Spaces:
Build error
Build error
Create Measurement_of_disperssion.py
Browse files
pages/Measurement_of_disperssion.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
st.subheader("Measure Of Disperssion ",divider=True)
|
| 4 |
+
st.markdown("""Measure Of Disperssion will give spread of our collected data around the central value.It's classifed into two types
|
| 5 |
+
""")
|
| 6 |
+
st.markdown(''':violet[Absolute Measure] \n absolute will give the spread of data in one unit.for example if the given data is in 'cm'
|
| 7 |
+
the output will be in cm''')
|
| 8 |
+
st.markdown(''':violet[Relative Measure] \n Relative will be free from unit's''')
|
| 9 |
+
st.header("**Absolute Measure**")
|
| 10 |
+
st.subheader("Range",divider=True)
|
| 11 |
+
st.subheader("Quartile Deviation",divider=True)
|
| 12 |
+
st.subheader("Varience",divider=True)
|
| 13 |
+
st.subheader("Standard Deviation",divider=True)
|
| 14 |
+
st.header("**Relative Measure**")
|
| 15 |
+
st.subheader("Coefficent Of Range",divider=True)
|
| 16 |
+
st.subheader("Coefficent Of Quartile Deviation",divider=True)
|
| 17 |
+
st.subheader("Coefficent Of Varience",divider=True)
|
| 18 |
+
st.subheader("Coefficent Of Standard Deviation",divider=True)
|
| 19 |
+
st.markdown(''':orange[**Range**] is one of the measure to find the disperssion.But is not at all mostly used beause it don't focus on the entire data.
|
| 20 |
+
''')
|
| 21 |
+
st.subheader("Absolute Range")
|
| 22 |
+
st.latex(r'''
|
| 23 |
+
\text{Absolute Range} = \text{Maximum Value} - \text{Minimum Value}
|
| 24 |
+
''')
|
| 25 |
+
st.subheader("Relative Range")
|
| 26 |
+
st.latex(r'''
|
| 27 |
+
\text{Relative Range} = \frac{\text{Absolute Range}}{\text{Mean}} \times 100
|
| 28 |
+
''')
|
| 29 |
+
st.markdown(''':orange[**Quartile Deviation**] is one of the measure to find the disperssion.In this type the data is divided into 4 equal parts.
|
| 30 |
+
It will mostly focus on the central data.
|
| 31 |
+
''')
|
| 32 |
+
st.subheader("Absolute Quartile Deviation")
|
| 33 |
+
st.latex(r'''
|
| 34 |
+
QD = \frac{Q3 - Q1}{2}
|
| 35 |
+
''')
|
| 36 |
+
st.subheader("Relative Quartile Deviation")
|
| 37 |
+
st.latex(r'''
|
| 38 |
+
\text{Relative QD} = \frac{Q3 - Q1}{Q3 + Q1} \times 100
|
| 39 |
+
''')
|
| 40 |
+
st.markdown(''':orange[**Varience**] is one of the measure to find the disperssion.It is one of the best measure to find the disperssion.The only
|
| 41 |
+
drawback is when in Varience is in order to overcome negitive value we square them thus the distance is doubled
|
| 42 |
+
''')
|
| 43 |
+
st.subheader("Absolute Variance")
|
| 44 |
+
st.latex(r'''
|
| 45 |
+
\text{Var} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2
|
| 46 |
+
''')
|
| 47 |
+
st.subheader("Relative Variance")
|
| 48 |
+
st.latex(r'''
|
| 49 |
+
\text{Relative Var} = \frac{\text{Var}}{\bar{x}} \times 100
|
| 50 |
+
''')
|
| 51 |
+
st.markdown(''':orange[**Standard Deviation**] is one of the measure to find the disperssion.It is one of the best measure to find the disperssion.It over comes the
|
| 52 |
+
disadvantage occured in varience by square rooting it.
|
| 53 |
+
''')
|
| 54 |
+
st.subheader("Absolute Standard Deviation")
|
| 55 |
+
st.latex(r'''
|
| 56 |
+
\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}
|
| 57 |
+
''')
|
| 58 |
+
st.subheader("Relative Standard Deviation")
|
| 59 |
+
st.latex(r'''
|
| 60 |
+
\text{Relative SD} = \frac{\sigma}{\bar{x}}
|
| 61 |
+
''')
|
| 62 |
+
st.subheader("Distribution",divider=True)
|
| 63 |
+
st.markdown(''':blue[**Distribution**] is a measure will will tell how the shape of data or in which shape the data is spread.It will help in
|
| 64 |
+
analysis.There are few types of distribution \n * Normal Distribution \n * Uniform Distribution \n * Binomial Distribution \n * Poisson Distribution
|
| 65 |
+
\n * Exponential Distribution \n * Chi-Square Distribution \n * T-Distribution
|
| 66 |
+
''')
|