Spaces:
Running
on
T4
Running
on
T4
MassivelyMultilingualTTS
/
Architectures
/ToucanTTS
/StochasticToucanTTS
/StochasticVariancePredictor.py
| """ | |
| Code taken and adapted from https://github.com/jaywalnut310/vits | |
| MIT License | |
| Copyright (c) 2021 Jaehyeon Kim | |
| Permission is hereby granted, free of charge, to any person obtaining a copy | |
| of this software and associated documentation files (the "Software"), to deal | |
| in the Software without restriction, including without limitation the rights | |
| to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| copies of the Software, and to permit persons to whom the Software is | |
| furnished to do so, subject to the following conditions: | |
| The above copyright notice and this permission notice shall be included in all | |
| copies or substantial portions of the Software. | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| SOFTWARE. | |
| """ | |
| import math | |
| import numpy as np | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| DEFAULT_MIN_BIN_WIDTH = 1e-3 | |
| DEFAULT_MIN_BIN_HEIGHT = 1e-3 | |
| DEFAULT_MIN_DERIVATIVE = 1e-3 | |
| class StochasticVariancePredictor(nn.Module): | |
| def __init__(self, in_channels, kernel_size, p_dropout, n_flows=4, conditioning_signal_channels=0): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.filter_channels = in_channels | |
| self.kernel_size = kernel_size | |
| self.p_dropout = p_dropout | |
| self.n_flows = n_flows | |
| self.gin_channels = conditioning_signal_channels if conditioning_signal_channels is not None else 0 | |
| self.log_flow = Log() | |
| self.flows = nn.ModuleList() | |
| self.flows.append(ElementwiseAffine(2)) | |
| for i in range(n_flows): | |
| self.flows.append(ConvFlow(2, in_channels, kernel_size, n_layers=3)) | |
| self.flows.append(Flip()) | |
| self.post_pre = nn.Conv1d(1, in_channels, 1) | |
| self.post_proj = nn.Conv1d(in_channels, in_channels, 1) | |
| self.post_convs = DDSConv(in_channels, kernel_size, n_layers=3, p_dropout=p_dropout) | |
| self.post_flows = nn.ModuleList() | |
| self.post_flows.append(ElementwiseAffine(2)) | |
| for i in range(4): | |
| self.post_flows.append(ConvFlow(2, in_channels, kernel_size, n_layers=3)) | |
| self.post_flows.append(Flip()) | |
| self.pre = nn.Conv1d(in_channels, in_channels, 1) | |
| self.proj = nn.Conv1d(in_channels, in_channels, 1) | |
| self.convs = DDSConv(in_channels, kernel_size, n_layers=3, p_dropout=p_dropout) | |
| if self.gin_channels != 0: | |
| self.cond = nn.Conv1d(self.gin_channels, in_channels, 1) | |
| def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=0.3): | |
| x = self.pre(x) | |
| if g is not None: | |
| g = torch.detach(g) | |
| x = x + self.cond(g) | |
| x = self.convs(x, x_mask) | |
| x = self.proj(x) * x_mask | |
| if not reverse: | |
| flows = self.flows | |
| assert w is not None | |
| logdet_tot_q = 0 | |
| h_w = self.post_pre(w) | |
| h_w = self.post_convs(h_w, x_mask) | |
| h_w = self.post_proj(h_w) * x_mask | |
| e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask | |
| z_q = e_q | |
| for flow in self.post_flows: | |
| z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) | |
| logdet_tot_q += logdet_q | |
| z_u, z1 = torch.split(z_q, [1, 1], 1) | |
| u = torch.sigmoid(z_u) * x_mask | |
| z0 = (w - u) * x_mask | |
| logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]) | |
| logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q | |
| logdet_tot = 0 | |
| z0, logdet = self.log_flow(z0, x_mask) | |
| logdet_tot += logdet | |
| z = torch.cat([z0, z1], 1) | |
| for flow in flows: | |
| z, logdet = flow(z, x_mask, g=x, reverse=reverse) | |
| logdet_tot = logdet_tot + logdet | |
| nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot | |
| return nll + logq # [b] | |
