File size: 11,773 Bytes
227c43a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""

Post-Quantum Lattice-Based Authentication System using Ring-LWE with Quantum Visualization Integration.



This module replaces the original quantum fingerprinting with a modern lattice-based authentication

scheme that is resistant to quantum attacks, while maintaining compatibility with the existing

visualization framework.

"""
import cirq
import hashlib
import numpy as np
from cirq.contrib.svg import circuit_to_svg
import matplotlib.pyplot as plt
from io import BytesIO
import base64

class RingLWE:
    """Ring Learning With Errors implementation for authentication."""
    
    def __init__(self, n=128, q=3329, sigma=2.0):
        """

        Initialize Ring-LWE parameters.

        

        Args:

            n: Polynomial degree (power of 2 for efficient NTT)

            q: Modulus (prime for simplicity)

            sigma: Standard deviation for error distribution

        """
        self.n = n
        self.q = q
        self.sigma = sigma
        
    def sample_uniform(self):
        """Sample uniformly from Z_q."""
        return np.random.randint(0, self.q, self.n)
    
    def sample_error(self):
        """Sample from error distribution (discrete Gaussian)."""
        # Simplified: Using rounded Gaussian with rejection sampling
        e = np.round(np.random.normal(0, self.sigma, self.n))
        return np.mod(e.astype(int), self.q)
    
    def polynomial_multiply(self, a, b):
        """Multiply polynomials in the ring."""
        # Using negacyclic convolution (Z_q[x]/(x^n + 1))
        c = np.zeros(self.n, dtype=int)
        for i in range(self.n):
            for j in range(self.n):
                if i + j < self.n:
                    c[i + j] = (c[i + j] + a[i] * b[j]) % self.q
                else:
                    # Apply the modulus x^n + 1
                    c[i + j - self.n] = (c[i + j - self.n] - a[i] * b[j]) % self.q
        return c
    
    def generate_keys(self, seed=None):
        """

        Generate a public/private key pair.

        

        Returns:

            Tuple of (public_key, private_key)

        """
        # Set seed for reproducibility if provided
        if seed is not None:
            np.random.seed(seed)
            
        # Sample a uniform polynomial (public)
        a = self.sample_uniform()
        
        # Sample small error polynomials
        s = self.sample_error()  # Private key
        e = self.sample_error()  # Error term
        
        # Compute b = a*s + e (mod q)
        b = (self.polynomial_multiply(a, s) + e) % self.q
        
        # Public key is (a, b), private key is s
        return ((a, b), s)
    
    def generate_challenge(self, public_key, seed=None):
        """

        Generate an authentication challenge.

        

        Args:

            public_key: Public key (a, b)

            

        Returns:

            Tuple of (challenge, expected_response)

        """
        if seed is not None:
            np.random.seed(seed)
            
        a, b = public_key
        
        # Sample small challenge polynomials
        r = self.sample_error()
        e1 = self.sample_error()
        e2 = self.sample_error()
        
        # Compute challenge
        u = (self.polynomial_multiply(a, r) + e1) % self.q
        v = (self.polynomial_multiply(b, r) + e2) % self.q
        
        # Expected response is a hash of r
        expected_response = hashlib.sha256(str(r).encode()).digest()
        
        return ((u, v), expected_response)
    
    def respond_to_challenge(self, private_key, challenge):
        """

        Respond to an authentication challenge.

        

        Args:

            private_key: Private key s

            challenge: Challenge (u, v)

            

        Returns:

            Response hash

        """
        u, v = challenge
        s = private_key
        
        # Compute v - u*s (approx ~ e2 - e1*s)
        w = (v - self.polynomial_multiply(u, s)) % self.q
        
        # Recover r approximately using threshold
        r_recovered = []
        for coef in w:
            # Small coefficients (likely part of e2 - e1*s)
            if coef <= self.sigma * 10 or coef >= self.q - self.sigma * 10:
                r_recovered.append(1)  # Simplified recovery
            else:
                r_recovered.append(0)
                
        # Hash the recovered polynomial
        response = hashlib.sha256(str(r_recovered).encode()).digest()
        return response
    
    def verify_response(self, expected_response, actual_response):
        """

        Verify an authentication response.

        

        Args:

            expected_response: Expected response hash

            actual_response: Actual response hash

            

        Returns:

            Boolean indicating whether authentication succeeded

        """
        return expected_response == actual_response

def create_quantum_challenge_circuit(n_qubits=4, noise_prob=0):
    """

    Creates a quantum circuit to be used in visualization.

    

    This creates a circuit representation of the lattice-based challenge-response,

    suitable for visualization with the existing quantum visualization components.

    """
    log = []
    
    # Create qubits
    qubits = [cirq.NamedQubit(f"q{i}") for i in range(n_qubits)]
    circuit = cirq.Circuit()
    
    # Apply Hadamard gates to create superposition (representing key setup)
    circuit.append([cirq.H(q) for q in qubits])
    log.append("Applied Hadamard gates to create superposition (representing key setup)")
    
    # Apply CNOT gates to create entanglement (representing lattice relationship)
    for i in range(n_qubits-1):
        circuit.append(cirq.CNOT(qubits[i], qubits[i+1]))
    log.append("Applied CNOT gates to create entanglement (representing lattice relationship)")
    
    # Apply rotations to represent error terms
    for i, q in enumerate(qubits):
        # Apply different rotations based on position
        if i % 3 == 0:
            circuit.append(cirq.Z(q))
        elif i % 3 == 1:
            circuit.append(cirq.X(q))
        else:
            circuit.append(cirq.Y(q))
    log.append("Applied rotations to represent error terms (noise in lattice)")
    
