Miguel Jaramillo
commited on
Add files via upload
Browse files- tp3__1__1.py +501 -0
tp3__1__1.py
ADDED
|
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""tp3__1_-1.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1_Sjx5G1BW689ggZJAJ4P7kCZndOobNCp
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
# Install Gradio
|
| 11 |
+
!pip install gradio -q
|
| 12 |
+
|
| 13 |
+
# Install timidy
|
| 14 |
+
!sudo apt-get install -q -y timidity libsndfile1
|
| 15 |
+
|
| 16 |
+
# All the imports to deal with sound data
|
| 17 |
+
!pip install pydub numba==0.48 librosa music21
|
| 18 |
+
|
| 19 |
+
# Import Libraries
|
| 20 |
+
|
| 21 |
+
import gradio as gr
|
| 22 |
+
import time
|
| 23 |
+
|
| 24 |
+
import tensorflow as tf
|
| 25 |
+
import tensorflow_hub as hub
|
| 26 |
+
|
| 27 |
+
import numpy as np
|
| 28 |
+
import matplotlib.pyplot as plt
|
| 29 |
+
import librosa
|
| 30 |
+
from librosa import display as librosadisplay
|
| 31 |
+
|
| 32 |
+
import logging
|
| 33 |
+
import math
|
| 34 |
+
import statistics
|
| 35 |
+
import sys
|
| 36 |
+
|
| 37 |
+
from IPython.display import Audio, Javascript
|
| 38 |
+
from scipy.io import wavfile
|
| 39 |
+
|
| 40 |
+
from base64 import b64decode
|
| 41 |
+
|
| 42 |
+
import music21
|
| 43 |
+
from pydub import AudioSegment
|
| 44 |
+
|
| 45 |
+
logger = logging.getLogger()
|
| 46 |
+
logger.setLevel(logging.ERROR)
|
| 47 |
+
|
| 48 |
+
#print("tensorflow: %s" % tf.__version__)
|
| 49 |
+
#print("librosa: %s" % librosa.__version__)
|
| 50 |
+
|
| 51 |
+
# The audio input file
|
| 52 |
+
# Now the hardest part: Record your singing! :)
|
| 53 |
+
|
| 54 |
+
# We provide four methods to obtain an audio file:
|
| 55 |
+
|
| 56 |
+
# 1. Record audio directly in Gradio
|
| 57 |
+
# 2. Use a file saved on Google Drive
|
| 58 |
+
|
| 59 |
+
# Use a file saved on Google Drive
|
| 60 |
+
INPUT_SOURCE = 'https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav'
|
| 61 |
+
|
| 62 |
+
!wget --no-check-certificate 'https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav' -O c-scale.wav
|
| 63 |
+
|
| 64 |
+
uploaded_file_name = 'c-scale.wav'
