File size: 18,992 Bytes
776877d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import torch
import numpy as np
from scipy import stats
from scipy.signal import find_peaks
import random
from statsmodels.tsa.stattools import acf
from scipy.ndimage import gaussian_filter1d
from scipy import optimize


class TimeSeriesProcessor:
    """
    Utility class for converting between numpy and torch.
    """
    @staticmethod
    def to_numpy(data):
        """Convert torch tensor to numpy array while preserving device and dtype info"""
        is_torch = isinstance(data, torch.Tensor)
        if is_torch:
            device = data.device
            dtype = data.dtype
            return data.detach().cpu().numpy(), is_torch, device, dtype
        return data, False, None, None
    
    @staticmethod
    def to_torch(data_np, is_torch, device=None, dtype=None):
        """Convert numpy array back to torch tensor if original was a tensor"""
        if is_torch:
            return torch.tensor(data_np, device=device, dtype=dtype)
        return data_np


class Embedding:
    """
    Class for embedding methods to transform time series to target dimension.
    """
    @staticmethod
    def estimate_TDM_tau(data, acorr_threshold=1/np.e):
        """
        Estimate tau using autocorrelation function with threshold method
        
        Args:
            data: Input data tensor of shape (seq_length, N)
            acorr_threshold: Autocorrelation threshold

        Returns:
            Maximum estimated tau across all dimensions
        """
        # Convert to numpy
        data_np, _, _, _ = TimeSeriesProcessor.to_numpy(data)
        
        seq_length, n_dims = data_np.shape
        tau_vals = np.zeros(n_dims, dtype=int)
        
        for dim in range(n_dims):
            # Calculate autocorrelation
            autocorr_vals = acf(data_np[:, dim] - np.mean(data_np[:, dim]), nlags=seq_length//2)
            
            # Find first value below threshold (after lag 0)
            below_threshold = np.where(autocorr_vals[1:] < acorr_threshold)[0]
            if len(below_threshold) > 0:
                tau_vals[dim] = below_threshold[0] + 1  # +1 because skipping lag 0
            else:
                tau_vals[dim] = 1  # Default if no value below threshold
        
        return int(np.max(tau_vals))
    
    @staticmethod
    def estimate_pos_tau(data, max_lag=None, min_lag=None):
        """
        Estimate autocorrelation time for positional embedding
        
        Args:
            data: Input data tensor of shape (seq_length, N)
            max_lag: Maximum lag to consider
            min_lag: Minimum lag to consider
            
        Returns:
            Maximum autocorrelation time across dimensions
        """
        data_np, _, _, _ = TimeSeriesProcessor.to_numpy(data)
        seq_length, n = data_np.shape
        
        if max_lag is None:
            max_lag = seq_length - 1
        if min_lag is None:
            min_lag = seq_length // 10
            
        tau_vals = np.zeros(n, dtype=int)
        
        for dim in range(n):
            ts = data_np[:, dim] if not isinstance(data, torch.Tensor) else data[:, dim].cpu().numpy()
            autocorr_vals = acf(ts - np.mean(ts), nlags=max_lag)
            
            # Determine max autocorrelation with tau>tau_min
            peaks, _ = find_peaks(autocorr_vals)
            valid_peaks = [i for i in peaks if i > min_lag and i < len(autocorr_vals)]
            if valid_peaks:
                peak_values = autocorr_vals[valid_peaks]
                max_peak_idx = np.argmax(peak_values)
                tau_vals[dim] = valid_peaks[max_peak_idx]
            else:
                start_idx = min_lag + 1
                segment = autocorr_vals[start_idx:]
                tau_vals[dim] = start_idx + int(np.argmax(segment))
        
        return np.max(tau_vals)
    
    @staticmethod
    def delay_embedding(data, model_dim, tau=None):
        """
        Standard delay embedding with optimal tau
        
        Args:
            data: Input data tensor of shape (seq_length, N)
            model_dim: Target dimension
            tau: Time delay (if None, estimated from autocorrelation)
            
        Returns:
            Delay embedded data of shape (shortened_length, model_dim)
        """
        seq_length, N_data = data.shape
        needed_dims = model_dim - N_data
        
        if needed_dims <= 0:
            return data
        
        processed_data = data.clone()
        
