Spaces:
Build error
Build error
Update pages/2_Introduction_to_Statistics.py
Browse files
pages/2_Introduction_to_Statistics.py
CHANGED
|
@@ -84,94 +84,10 @@ st.markdown("""
|
|
| 84 |
st.subheader("Inferential Statistics")
|
| 85 |
st.markdown("""
|
| 86 |
Inferential statistics involve making predictions or inferences about a population based on a sample. These methods are used to test hypotheses and estimate population parameters.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
""", unsafe_allow_html=True)
|
| 88 |
|
| 89 |
-
st.title("Types of Statistics")
|
| 90 |
-
|
| 91 |
-
# Descriptive Statistics
|
| 92 |
-
st.header("1. Descriptive Statistics")
|
| 93 |
-
st.markdown("""
|
| 94 |
-
Descriptive statistics are used to summarize and describe the features of a dataset. They can be further divided into:
|
| 95 |
-
""")
|
| 96 |
-
|
| 97 |
-
# Measures of Central Tendency
|
| 98 |
-
st.subheader("1.1 Measures of Central Tendency")
|
| 99 |
-
st.latex(r"""
|
| 100 |
-
\textbf{Measures of Central Tendency:} \\
|
| 101 |
-
\text{These measures describe the center or typical value of a dataset.}
|
| 102 |
-
""")
|
| 103 |
-
st.latex(r"""
|
| 104 |
-
\text{Mean:} \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
|
| 105 |
-
""")
|
| 106 |
-
st.latex(r"""
|
| 107 |
-
\text{Median:} \quad \text{The middle value in a sorted dataset}
|
| 108 |
-
""")
|
| 109 |
-
st.latex(r"""
|
| 110 |
-
\text{Mode:} \quad \text{The most frequently occurring value in a dataset}
|
| 111 |
-
""")
|
| 112 |
-
|
| 113 |
-
# Measures of Dispersion
|
| 114 |
-
st.subheader("1.2 Measures of Dispersion")
|
| 115 |
-
st.latex(r"""
|
| 116 |
-
\textbf{Measures of Dispersion:} \\
|
| 117 |
-
\text{These measures describe the spread or variability of data points.}
|
| 118 |
-
""")
|
| 119 |
-
st.latex(r"""
|
| 120 |
-
\text{Range:} \quad R = \text{Maximum value} - \text{Minimum value}
|
| 121 |
-
""")
|
| 122 |
-
st.latex(r"""
|
| 123 |
-
\text{Variance:} \quad \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2
|
| 124 |
-
""")
|
| 125 |
-
st.latex(r"""
|
| 126 |
-
\text{Standard Deviation:} \quad \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}
|
| 127 |
-
""")
|
| 128 |
-
|
| 129 |
-
# Data Distributions
|
| 130 |
-
st.subheader("1.3 Data Distributions")
|
| 131 |
-
st.latex(r"""
|
| 132 |
-
\textbf{Data Distributions:} \\
|
| 133 |
-
\text{These describe how data points are spread across different values.}
|
| 134 |
-
""")
|
| 135 |
-
st.latex(r"""
|
| 136 |
-
\text{Normal Distribution (Gaussian):} \quad \mathcal{N}(\mu, \sigma^2)
|
| 137 |
-
""")
|
| 138 |
-
st.latex(r"""
|
| 139 |
-
\text{Uniform Distribution:} \quad \text{All outcomes are equally likely}
|
| 140 |
-
""")
|
| 141 |
-
st.latex(r"""
|
| 142 |
-
\text{Binomial Distribution:} \quad \text{Describes the number of successes in a fixed number of independent Bernoulli trials}
|
| 143 |
-
""")
|
| 144 |
-
|
| 145 |
-
# Inferential Statistics
|
| 146 |
-
st.header("2. Inferential Statistics")
|
| 147 |
-
st.markdown("""
|
| 148 |
-
Inferential statistics make predictions or inferences about a population based on a sample of data. Key techniques include:
|
| 149 |
-
""")
|
| 150 |
-
|
| 151 |
-
st.subheader("2.1 Hypothesis Testing")
|
| 152 |
-
st.latex(r"""
|
| 153 |
-
\textbf{Hypothesis Testing:} \\
|
| 154 |
-
\text{Involves testing a hypothesis about a population parameter.}
|
| 155 |
-
""")
|
| 156 |
-
st.latex(r"""
|
| 157 |
-
H_0: \text{Null Hypothesis} \\
|
| 158 |
-
H_1: \text{Alternative Hypothesis}
|
| 159 |
-
""")
|
| 160 |
-
|
| 161 |
-
st.subheader("2.2 Confidence Intervals")
|
| 162 |
-
st.latex(r"""
|
| 163 |
-
\textbf{Confidence Intervals:} \\
|
| 164 |
-
\text{Provides a range of values within which the true population parameter is likely to fall.}
|
| 165 |
-
""")
|
| 166 |
-
st.latex(r"""
|
| 167 |
-
\text{Confidence Interval:} \quad \bar{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}
|
| 168 |
-
""")
|
| 169 |
-
|
| 170 |
-
st.subheader("2.3 Regression Analysis")
|
| 171 |
-
st.latex(r"""
|
| 172 |
-
\textbf{Regression Analysis:} \\
|
| 173 |
-
\text{Examines the relationship between a dependent variable and one or more independent variables.}
|
| 174 |
-
""")
|
| 175 |
-
st.latex(r"""
|
| 176 |
-
\text{Simple Linear Regression:} \quad y = \beta_0 + \beta_1 x + \epsilon
|
| 177 |
-
""")
|
|
|
|
| 84 |
st.subheader("Inferential Statistics")
|
| 85 |
st.markdown("""
|
| 86 |
Inferential statistics involve making predictions or inferences about a population based on a sample. These methods are used to test hypotheses and estimate population parameters.
|
| 87 |
+
<ul class="icon-bullet">
|
| 88 |
+
<li>Hypothesis Testing (t-tests,Chi-square tests,ANOVA)</li>
|
| 89 |
+
<li>Confidence Intervals </li>
|
| 90 |
+
<li>Regression Analysis(Simple Linear Regression,Multiple Regression,Logistic Regression)</li>
|
| 91 |
+
</u>
|
| 92 |
""", unsafe_allow_html=True)
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|