|
| 65 |
+
|
| 66 |
+
uploaded_file_name
|
| 67 |
+
|
| 68 |
+
# Function that converts the user-created audio to the format that the model
|
| 69 |
+
# expects: bitrate 16kHz and only one channel (mono).
|
| 70 |
+
|
| 71 |
+
EXPECTED_SAMPLE_RATE = 16000
|
| 72 |
+
|
| 73 |
+
def convert_audio_for_model(user_file, output_file='converted_audio_file.wav'):
|
| 74 |
+
audio = AudioSegment.from_file(user_file)
|
| 75 |
+
audio = audio.set_frame_rate(EXPECTED_SAMPLE_RATE).set_channels(1)
|
| 76 |
+
audio.export(output_file, format="wav")
|
| 77 |
+
return output_file
|
| 78 |
+
|
| 79 |
+
MAX_ABS_INT16 = 32768.0
|
| 80 |
+
|
| 81 |
+
def plot_stft(x, sample_rate, show_black_and_white=False):
|
| 82 |
+
x_stft = np.abs(librosa.stft(x, n_fft=2048))
|
| 83 |
+
fig, ax = plt.subplots()
|
| 84 |
+
fig.set_size_inches(20, 10)
|
| 85 |
+
x_stft_db = librosa.amplitude_to_db(x_stft, ref=np.max)
|
| 86 |
+
|
| 87 |
+
if(show_black_and_white):
|
| 88 |
+
librosadisplay.specshow(data=x_stft_db,
|
| 89 |
+
y_axis='log',
|
| 90 |
+
sr=sample_rate,
|
| 91 |
+
cmap='gray_r')
|
| 92 |
+
else:
|
| 93 |
+
librosadisplay.specshow(data=x_stft_db,
|
| 94 |
+
y_axis='log',
|
| 95 |
+
sr=sample_rate)
|
| 96 |
+
|
| 97 |
+
plt.colorbar(format='%+2.0f dB')
|
| 98 |
+
|
| 99 |
+
return fig
|
| 100 |
+
|
| 101 |
+
# Loading audio samples from the wav file:
|
| 102 |
+
sample_rate, audio_samples = wavfile.read(converted_audio_file, 'rb')
|
| 103 |
+
|
| 104 |
+
fig = plot_stft(audio_samples / MAX_ABS_INT16 , sample_rate=EXPECTED_SAMPLE_RATE)
|
| 105 |
+
|
| 106 |
+
# Executing the Model
|
| 107 |
+
# Loading the SPICE model is easy:
|
| 108 |
+
model = hub.load("https://tfhub.dev/google/spice/2")
|
| 109 |
+
|
| 110 |
+
def plot_pitch_conf(pitch_outputs,confidence_outputs):
|
| 111 |
+
fig, ax = plt.subplots()
|
| 112 |
+
fig.set_size_inches(20, 10)
|
| 113 |
+
plt.plot(pitch_outputs, label='pitch')
|
| 114 |
+
plt.plot(confidence_outputs, label='confidence')
|
| 115 |
+
plt.legend(loc="lower right")
|
| 116 |
+
return fig
|
| 117 |
+
|
| 118 |
+
def plot_pitch_conf_notes(confident_pitch_outputs_x,confident_pitch_outputs_y):
|
| 119 |
+
fig, ax = plt.subplots()
|
| 120 |
+
fig.set_size_inches(20, 10)
|
| 121 |
+
ax.set_ylim([0, 1])
|
| 122 |
+
plt.scatter(confident_pitch_outputs_x, confident_pitch_outputs_y, )
|
| 123 |
+
plt.scatter(confident_pitch_outputs_x, confident_pitch_outputs_y, c="r")
|
| 124 |
+
return fig
|
| 125 |
+
|
| 126 |
+
def output2hz(pitch_output):
|
| 127 |
+
# Constants taken from https://tfhub.dev/google/spice/2
|
| 128 |
+
PT_OFFSET = 25.58
|
| 129 |
+
PT_SLOPE = 63.07
|
| 130 |
+
FMIN = 10.0;
|
| 131 |
+
BINS_PER_OCTAVE = 12.0;
|
| 132 |
+
cqt_bin = pitch_output * PT_SLOPE + PT_OFFSET;
|
| 133 |
+
return FMIN * 2.0 ** (1.0 * cqt_bin / BINS_PER_OCTAVE)
|
| 134 |
+
|
| 135 |
+
def espectro_notas(audio_samples,EXPECTED_SAMPLE_RATE,confident_pitch_outputs_x,confident_pitch_values_hz):
|
| 136 |
+
fig, ax = plt.subplots()
|
| 137 |
+
plot_stft(audio_samples / MAX_ABS_INT16 ,
|
| 138 |
+
sample_rate=EXPECTED_SAMPLE_RATE, show_black_and_white=True)
|
| 139 |
+
# Note: conveniently, since the plot is in log scale, the pitch outputs
|
| 140 |
+
# also get converted to the log scale automatically by matplotlib.
|
| 141 |
+
plt.scatter(confident_pitch_outputs_x, confident_pitch_values_hz, c="r")
|
| 142 |
+
return fig
|
| 143 |
+
|
| 144 |
+
def hz2offset(freq):
|
| 145 |
+
# This measures the quantization error for a single note.
|
| 146 |
+
if freq == 0: # Rests always have zero error.