        # Estimate tau if not provided
        if tau is None:
            tau = Embedding.estimate_TDM_tau(processed_data)
        
        # Select the last column for embedding
        ts = processed_data[:, -1].clone()
        
        # Calculate starting index
        start_idx = needed_dims * tau
        
        # Handle case where start_idx is too large
        if start_idx >= seq_length:
            tau = max(1, seq_length // (needed_dims + 1))
            start_idx = needed_dims * tau
        
        # Create shortened data
        shortened_data = processed_data[start_idx:].clone()
        result = shortened_data
        
        # Add delayed versions
        for i in range(1, needed_dims + 1):
            delayed = ts[start_idx - i * tau:seq_length - i * tau].unsqueeze(1)
            result = torch.cat([result, delayed], dim=1)
        
        return result
    
    @staticmethod
    def delay_embedding_random(data, model_dim, upper_tau=10, lower_tau=3):
        """
        Random delay embedding with random tau values
        
        Args:
            data: Input data tensor of shape (seq_length, N)
            model_dim: Target dimension
            upper_tau: Upper bound for random tau values
            lower_tau: Lower bound for random tau values
            
        Returns:
            Random delay embedded data
        """
        seq_length, N_data = data.shape
        needed_dims = model_dim - N_data
        
        if needed_dims <= 0:
            return data
        
        processed_data = data.clone()
        
        # Generate random tau values
        taus = [random.randint(lower_tau, upper_tau) for _ in range(needed_dims)]
        max_tau = max(taus)
        
        # Select the first column for embedding
        ts = processed_data[:, 0].clone()
        
        # Create shortened data
        result = processed_data[max_tau:].clone()
        
        # Add delayed versions
        for i in range(needed_dims):
            delayed = ts[max_tau - taus[i]:seq_length - taus[i]].unsqueeze(1)
            result = torch.cat([result, delayed], dim=1)
        
        return result
    
    @staticmethod
    def zero_embedding(data, model_dim):
        """
        Zero embedding: appends zeros to reach model dimensions
        
        Args:
            data: Input data tensor of shape (seq_length, N)
            model_dim: Target dimension
            
        Returns:
            Tensor with zeros appended to reach model_dim
        """
        seq_length, N_data = data.shape
        needed_dims = model_dim - N_data
        
        if needed_dims > 0:
            zeros = torch.zeros(seq_length, needed_dims, device=data.device, dtype=data.dtype)
            data = torch.cat([data, zeros], dim=1)
        
        return data
    
    @staticmethod
    def positional_embedding(data, model_dim, tau=None):
        """
        Positional embedding: adds sinusoidal signals based on autocorrelation time
        
        Args:
            data: Input data tensor of shape (seq_length, N)
            model_dim: Target dimension
            tau: Optional fixed value for tau. If None, estimated from data.
            
        Returns:
            Data with positional embeddings added
        """
        seq_length, N_data = data.shape
        needed_dims = model_dim - N_data
        
        if needed_dims <= 0:
            return data
            
        if needed_dims != 1:
            shifts = torch.linspace(0, np.pi/2, needed_dims, device=data.device)
        else:
            shifts = torch.tensor([0.0], device=data.device)
            
        tau_val = tau if tau is not None else Embedding.estimate_pos_tau(data)
        t = torch.arange(1, seq_length + 1, dtype=data.dtype, device=data.device)
        
        result = data.clone()
        for shift in shifts:
            pos_feature = torch.sin(2 * np.pi / tau_val * t + shift).unsqueeze(1)
            result = torch.cat([result, pos_feature], dim=1)
        
        return result
    
    @staticmethod
    def apply_embedding(data, model_dim, method="pos_embedding", **kwargs):
        """
        Apply selected embedding method to the data
        
        Args:
            data: Input data tensor of shape (seq_length, N)
            model_dim: Target dimension
            method: Embedding method ('pos_embedding', 'zero_embedding', 
                    'delay_embedding', or 'delay_embedding_random')
            **kwargs: Additional parameters to pass to the specific embedding method
            
        Returns:
            Embedded data
        """
        if method == "pos_embedding":
            return Embedding.positional_embedding(data, model_dim, **kwargs)
        elif method == "zero_embedding":
            return Embedding.zero_embedding(data, model_dim)
        elif method == "delay_embedding":
            return Embedding.delay_embedding(data, model_dim, **kwargs)
        elif method == "delay_embedding_random":
            return Embedding.delay_embedding_random(data, model_dim, **kwargs)
        else:
            raise ValueError(f"Unsupported embedding method: {method}")


class BoxCoxTransformer:
    """
    Applies Box-Cox transformation to data for variance stabilization.
    """
    def __init__(self, lambda_range=(-2, 2)):
        """
        Initialize BoxCoxTransformer.
        
