Spaces:
Running
Running
File size: 11,773 Bytes
227c43a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
"""
Post-Quantum Lattice-Based Authentication System using Ring-LWE with Quantum Visualization Integration.
This module replaces the original quantum fingerprinting with a modern lattice-based authentication
scheme that is resistant to quantum attacks, while maintaining compatibility with the existing
visualization framework.
"""
import cirq
import hashlib
import numpy as np
from cirq.contrib.svg import circuit_to_svg
import matplotlib.pyplot as plt
from io import BytesIO
import base64
class RingLWE:
"""Ring Learning With Errors implementation for authentication."""
def __init__(self, n=128, q=3329, sigma=2.0):
"""
Initialize Ring-LWE parameters.
Args:
n: Polynomial degree (power of 2 for efficient NTT)
q: Modulus (prime for simplicity)
sigma: Standard deviation for error distribution
"""
self.n = n
self.q = q
self.sigma = sigma
def sample_uniform(self):
"""Sample uniformly from Z_q."""
return np.random.randint(0, self.q, self.n)
def sample_error(self):
"""Sample from error distribution (discrete Gaussian)."""
# Simplified: Using rounded Gaussian with rejection sampling
e = np.round(np.random.normal(0, self.sigma, self.n))
return np.mod(e.astype(int), self.q)
def polynomial_multiply(self, a, b):
"""Multiply polynomials in the ring."""
# Using negacyclic convolution (Z_q[x]/(x^n + 1))
c = np.zeros(self.n, dtype=int)
for i in range(self.n):
for j in range(self.n):
if i + j < self.n:
c[i + j] = (c[i + j] + a[i] * b[j]) % self.q
else:
# Apply the modulus x^n + 1
c[i + j - self.n] = (c[i + j - self.n] - a[i] * b[j]) % self.q
return c
def generate_keys(self, seed=None):
"""
Generate a public/private key pair.
Returns:
Tuple of (public_key, private_key)
"""
# Set seed for reproducibility if provided
if seed is not None:
np.random.seed(seed)
# Sample a uniform polynomial (public)
a = self.sample_uniform()
# Sample small error polynomials
s = self.sample_error() # Private key
e = self.sample_error() # Error term
# Compute b = a*s + e (mod q)
b = (self.polynomial_multiply(a, s) + e) % self.q
# Public key is (a, b), private key is s
return ((a, b), s)
def generate_challenge(self, public_key, seed=None):
"""
Generate an authentication challenge.
Args:
public_key: Public key (a, b)
Returns:
Tuple of (challenge, expected_response)
"""
if seed is not None:
np.random.seed(seed)
a, b = public_key
# Sample small challenge polynomials
r = self.sample_error()
e1 = self.sample_error()
e2 = self.sample_error()
# Compute challenge
u = (self.polynomial_multiply(a, r) + e1) % self.q
v = (self.polynomial_multiply(b, r) + e2) % self.q
# Expected response is a hash of r
expected_response = hashlib.sha256(str(r).encode()).digest()
return ((u, v), expected_response)
def respond_to_challenge(self, private_key, challenge):
"""
Respond to an authentication challenge.
Args:
private_key: Private key s
challenge: Challenge (u, v)
Returns:
Response hash
"""
u, v = challenge
s = private_key
# Compute v - u*s (approx ~ e2 - e1*s)
w = (v - self.polynomial_multiply(u, s)) % self.q
# Recover r approximately using threshold
r_recovered = []
for coef in w:
# Small coefficients (likely part of e2 - e1*s)
if coef <= self.sigma * 10 or coef >= self.q - self.sigma * 10:
r_recovered.append(1) # Simplified recovery
else:
r_recovered.append(0)
# Hash the recovered polynomial
response = hashlib.sha256(str(r_recovered).encode()).digest()
return response
def verify_response(self, expected_response, actual_response):
"""
Verify an authentication response.
Args:
expected_response: Expected response hash
actual_response: Actual response hash
Returns:
Boolean indicating whether authentication succeeded
"""
return expected_response == actual_response
def create_quantum_challenge_circuit(n_qubits=4, noise_prob=0):
"""
Creates a quantum circuit to be used in visualization.
This creates a circuit representation of the lattice-based challenge-response,
suitable for visualization with the existing quantum visualization components.
"""
log = []
# Create qubits
qubits = [cirq.NamedQubit(f"q{i}") for i in range(n_qubits)]
circuit = cirq.Circuit()
# Apply Hadamard gates to create superposition (representing key setup)
circuit.append([cirq.H(q) for q in qubits])
log.append("Applied Hadamard gates to create superposition (representing key setup)")
# Apply CNOT gates to create entanglement (representing lattice relationship)
for i in range(n_qubits-1):
circuit.append(cirq.CNOT(qubits[i], qubits[i+1]))
log.append("Applied CNOT gates to create entanglement (representing lattice relationship)")
# Apply rotations to represent error terms
for i, q in enumerate(qubits):
# Apply different rotations based on position
if i % 3 == 0:
circuit.append(cirq.Z(q))
elif i % 3 == 1:
circuit.append(cirq.X(q))
else:
circuit.append(cirq.Y(q))
log.append("Applied rotations to represent error terms (noise in lattice)")
# Apply optional noise
if noise_prob > 0:
noisy_ops = []
for op in circuit.all_operations():
noisy_ops.append(op)
for q in op.qubits:
noisy_ops.append(cirq.DepolarizingChannel(noise_prob).on(q))
circuit = cirq.Circuit(noisy_ops)
log.append(f"Added depolarizing noise with probability {noise_prob}")
# Add measurements
circuit.append([cirq.measure(q) for q in qubits])
log.append("Added measurements to extract classical information")
# Generate circuit diagram for visualization
circuit_svg = circuit_to_svg(circuit)
return circuit, circuit_svg, log
def generate_quantum_fingerprint_cirq(data, num_qubits=4):
"""
Compatibility function for the original API.