|
| 147 |
+
return None
|
| 148 |
+
# Quantized note.
|
| 149 |
+
h = round(12 * math.log2(freq / C0))
|
| 150 |
+
return 12 * math.log2(freq / C0) - h
|
| 151 |
+
|
| 152 |
+
def quantize_predictions(group, ideal_offset):
|
| 153 |
+
# Group values are either 0, or a pitch in Hz.
|
| 154 |
+
non_zero_values = [v for v in group if v != 0]
|
| 155 |
+
zero_values_count = len(group) - len(non_zero_values)
|
| 156 |
+
|
| 157 |
+
# Create a rest if 80% is silent, otherwise create a note.
|
| 158 |
+
if zero_values_count > 0.8 * len(group):
|
| 159 |
+
# Interpret as a rest. Count each dropped note as an error, weighted a bit
|
| 160 |
+
# worse than a badly sung note (which would 'cost' 0.5).
|
| 161 |
+
return 0.51 * len(non_zero_values), "Rest"
|
| 162 |
+
else:
|
| 163 |
+
# Interpret as note, estimating as mean of non-rest predictions.
|
| 164 |
+
h = round(
|
| 165 |
+
statistics.mean([
|
| 166 |
+
12 * math.log2(freq / C0) - ideal_offset for freq in non_zero_values
|
| 167 |
+
]))
|
| 168 |
+
octave = h // 12
|
| 169 |
+
n = h % 12
|
| 170 |
+
note = note_names[n] + str(octave)
|
| 171 |
+
# Quantization error is the total difference from the quantized note.
|
| 172 |
+
error = sum([
|
| 173 |
+
abs(12 * math.log2(freq / C0) - ideal_offset - h)
|
| 174 |
+
for freq in non_zero_values
|
| 175 |
+
])
|
| 176 |
+
return error, note
|
| 177 |
+
|
| 178 |
+
def get_quantization_and_error(pitch_outputs_and_rests, predictions_per_eighth,
|
| 179 |
+
prediction_start_offset, ideal_offset):
|
| 180 |
+
# Apply the start offset - we can just add the offset as rests.
|
| 181 |
+
pitch_outputs_and_rests = [0] * prediction_start_offset + \
|
| 182 |
+
pitch_outputs_and_rests
|
| 183 |
+
# Collect the predictions for each note (or rest).
|
| 184 |
+
groups = [
|
| 185 |
+
pitch_outputs_and_rests[i:i + predictions_per_eighth]
|
| 186 |
+
for i in range(0, len(pitch_outputs_and_rests), predictions_per_eighth)
|
| 187 |
+
]
|
| 188 |
+
|
| 189 |
+
quantization_error = 0
|
| 190 |
+
|
| 191 |
+
notes_and_rests = []
|
| 192 |
+
for group in groups:
|
| 193 |
+
error, note_or_rest = quantize_predictions(group, ideal_offset)
|
| 194 |
+
quantization_error += error
|
| 195 |
+
notes_and_rests.append(note_or_rest)
|
| 196 |
+
|
| 197 |
+
return quantization_error, notes_and_rests
|
| 198 |
+
|
| 199 |
+
def main(audio):
|
| 200 |
+
|
| 201 |
+
# Preparing the audio data
|
| 202 |
+
# Now we have the audio, let's convert it to the expected format and then
|
| 203 |
+
# listen to it!
|
| 204 |
+
# The SPICE model needs as input an audio file at a sampling rate of 16kHz and
|
| 205 |
+
# with only one channel (mono).
|
| 206 |
+
# To help you with this part, we created a function(`convert_audio_for_model`)
|
| 207 |
+
#to convert any wav file you have to the model's expected format:
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
# Converting to the expected format for the model
|
| 211 |
+
# in all the input 4 input method before, the uploaded file name is at
|
| 212 |
+
# the variable uploaded_file_name
|
| 213 |
+
converted_audio_file = convert_audio_for_model(audio)
|
| 214 |
+
|
| 215 |
+
# Loading audio samples from the wav file:
|
| 216 |
+
sample_rate, audio_samples = wavfile.read(converted_audio_file, 'rb')
|
| 217 |
+
|
| 218 |
+
audio_samples = audio_samples / float(MAX_ABS_INT16)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