| else: | |
| flows = list(reversed(self.flows)) | |
| flows = flows[:-2] + [flows[-1]] # remove a useless vflow | |
| z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale | |
| # noise scale 0.8 derived from coqui implementation, but dropped to 0.3 during testing. Might not be ideal yet. | |
| for flow in flows: | |
| z = flow(z, x_mask, g=x, reverse=reverse) | |
| z0, z1 = torch.split(z, [1, 1], 1) | |
| logw = z0 | |
| return logw | |
| class Log(nn.Module): | |
| def forward(self, x, x_mask, reverse=False, **kwargs): | |
| if not reverse: | |
| y = torch.log(torch.clamp_min(x, 1e-6)) * x_mask | |
| logdet = torch.sum(-y, [1, 2]) | |
| return y, logdet | |
| else: | |
| x = torch.exp(x) * x_mask | |
| return x | |
| class Flip(nn.Module): | |
| def forward(self, x, *args, reverse=False, **kwargs): | |
| x = torch.flip(x, [1]) | |
| if not reverse: | |
| logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) | |
| return x, logdet | |
| else: | |
| return x | |
| class DDSConv(nn.Module): | |
| """ | |
| Dialted and Depth-Separable Convolution | |
| """ | |
| def __init__(self, channels, kernel_size, n_layers, p_dropout=0.): | |
| super().__init__() | |
| self.channels = channels | |
| self.kernel_size = kernel_size | |
| self.n_layers = n_layers | |
| self.p_dropout = p_dropout | |
| self.drop = nn.Dropout(p_dropout) | |
| self.convs_sep = nn.ModuleList() | |
| self.convs_1x1 = nn.ModuleList() | |
| self.norms_1 = nn.ModuleList() | |
| self.norms_2 = nn.ModuleList() | |
| for i in range(n_layers): | |
| dilation = kernel_size ** i | |
| padding = (kernel_size * dilation - dilation) // 2 | |
| self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, | |
| groups=channels, dilation=dilation, padding=padding | |
| )) | |
| self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) | |
| self.norms_1.append(LayerNorm(channels)) | |
| self.norms_2.append(LayerNorm(channels)) | |
| def forward(self, x, x_mask, g=None): | |
| if g is not None: | |
| x = x + g | |
| for i in range(self.n_layers): | |
| y = self.convs_sep[i](x * x_mask) | |
| y = self.norms_1[i](y) | |
| y = F.gelu(y) | |
| y = self.convs_1x1[i](y) | |
| y = self.norms_2[i](y) | |
| y = F.gelu(y) | |
| y = self.drop(y) | |
| x = x + y | |
| return x * x_mask | |
| class ConvFlow(nn.Module): | |
| def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.filter_channels = filter_channels | |
| self.kernel_size = kernel_size | |
| self.n_layers = n_layers | |
| self.num_bins = num_bins | |
| self.tail_bound = tail_bound | |
| self.half_channels = in_channels // 2 | |
| self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) | |
| self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.) | |
| self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1) | |
| self.proj.weight.data.zero_() | |
| self.proj.bias.data.zero_() | |
| def forward(self, x, x_mask, g=None, reverse=False): | |
| x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | |
| h = self.pre(x0) | |
| h = self.convs(h, x_mask, g=g) | |
| h = self.proj(h) * x_mask | |
| b, c, t = x0.shape | |
| h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] | |
| unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels) | |
| unnormalized_heights = h[..., self.num_bins:2 * self.num_bins] / math.sqrt(self.filter_channels) | |
| unnormalized_derivatives = h[..., 2 * self.num_bins:] | |
| x1, logabsdet = piecewise_rational_quadratic_transform(x1, | |
| unnormalized_widths, | |
| unnormalized_heights, | |
| unnormalized_derivatives, | |
| inverse=reverse, | |
| tails='linear', | |
| tail_bound=self.tail_bound | |
| ) | |
| x = torch.cat([x0, x1], 1) * x_mask | |
| logdet = torch.sum(logabsdet * x_mask, [1, 2]) | |
| if not reverse: | |
| return x, logdet | |
| else: | |
| return x | |
