- <rects>
1006
- <_>
1007
- 1 11 12 1 -1.</_>
1008
- <_>
1009
- 1 11 6 1 2.</_></rects>
1010
- <tilted>1</tilted></feature>
1011
- <threshold>-3.2073149923235178e-003</threshold>
1012
- <left_val>-0.7569847702980042</left_val>
1013
- <right_val>0.1883326023817062</right_val></_></_>
1014
- <_>
1015
- <!-- tree 4 -->
1016
- <_>
1017
- <!-- root node -->
1018
- <feature>
1019
- <rects>
1020
- <_>
1021
- 12 0 12 24 -1.</_>
1022
- <_>
1023
- 12 6 12 12 2.</_></rects>
1024
- <tilted>0</tilted></feature>
1025
- <threshold>-8.4488727152347565e-003</threshold>
1026
- <left_val>0.1382011026144028</left_val>
1027
- <right_val>-0.8026102185249329</right_val></_></_>
1028
- <_>
1029
- <!-- tree 5 -->
1030
- <_>
1031
- <!-- root node -->
1032
- <feature>
1033
- <rects>
1034
- <_>
1035
- 4 15 5 6 -1.</_>
1036
- <_>
1037
- 4 17 5 2 3.</_></rects>
1038
- <tilted>0</tilted></feature>
1039
- <threshold>1.1350389831932262e-004</threshold>
1040
- <left_val>-0.7027189135551453</left_val>
1041
- <right_val>0.1435786038637161</right_val></_></_>
1042
- <_>
1043
- <!-- tree 6 -->
1044
- <_>
1045
- <!-- root node -->
1046
- <feature>
1047
- <rects>
1048
- <_>
1049
- 12 2 6 4 -1.</_>
1050
- <_>
1051
- 14 4 2 4 3.</_></rects>
1052
- <tilted>1</tilted></feature>
1053
- <threshold>-5.8187649119645357e-004</threshold>
1054
- <left_val>-0.4507982134819031</left_val>
1055
- <right_val>0.2510882019996643</right_val></_></_>
1056
- <_>
1057
- <!-- tree 7 -->
1058
- <_>
1059
- <!-- root node -->
1060
- <feature>
1061
- <rects>
1062
- <_>
1063
- 0 7 2 17 -1.</_>
1064
- <_>
1065
- 1 7 1 17 2.</_></rects>
1066
- <tilted>0</tilted></feature>
1067
- <threshold>-0.0161978900432587</threshold>
1068
- <left_val>0.6447368860244751</left_val>
1069
- <right_val>-0.2079977989196777</right_val></_></_>
1070
- <_>
1071
- <!-- tree 8 -->
1072
- <_>
1073
- <!-- root node -->
1074
- <feature>
1075
- <rects>
1076
- <_>
1077
- 13 15 3 9 -1.</_>
1078
- <_>
1079
- 14 15 1 9 3.</_></rects>
1080
- <tilted>0</tilted></feature>
1081
- <threshold>6.6894508199766278e-004</threshold>
1082
- <left_val>0.1998561024665833</left_val>
1083
- <right_val>-0.7483944892883301</right_val></_></_>
1084
- <_>
1085
- <!-- tree 9 -->
1086
- <_>
1087
- <!-- root node -->
1088
- <feature>
1089
- <rects>
1090
- <_>
1091
- 13 18 3 3 -1.</_>
1092
- <_>
1093
- 14 19 1 1 9.</_></rects>
1094
- <tilted>0</tilted></feature>
1095
- <threshold>-1.8372290069237351e-003</threshold>
1096
- <left_val>-0.8788912892341614</left_val>
1097
- <right_val>0.1146014034748077</right_val></_></_>
1098
- <_>
1099
- <!-- tree 10 -->
1100
- <_>
1101
- <!-- root node -->
1102
- <feature>
1103
- <rects>
1104
- <_>
1105
- 17 17 1 2 -1.</_>
1106
- <_>
1107
- 17 18 1 1 2.</_></rects>
1108
- <tilted>0</tilted></feature>
1109
- <threshold>-4.3397278204793110e-005</threshold>
1110
- <left_val>0.2129840999841690</left_val>
1111
- <right_val>-0.5028128027915955</right_val></_></_></trees>
1112
- <stage_threshold>-1.4024209976196289</stage_threshold>
1113
- <parent>9</parent>
1114
- <next>-1</next></_>
1115
- <_>
1116
- <!-- stage 11 -->
1117
- <trees>
1118
- <_>
1119
- <!-- tree 0 -->
1120
- <_>
1121
- <!-- root node -->
1122
- <feature>
1123
- <rects>
1124
- <_>
1125
- 10 11 4 12 -1.</_>
1126
- <_>
1127
- 10 11 2 6 2.</_>
1128
- <_>
1129
- 12 17 2 6 2.</_></rects>
1130
- <tilted>0</tilted></feature>
1131
- <threshold>-2.0713880658149719e-003</threshold>
1132
- <left_val>0.2486661970615387</left_val>
1133
- <right_val>-0.5756726861000061</right_val></_></_>
1134
- <_>
1135
- <!-- tree 1 -->
1136
- <_>
1137
- <!-- root node -->
1138
- <feature>
1139
- <rects>
1140
- <_>
1141
- 12 23 12 1 -1.</_>
1142
- <_>
1143
- 18 23 6 1 2.</_></rects>
1144
- <tilted>0</tilted></feature>
1145
- <threshold>3.6768750287592411e-003</threshold>
