DOMMETI commited on
Commit
6361c49
·
verified ·
1 Parent(s): 48ff115

Update pages/6_Measurement of Disperssion.py

Browse files
Files changed (1) hide show
  1. pages/6_Measurement of Disperssion.py +181 -1
pages/6_Measurement of Disperssion.py CHANGED
@@ -93,4 +93,184 @@ st.markdown("""Relative is a method to find the spread which involves the metho
93
  <li>Coefficent Of Standard Deviation</li>
94
  </ul>
95
  """,unsafe_allow_html=True)
96
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  <li>Coefficent Of Standard Deviation</li>
94
  </ul>
95
  """,unsafe_allow_html=True)
96
+ st.markdown(''':orange[**Range**] is one of the measure to find the disperssion.But is not at all mostly used beause it don't focus on the entire data.
97
+ ''')
98
+ st.subheader("Absolute Range")
99
+ st.latex(r'''
100
+ \text{Absolute Range} = \text{Maximum Value} - \text{Minimum Value}
101
+ ''')
102
+ st.subheader("Relative Range")
103
+ st.latex(r'''
104
+ \text{Relative Range} = \frac{\text{Absolute Range}}{\text{Mean}} \times 100
105
+ ''')
106
+ def absolute_range(list1):
107
+ max_val = np.max(list1)
108
+ min_val = np.min(list1)
109
+ return max_val - min_val
110
+ st.title("Calculate Absolute Range")
111
+ num_input = st.text_input("Enter the values separated by commas (e.g., 1,2,3,4)", key="num_input")
112
+ list1 = []
113
+ value = num_input.split(",")
114
+ for i in value:
115
+ if i.isdigit():
116
+ list1.append(int(i))
117
+ if list1:
118
+ result = absolute_range(list1)
119
+ st.write("Absolute Range:", result)
120
+ else:
121
+ st.write("Please enter valid numbers.")
122
+ def relative_range(list1):
123
+ max=np.max(list1)
124
+ min=np.min(list1)
125
+ return round((max-min)/(max+min)*100,2)
126
+ st.title("Calculate Relative Range")
127
+ num_input1=st.text_input("Enter the values separated by commas (e.g., 1,2,3,4)", key="num_input1")
128
+ value=num_input1.split(",")
129
+ list1=[]
130
+ for i in value:
131
+ if i.isdigit():
132
+ list1.append(int(i))
133
+ else:
134
+ pass
135
+ if list1:
136
+ result=relative_range(list1)
137
+ st.write("Relative Range",result)
138
+ else:
139
+ st.write("Please enter valid numbers.")
140
+ st.markdown(''':orange[**Quartile Deviation**] is one of the measure to find the disperssion.In this type the data is divided into 4 equal parts.
141
+ It will mostly focus on the central data.
142
+ ''')
143
+ st.subheader("Absolute Quartile Deviation")
144
+ st.latex(r'''
145
+ QD = \frac{Q3 - Q1}{2}
146
+ ''')
147
+ st.subheader("Relative Quartile Deviation")
148
+ st.latex(r'''
149
+ \text{Relative QD} = \frac{Q3 - Q1}{Q3 + Q1} \times 100
150
+ ''')
151
+ def abs_quartile_dev(list1):
152
+ q1=np.percentile(list1,25)
153
+ q3=np.percentile(list1,75)
154
+ return round((q3-q1)/2,2)
155
+ st.title("Caluculate Absolute Quartile Deviation")
156
+ num_input2=st.text_input("Enter the values separated by commas (e.g., 1,2,3,4)", key="num_input2")
157
+ value=num_input2.split(",")
158
+ list1=[]
159
+ for i in value:
160
+ if i.isdigit():
161
+ list1.append(int(i))
162
+ else:
163
+ pass
164
+ if list1:
165
+ result=abs_quartile_dev(list1)
166
+ st.write("Absolute Quartile Deviation",result)
167
+ else:
168
+ st.write("Please enter valid numbers.")
