Spaces:
Build error
Build error
| function sign(x) { | |
| return x < 0 ? -1 : 1; | |
| } | |
| // Calculate the slopes of the tangents (Hermite-type interpolation) based on | |
| // the following paper: Steffen, M. 1990. A Simple Method for Monotonic | |
| // Interpolation in One Dimension. Astronomy and Astrophysics, Vol. 239, NO. | |
| // NOV(II), P. 443, 1990. | |
| function slope3(that, x2, y2) { | |
| var h0 = that._x1 - that._x0, | |
| h1 = x2 - that._x1, | |
| s0 = (that._y1 - that._y0) / (h0 || h1 < 0 && -0), | |
| s1 = (y2 - that._y1) / (h1 || h0 < 0 && -0), | |
| p = (s0 * h1 + s1 * h0) / (h0 + h1); | |
| return (sign(s0) + sign(s1)) * Math.min(Math.abs(s0), Math.abs(s1), 0.5 * Math.abs(p)) || 0; | |
| } | |
| // Calculate a one-sided slope. | |
| function slope2(that, t) { | |
| var h = that._x1 - that._x0; | |
| return h ? (3 * (that._y1 - that._y0) / h - t) / 2 : t; | |
| } | |
| // According to https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Representations | |
| // "you can express cubic Hermite interpolation in terms of cubic Bézier curves | |
| // with respect to the four values p0, p0 + m0 / 3, p1 - m1 / 3, p1". | |
| function point(that, t0, t1) { | |
| var x0 = that._x0, | |
| y0 = that._y0, | |
| x1 = that._x1, | |
| y1 = that._y1, | |
| dx = (x1 - x0) / 3; | |
| that._context.bezierCurveTo(x0 + dx, y0 + dx * t0, x1 - dx, y1 - dx * t1, x1, y1); | |
| } | |
| function MonotoneX(context) { | |
| this._context = context; | |
| } | |
| MonotoneX.prototype = { | |
| areaStart: function() { | |
| this._line = 0; | |
| }, | |
| areaEnd: function() { | |
| this._line = NaN; | |
| }, | |
| lineStart: function() { | |
| this._x0 = this._x1 = | |
| this._y0 = this._y1 = | |
| this._t0 = NaN; | |
| this._point = 0; | |
| }, | |
| lineEnd: function() { | |
| switch (this._point) { | |
| case 2: this._context.lineTo(this._x1, this._y1); break; | |
| case 3: point(this, this._t0, slope2(this, this._t0)); break; | |
| } | |
| if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath(); | |
| this._line = 1 - this._line; | |
| }, | |
| point: function(x, y) { | |
| var t1 = NaN; | |
| x = +x, y = +y; | |
| if (x === this._x1 && y === this._y1) return; // Ignore coincident points. | |
| switch (this._point) { | |
| case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break; | |
| case 1: this._point = 2; break; | |
| case 2: this._point = 3; point(this, slope2(this, t1 = slope3(this, x, y)), t1); break; | |
| default: point(this, this._t0, t1 = slope3(this, x, y)); break; | |
| } | |
| this._x0 = this._x1, this._x1 = x; | |
| this._y0 = this._y1, this._y1 = y; | |
| this._t0 = t1; | |
| } | |
| } | |
| function MonotoneY(context) { | |
| this._context = new ReflectContext(context); | |
| } | |
| (MonotoneY.prototype = Object.create(MonotoneX.prototype)).point = function(x, y) { | |
| MonotoneX.prototype.point.call(this, y, x); | |
| }; | |
| function ReflectContext(context) { | |
| this._context = context; | |
| } | |
| ReflectContext.prototype = { | |
| moveTo: function(x, y) { this._context.moveTo(y, x); }, | |
| closePath: function() { this._context.closePath(); }, | |
| lineTo: function(x, y) { this._context.lineTo(y, x); }, | |
| bezierCurveTo: function(x1, y1, x2, y2, x, y) { this._context.bezierCurveTo(y1, x1, y2, x2, y, x); } | |
| }; | |
| export function monotoneX(context) { | |
| return new MonotoneX(context); | |
| } | |
| export function monotoneY(context) { | |
| return new MonotoneY(context); | |
| } | |