1146
- <left_val>-0.5755078196525574</left_val>
1147
- <right_val>0.2280506044626236</right_val></_></_>
1148
- <_>
1149
- <!-- tree 2 -->
1150
- <_>
1151
- <!-- root node -->
1152
- <feature>
1153
- <rects>
1154
- <_>
1155
- 13 10 3 4 -1.</_>
1156
- <_>
1157
- 13 10 3 2 2.</_></rects>
1158
- <tilted>1</tilted></feature>
1159
- <threshold>-3.0887479078955948e-004</threshold>
1160
- <left_val>0.2362288981676102</left_val>
1161
- <right_val>-0.6454687118530273</right_val></_></_>
1162
- <_>
1163
- <!-- tree 3 -->
1164
- <_>
1165
- <!-- root node -->
1166
- <feature>
1167
- <rects>
1168
- <_>
1169
- 0 0 24 24 -1.</_>
1170
- <_>
1171
- 0 0 12 12 2.</_>
1172
- <_>
1173
- 12 12 12 12 2.</_></rects>
1174
- <tilted>0</tilted></feature>
1175
- <threshold>-0.0257820300757885</threshold>
1176
- <left_val>-0.7496209144592285</left_val>
1177
- <right_val>0.1617882996797562</right_val></_></_>
1178
- <_>
1179
- <!-- tree 4 -->
1180
- <_>
1181
- <!-- root node -->
1182
- <feature>
1183
- <rects>
1184
- <_>
1185
- 2 10 2 6 -1.</_>
1186
- <_>
1187
- 2 13 2 3 2.</_></rects>
1188
- <tilted>0</tilted></feature>
1189
- <threshold>-1.2850989587605000e-003</threshold>
1190
- <left_val>-0.7813286781311035</left_val>
1191
- <right_val>0.1440877020359039</right_val></_></_>
1192
- <_>
1193
- <!-- tree 5 -->
1194
- <_>
1195
- <!-- root node -->
1196
- <feature>
1197
- <rects>
1198
- <_>
1199
- 0 11 2 6 -1.</_>
1200
- <_>
1201
- 0 14 2 3 2.</_></rects>
1202
- <tilted>0</tilted></feature>
1203
- <threshold>3.3493789378553629e-003</threshold>
1204
- <left_val>0.1375873982906342</left_val>
1205
- <right_val>-0.7505543231964111</right_val></_></_>
1206
- <_>
1207
- <!-- tree 6 -->
1208
- <_>
1209
- <!-- root node -->
1210
- <feature>
1211
- <rects>
1212
- <_>
1213
- 0 1 24 1 -1.</_>
1214
- <_>
1215
- 8 1 8 1 3.</_></rects>
1216
- <tilted>0</tilted></feature>
1217
- <threshold>-2.6788329705595970e-003</threshold>
1218
- <left_val>0.2596372067928314</left_val>
1219
- <right_val>-0.4255296885967255</right_val></_></_>
1220
- <_>
1221
- <!-- tree 7 -->
1222
- <_>
1223
- <!-- root node -->
1224
- <feature>
1225
- <rects>
1226
- <_>
1227
- 13 7 4 2 -1.</_>
1228
- <_>
1229
- 13 8 4 1 2.</_></rects>
1230
- <tilted>0</tilted></feature>
1231
- <threshold>-2.8834199838456698e-005</threshold>
1232
- <left_val>0.1635348945856094</left_val>
1233
- <right_val>-0.7050843238830566</right_val></_></_>
1234
- <_>
1235
- <!-- tree 8 -->
1236
- <_>
1237
- <!-- root node -->
1238
- <feature>
1239
- <rects>
1240
- <_>
1241
- 0 13 3 10 -1.</_>
1242
- <_>
1243
- 1 13 1 10 3.</_></rects>
1244
- <tilted>0</tilted></feature>
1245
- <threshold>-1.6196980141103268e-003</threshold>
1246
- <left_val>0.3419960141181946</left_val>
1247
- <right_val>-0.3415850102901459</right_val></_></_>
1248
- <_>
1249
- <!-- tree 9 -->
1250
- <_>
1251
- <!-- root node -->
1252
- <feature>
1253
- <rects>
1254
- <_>
1255
- 1 10 10 10 -1.</_>
1256
- <_>
1257
- 6 10 5 10 2.</_></rects>
1258
- <tilted>0</tilted></feature>
1259
- <threshold>1.0517919436097145e-003</threshold>
1260
- <left_val>0.1479195058345795</left_val>
1261
- <right_val>-0.7929052114486694</right_val></_></_>
1262
- <_>
1263
- <!-- tree 10 -->
1264
- <_>
1265
- <!-- root node -->
1266
- <feature>
1267
- <rects>
1268
- <_>
1269
- 9 0 4 6 -1.</_>
1270
- <_>
1271
- 9 0 4 3 2.</_></rects>
1272
- <tilted>1</tilted></feature>
1273
- <threshold>-2.4886541068553925e-003</threshold>
1274
- <left_val>-0.8937227129936218</left_val>
1275
- <right_val>0.1043419018387795</right_val></_></_></trees>
1276
- <stage_threshold>-1.1141099929809570</stage_threshold>
1277
- <parent>10</parent>
1278
- <next>-1</next></_>
1279
- <_>
1280
- <!-- stage 12 -->
1281
- <trees>
1282
- <_>
1283
- <!-- tree 0 -->
1284
- <_>
1285
- <!-- root node -->
1286