169
+ def rel_quartile_dev(list1):
170
+ q1=np.percentile(list1,25)
171
+ q3=np.percentile(list1,75)
172
+ return round(((q3-q1)/(q3+q1))*100,2)
173
+ st.title("Caluculate Relative Quartile Deviation")
174
+ num_input3=st.text_input("Enter the values separated by commas (e.g., 1,2,3,4)", key="num_input3")
175
+ value=num_input3.split(",")
176
+ list1=[]
177
+ for i in value:
178
+ if i.isdigit():
179
+ list1.append(int(i))
180
+ else:
181
+ pass
182
+ if list1:
183
+ result=rel_quartile_dev(list1)
184
+ st.write("Relative Quartile Deviation",result)
185
+ else:
186
+ st.write("Please enter valid numbers.")
187
+ st.markdown(''':orange[**Varience**] is one of the measure to find the disperssion.It is one of the best measure to find the disperssion.The only
188
+ drawback is when in Varience is in order to overcome negitive value we square them thus the distance is doubled
189
+ ''')
190
+ st.subheader("Absolute Variance")
191
+ st.latex(r'''
192
+ \text{Var} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2
193
+ ''')
194
+ st.subheader("Relative Variance")
195
+ st.latex(r'''
196
+ \text{Relative Var} = \frac{\text{Var}}{\bar{x}} \times 100
197
+ ''')
198
+ def absolute_varience(list1):
199
+ return np.var(list1)
200
+ st.title("Caluculate Absolute varience")
201
+ num_input4=st.text_input("Enter the values separated by commas (e.g., 1,2,3,4)", key="num_input4")
202
+ value=num_input4.split(",")
203
+ list1=[]
204
+ for i in value:
205
+ if i.isdigit():
206
+ list1.append(int(i))
207
+ else:
208
+ pass
209
+ if list1:
210
+ result=absolute_varience(list1)
211
+ st.write("Absolute Varience",result)
212
+ else:
213
+ st.write("Please enter valid numbers.")
214
+ def relative_varience(list1):
215
+ mean=round(np.mean(list1),2)
216
+ std_dev=np.std(list1,ddof=1)
217
+ return round((std_dev/mean)*100,2)
218
+ st.title("Caluculate Relative Varience")
219
+ num_input5=st.text_input("Enter the values separated by commas (e.g., 1,2,3,4)", key="num_input5")
220
+ value=num_input5.split(",")
221
+ list1=[]
222
+ for i in value:
223
+ if i.isdigit():
224
+ list1.append(int(i))
225
+ else:
226
+ pass
227
+ if list1:
228
+ result=relative_varience(list1)
229
+ st.write("Relative Varience",result)
230
+ else:
231
+ st.write("Please enter valid numbers.")
232
+ st.markdown(''':orange[**Standard Deviation**] is one of the measure to find the disperssion.It is one of the best measure to find the disperssion.It over comes the
233
+ disadvantage occured in varience by square rooting it.
234
+ ''')
235
+ st.subheader("Absolute Standard Deviation")
236
+ st.latex(r'''
237
+ \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}
238
+ ''')
239
+ st.subheader("Relative Standard Deviation")
240
+ st.latex(r'''
241
+ \text{Relative SD} = \frac{\sigma}{\bar{x}}
242
+ ''')
243
+ def absolute_std(list1):
244
+ return round(np.std(list1),2)
245
+ st.title("Caluculate Absolute Standard Deviation")
246
+ num_input6=st.text_input("Enter the values separated by commas (e.g., 1,2,3,4)", key="num_input6")
247
+ value=num_input6.split(",")
248
+ list1=[]
249
+ for i in value:
250
+ if i.isdigit():
251
+ list1.append(int(i))
252
+ else:
253
+ pass
254
+ if list1:
255
+ result=absolute_std(list1)
256
+ st.write("Absolute Standard Deviation",result)
257
+ else:
258
+ st.write("Please enter valid numbers.")
259
+ def relative_std(list1):
260
+ mean=round(np.mean(list1),2)
261
+ std_dev=np.std(list1,ddof=1)
262
+ return round((std_dev/mean),2)
263
+ st.title("Caluculate Relative Standard Deviation")
264
+ num_input7=st.text_input("Enter the values separated by commas (e.g., 1,2,3,4)", key="num_input7")
265
+ value=num_input7.split(",")
266
+ list1=[]
267
+ for i in value:
268
+ if i.isdigit():
269
+ list1.append(int(i))
270
+ else:
271
+ pass
272
+ if list1:
273
+ result=relative_std(list1)
274
+ st.write("Relative Standard Deviation",result)
275
+ else:
276
+ st.write("Please enter valid numbers.")