        Args:
            lambda_range: Range for lambda parameter search
        """
        self.lambda_range = lambda_range
        self.params = None
    
    @staticmethod
    def transform(data, lambda_range=(-2, 2)):
        """
        Apply Box-Cox transformation to data for stabilization
        
        Args:
            data: Input data tensor of shape (seq_length, N)
            lambda_range: Range for lambda parameter search
            
        Returns:
            Transformed data and parameters for inverse transformation
        """
        # Convert to numpy
        data_np, is_torch, device, dtype = TimeSeriesProcessor.to_numpy(data)
        
        seq_length, n_dims = data_np.shape
        transformed_data = np.zeros_like(data_np)
        box_cox_params = []
        
        for dim in range(n_dims):
            # Add constant to ensure positivity
            if np.min(data_np[:, dim]) <= 0:
                offset = abs(np.min(data_np[:, dim])) + 1.2
                data_shifted = data_np[:, dim] + offset
            else:
                offset = 1.2
                data_shifted = data_np[:, dim] + offset
            
            try:
                # Find optimal lambda for Box-Cox transformation
                transformed, lambda_param = stats.boxcox(data_shifted)
                
                # Limit lambda to a reasonable range to prevent numerical issues
                lambda_param = max(min(lambda_param, 2.0), -2.0)
                
                # Recalculate transformation with bounded lambda for consistency
                if abs(lambda_param) < 1e-8:
                    # For lambda near zero, use logarithmic transformation
                    transformed = np.log(data_shifted)
                else:
                    transformed = (data_shifted ** lambda_param - 1) / lambda_param
                
                # Store transformed data and parameters
                transformed_data[:, dim] = transformed
            except:
                # If transformation fails, just use the original data
                transformed_data[:, dim] = data_np[:, dim]
                lambda_param = 1.0  # Identity transform
                
            box_cox_params.append((lambda_param, offset))
        
        # Convert back to torch if needed
        return TimeSeriesProcessor.to_torch(transformed_data, is_torch, device, dtype), box_cox_params
    
    @staticmethod
    def inverse_transform(data, box_cox_params):
        """
        Apply inverse Box-Cox transformation
        
        Args:
            data: Transformed data tensor
            box_cox_params: Parameters from Box-Cox transformation
            
        Returns:
            Original scale data
        """
        # Convert to numpy for computation
        data_np, is_torch, device, dtype = TimeSeriesProcessor.to_numpy(data)
        
        seq_length, n_dims = data_np.shape
        inverse_data = np.zeros_like(data_np)
        
        for dim in range(min(n_dims, len(box_cox_params))):
            lambda_param, offset = box_cox_params[dim]
            
            # Apply inverse transformation
            if abs(lambda_param) < 1e-8:
                # For lambda near zero, the transformation is logarithmic
                inverse_data[:, dim] = np.exp(data_np[:, dim]) - offset
            elif abs(lambda_param - 1.0) < 1e-8:
                # For lambda=1 (identity transform), just subtract offset
                inverse_data[:, dim] = data_np[:, dim] - offset
            else:
                # For other lambda values
                base = lambda_param * data_np[:, dim] + 1
                
                # Simple clipping approach to ensure base is positive
                # This avoids complex numbers while preserving most data characteristics
                base = np.maximum(base, 1e-10)
                
                # Apply power transformation
                result = base ** (1/lambda_param)
                inverse_data[:, dim] = result - offset
        
        # Convert back to torch if needed
        return TimeSeriesProcessor.to_torch(inverse_data, is_torch, device, dtype)


class Detrending:
    """
    Applies exponential detrending to time series data.
    """
    @staticmethod
    def exp_model(t, params):
        """
        Exponential model for detrending
        