| class ElementwiseAffine(nn.Module): | |
| def __init__(self, channels): | |
| super().__init__() | |
| self.channels = channels | |
| self.m = nn.Parameter(torch.zeros(channels, 1)) | |
| self.logs = nn.Parameter(torch.zeros(channels, 1)) | |
| def forward(self, x, x_mask, reverse=False, **kwargs): | |
| if not reverse: | |
| y = self.m + torch.exp(self.logs) * x | |
| y = y * x_mask | |
| logdet = torch.sum(self.logs * x_mask, [1, 2]) | |
| return y, logdet | |
| else: | |
| x = (x - self.m) * torch.exp(-self.logs) * x_mask | |
| return x | |
| class LayerNorm(nn.Module): | |
| def __init__(self, channels, eps=1e-5): | |
| super().__init__() | |
| self.channels = channels | |
| self.eps = eps | |
| self.gamma = nn.Parameter(torch.ones(channels)) | |
| self.beta = nn.Parameter(torch.zeros(channels)) | |
| def forward(self, x): | |
| x = x.transpose(1, -1) | |
| x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
| return x.transpose(1, -1) | |
| def piecewise_rational_quadratic_transform(inputs, | |
| unnormalized_widths, | |
| unnormalized_heights, | |
| unnormalized_derivatives, | |
| inverse=False, | |
| tails=None, | |
| tail_bound=1., | |
| min_bin_width=DEFAULT_MIN_BIN_WIDTH, | |
| min_bin_height=DEFAULT_MIN_BIN_HEIGHT, | |
| min_derivative=DEFAULT_MIN_DERIVATIVE): | |
| if tails is None: | |
| spline_fn = rational_quadratic_spline | |
| spline_kwargs = {} | |
| else: | |
| spline_fn = unconstrained_rational_quadratic_spline | |
| spline_kwargs = { | |
| 'tails' : tails, | |
| 'tail_bound': tail_bound | |
| } | |
| outputs, logabsdet = spline_fn( | |
| inputs=inputs, | |
| unnormalized_widths=unnormalized_widths, | |
| unnormalized_heights=unnormalized_heights, | |
| unnormalized_derivatives=unnormalized_derivatives, | |
| inverse=inverse, | |
| min_bin_width=min_bin_width, | |
| min_bin_height=min_bin_height, | |
| min_derivative=min_derivative, | |
| **spline_kwargs | |
| ) | |
| return outputs, logabsdet | |
| def rational_quadratic_spline(inputs, | |
| unnormalized_widths, | |
| unnormalized_heights, | |
| unnormalized_derivatives, | |
| inverse=False, | |
| left=0., right=1., bottom=0., top=1., | |
| min_bin_width=DEFAULT_MIN_BIN_WIDTH, | |
| min_bin_height=DEFAULT_MIN_BIN_HEIGHT, | |
| min_derivative=DEFAULT_MIN_DERIVATIVE): | |
| if torch.min(inputs) < left or torch.max(inputs) > right: | |
| raise ValueError('Input to a transform is not within its domain') | |
| num_bins = unnormalized_widths.shape[-1] | |
| if min_bin_width * num_bins > 1.0: | |
| raise ValueError('Minimal bin width too large for the number of bins') | |
| if min_bin_height * num_bins > 1.0: | |
| raise ValueError('Minimal bin height too large for the number of bins') | |
| widths = F.softmax(unnormalized_widths, dim=-1) | |
| widths = min_bin_width + (1 - min_bin_width * num_bins) * widths | |
| cumwidths = torch.cumsum(widths, dim=-1) | |
| cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0) | |
| cumwidths = (right - left) * cumwidths + left | |
| cumwidths[..., 0] = left | |
| cumwidths[..., -1] = right | |
| widths = cumwidths[..., 1:] - cumwidths[..., :-1] | |
| derivatives = min_derivative + F.softplus(unnormalized_derivatives) | |
| heights = F.softmax(unnormalized_heights, dim=-1) | |
| heights = min_bin_height + (1 - min_bin_height * num_bins) * heights | |
| cumheights = torch.cumsum(heights, dim=-1) | |
| cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0) | |
| cumheights = (top - bottom) * cumheights + bottom | |
| cumheights[..., 0] = bottom | |
| cumheights[..., -1] = top | |
| heights = cumheights[..., 1:] - cumheights[..., :-1] | |
| if inverse: | |
| bin_idx = searchsorted(cumheights, inputs)[..., None] | |
| else: | |
| bin_idx = searchsorted(cumwidths, inputs)[..., None] | |
| input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] | |
