Spaces:
Sleeping
Sleeping
File size: 12,042 Bytes
5f7815d 0275392 5f7815d 0275392 5f7815d 0275392 5f7815d 609fa24 5f7815d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
## CHOOSE BETWEEN ALTAIR & MATPLOTLIB
import gradio as gr
import altair as alt
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import time
def make_plot(plot_type, a, epoch, progress=gr.Progress()):
if plot_type == "log":
return logReg(a=a, epoch=epoch, progress=progress)
elif plot_type == "lin":
return linReg(a=a,epoch=epoch, progress=progress)
# a = learning rate
# epoch = number of training iterations
def logReg(a, epoch, progress):
#### generate random data-set ####
progress(0.2, desc="Generating Data")
time.sleep(1)
#np.random.seed(0) # set random seed (optional)
## set mean and covariance of our datasets
mean1 = [20,35]
cov1 = [[100,100],[-100,100]]
mean2 = [60,70]
cov2 = [[100,100],[100,-100]]
## concatenate values to set x values for datasets
x1, x2 = np.random.multivariate_normal(mean1, cov1, 100).T
x_1, x_2 = np.random.multivariate_normal(mean2, cov2, 100).T
x1 = (np.concatenate((x1, x_1), axis=0))/10
x2 = (np.concatenate((x2, x_2), axis=0))/10
## set y values of datasets
y1 = np.zeros(100) # y[0:100] is zero dataset (dataset we want our decision boundary to be above)
y2 = np.ones(100) # y[101:200] is one dataset (dataset we want our decision boundary to be below)
y = np.concatenate((y1, y2), axis=0) # combine datasets into one term
w = np.matrix([(np.random.rand())/100,(np.random.rand())+0.0001/100]) # begin weights at random starting point
b = np.matrix([np.random.rand()]) # begin bias term at random starting point
wb = np.concatenate((b, w), axis=1) # combine w and b into one weight term
print('f = b + x1*w1 + x2*w2')
print('Starting weights:', 'f = ', wb[0,0],'+ x1', wb[0,1], '+ x2' , wb[0,2])
loss = np.empty([epoch]) # term to store all loss terms for plotting
iterat = np.empty([epoch]) # term to store all epoch numbers to be plotted vs loss
for n in range (epoch):
iterat[n] = n
progress(0.5, desc="Finding Loss & Regression")
time.sleep(1.5)
for p in range (epoch):
L, J = np.matrix([[0.0, 0.0, 0.0]]), 0.0 # reset gradient (∂J(w)/∂w) and loss for each epoch
#### Code the equations to solve for the loss and to update
#### the weights and biases for each epoch below.
#### Hint: you will need to use the for loop below to create a summation to solve
#### for wb and J (loss) for each epoch. xj has been given as a starting point.
for i in range(len(x1)):
xj = np.matrix([1,x1[i],x2[i]])
# y_hat = (y_hat or h_w(x) expression)
y_hat = 1 / (1 + np.exp(-(wb * xj.T)))
# J = (cost function, also referred to as L)
J = -((y[i] * np.log(y_hat)) + ((1 - y[i])*np.log(1 - y_hat)))
# d_J = (∂J(w)/∂w function, equation can be solved with information on slide 27)
d_J = ((y_hat) - y[i]) * xj
# wb = (weight updating equation)
wb = wb - a * (d_J)
loss[p] = J
if ((p % 100) == 0):
print('loss:', J,' Gradient (∂J(w)/∂w) [[b, w1, w2]]:',L[0])
print('Updated weights:', 'f = ', wb[0,0],'+ x1', wb[0,1], '+ x2' , wb[0,2])
equation = "f = {w1} + {w2}x1 + {w3}x2".format(w1 = wb[0,0], w2 = wb[0,1], w3 = wb[0,2])
## Plot decision boundary and data
progress(0.8, desc="Plotting Data")
time.sleep(1.5)
scatterData1 = pd.DataFrame({'x': x1[1:100],
'y': x2[1:100]})
scatterFig1 = alt.Chart(scatterData1).mark_point().encode(
x='x:Q',
y='y:Q'
).properties(
title="Decision Boundary"
)
scatterData2 = pd.DataFrame({'x': x1[101:200],
'y': x2[101:200]})
scatterFig2 = alt.Chart(scatterData2).mark_point(color='green').encode(
x='x:Q',
y='y:Q',
).properties(
title="Decision Boundary"
)
y2 = np.array(np.array(-(x1*wb[0,1] + wb[0,0])/wb[0,2],dtype=float))
trendLine = pd.DataFrame({'x': x1.flatten(),
'y': y2.flatten() })
trendLineFig = alt.Chart(trendLine).mark_line().encode(
x='x:Q',
y='y:Q'
).properties(
title="Decision Boundary"
)
finalFig = scatterFig1 + scatterFig2 + trendLineFig
lossData = pd.DataFrame({'Number of Iterations': iterat[100:],
'Loss Value': loss[100:] })
lossFig = alt.Chart(lossData).mark_line().encode(
x='Number of Iterations:Q',
y='Loss Value:Q'
).properties(
title='Plot of loss values over number of iterations'
)
plt.close()
plt.figure()
plt.plot(x1[1:100],x2[1:100],'x', x1[101:200], x2[101:200],'x') # plot random data points
plt.plot(x1, -(x1*wb[0,1] + wb[0,0])/wb[0,2] , linestyle = 'solid') # plot decision boundary
plt.axis('equal')
plt.xlabel('x1')
plt.ylabel('x2')
plt.title('Decision Boundary')
plt.savefig("plt1.png")