# We now feed the audio to the SPICE tf.hub model to obtain pitch and uncertainty outputs as tensors.
|
| 222 |
+
model_output = model.signatures["serving_default"](tf.constant(audio_samples, tf.float32))
|
| 223 |
+
|
| 224 |
+
pitch_outputs = model_output["pitch"]
|
| 225 |
+
uncertainty_outputs = model_output["uncertainty"]
|
| 226 |
+
|
| 227 |
+
# 'Uncertainty' basically means the inverse of confidence.
|
| 228 |
+
confidence_outputs = 1.0 - uncertainty_outputs
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
confidence_outputs = list(confidence_outputs)
|
| 232 |
+
pitch_outputs = [ float(x) for x in pitch_outputs]
|
| 233 |
+
|
| 234 |
+
indices = range(len (pitch_outputs))
|
| 235 |
+
confident_pitch_outputs = [ (i,p)
|
| 236 |
+
for i, p, c in zip(indices, pitch_outputs, confidence_outputs) if c >= 0.9 ]
|
| 237 |
+
confident_pitch_outputs_x, confident_pitch_outputs_y = zip(*confident_pitch_outputs)
|
| 238 |
+
|
| 239 |
+
confident_pitch_values_hz = [ output2hz(p) for p in confident_pitch_outputs_y ]
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
#Plot waves
|
| 243 |
+
fig1 = plt.figure()
|
| 244 |
+
plt.plot(audio_samples)
|
| 245 |
+
|
| 246 |
+
#Plot
|
| 247 |
+
fig2 = plot_stft(audio_samples / MAX_ABS_INT16 , sample_rate=EXPECTED_SAMPLE_RATE)
|
| 248 |
+
|
| 249 |
+
#Plot Pitch & Confidence
|
| 250 |
+
fig3 = plot_pitch_conf(pitch_outputs,confidence_outputs)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
#Plot Pitch & Confidence Notes
|
| 254 |
+
fig4 = plot_pitch_conf_notes(confident_pitch_outputs_x,confident_pitch_outputs_y)
|
| 255 |
+
|
| 256 |
+
#Plot Espectro + Notes
|
| 257 |
+
fig5 = espectro_notas(audio_samples,EXPECTED_SAMPLE_RATE,confident_pitch_outputs_x,confident_pitch_values_hz)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
# ############################################################################
|
| 261 |
+
# Converting to musical notes ################################################
|
| 262 |
+
|
| 263 |
+
# Now that we have the pitch values, let's convert them to notes!
|
| 264 |
+
# This is part is challenging by itself. We have to take into account two
|
| 265 |
+
# things:
|
| 266 |
+
# 1. the rests (when there's no singing)
|
| 267 |
+
# 2. the size of each note (offsets)
|
| 268 |
+
|
| 269 |
+
# ----------------------------------------------------------------------------
|
| 270 |
+
### 1: Adding zeros to the output to indicate when there's no singing
|
| 271 |
+
|
| 272 |
+
pitch_outputs_and_rests = [
|
| 273 |
+
output2hz(p) if c >= 0.9 else 0
|
| 274 |
+
for i, p, c in zip(indices, pitch_outputs, confidence_outputs)
|
| 275 |
+
]
|
| 276 |
+
|
| 277 |
+
# ----------------------------------------------------------------------------
|
| 278 |
+
### 2: Adding note offsets
|
| 279 |
+
# When a person sings freely, the melody may have an offset to the absolute
|
| 280 |
+
# pitch values that notes can represent.
|
| 281 |
+
# Hence, to convert predictions to notes, one needs to correct for this
|
| 282 |
+
# possible offset.
|
| 283 |
+
# This is what the following code computes.
|
| 284 |
+
|
| 285 |
+
A4 = 440
|
| 286 |
+
C0 = A4 * pow(2, -4.75)
|
| 287 |
+
note_names = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"]
|
| 288 |
+
|
| 289 |
+
def hz2offset(freq):
|
| 290 |
+
# This measures the quantization error for a single note.
|
| 291 |
+
if freq == 0: # Rests always have zero error.
