DOMMETI commited on
Commit
620ac5c
·
verified ·
1 Parent(s): 4fee41b

Update pages/2_Introduction_to_Statistics.py

Browse files
pages/2_Introduction_to_Statistics.py CHANGED
@@ -85,3 +85,93 @@ st.subheader("Inferential Statistics")
85
  st.markdown("""
86
  Inferential statistics involve making predictions or inferences about a population based on a sample. These methods are used to test hypotheses and estimate population parameters.
87
  """, unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  st.markdown("""
86
  Inferential statistics involve making predictions or inferences about a population based on a sample. These methods are used to test hypotheses and estimate population parameters.
87
  """, unsafe_allow_html=True)
88
+
89
+ st.title("Types of Statistics")
90
+
91
+ # Descriptive Statistics
92
+ st.header("1. Descriptive Statistics")
93
+ st.markdown("""
94
+ Descriptive statistics are used to summarize and describe the features of a dataset. They can be further divided into:
95
+ """)
96
+
97
+ # Measures of Central Tendency
98
+ st.subheader("1.1 Measures of Central Tendency")
99
+ st.latex(r"""
100
+ \textbf{Measures of Central Tendency:} \\
101
+ \text{These measures describe the center or typical value of a dataset.}
102
+ """)
103
+ st.latex(r"""
104
+ \text{Mean:} \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
105
+ """)
106
+ st.latex(r"""
107
+ \text{Median:} \quad \text{The middle value in a sorted dataset}
108
+ """)
109
+ st.latex(r"""
110
+ \text{Mode:} \quad \text{The most frequently occurring value in a dataset}
111
+ """)
112
+
113
+ # Measures of Dispersion
114
+ st.subheader("1.2 Measures of Dispersion")
115
+ st.latex(r"""
116
+ \textbf{Measures of Dispersion:} \\
117
+ \text{These measures describe the spread or variability of data points.}
118
+ """)
119
+ st.latex(r"""
120
+ \text{Range:} \quad R = \text{Maximum value} - \text{Minimum value}
121
+ """)
122
+ st.latex(r"""
123
+ \text{Variance:} \quad \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2
124
+ """)
125
+ st.latex(r"""
126
+ \text{Standard Deviation:} \quad \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}
127
+ """)
128
+
129
+ # Data Distributions
130
+ st.subheader("1.3 Data Distributions")
131
+ st.latex(r"""
132
+ \textbf{Data Distributions:} \\
133
+ \text{These describe how data points are spread across different values.}
134
+ """)
135
+ st.latex(r"""
136
+ \text{Normal Distribution (Gaussian):} \quad \mathcal{N}(\mu, \sigma^2)
137
+ """)
138
+ st.latex(r"""
139
+ \text{Uniform Distribution:} \quad \text{All outcomes are equally likely}
140
+ """)
141
+ st.latex(r"""
142
+ \text{Binomial Distribution:} \quad \text{Describes the number of successes in a fixed number of independent Bernoulli trials}
143
+ """)
144
+
145
+ # Inferential Statistics
146
+ st.header("2. Inferential Statistics")
147
+ st.markdown("""
148
+ Inferential statistics make predictions or inferences about a population based on a sample of data. Key techniques include:
149
+ """)
150
+
151
+ st.subheader("2.1 Hypothesis Testing")
152
+ st.latex(r"""
153
+ \textbf{Hypothesis Testing:} \\
154
+ \text{Involves testing a hypothesis about a population parameter.}
155
+ """)
156
+ st.latex(r"""
157
+ H_0: \text{Null Hypothesis} \\
158
+ H_1: \text{Alternative Hypothesis}
159
+ """)
160
+
161
+ st.subheader("2.2 Confidence Intervals")
162
+ st.latex(r"""
163
+ \textbf{Confidence Intervals:} \\
164
+ \text{Provides a range of values within which the true population parameter is likely to fall.}
165
+ """)
166
+ st.latex(r"""
167
+ \text{Confidence Interval:} \quad \bar{x} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}
168
+ """)
169
+
170
+ st.subheader("2.3 Regression Analysis")
171
+ st.latex(r"""
172
+ \textbf{Regression Analysis:} \\
173
+ \text{Examines the relationship between a dependent variable and one or more independent variables.}
174
+ """)
175
+ st.latex(r"""
176
+ \text{Simple Linear Regression:} \quad y = \beta_0 + \beta_1 x + \epsilon
177
+ """)