| input_bin_widths = widths.gather(-1, bin_idx)[..., 0] | |
| input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] | |
| delta = heights / widths | |
| input_delta = delta.gather(-1, bin_idx)[..., 0] | |
| input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] | |
| input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] | |
| input_heights = heights.gather(-1, bin_idx)[..., 0] | |
| if inverse: | |
| a = (((inputs - input_cumheights) * (input_derivatives | |
| + input_derivatives_plus_one | |
| - 2 * input_delta) | |
| + input_heights * (input_delta - input_derivatives))) | |
| b = (input_heights * input_derivatives | |
| - (inputs - input_cumheights) * (input_derivatives | |
| + input_derivatives_plus_one | |
| - 2 * input_delta)) | |
| c = - input_delta * (inputs - input_cumheights) | |
| discriminant = b.pow(2) - 4 * a * c | |
| assert (discriminant >= 0).all() | |
| root = (2 * c) / (-b - torch.sqrt(discriminant)) | |
| outputs = root * input_bin_widths + input_cumwidths | |
| theta_one_minus_theta = root * (1 - root) | |
| denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) | |
| * theta_one_minus_theta) | |
| derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2) | |
| + 2 * input_delta * theta_one_minus_theta | |
| + input_derivatives * (1 - root).pow(2)) | |
| logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) | |
| return outputs, -logabsdet | |
| else: | |
| theta = (inputs - input_cumwidths) / input_bin_widths | |
| theta_one_minus_theta = theta * (1 - theta) | |
| numerator = input_heights * (input_delta * theta.pow(2) | |
| + input_derivatives * theta_one_minus_theta) | |
| denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) | |
| * theta_one_minus_theta) | |
| outputs = input_cumheights + numerator / denominator | |
| derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) | |
| + 2 * input_delta * theta_one_minus_theta | |
| + input_derivatives * (1 - theta).pow(2)) | |
| logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) | |
| return outputs, logabsdet | |
| def searchsorted(bin_locations, inputs, eps=1e-6): | |
| bin_locations[..., -1] += eps | |
| return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1 | |
| def unconstrained_rational_quadratic_spline(inputs, | |
| unnormalized_widths, | |
| unnormalized_heights, | |
| unnormalized_derivatives, | |
| inverse=False, | |
| tails='linear', | |
| tail_bound=1., | |
| min_bin_width=DEFAULT_MIN_BIN_WIDTH, | |
| min_bin_height=DEFAULT_MIN_BIN_HEIGHT, | |
| min_derivative=DEFAULT_MIN_DERIVATIVE): | |
| inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) | |
| outside_interval_mask = ~inside_interval_mask | |
| outputs = torch.zeros_like(inputs) | |
| logabsdet = torch.zeros_like(inputs) | |
| if tails == 'linear': | |
| unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) | |
| constant = np.log(np.exp(1 - min_derivative) - 1) | |
| unnormalized_derivatives[..., 0] = constant | |
| unnormalized_derivatives[..., -1] = constant | |
| outputs[outside_interval_mask] = inputs[outside_interval_mask] | |
| logabsdet[outside_interval_mask] = 0 | |
| else: | |
| raise RuntimeError('{} tails are not implemented.'.format(tails)) | |
| outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline( | |
| inputs=inputs[inside_interval_mask], | |
| unnormalized_widths=unnormalized_widths[inside_interval_mask, :], | |
| unnormalized_heights=unnormalized_heights[inside_interval_mask, :], | |
| unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], | |
| inverse=inverse, | |
| left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound, | |
| min_bin_width=min_bin_width, | |
| min_bin_height=min_bin_height, | |
| min_derivative=min_derivative | |
| ) | |
| return outputs, logabsdet | |