|
| 292 |
+
return None
|
| 293 |
+
# Quantized note.
|
| 294 |
+
h = round(12 * math.log2(freq / C0))
|
| 295 |
+
return 12 * math.log2(freq / C0) - h
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
# The ideal offset is the mean quantization error for all the notes
|
| 299 |
+
# (excluding rests):
|
| 300 |
+
offsets = [hz2offset(p) for p in pitch_outputs_and_rests if p != 0]
|
| 301 |
+
#print("offsets: ", offsets)
|
| 302 |
+
off = offsets
|
| 303 |
+
|
| 304 |
+
ideal_offset = statistics.mean(offsets)
|
| 305 |
+
#print("ideal offset: ", ideal_offset)
|
| 306 |
+
ideal_off = ideal_offset
|
| 307 |
+
|
| 308 |
+
# We can now use some heuristics to try and estimate the most likely sequence
|
| 309 |
+
# of notes that were sung.
|
| 310 |
+
# The ideal offset computed above is one ingredient - but we also need to know
|
| 311 |
+
# the speed (how many predictions make, say, an eighth?), and the time offset
|
| 312 |
+
# to start quantizing. To keep it simple, we'll just try different speeds and
|
| 313 |
+
# time offsets and measure the quantization error, using in the end the values
|
| 314 |
+
# that minimize this error.
|
| 315 |
+
|
| 316 |
+
def quantize_predictions(group, ideal_offset):
|
| 317 |
+
# Group values are either 0, or a pitch in Hz.
|
| 318 |
+
non_zero_values = [v for v in group if v != 0]
|
| 319 |
+
zero_values_count = len(group) - len(non_zero_values)
|
| 320 |
+
|
| 321 |
+
# Create a rest if 80% is silent, otherwise create a note.
|
| 322 |
+
if zero_values_count > 0.8 * len(group):
|
| 323 |
+
# Interpret as a rest. Count each dropped note as an error, weighted a bit
|
| 324 |
+
# worse than a badly sung note (which would 'cost' 0.5).
|
| 325 |
+
return 0.51 * len(non_zero_values), "Rest"
|
| 326 |
+
else:
|
| 327 |
+
# Interpret as note, estimating as mean of non-rest predictions.
|
| 328 |
+
h = round(
|
| 329 |
+
statistics.mean([
|
| 330 |
+
12 * math.log2(freq / C0) - ideal_offset for freq in non_zero_values
|
| 331 |
+
]))
|
| 332 |
+
octave = h // 12
|
| 333 |
+
n = h % 12
|
| 334 |
+
note = note_names[n] + str(octave)
|
| 335 |
+
# Quantization error is the total difference from the quantized note.
|
| 336 |
+
error = sum([
|
| 337 |
+
abs(12 * math.log2(freq / C0) - ideal_offset - h)
|
| 338 |
+
for freq in non_zero_values
|
| 339 |
+
])
|
| 340 |
+
return error, note
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
def get_quantization_and_error(pitch_outputs_and_rests, predictions_per_eighth,
|
| 344 |
+
prediction_start_offset, ideal_offset):