- <feature>
1287
- <rects>
1288
- <_>
1289
- 16 18 1 2 -1.</_>
1290
- <_>
1291
- 16 19 1 1 2.</_></rects>
1292
- <tilted>0</tilted></feature>
1293
- <threshold>-5.7590808864915743e-005</threshold>
1294
- <left_val>0.2734906971454620</left_val>
1295
- <right_val>-0.6426038742065430</right_val></_></_>
1296
- <_>
1297
- <!-- tree 1 -->
1298
- <_>
1299
- <!-- root node -->
1300
- <feature>
1301
- <rects>
1302
- <_>
1303
- 21 14 2 8 -1.</_>
1304
- <_>
1305
- 22 14 1 8 2.</_></rects>
1306
- <tilted>0</tilted></feature>
1307
- <threshold>7.1206100983545184e-004</threshold>
1308
- <left_val>-0.5435984134674072</left_val>
1309
- <right_val>0.2552855014801025</right_val></_></_>
1310
- <_>
1311
- <!-- tree 2 -->
1312
- <_>
1313
- <!-- root node -->
1314
- <feature>
1315
- <rects>
1316
- <_>
1317
- 0 7 21 9 -1.</_>
1318
- <_>
1319
- 7 10 7 3 9.</_></rects>
1320
- <tilted>0</tilted></feature>
1321
- <threshold>-0.3888005912303925</threshold>
1322
- <left_val>0.6930956840515137</left_val>
1323
- <right_val>-0.1862079948186874</right_val></_></_>
1324
- <_>
1325
- <!-- tree 3 -->
1326
- <_>
1327
- <!-- root node -->
1328
- <feature>
1329
- <rects>
1330
- <_>
1331
- 16 16 1 4 -1.</_>
1332
- <_>
1333
- 16 17 1 2 2.</_></rects>
1334
- <tilted>0</tilted></feature>
1335
- <threshold>2.5288251345045865e-004</threshold>
1336
- <left_val>0.2914173901081085</left_val>
1337
- <right_val>-0.5620415806770325</right_val></_></_>
1338
- <_>
1339
- <!-- tree 4 -->
1340
- <_>
1341
- <!-- root node -->
1342
- <feature>
1343
- <rects>
1344
- <_>
1345
- 19 15 2 6 -1.</_>
1346
- <_>
1347
- 17 17 2 2 3.</_></rects>
1348
- <tilted>1</tilted></feature>
1349
- <threshold>-2.1006830502301455e-003</threshold>
1350
- <left_val>-0.6822040081024170</left_val>
1351
- <right_val>0.1185996010899544</right_val></_></_>
1352
- <_>
1353
- <!-- tree 5 -->
1354
- <_>
1355
- <!-- root node -->
1356
- <feature>
1357
- <rects>
1358
- <_>
1359
- 6 0 15 4 -1.</_>
1360
- <_>
1361
- 6 1 15 2 2.</_></rects>
1362
- <tilted>0</tilted></feature>
1363
- <threshold>-3.2310429960489273e-003</threshold>
1364
- <left_val>0.3972072899341583</left_val>
1365
- <right_val>-0.2774995863437653</right_val></_></_>
1366
- <_>
1367
- <!-- tree 6 -->
1368
- <_>
1369
- <!-- root node -->
1370
- <feature>
1371
- <rects>
1372
- <_>
1373
- 9 16 1 4 -1.</_>
1374
- <_>
1375
- 9 17 1 2 2.</_></rects>
1376
- <tilted>0</tilted></feature>
1377
- <threshold>1.4478569937637076e-005</threshold>
1378
- <left_val>-0.5476933717727661</left_val>
1379
- <right_val>0.2119608968496323</right_val></_></_>
1380
- <_>
1381
- <!-- tree 7 -->
1382
- <_>
1383
- <!-- root node -->
1384
- <feature>
1385
- <rects>
1386
- <_>
1387
- 8 20 8 2 -1.</_>
1388
- <_>
1389
- 8 20 4 1 2.</_>
1390
- <_>
1391
- 12 21 4 1 2.</_></rects>
1392
- <tilted>0</tilted></feature>
1393
- <threshold>-9.0244162129238248e-004</threshold>
1394
- <left_val>-0.8646997213363648</left_val>
1395
- <right_val>0.1194489970803261</right_val></_></_>
1396
- <_>
1397
- <!-- tree 8 -->
1398
- <_>
1399
- <!-- root node -->
1400
- <feature>
1401
- <rects>
1402
- <_>
1403
- 0 9 3 14 -1.</_>
1404
- <_>
1405
- 1 9 1 14 3.</_></rects>
1406
- <tilted>0</tilted></feature>
1407
- <threshold>-1.5906910412013531e-003</threshold>
1408
- <left_val>0.2919914126396179</left_val>
1409
- <right_val>-0.3928124904632568</right_val></_></_>
1410
- <_>
1411
- <!-- tree 9 -->
1412
- <_>
1413
- <!-- root node -->
1414
- <feature>
1415
- <rects>
1416
- <_>
1417
- 11 1 11 4 -1.</_>
1418
- <_>
1419
- 11 1 11 2 2.</_></rects>
1420
- <tilted>1</tilted></feature>
1421
- <threshold>7.4913240969181061e-003</threshold>
1422
- <left_val>0.2679530084133148</left_val>
1423
- <right_val>-0.4020768105983734</right_val></_></_></trees>
1424
- <stage_threshold>-1.0776710510253906</stage_threshold>
