DOMMETI commited on
Commit
65b598f
·
verified ·
1 Parent(s): 6e91cc2

Create Measurement_of_disperssion.py

Browse files
Files changed (1) hide show
  1. pages/Measurement_of_disperssion.py +66 -0
pages/Measurement_of_disperssion.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ st.subheader("Measure Of Disperssion ",divider=True)
4
+ st.markdown("""Measure Of Disperssion will give spread of our collected data around the central value.It's classifed into two types
5
+ """)
6
+ st.markdown(''':violet[Absolute Measure] \n absolute will give the spread of data in one unit.for example if the given data is in 'cm'
7
+ the output will be in cm''')
8
+ st.markdown(''':violet[Relative Measure] \n Relative will be free from unit's''')
9
+ st.header("**Absolute Measure**")
10
+ st.subheader("Range",divider=True)
11
+ st.subheader("Quartile Deviation",divider=True)
12
+ st.subheader("Varience",divider=True)
13
+ st.subheader("Standard Deviation",divider=True)
14
+ st.header("**Relative Measure**")
15
+ st.subheader("Coefficent Of Range",divider=True)
16
+ st.subheader("Coefficent Of Quartile Deviation",divider=True)
17
+ st.subheader("Coefficent Of Varience",divider=True)
18
+ st.subheader("Coefficent Of Standard Deviation",divider=True)
19
+ st.markdown(''':orange[**Range**] is one of the measure to find the disperssion.But is not at all mostly used beause it don't focus on the entire data.
20
+ ''')
21
+ st.subheader("Absolute Range")
22
+ st.latex(r'''
23
+ \text{Absolute Range} = \text{Maximum Value} - \text{Minimum Value}
24
+ ''')
25
+ st.subheader("Relative Range")
26
+ st.latex(r'''
27
+ \text{Relative Range} = \frac{\text{Absolute Range}}{\text{Mean}} \times 100
28
+ ''')
29
+ st.markdown(''':orange[**Quartile Deviation**] is one of the measure to find the disperssion.In this type the data is divided into 4 equal parts.
30
+ It will mostly focus on the central data.
31
+ ''')
32
+ st.subheader("Absolute Quartile Deviation")
33
+ st.latex(r'''
34
+ QD = \frac{Q3 - Q1}{2}
35
+ ''')
36
+ st.subheader("Relative Quartile Deviation")
37
+ st.latex(r'''
38
+ \text{Relative QD} = \frac{Q3 - Q1}{Q3 + Q1} \times 100
39
+ ''')
40
+ st.markdown(''':orange[**Varience**] is one of the measure to find the disperssion.It is one of the best measure to find the disperssion.The only
41
+ drawback is when in Varience is in order to overcome negitive value we square them thus the distance is doubled
42
+ ''')
43
+ st.subheader("Absolute Variance")
44
+ st.latex(r'''
45
+ \text{Var} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2
46
+ ''')
47
+ st.subheader("Relative Variance")
48
+ st.latex(r'''
49
+ \text{Relative Var} = \frac{\text{Var}}{\bar{x}} \times 100
50
+ ''')
51
+ st.markdown(''':orange[**Standard Deviation**] is one of the measure to find the disperssion.It is one of the best measure to find the disperssion.It over comes the
52
+ disadvantage occured in varience by square rooting it.
53
+ ''')
54
+ st.subheader("Absolute Standard Deviation")
55
+ st.latex(r'''
56
+ \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}
57
+ ''')
58
+ st.subheader("Relative Standard Deviation")
59
+ st.latex(r'''
60
+ \text{Relative SD} = \frac{\sigma}{\bar{x}}
61
+ ''')
62
+ st.subheader("Distribution",divider=True)
63
+ st.markdown(''':blue[**Distribution**] is a measure will will tell how the shape of data or in which shape the data is spread.It will help in
64
+ analysis.There are few types of distribution \n * Normal Distribution \n * Uniform Distribution \n * Binomial Distribution \n * Poisson Distribution
65
+ \n * Exponential Distribution \n * Chi-Square Distribution \n * T-Distribution
66
+ ''')