## Plot training loss v epoch
plt.figure()
plt.plot(iterat[100:],loss[100:],'x')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss v Epoch')
plt.savefig("plt2.png")
return [finalFig.interactive(),lossFig.interactive(),"plt1.png","plt2.png",str(loss[len(loss)-1]),str(equation)]
# a = learning rate step size
# epoch = number of training iterations
def linReg(a, epoch, progress):
# generate random data-set
progress(0.2, desc="Generating Data")
time.sleep(1)
# np.random.seed(0) # choose random seed (optional)
x = np.random.rand(100, 1)
y = 2 + 3 * x + np.random.rand(100, 1)
# J = 0 # initialize J, this can be deleted once J is defined in the loop
w = np.matrix([np.random.rand(),np.random.rand()]) # slope and y-intercept
ite = epoch # number of training iterations
jList = []
numIte = []
# Write Linear Regression Code to Solve for w (slope and y-intercept) Here ##
progress(0.5, desc="Finding Loss & Regression")
time.sleep(1.5)
for p in range (ite):
for i in range(len(x)):
# Calculate w and J here
x_vec = np.matrix([x[i][0],1]) # Option 1 | Setting up a vector for x (x_vec[j] corresponds to w[j])
h = w * x_vec.T ## Hint: you may need to transpose x or w by adding .T to the end of the variable
w = w - a * (h - y[i]) * x_vec
J = (1/2) * (((h - y[i])) ** 2)
J = J.item()
jList.append(J)
numIte.append(p)
print('Loss:', J)
## if done correctly the line should be in line with the data points ##
print('f = ', w[0,0],'x + ', w[0,1])
equation = "f = {w1}x + {w2}".format(w1 = w[0,0], w2 = w[0,1])
progress(0.8, desc="Plotting Data")
time.sleep(1.5)
y2 = np.array(np.array((w[0,1]+(w[0,0] * x)),dtype=float)).T
scatterData = pd.DataFrame({'x': x.flatten(),
'y': y.flatten()})
scatterFig = alt.Chart(scatterData).mark_point().encode(
x='x:Q',
y='y:Q'
).properties(
title='Plot of random data values with linear regression line'
)
trendLine = pd.DataFrame({'x': x.flatten(),
'y': y2.flatten() })
trendLineFig = alt.Chart(trendLine).mark_line().encode(
x='x:Q',
y='y:Q'
)
finalFig = scatterFig + trendLineFig
lossData = pd.DataFrame({'Number of Iterations': range(1,len(jList)+1),
'Loss Value': jList })
lossFig = alt.Chart(lossData).mark_line().encode(
x='Number of Iterations:Q',
y='Loss Value:Q'
).properties(
title='Plot of loss values over number of iterations'
)
# plot
plt.close()
plt.figure()
plt.scatter(x,y,s=ite)
plt.plot(x, w[0,1] + (w[0,0] * x), linestyle='solid')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Plot of random data values with linear regression line')
plt.savefig("plt1.png")
plt.figure()
plt.plot(jList)
plt.xlabel('Number of Iterations')
plt.ylabel('Loss Value')
plt.title('Plot of loss values over number of iterations')
plt.savefig("plt2.png")
return [finalFig.interactive(),lossFig.interactive(),"plt1.png","plt2.png",str(jList[len(jList)-1]),str(equation)]
with gr.Blocks(title="Regression Visualization") as demo:
gr.Markdown(
"""
# Regression Visualization for Machine Learning
Choose your variables below to create a linear or logistic regression model!
""")
with gr.Row():
pack = gr.Radio(label="Plot Package",info="Choose 'MatPlot' for MatPlotLib, Choose 'Altair' for Altair",
choices=['MatPlot','Altair'], value='Altair')
bType = gr.Radio(label="Regression Type",info="Choose 'log' for logistic, Choose 'lin' for linear",
choices=['log','lin'], value='log')
l_rate = gr.Number(value=0.01,label="Learning Rate",info="Enter a value in the range 0.0 - 1.0")
epochs = gr.Number(value=100,label="Number of Epochs (Number of Training Iterations)",info="Enter an integer larger than 0",precision=0)
bStart = gr.Button(value="Start")
with gr.Row() as alt_row:
altPlot1 = gr.Plot()
altPlot2 = gr.Plot()
with gr.Row(visible=False) as mat_row:
matPlot1 = gr.Image(type='filepath',label="Regression Graph",height=600,width=600)
matPlot2 = gr.Image(type='filepath',label="Regression Graph",height=600,width=600)
loss = gr.Textbox(label="Final Loss Value")
equ = gr.Textbox(label="Equation for Plotted Line")
def changeComp(package):
if package == "Altair":
return {
alt_row: gr.Row.update(visible=True),
mat_row: gr.Row.update(visible=False)
}
else:
return {
alt_row: gr.Row.update(visible=False),
mat_row: gr.Row.update(visible=True)
}
pack.input(changeComp, show_progress=True, inputs=[pack], outputs=[alt_row, mat_row])
bStart.click(make_plot, show_progress=True, inputs=[bType,l_rate,epochs], outputs=[altPlot1,altPlot2, matPlot1, matPlot2, loss, equ])
demo.load()
if __name__== "__main__" :
demo.queue().launch() |