1425
- <parent>11</parent>
1426
- <next>-1</next></_>
1427
- <_>
1428
- <!-- stage 13 -->
1429
- <trees>
1430
- <_>
1431
- <!-- tree 0 -->
1432
- <_>
1433
- <!-- root node -->
1434
- <feature>
1435
- <rects>
1436
- <_>
1437
- 15 20 1 2 -1.</_>
1438
- <_>
1439
- 15 21 1 1 2.</_></rects>
1440
- <tilted>0</tilted></feature>
1441
- <threshold>-7.1240079705603421e-005</threshold>
1442
- <left_val>0.2823083102703095</left_val>
1443
- <right_val>-0.4779424071311951</right_val></_></_>
1444
- <_>
1445
- <!-- tree 1 -->
1446
- <_>
1447
- <!-- root node -->
1448
- <feature>
1449
- <rects>
1450
- <_>
1451
- 2 18 1 2 -1.</_>
1452
- <_>
1453
- 2 18 1 1 2.</_></rects>
1454
- <tilted>1</tilted></feature>
1455
- <threshold>-2.6417701155878603e-004</threshold>
1456
- <left_val>0.3084900975227356</left_val>
1457
- <right_val>-0.4036655128002167</right_val></_></_>
1458
- <_>
1459
- <!-- tree 2 -->
1460
- <_>
1461
- <!-- root node -->
1462
- <feature>
1463
- <rects>
1464
- <_>
1465
- 0 14 12 6 -1.</_>
1466
- <_>
1467
- 0 16 12 2 3.</_></rects>
1468
- <tilted>0</tilted></feature>
1469
- <threshold>5.2890321239829063e-004</threshold>
1470
- <left_val>-0.7423822879791260</left_val>
1471
- <right_val>0.1605536937713623</right_val></_></_>
1472
- <_>
1473
- <!-- tree 3 -->
1474
- <_>
1475
- <!-- root node -->
1476
- <feature>
1477
- <rects>
1478
- <_>
1479
- 4 10 2 14 -1.</_>
1480
- <_>
1481
- 4 10 1 7 2.</_>
1482
- <_>
1483
- 5 17 1 7 2.</_></rects>
1484
- <tilted>0</tilted></feature>
1485
- <threshold>3.8283021422103047e-004</threshold>
1486
- <left_val>-0.6108828783035278</left_val>
1487
- <right_val>0.1794416010379791</right_val></_></_>
1488
- <_>
1489
- <!-- tree 4 -->
1490
- <_>
1491
- <!-- root node -->
1492
- <feature>
1493
- <rects>
1494
- <_>
1495
- 22 3 2 15 -1.</_>
1496
- <_>
1497
- 23 3 1 15 2.</_></rects>
1498
- <tilted>0</tilted></feature>
1499
- <threshold>5.4077422246336937e-003</threshold>
1500
- <left_val>-0.2767061889171600</left_val>
1501
- <right_val>0.4017147123813629</right_val></_></_>
1502
- <_>
1503
- <!-- tree 5 -->
1504
- <_>
1505
- <!-- root node -->
1506
- <feature>
1507
- <rects>
1508
- <_>
1509
- 4 17 3 1 -1.</_>
1510
- <_>
1511
- 5 18 1 1 3.</_></rects>
1512
- <tilted>1</tilted></feature>
1513
- <threshold>-8.2620367174968123e-004</threshold>
1514
- <left_val>-0.8456827998161316</left_val>
1515
- <right_val>0.1641048043966293</right_val></_></_>
1516
- <_>
1517
- <!-- tree 6 -->
1518
- <_>
1519
- <!-- root node -->
1520
- <feature>
1521
- <rects>
1522
- <_>
1523
- 21 6 3 9 -1.</_>
1524
- <_>
1525
- 21 9 3 3 3.</_></rects>
1526
- <tilted>0</tilted></feature>
1527
- <threshold>-8.9606801047921181e-003</threshold>
1528
- <left_val>-0.6698572039604187</left_val>
1529
- <right_val>0.1270485967397690</right_val></_></_>
1530
- <_>
1531
- <!-- tree 7 -->
1532
- <_>
1533
- <!-- root node -->
1534
- <feature>
1535
- <rects>
1536
- <_>
1537
- 1 7 23 4 -1.</_>
1538
- <_>
1539
- 1 9 23 2 2.</_></rects>
1540
- <tilted>0</tilted></feature>
1541
- <threshold>-3.0286349356174469e-003</threshold>
1542
- <left_val>0.1227105036377907</left_val>
1543
- <right_val>-0.7880274057388306</right_val></_></_>
1544
- <_>
1545
- <!-- tree 8 -->
1546
- <_>
1547
- <!-- root node -->
1548
- <feature>
1549
- <rects>
1550
- <_>
1551
- 4 3 20 20 -1.</_>
1552
- <_>
1553
- 4 13 20 10 2.</_></rects>
1554
- <tilted>0</tilted></feature>
1555
- <threshold>-0.0262723900377750</threshold>
1556
- <left_val>-0.7226560711860657</left_val>
1557
- <right_val>0.1347829997539520</right_val></_></_>
1558
- <_>
1559
- <!-- tree 9 -->
1560
- <_>
1561
- <!-- root node -->
1562
- <feature>
1563
- <rects>
1564
- <_>
1565
- 14 13 7 4 -1.</_>
1566
- <_>
1567
- 14 15 7 2 2.</_></rects>
1568
- <tilted>0</tilted></feature>
1569