Rather than directly using quantum fingerprinting, this now uses the lattice-based
approach but returns results in the expected format for compatibility.
"""
log = []
log.append("=== Post-Quantum Lattice-Based Authentication Simulation ===")
# Generate deterministic seed from data
seed = int(hashlib.sha256(data.encode()).hexdigest(), 16) % (2**32)
log.append(f"Authenticating data: {data}")
log.append(f"Using seed: {seed}")
# Set parameters
n = num_qubits * 16 # Scale lattice dimension based on qubits
q = 3329 # Modulus (prime number)
sigma = 2.0 # Noise parameter
log.append(f"Lattice dimension: {n}")
log.append(f"Modulus q: {q}")
log.append(f"Noise parameter σ: {sigma:.2f}")
# Initialize Ring-LWE system
ring_lwe = RingLWE(n=n, q=q, sigma=sigma)
# Generate keys
log.append("\nGenerating key pair...")
public_key, private_key = ring_lwe.generate_keys(seed=seed)
# Generate challenge
log.append("\nGenerating authentication challenge...")
challenge, expected_response = ring_lwe.generate_challenge(public_key, seed=seed+1)
# Respond to challenge
log.append("\nResponding to challenge...")
actual_response = ring_lwe.respond_to_challenge(private_key, challenge)
# Verify response
log.append("\nVerifying authentication...")
auth_success = ring_lwe.verify_response(expected_response, actual_response)
if auth_success:
log.append("✓ Authentication successful!")
else:
log.append("✗ Authentication failed!")
# Create visualization circuits
circuit, circuit_svg, viz_log = create_quantum_challenge_circuit(num_qubits)
log.extend(viz_log)
# Create a "fingerprint" representation from the private key for compatibility
# This is just a visualization representation, not the actual authentication token
fingerprint = [int(x % 2) for x in private_key[:num_qubits]]
# Generate additional visualizations
key_viz_base64 = generate_lattice_visualization(private_key, num_qubits)
# Set fingerprint to a deterministic value for the API (not actually used in auth)
fingerprint = [int(hashlib.sha256((data + str(i)).encode()).hexdigest()[0], 16) % 2
for i in range(num_qubits)]
return {
'fingerprint': fingerprint,
'circuit_svg': circuit_svg,
'lattice_viz': key_viz_base64,
'auth_success': auth_success,
'log': "\n".join(log)
}
def verify_fingerprint_cirq(data, fingerprint, num_qubits=4):
"""
Compatibility function for the original API.
Verifies if a given fingerprint matches the one generated from data.
"""
result = generate_quantum_fingerprint_cirq(data, num_qubits)
return result['fingerprint'] == fingerprint
def generate_lattice_visualization(coefficients, num_qubits):
"""Generate visualization of lattice points for quantum visualization."""
plt.figure(figsize=(8, 6))
# Create a subset of the coefficients for plotting
n_coeffs = min(len(coefficients), 100)
subset = coefficients[:n_coeffs]
# Create a scatter plot for the lattice points
plt.subplot(2, 1, 1)
x = np.arange(n_coeffs)
plt.scatter(x, subset, s=30, c=subset, cmap='viridis', alpha=0.7)
plt.title('Lattice Coefficients (First 100 Values)')
plt.xlabel('Index')
plt.ylabel('Value Modulo q')
plt.grid(alpha=0.3)
# Create a histogram of coefficients
plt.subplot(2, 1, 2)
plt.hist(coefficients, bins=30, alpha=0.7, color='blue')
plt.title('Lattice Coefficient Distribution')
plt.xlabel('Coefficient Value')
plt.ylabel('Frequency')
plt.grid(alpha=0.3)
plt.tight_layout()
# Convert plot to base64 encoded string
buffer = BytesIO()
plt.savefig(buffer, format='png')
buffer.seek(0)
image_png = buffer.getvalue()
buffer.close()
plt.close()
return base64.b64encode(image_png).decode('utf-8')
if __name__ == '__main__':
# Run with default parameters
data = "example_user"
result = generate_quantum_fingerprint_cirq(data, num_qubits=8)
print("Lattice-Based Authentication Simulation:")
print(f"Data: {data}")
print(f"Fingerprint: {result['fingerprint']}")
print(f"Authentication success: {result['auth_success']}")
print("\nDetailed Log:")
print(result['log']) |