Spaces:
Build error
Build error
Update pages/Measurement_of_disperssion.py
Browse files
pages/Measurement_of_disperssion.py
CHANGED
|
@@ -120,6 +120,40 @@ st.subheader("Relative Variance")
|
|
| 120 |
st.latex(r'''
|
| 121 |
\text{Relative Var} = \frac{\text{Var}}{\bar{x}} \times 100
|
| 122 |
''')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
st.markdown(''':orange[**Standard Deviation**] is one of the measure to find the disperssion.It is one of the best measure to find the disperssion.It over comes the
|
| 124 |
disadvantage occured in varience by square rooting it.
|
| 125 |
''')
|
|
@@ -131,6 +165,40 @@ st.subheader("Relative Standard Deviation")
|
|
| 131 |
st.latex(r'''
|
| 132 |
\text{Relative SD} = \frac{\sigma}{\bar{x}}
|
| 133 |
''')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
st.subheader("Distribution",divider=True)
|
| 135 |
st.markdown(''':blue[**Distribution**] is a measure will will tell how the shape of data or in which shape the data is spread.It will help in
|
| 136 |
analysis.There are few types of distribution \n * Normal Distribution \n * Uniform Distribution \n * Binomial Distribution \n * Poisson Distribution
|
|
|
|
| 120 |
st.latex(r'''
|
| 121 |
\text{Relative Var} = \frac{\text{Var}}{\bar{x}} \times 100
|
| 122 |
''')
|
| 123 |
+
def absolute_varience(list1):
|
| 124 |
+
return np.var(list1)
|
| 125 |
+
st.title("Absolute varience")
|
| 126 |
+
num_input4=st.text_input("Enter the values separated by commas (e.g., 1,2,3,4)", key="num_input4")
|
| 127 |
+
value=num_input4.split(",")
|
| 128 |
+
list1=[]
|
| 129 |
+
for i in value:
|
| 130 |
+
if i.isdigit():
|
| 131 |
+
list1.append(int(i))
|
| 132 |
+
else:
|
| 133 |
+
pass
|
| 134 |
+
if list1:
|
| 135 |
+
result=relative_range(list1)
|
| 136 |
+
st.write("Absolute Varience",result)
|
| 137 |
+
else:
|
| 138 |
+
st.write("Please enter valid numbers.")
|
| 139 |
+
def relative_varience(list1):
|
| 140 |
+
mean=round(np.mean(list1),2)
|
| 141 |
+
std_dev=np.std(list1,ddof=1)
|
| 142 |
+
return round((std_dev/mean)*100,2)
|
| 143 |
+
st.title("Relative Varience")
|
| 144 |
+
num_input5=st.text_input("Enter the values separated by commas (e.g., 1,2,3,4)", key="num_input5")
|
| 145 |
+
value=num_input5.split(",")
|
| 146 |
+
list1=[]
|
| 147 |
+
for i in value:
|
| 148 |
+
if i.isdigit():
|
| 149 |
+
list1.append(int(i))
|
| 150 |
+
else:
|
| 151 |
+
pass
|
| 152 |
+
if list1:
|
| 153 |
+
result=relative_range(list1)
|
| 154 |
+
st.write("Relative Varience",result)
|
| 155 |
+
else:
|
| 156 |
+
st.write("Please enter valid numbers.")
|
| 157 |
st.markdown(''':orange[**Standard Deviation**] is one of the measure to find the disperssion.It is one of the best measure to find the disperssion.It over comes the
|
| 158 |
disadvantage occured in varience by square rooting it.
|
| 159 |
''')
|
|
|
|
| 165 |
st.latex(r'''
|
| 166 |
\text{Relative SD} = \frac{\sigma}{\bar{x}}
|
| 167 |
''')
|
| 168 |
+
def absolute_std(list1):
|
| 169 |
+
return round(np.std(list1),2)
|
| 170 |
+
st.title("Absolute Standard Deviation")
|
| 171 |
+
num_input6=st.text_input("Enter the values separated by commas (e.g., 1,2,3,4)", key="num_input6")
|
| 172 |
+
value=num_input6.split(",")
|
| 173 |
+
list1=[]
|
| 174 |
+
for i in value:
|
| 175 |
+
if i.isdigit():
|
| 176 |
+
list1.append(int(i))
|
| 177 |
+
else:
|
| 178 |
+
pass
|
| 179 |
+
if list1:
|
| 180 |
+
result=relative_range(list1)
|
| 181 |
+
st.write("Absolute Standard Deviation",result)
|
| 182 |
+
else:
|
| 183 |
+
st.write("Please enter valid numbers.")
|
| 184 |
+
def relative_std(list1):
|
| 185 |
+
mean=round(np.mean(list1),2)
|
| 186 |
+
std_dev=np.std(list1,ddof=1)
|
| 187 |
+
return round((std_dev/mean),2)
|
| 188 |
+
st.title("Relative Standard Deviation")
|
| 189 |
+
num_input7=st.text_input("Enter the values separated by commas (e.g., 1,2,3,4)", key="num_input7")
|
| 190 |
+
value=num_input7.split(",")
|
| 191 |
+
list1=[]
|
| 192 |
+
for i in value:
|
| 193 |
+
if i.isdigit():
|
| 194 |
+
list1.append(int(i))
|
| 195 |
+
else:
|
| 196 |
+
pass
|
| 197 |
+
if list1:
|
| 198 |
+
result=relative_range(list1)
|
| 199 |
+
st.write("Relative Standard Deviation",result)
|
| 200 |
+
else:
|
| 201 |
+
st.write("Please enter valid numbers.")
|
| 202 |
st.subheader("Distribution",divider=True)
|
| 203 |
st.markdown(''':blue[**Distribution**] is a measure will will tell how the shape of data or in which shape the data is spread.It will help in
|
| 204 |
analysis.There are few types of distribution \n * Normal Distribution \n * Uniform Distribution \n * Binomial Distribution \n * Poisson Distribution
|