- <threshold>-5.0153239862993360e-004</threshold>
1570
- <left_val>0.2890014052391052</left_val>
1571
- <right_val>-0.3537223935127258</right_val></_></_>
1572
- <_>
1573
- <!-- tree 10 -->
1574
- <_>
1575
- <!-- root node -->
1576
- <feature>
1577
- <rects>
1578
- <_>
1579
- 2 6 2 2 -1.</_>
1580
- <_>
1581
- 2 6 2 1 2.</_></rects>
1582
- <tilted>1</tilted></feature>
1583
- <threshold>-1.9847620569635183e-004</threshold>
1584
- <left_val>0.2491115033626556</left_val>
1585
- <right_val>-0.4667024016380310</right_val></_></_></trees>
1586
- <stage_threshold>-1.1201709508895874</stage_threshold>
1587
- <parent>12</parent>
1588
- <next>-1</next></_>
1589
- <_>
1590
- <!-- stage 14 -->
1591
- <trees>
1592
- <_>
1593
- <!-- tree 0 -->
1594
- <_>
1595
- <!-- root node -->
1596
- <feature>
1597
- <rects>
1598
- <_>
1599
- 13 15 6 4 -1.</_>
1600
- <_>
1601
- 13 17 6 2 2.</_></rects>
1602
- <tilted>0</tilted></feature>
1603
- <threshold>-1.6098109772428870e-003</threshold>
1604
- <left_val>0.2436411976814270</left_val>
1605
- <right_val>-0.5425583124160767</right_val></_></_>
1606
- <_>
1607
- <!-- tree 1 -->
1608
- <_>
1609
- <!-- root node -->
1610
- <feature>
1611
- <rects>
1612
- <_>
1613
- 17 0 7 24 -1.</_>
1614
- <_>
1615
- 17 8 7 8 3.</_></rects>
1616
- <tilted>0</tilted></feature>
1617
- <threshold>3.0391800682991743e-003</threshold>
1618
- <left_val>0.1427879035472870</left_val>
1619
- <right_val>-0.7677937150001526</right_val></_></_>
1620
- <_>
1621
- <!-- tree 2 -->
1622
- <_>
1623
- <!-- root node -->
1624
- <feature>
1625
- <rects>
1626
- <_>
1627
- 3 7 20 8 -1.</_>
1628
- <_>
1629
- 13 7 10 8 2.</_></rects>
1630
- <tilted>0</tilted></feature>
1631
- <threshold>-0.0111625995486975</threshold>
1632
- <left_val>-0.7964649796485901</left_val>
1633
- <right_val>0.1309580951929092</right_val></_></_>
1634
- <_>
1635
- <!-- tree 3 -->
1636
- <_>
1637
- <!-- root node -->
1638
- <feature>
1639
- <rects>
1640
- <_>
1641
- 0 7 22 1 -1.</_>
1642
- <_>
1643
- 11 7 11 1 2.</_></rects>
1644
- <tilted>0</tilted></feature>
1645
- <threshold>-1.6689340118318796e-003</threshold>
1646
- <left_val>0.2306797951459885</left_val>
1647
- <right_val>-0.4947401881217957</right_val></_></_>
1648
- <_>
1649
- <!-- tree 4 -->
1650
- <_>
1651
- <!-- root node -->
1652
- <feature>
1653
- <rects>
1654
- <_>
1655
- 7 9 8 2 -1.</_>
1656
- <_>
1657
- 7 10 8 1 2.</_></rects>
1658
- <tilted>0</tilted></feature>
1659
- <threshold>-8.8481552666053176e-004</threshold>
1660
- <left_val>0.2005017995834351</left_val>
1661
- <right_val>-0.5158239006996155</right_val></_></_>
1662
- <_>
1663
- <!-- tree 5 -->
1664
- <_>
1665
- <!-- root node -->
1666
- <feature>
1667
- <rects>
1668
- <_>
1669
- 2 0 3 18 -1.</_>
1670
- <_>
1671
- 2 6 3 6 3.</_></rects>
1672
- <tilted>0</tilted></feature>
1673
- <threshold>-2.6040559168905020e-003</threshold>
1674
- <left_val>0.1298092007637024</left_val>
1675
- <right_val>-0.7818121910095215</right_val></_></_>
1676
- <_>
1677
- <!-- tree 6 -->
1678
- <_>
1679
- <!-- root node -->
1680
- <feature>
1681
- <rects>
1682
- <_>
1683
- 2 13 3 5 -1.</_>
1684
- <_>
1685
- 3 13 1 5 3.</_></rects>
1686
- <tilted>0</tilted></feature>
1687
- <threshold>-2.3444599355570972e-004</threshold>
1688
- <left_val>-0.5695487260818481</left_val>
1689
- <right_val>0.1478334069252014</right_val></_></_>
1690
- <_>
1691
- <!-- tree 7 -->
1692
- <_>
1693
- <!-- root node -->
1694
- <feature>
1695
- <rects>
1696
- <_>
1697
- 14 16 3 4 -1.</_>
1698
- <_>
1699
- 15 16 1 4 3.</_></rects>
1700
- <tilted>0</tilted></feature>
1701
- <threshold>8.4604357834905386e-004</threshold>
1702
- <left_val>0.1037243008613586</left_val>
1703
- <right_val>-0.8308842182159424</right_val></_></_>
1704
- <_>
1705
- <!-- tree 8 -->
1706
- <_>
1707
- <!-- root node -->
1708
- <feature>