        Args:
            t: Time points
            params: Model parameters [a, b, c]
            
        Returns:
            Model values
        """
        a, b, c = params
        return a * (t ** b) + c
    
    @staticmethod
    def fit_objective(params, data):
        """
        Objective function for exponential model fitting
        
        Args:
            params: Model parameters
            data: Data to fit
            
        Returns:
            Sum of squared errors
        """
        t = np.arange(1, len(data) + 1)
        predicted = Detrending.exp_model(t, params)
        return np.sum((data - predicted) ** 2)
    
    @staticmethod
    def apply_detrending(data):
        """
        Apply exponential detrending to data
        
        Args:
            data: Input data tensor of shape (seq_length, N)
            
        Returns:
            Detrended data and parameters for inverse transformation
        """
        # Convert to numpy
        data_np, is_torch, device, dtype = TimeSeriesProcessor.to_numpy(data)
        
        seq_length, n_dims = data_np.shape
        detrended_data = np.zeros_like(data_np)
        detrending_params = []
        
        for dim in range(n_dims):
            # Define the objective function for this dimension
            objective = lambda params: Detrending.fit_objective(params, data_np[:, dim])
            
            # Initial parameter guess
            initial_params = [0.0, 1.0, data_np[0,dim]]
            
            # Bounds for parameters
            bounds = [(None, None), (0.1, 3.0), (None, None)]
            
            # Optimize
            result = optimize.minimize(
                objective, 
                initial_params, 
                method='L-BFGS-B', 
                bounds=bounds,
                options={
                    'maxiter': 1000,
                    'gtol': 1e-6,
                    'maxfun': 1500,
                    'maxcor': 10
                }
            )
            optimal_params = np.round(result.x, 3)
            
            # Calculate trend and detrend the data
            t = np.arange(1, seq_length + 1)
            trend = Detrending.exp_model(t, optimal_params)
            detrended_data[:, dim] = data_np[:, dim] - trend
            
            # Store parameters for inverse transformation
            detrending_params.append(optimal_params)
        
        # Convert back to torch if needed
        return TimeSeriesProcessor.to_torch(detrended_data, is_torch, device, dtype), detrending_params
    
    @staticmethod
    def apply_detrending_inverse(context, data, detrending_params):
        """
        Apply inverse detrending to forecasted data
        
        Args:
            context: Original context data
            data: Forecasted data
            detrending_params: Parameters from detrending
            
        Returns:
            Forecasted data with trend restored
        """
        # Convert to numpy for computation
        data_np, is_torch, device, dtype = TimeSeriesProcessor.to_numpy(data)
        context_np, _, _, _ = TimeSeriesProcessor.to_numpy(context)
        
        # Get dimensions
        forecast_length, n_dims = data_np.shape
        context_length = len(context_np)
        
        # Create time points for the forecast horizon
        t = np.arange(context_length + 1, context_length + forecast_length + 1)
        
        # Add trend back to each dimension
        for dim in range(min(n_dims, len(detrending_params))):
            params = detrending_params[dim]
            trend = Detrending.exp_model(t, params)
            data_np[:, dim] = data_np[:, dim] + trend
        
        # Convert back to torch if needed
        return TimeSeriesProcessor.to_torch(data_np, is_torch, device, dtype)


def estimate_initial_condition(initial_x, context_embedded):
    """
    Estimate full initial condition from partial observation
    
    Args:
        initial_x: Partial initial condition of shape (N_partial,)
        context_embedded: Context data of shape (seq_length, N)
        
    Returns:
        Complete initial condition of shape (N,)
    """
    T, N = context_embedded.shape
    N_partial = initial_x.shape[0]
    
    assert N_partial <= N, "Initial condition dimension must be <= embedding dimension"
    
    # Find timestep with closest match to initial condition in first N_partial dimensions
    distances = torch.zeros(T, device=initial_x.device)
    for t in range(T):
        distances[t] = torch.sum((context_embedded[t, :N_partial] - initial_x) ** 2)
        
    closest_t = torch.argmin(distances)
    
    # Combine initial condition with closest matching state
    return torch.cat([initial_x, context_embedded[closest_t, N_partial:]])