|
| 345 |
+
# Apply the start offset - we can just add the offset as rests.
|
| 346 |
+
pitch_outputs_and_rests = [0] * prediction_start_offset + \
|
| 347 |
+
pitch_outputs_and_rests
|
| 348 |
+
# Collect the predictions for each note (or rest).
|
| 349 |
+
groups = [
|
| 350 |
+
pitch_outputs_and_rests[i:i + predictions_per_eighth]
|
| 351 |
+
for i in range(0, len(pitch_outputs_and_rests), predictions_per_eighth)
|
| 352 |
+
]
|
| 353 |
+
|
| 354 |
+
quantization_error = 0
|
| 355 |
+
|
| 356 |
+
notes_and_rests = []
|
| 357 |
+
for group in groups:
|
| 358 |
+
error, note_or_rest = quantize_predictions(group, ideal_offset)
|
| 359 |
+
quantization_error += error
|
| 360 |
+
notes_and_rests.append(note_or_rest)
|
| 361 |
+
|
| 362 |
+
return quantization_error, notes_and_rests
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
best_error = float("inf")
|
| 366 |
+
best_notes_and_rests = None
|
| 367 |
+
best_predictions_per_note = None
|
| 368 |
+
|
| 369 |
+
for predictions_per_note in range(20, 65, 1):
|
| 370 |
+
for prediction_start_offset in range(predictions_per_note):
|
| 371 |
+
|
| 372 |
+
error, notes_and_rests = get_quantization_and_error(
|
| 373 |
+
pitch_outputs_and_rests, predictions_per_note,
|
| 374 |
+
prediction_start_offset, ideal_offset)
|
| 375 |
+
|
| 376 |
+
if error < best_error:
|
| 377 |
+
best_error = error
|
| 378 |
+
best_notes_and_rests = notes_and_rests
|
| 379 |
+
best_predictions_per_note = predictions_per_note
|
| 380 |
+
|
| 381 |
+
# At this point, best_notes_and_rests contains the best quantization.
|
| 382 |
+
# Since we don't need to have rests at the beginning, let's remove these:
|
| 383 |
+
while best_notes_and_rests[0] == 'Rest':
|
| 384 |
+
best_notes_and_rests = best_notes_and_rests[1:]
|
| 385 |
+
# Also remove silence at the end.
|
| 386 |
+
while best_notes_and_rests[-1] == 'Rest':
|
| 387 |
+
best_notes_and_rests = best_notes_and_rests[:-1]
|
| 388 |
+
|
| 389 |
+
# ____________________________________________________________________________
|
| 390 |
+
# Now let's write the quantized notes as sheet music score!
|
| 391 |
+
# To do it we will use two libraries: [music21](http://web.mit.edu/music21/) and
|
| 392 |
+
# [Open Sheet Music Display](https://github.com/opensheetmusicdisplay/opensheetmusicdisplay)
|
| 393 |
+
# **Note:** for simplicity, we assume here that all notes have the same duration
|
| 394 |
+
# (a half note).
|
| 395 |
+
|
| 396 |
+
# Creating the sheet music score.
|
| 397 |
+
sc = music21.stream.Score()
|
| 398 |
+
# Adjust the speed to match the actual singing.
|
| 399 |
+
bpm = 60 * 60 / best_predictions_per_note
|
| 400 |
+
#print ('bpm: ', bpm)
|
| 401 |
+
a = music21.tempo.MetronomeMark(number=bpm)
|
| 402 |
+
sc.insert(0,a)
|
| 403 |
+
|
| 404 |
+
for snote in best_notes_and_rests:
|
| 405 |
+
d = 'half'
|
| 406 |
+
if snote == 'Rest':
|
| 407 |
+
sc.append(music21.note.Rest(type=d))
|
| 408 |
+
else:
|
| 409 |
+
sc.append(music21.note.Note(snote, type=d))
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
# @title [Run this] Helper function to use Open Sheet Music Display (JS code)
|
| 413 |
+
# to show a music score
|
| 414 |
+
from IPython.core.display import display, HTML, Javascript
|
| 415 |
+
import json, random
|
| 416 |
+
|
| 417 |
+
def showScore(score):
|
| 418 |
+
xml = open(score.write('musicxml')).read()
|
| 419 |
+
showMusicXML(xml)
|
| 420 |
+
|
| 421 |
+
def showMusicXML(xml):
|
| 422 |
+
DIV_ID = "OSMD_div"
|
| 423 |
+
a = display(HTML('<div id="'+DIV_ID+'">loading OpenSheetMusicDisplay</div>'))
|
| 424 |
+
script = """
|
| 425 |
+