1709
- <rects>
1710
- <_>
1711
- 10 0 12 3 -1.</_>
1712
- <_>
1713
- 10 1 12 1 3.</_></rects>
1714
- <tilted>0</tilted></feature>
1715
- <threshold>-2.4807569570839405e-003</threshold>
1716
- <left_val>0.3425926864147186</left_val>
1717
- <right_val>-0.2719523906707764</right_val></_></_>
1718
- <_>
1719
- <!-- tree 9 -->
1720
- <_>
1721
- <!-- root node -->
1722
- <feature>
1723
- <rects>
1724
- <_>
1725
- 15 16 3 1 -1.</_>
1726
- <_>
1727
- 16 17 1 1 3.</_></rects>
1728
- <tilted>1</tilted></feature>
1729
- <threshold>-1.1127090547233820e-003</threshold>
1730
- <left_val>-0.8275328278541565</left_val>
1731
- <right_val>0.1176175028085709</right_val></_></_>
1732
- <_>
1733
- <!-- tree 10 -->
1734
- <_>
1735
- <!-- root node -->
1736
- <feature>
1737
- <rects>
1738
- <_>
1739
- 22 13 2 5 -1.</_>
1740
- <_>
1741
- 23 13 1 5 2.</_></rects>
1742
- <tilted>0</tilted></feature>
1743
- <threshold>1.4298419700935483e-003</threshold>
1744
- <left_val>-0.3477616012096405</left_val>
1745
- <right_val>0.2652699053287506</right_val></_></_>
1746
- <_>
1747
- <!-- tree 11 -->
1748
- <_>
1749
- <!-- root node -->
1750
- <feature>
1751
- <rects>
1752
- <_>
1753
- 11 14 4 6 -1.</_>
1754
- <_>
1755
- 11 16 4 2 3.</_></rects>
1756
- <tilted>0</tilted></feature>
1757
- <threshold>-1.4572150539606810e-003</threshold>
1758
- <left_val>-0.8802363276481628</left_val>
1759
- <right_val>0.1092033982276917</right_val></_></_></trees>
1760
- <stage_threshold>-1.0063530206680298</stage_threshold>
1761
- <parent>13</parent>
1762
- <next>-1</next></_>
1763
- <_>
1764
- <!-- stage 15 -->
1765
- <trees>
1766
- <_>
1767
- <!-- tree 0 -->
1768
- <_>
1769
- <!-- root node -->
1770
- <feature>
1771
- <rects>
1772
- <_>
1773
- 14 15 1 2 -1.</_>
1774
- <_>
1775
- 14 16 1 1 2.</_></rects>
1776
- <tilted>0</tilted></feature>
1777
- <threshold>-1.4507149899145588e-005</threshold>
1778
- <left_val>0.2605004012584686</left_val>
1779
- <right_val>-0.4580149054527283</right_val></_></_>
1780
- <_>
1781
- <!-- tree 1 -->
1782
- <_>
1783
- <!-- root node -->
1784
- <feature>
1785
- <rects>
1786
- <_>
1787
- 6 3 6 5 -1.</_>
1788
- <_>
1789
- 6 3 3 5 2.</_></rects>
1790
- <tilted>1</tilted></feature>
1791
- <threshold>0.0136784398928285</threshold>
1792
- <left_val>-0.7149971723556519</left_val>
1793
- <right_val>0.1477705985307694</right_val></_></_>
1794
- <_>
1795
- <!-- tree 2 -->
1796
- <_>
1797
- <!-- root node -->
1798
- <feature>
1799
- <rects>
1800
- <_>
1801
- 2 8 1 2 -1.</_>
1802
- <_>
1803
- 2 8 1 1 2.</_></rects>
1804
- <tilted>1</tilted></feature>
1805
- <threshold>-7.3151881224475801e-005</threshold>
1806
- <left_val>0.2058611065149307</left_val>
1807
- <right_val>-0.4995836019515991</right_val></_></_>
1808
- <_>
1809
- <!-- tree 3 -->
1810
- <_>
1811
- <!-- root node -->
1812
- <feature>
1813
- <rects>
1814
- <_>
1815
- 9 17 4 4 -1.</_>
1816
- <_>
1817
- 9 18 4 2 2.</_></rects>
1818
- <tilted>0</tilted></feature>
1819
- <threshold>-6.7043182207271457e-004</threshold>
1820
- <left_val>-0.7319483757019043</left_val>
1821
- <right_val>0.1358278989791870</right_val></_></_>
1822
- <_>
1823
- <!-- tree 4 -->
1824
- <_>
1825
- <!-- root node -->
1826
- <feature>
1827
- <rects>
1828
- <_>
1829
- 10 6 4 5 -1.</_>
1830
- <_>
1831
- 11 6 2 5 2.</_></rects>
1832
- <tilted>0</tilted></feature>
1833
- <threshold>-1.1992789804935455e-003</threshold>
1834
- <left_val>0.4456472992897034</left_val>
1835
- <right_val>-0.2521241009235382</right_val></_></_>
1836
- <_>
1837
- <!-- tree 5 -->
1838
- <_>
1839
- <!-- root node -->
1840
- <feature>
1841
- <rects>
1842
- <_>
1843
- 2 21 12 2 -1.</_>
1844
- <_>
1845
- 8 21 6 2 2.</_></rects>
1846
- <tilted>0</tilted></feature>
1847
- <threshold>-0.0117351496592164</threshold>
1848
- <left_val>-0.7972438931465149</left_val>