    # Apply optional noise
    if noise_prob > 0:
        noisy_ops = []
        for op in circuit.all_operations():
            noisy_ops.append(op)
            for q in op.qubits:
                noisy_ops.append(cirq.DepolarizingChannel(noise_prob).on(q))
        circuit = cirq.Circuit(noisy_ops)
        log.append(f"Added depolarizing noise with probability {noise_prob}")
    
    # Add measurements
    circuit.append([cirq.measure(q) for q in qubits])
    log.append("Added measurements to extract classical information")
    
    # Generate circuit diagram for visualization
    circuit_svg = circuit_to_svg(circuit)
    
    return circuit, circuit_svg, log

def generate_quantum_fingerprint_cirq(data, num_qubits=4):
    """

    Compatibility function for the original API.

    

    Rather than directly using quantum fingerprinting, this now uses the lattice-based

    approach but returns results in the expected format for compatibility.

    """
    log = []
    log.append("=== Post-Quantum Lattice-Based Authentication Simulation ===")
    
    # Generate deterministic seed from data
    seed = int(hashlib.sha256(data.encode()).hexdigest(), 16) % (2**32)
    log.append(f"Authenticating data: {data}")
    log.append(f"Using seed: {seed}")
    
    # Set parameters
    n = num_qubits * 16  # Scale lattice dimension based on qubits
    q = 3329  # Modulus (prime number)
    sigma = 2.0  # Noise parameter
    
    log.append(f"Lattice dimension: {n}")
    log.append(f"Modulus q: {q}")
    log.append(f"Noise parameter σ: {sigma:.2f}")
    
    # Initialize Ring-LWE system
    ring_lwe = RingLWE(n=n, q=q, sigma=sigma)
    
    # Generate keys
    log.append("\nGenerating key pair...")
    public_key, private_key = ring_lwe.generate_keys(seed=seed)
    
    # Generate challenge
    log.append("\nGenerating authentication challenge...")
    challenge, expected_response = ring_lwe.generate_challenge(public_key, seed=seed+1)
    
    # Respond to challenge
    log.append("\nResponding to challenge...")
    actual_response = ring_lwe.respond_to_challenge(private_key, challenge)
    
    # Verify response
    log.append("\nVerifying authentication...")
    auth_success = ring_lwe.verify_response(expected_response, actual_response)
    
    if auth_success:
        log.append("✓ Authentication successful!")
    else:
        log.append("✗ Authentication failed!")
    
    # Create visualization circuits
    circuit, circuit_svg, viz_log = create_quantum_challenge_circuit(num_qubits)
    log.extend(viz_log)
    
    # Create a "fingerprint" representation from the private key for compatibility
    # This is just a visualization representation, not the actual authentication token
    fingerprint = [int(x % 2) for x in private_key[:num_qubits]]
    
    # Generate additional visualizations
    key_viz_base64 = generate_lattice_visualization(private_key, num_qubits)
    
    # Set fingerprint to a deterministic value for the API (not actually used in auth)
    fingerprint = [int(hashlib.sha256((data + str(i)).encode()).hexdigest()[0], 16) % 2 
                   for i in range(num_qubits)]
    
    return {
        'fingerprint': fingerprint,
        'circuit_svg': circuit_svg, 
        'lattice_viz': key_viz_base64,
        'auth_success': auth_success,
        'log': "\n".join(log)
    }

def verify_fingerprint_cirq(data, fingerprint, num_qubits=4):
    """

    Compatibility function for the original API.

    Verifies if a given fingerprint matches the one generated from data.

    """
    result = generate_quantum_fingerprint_cirq(data, num_qubits)
    return result['fingerprint'] == fingerprint

def generate_lattice_visualization(coefficients, num_qubits):
    """Generate visualization of lattice points for quantum visualization."""
    plt.figure(figsize=(8, 6))
    
    # Create a subset of the coefficients for plotting
    n_coeffs = min(len(coefficients), 100)
    subset = coefficients[:n_coeffs]
    
    # Create a scatter plot for the lattice points
    plt.subplot(2, 1, 1)
    x = np.arange(n_coeffs)
    plt.scatter(x, subset, s=30, c=subset, cmap='viridis', alpha=0.7)
    plt.title('Lattice Coefficients (First 100 Values)')
    plt.xlabel('Index')
    plt.ylabel('Value Modulo q')
    plt.grid(alpha=0.3)
    
    # Create a histogram of coefficients
    plt.subplot(2, 1, 2)
    plt.hist(coefficients, bins=30, alpha=0.7, color='blue')
    plt.title('Lattice Coefficient Distribution')
    plt.xlabel('Coefficient Value')
    plt.ylabel('Frequency')
    plt.grid(alpha=0.3)
    
    plt.tight_layout()
    
    # Convert plot to base64 encoded string
    buffer = BytesIO()
    plt.savefig(buffer, format='png')
    buffer.seek(0)
    image_png = buffer.getvalue()
    buffer.close()
    plt.close()
    
    return base64.b64encode(image_png).decode('utf-8')

if __name__ == '__main__':
    # Run with default parameters
    data = "example_user"
    result = generate_quantum_fingerprint_cirq(data, num_qubits=8)
    print("Lattice-Based Authentication Simulation:")
    print(f"Data: {data}")
    print(f"Fingerprint: {result['fingerprint']}")
    print(f"Authentication success: {result['auth_success']}")
    
    print("\nDetailed Log:")
    print(result['log'])