var div_id = {{DIV_ID}};
|
| 426 |
+
function loadOSMD() {
|
| 427 |
+
return new Promise(function(resolve, reject){
|
| 428 |
+
if (window.opensheetmusicdisplay) {
|
| 429 |
+
return resolve(window.opensheetmusicdisplay)
|
| 430 |
+
}
|
| 431 |
+
// OSMD script has a 'define' call which conflicts with requirejs
|
| 432 |
+
var _define = window.define // save the define object
|
| 433 |
+
window.define = undefined // now the loaded script will ignore requirejs
|
| 434 |
+
var s = document.createElement( 'script' );
|
| 435 |
+
s.setAttribute( 'src', "https://cdn.jsdelivr.net/npm/opensheetmusicdisplay@0.7.6/build/opensheetmusicdisplay.min.js" );
|
| 436 |
+
//s.setAttribute( 'src', "/custom/opensheetmusicdisplay.js" );
|
| 437 |
+
s.onload=function(){
|
| 438 |
+
window.define = _define
|
| 439 |
+
resolve(opensheetmusicdisplay);
|
| 440 |
+
};
|
| 441 |
+
document.body.appendChild( s ); // browser will try to load the new script tag
|
| 442 |
+
})
|
| 443 |
+
}
|
| 444 |
+
loadOSMD().then((OSMD)=>{
|
| 445 |
+
window.openSheetMusicDisplay = new OSMD.OpenSheetMusicDisplay(div_id, {
|
| 446 |
+
drawingParameters: "compacttight"
|
| 447 |
+
});
|
| 448 |
+
openSheetMusicDisplay
|
| 449 |
+
.load({{data}})
|
| 450 |
+
.then(
|
| 451 |
+
function() {
|
| 452 |
+
openSheetMusicDisplay.render();
|
| 453 |
+
}
|
| 454 |
+
);
|
| 455 |
+
})
|
| 456 |
+
""".replace('{{DIV_ID}}',DIV_ID).replace('{{data}}',json.dumps(xml))
|
| 457 |
+
#display(Javascript(script))
|
| 458 |
+
return a
|
| 459 |
+
|
| 460 |
+
# rendering the music score
|
| 461 |
+
partitura = showScore(sc)
|
| 462 |
+
#print(best_notes_and_rests)
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
# ____________________________________________________________________________
|
| 467 |
+
# Let's convert the music notes to a MIDI file and listen to it.
|
| 468 |
+
# To create this file, we can use the stream we created before.
|
| 469 |
+
|
| 470 |
+
# Saving the recognized musical notes as a MIDI file
|
| 471 |
+
converted_audio_file_as_midi = converted_audio_file[:-4] + '.mid'
|
| 472 |
+
fp = sc.write('midi', fp=converted_audio_file_as_midi)
|
| 473 |
+
|
| 474 |
+
wav_from_created_midi = converted_audio_file_as_midi.replace(' ', '_') + "_midioutput.wav"
|
| 475 |
+
#print(wav_from_created_midi)
|
| 476 |
+
|
| 477 |
+
# To listen to it on colab, we need to convert it back to wav. An easy way of
|
| 478 |
+
# doing that is using Timidity.
|
| 479 |
+
|
| 480 |
+
!timidity $converted_audio_file_as_midi -Ow -o $wav_from_created_midi
|
| 481 |
+
|
| 482 |
+
return converted_audio_file, fig1, fig2, fig3, fig4,fig5, bpm, best_notes_and_rests, partitura, wav_from_created_midi
|
| 483 |
+
|
| 484 |
+
iface = gr.Interface(
|
| 485 |
+
fn=main,
|
| 486 |
+
inputs = [gr.inputs.Audio(source= "microphone" , type="filepath",label="Ingrese Audio")],
|
| 487 |
+
outputs= [gr.outputs.Audio(label="Audio Original"),
|
| 488 |
+
gr.outputs.Plot(type="auto",label="Gráfico de Frecuencias"),
|
| 489 |
+
gr.outputs.Plot(type="auto",label="Especto"),
|
| 490 |
+
gr.outputs.Plot(type="auto",label="Pitch Confidence"),
|
| 491 |
+
gr.outputs.Plot(type="auto",label="Notas"),
|
| 492 |
+
gr.outputs.Plot(type="auto",label="Espectro+Notas"),
|
| 493 |
+
gr.outputs.Textbox(label="bpm"),
|
| 494 |
+
gr.outputs.Textbox(label="partitura"),
|
| 495 |
+
gr.outputs.Textbox(type="html",label="partitura1"),
|
| 496 |
+
gr.outputs.Audio(label="midi")],
|
| 497 |
+
examples=[[uploaded_file_name]],
|
| 498 |
+
interpretation = "default",
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
iface.launch(debug=True)
|