1849
- <right_val>0.1424607038497925</right_val></_></_>
1850
- <_>
1851
- <!-- tree 6 -->
1852
- <_>
1853
- <!-- root node -->
1854
- <feature>
1855
- <rects>
1856
- <_>
1857
- 12 8 12 15 -1.</_>
1858
- <_>
1859
- 16 8 4 15 3.</_></rects>
1860
- <tilted>0</tilted></feature>
1861
- <threshold>-4.7361929900944233e-003</threshold>
1862
- <left_val>0.1624221056699753</left_val>
1863
- <right_val>-0.5223402976989746</right_val></_></_>
1864
- <_>
1865
- <!-- tree 7 -->
1866
- <_>
1867
- <!-- root node -->
1868
- <feature>
1869
- <rects>
1870
- <_>
1871
- 0 3 20 20 -1.</_>
1872
- <_>
1873
- 0 13 20 10 2.</_></rects>
1874
- <tilted>0</tilted></feature>
1875
- <threshold>-0.1084595024585724</threshold>
1876
- <left_val>-0.7962973713874817</left_val>
1877
- <right_val>0.1265926957130432</right_val></_></_>
1878
- <_>
1879
- <!-- tree 8 -->
1880
- <_>
1881
- <!-- root node -->
1882
- <feature>
1883
- <rects>
1884
- <_>
1885
- 16 17 4 2 -1.</_>
1886
- <_>
1887
- 16 17 4 1 2.</_></rects>
1888
- <tilted>1</tilted></feature>
1889
- <threshold>-3.2293208641931415e-004</threshold>
1890
- <left_val>-0.7129234075546265</left_val>
1891
- <right_val>0.0899520069360733</right_val></_></_>
1892
- <_>
1893
- <!-- tree 9 -->
1894
- <_>
1895
- <!-- root node -->
1896
- <feature>
1897
- <rects>
1898
- <_>
1899
- 21 14 2 5 -1.</_>
1900
- <_>
1901
- 21 14 1 5 2.</_></rects>
1902
- <tilted>1</tilted></feature>
1903
- <threshold>2.5980910286307335e-003</threshold>
1904
- <left_val>-0.2800100147724152</left_val>
1905
- <right_val>0.3197942078113556</right_val></_></_>
1906
- <_>
1907
- <!-- tree 10 -->
1908
- <_>
1909
- <!-- root node -->
1910
- <feature>
1911
- <rects>
1912
- <_>
1913
- 12 0 12 8 -1.</_>
1914
- <_>
1915
- 12 0 12 4 2.</_></rects>
1916
- <tilted>1</tilted></feature>
1917
- <threshold>-7.5798099860548973e-003</threshold>
1918
- <left_val>-0.7153301239013672</left_val>
1919
- <right_val>0.1406804025173187</right_val></_></_>
1920
- <_>
1921
- <!-- tree 11 -->
1922
- <_>
1923
- <!-- root node -->
1924
- <feature>
1925
- <rects>
1926
- <_>
1927
- 17 0 7 24 -1.</_>
1928
- <_>
1929
- 17 6 7 12 2.</_></rects>
1930
- <tilted>0</tilted></feature>
1931
- <threshold>-8.4003582596778870e-003</threshold>
1932
- <left_val>0.1168404966592789</left_val>
1933
- <right_val>-0.6506950259208679</right_val></_></_>
1934
- <_>
1935
- <!-- tree 12 -->
1936
- <_>
1937
- <!-- root node -->
1938
- <feature>
1939
- <rects>
1940
- <_>
1941
- 13 10 3 6 -1.</_>
1942
- <_>
1943
- 13 12 3 2 3.</_></rects>
1944
- <tilted>0</tilted></feature>
1945
- <threshold>3.6820198874920607e-003</threshold>
1946
- <left_val>-0.2631436884403229</left_val>
1947
- <right_val>0.3865979909896851</right_val></_></_></trees>
1948
- <stage_threshold>-1.0373339653015137</stage_threshold>
1949
- <parent>14</parent>
1950
- <next>-1</next></_>
1951
- <_>
1952
- <!-- stage 16 -->
1953
- <trees>
1954
- <_>
1955
- <!-- tree 0 -->
1956
- <_>
1957
- <!-- root node -->
1958
- <feature>
1959
- <rects>
1960
- <_>
1961
- 8 11 9 9 -1.</_>
1962
- <_>
1963
- 11 14 3 3 9.</_></rects>
1964
- <tilted>0</tilted></feature>
1965
- <threshold>0.0240733902901411</threshold>
1966
- <left_val>-0.4794333875179291</left_val>
1967
- <right_val>0.2617827057838440</right_val></_></_>
1968
- <_>
1969
- <!-- tree 1 -->
1970
- <_>
1971
- <!-- root node -->
1972
- <feature>
1973
- <rects>
1974
- <_>
1975
- 17 18 7 6 -1.</_>
1976
- <_>
1977
- 17 21 7 3 2.</_></rects>
1978
- <tilted>0</tilted></feature>
1979
- <threshold>1.9582170061767101e-003</threshold>
1980
- <left_val>-0.4434475898742676</left_val>
1981
- <right_val>0.2301298975944519</right_val></_></_>
1982
- <_>
1983
- <!-- tree 2 -->
1984
- <_>
1985
- <!-- root node -->
1986
- <feature>
1987
- <rects>
1988
- <_>
1989
- 9 8 4 2 -1.</_>
1990
- <_>
1991
- 9 9 4 1 2.</_></rects>
1992
- <tilted>0</tilted></feature>
1993
- <threshold>-2.0559200493153185e-004</threshold>
1994
- <left_val>0.1224080994725227</left_val>
1995
- <right_val>-0.7277694940567017</right_val></_></_>
1996
- <_>
1997
- <!-- tree 3 -->
1998
- <_>
1999
- <!-- root node -->
2000
- <feature>
2001
- <rects>
2002
- <_>
2003
- 7 7 7 6 -1.</_>
2004
- <_>
2005
- 7 9 7 2 3.</_></rects>
2006
- <tilted>0</tilted></feature>
2007
- <threshold>1.0637210216373205e-003</threshold>
2008
- <left_val>-0.1582341045141220</left_val>
2009
- <right_val>0.6447200775146484</right_val></_></_>
2010
- <_>
2011
- <!-- tree 4 -->
2012
- <_>
2013
- <!-- root node -->
2014
- <feature>
2015
- <rects>
2016
- <_>
2017
- 2 9 1 9 -1.</_>
2018
- <_>
2019
- 2 12 1 3 3.</_></rects>
2020
- <tilted>0</tilted></feature>
2021
- <threshold>-3.5040560760535300e-004</threshold>
2022
- <left_val>-0.5160586237907410</left_val>
2023
- <right_val>0.2033808976411820</right_val></_></_>
2024
- <_>
2025
- <!-- tree 5 -->
2026
- <_>
2027
- <!-- root node -->
2028
- <feature>
2029
- <rects>
2030
- <_>
2031
- 1 0 1 20 -1.</_>
2032
- <_>
2033
- 1 10 1 10 2.</_></rects>
2034
- <tilted>0</tilted></feature>
2035
- <threshold>-1.5382179990410805e-003</threshold>
2036
- <left_val>0.2029495984315872</left_val>
2037
- <right_val>-0.5412080287933350</right_val></_></_>
2038
- <_>
2039
- <!-- tree 6 -->
2040
- <_>
2041
- <!-- root node -->
2042
- <feature>
2043
- <rects>
2044
- <_>
2045
- 5 11 4 3 -1.</_>
2046
- <_>
2047
- 5 11 2 3 2.</_></rects>
2048
- <tilted>1</tilted></feature>
2049
- <threshold>4.2215911671519279e-003</threshold>
2050
- <left_val>0.1420246958732605</left_val>
2051
- <right_val>-0.6884710788726807</right_val></_></_>
2052
- <_>
2053
- <!-- tree 7 -->
2054
- <_>
2055
- <!-- root node -->
2056
- <feature>
2057
- <rects>
2058
- <_>
2059
- 1 6 14 13 -1.</_>
2060
- <_>
2061
- 8 6 7 13 2.</_></rects>
2062
- <tilted>0</tilted></feature>
2063
- <threshold>4.0536639280617237e-003</threshold>
2064
- <left_val>0.0946411192417145</left_val>
2065
- <right_val>-0.8890265226364136</right_val></_></_>
2066
- <_>
2067
- <!-- tree 8 -->
2068
- <_>
2069
- <!-- root node -->
2070
- <feature>
2071
- <rects>
2072
- <_>
2073
- 11 6 6 4 -1.</_>
2074
- <_>
2075
- 13 6 2 4 3.</_></rects>
2076
- <tilted>0</tilted></feature>
2077
- <threshold>3.9104130119085312e-003</threshold>
2078
- <left_val>-0.2211245000362396</left_val>
2079
- <right_val>0.4553441107273102</right_val></_></_>
2080
- <_>
2081
- <!-- tree 9 -->
2082
- <_>
2083
- <!-- root node -->
2084
- <feature>
2085
- <rects>
2086
- <_>
2087
- 15 20 2 2 -1.</_>
2088
- <_>
2089
- 15 20 2 1 2.</_></rects>
2090
- <tilted>1</tilted></feature>
2091
- <threshold>-5.8839347911998630e-004</threshold>
2092
- <left_val>-0.7423400878906250</left_val>
2093
- <right_val>0.1466006040573120</right_val></_></_>
2094
- <_>
2095
- <!-- tree 10 -->
2096
- <_>
2097
- <!-- root node -->
2098
- <feature>
2099
- <rects>
2100
- <_>
2101
- 11 7 11 2 -1.</_>
2102
- <_>
2103
- 11 8 11 1 2.</_></rects>
2104
- <tilted>0</tilted></feature>
2105
- <threshold>4.7331111272796988e-004</threshold>
2106
- <left_val>0.0803736001253128</left_val>
2107
- <right_val>-0.8416292071342468</right_val></_></_>
2108
- <_>
2109
- <!-- tree 11 -->
2110
- <_>
2111
- <!-- root node -->
2112
- <feature>
2113
- <rects>
2114
- <_>
2115
- 14 0 7 4 -1.</_>
2116
- <_>
2117
- 14 1 7 2 2.</_></rects>
2118
- <tilted>0</tilted></feature>
2119
- <threshold>-1.4589539496228099e-003</threshold>
2120
- <left_val>0.2730404138565064</left_val>
2121
- <right_val>-0.2989330887794495</right_val></_></_></trees>
2122
- <stage_threshold>-0.9257612824440002</stage_threshold>
2123
- <parent>15</parent>
2124
- <next>-1</next></_></stages></A_gest>
2125
- </opencv_storage>