File size: 9,554 Bytes
227c43a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""

High-Fidelity Quantum Approximate Optimization Algorithm (QAOA) Simulation using Google Cirq.



QAOA is a hybrid quantum-classical algorithm designed for solving combinatorial optimization problems.

This implementation demonstrates QAOA for solving the MaxCut problem on small graphs.

"""
import cirq
import numpy as np
import networkx as nx
import sympy
import random
from cirq.contrib.svg import circuit_to_svg

def create_maxcut_cost_operator(qubits, graph):
    """

    Creates the cost Hamiltonian for the MaxCut problem.

    

    Args:

        qubits: Dictionary mapping node indices to qubits

        graph: NetworkX graph representing the problem

        

    Returns:

        A cirq.Circuit implementing the cost Hamiltonian evolution

    """
    circuit = cirq.Circuit()
    
    # The cost Hamiltonian for MaxCut is sum_(i,j)∈E (1 - Z_i Z_j)/2
    # For circuit implementation, we use ZZ rotations
    for i, j in graph.edges():
        circuit.append(cirq.ZZ(qubits[i], qubits[j])**sympy.Symbol('gamma'))
    
    return circuit

def create_mixer_operator(qubits):
    """

    Creates the mixer Hamiltonian for QAOA.

    

    Args:

        qubits: List of qubits

        

    Returns:

        A cirq.Circuit implementing the mixer Hamiltonian evolution

    """
    circuit = cirq.Circuit()
    
    # The mixer Hamiltonian is sum_i X_i
    # For circuit implementation, we use X rotations
    for qubit in qubits.values():
        circuit.append(cirq.X(qubit)**sympy.Symbol('beta'))
    
    return circuit

def create_qaoa_circuit(qubits, graph, p=1):
    """

    Creates a QAOA circuit for the MaxCut problem.

    

    Args:

        qubits: Dictionary mapping node indices to qubits

        graph: NetworkX graph representing the problem

        p: Number of QAOA layers

        

    Returns:

        A cirq.Circuit implementing QAOA

    """
    circuit = cirq.Circuit()
    
    # Initialize in superposition
    circuit.append(cirq.H.on_each(*qubits.values()))
    
    # Apply p layers of QAOA
    for layer in range(p):
        # Apply cost Hamiltonian with parameter gamma_layer
        gamma = sympy.Symbol(f'gamma_{layer}')
        for i, j in graph.edges():
            circuit.append(cirq.ZZ(qubits[i], qubits[j])**gamma)
        
        # Apply mixer Hamiltonian with parameter beta_layer
        beta = sympy.Symbol(f'beta_{layer}')
        for qubit in qubits.values():
            circuit.append(cirq.X(qubit)**beta)
    
    return circuit

def add_noise(circuit, noise_prob):
    """

    Adds realistic quantum noise to the circuit.

    

    Args:

        circuit: A Cirq circuit

        noise_prob: Probability of depolarizing noise

        

    Returns:

        A circuit with added noise operations

    """
    if noise_prob <= 0:
        return circuit
        
    noisy_ops = []
    for op in circuit.all_operations():
        noisy_ops.append(op)
        for q in op.qubits:
            noisy_ops.append(cirq.DepolarizingChannel(noise_prob).on(q))
    return cirq.Circuit(noisy_ops)

def evaluate_maxcut(bitstring, graph):
    """

    Evaluates the MaxCut value for a given bitstring.

    

    Args:

        bitstring: String of '0's and '1's representing the cut

        graph: NetworkX graph

        

    Returns:

        The value of the cut (number of edges between partitions)

    """
    cut_value = 0
    for i, j in graph.edges():
        # Edge contributes to the cut if the endpoints are in different partitions
        if bitstring[i] != bitstring[j]:
            cut_value += 1
    return cut_value

def run_qaoa(n_nodes=4, edge_probability=0.5, p_layers=1, noise_prob=0.0, num_samples=100):
    """

    Runs the QAOA algorithm for the MaxCut problem.

    

    Args:

        n_nodes: Number of nodes in the graph

        edge_probability: Probability of edge creation in random graph

        p_layers: Number of QAOA layers (depth)

        noise_prob: Probability of depolarizing noise

        num_samples: Number of circuit samples to take

        

    Returns:

        Dictionary with QAOA results and visualization

    """
    log = []
    log.append("=== Quantum Approximate Optimization Algorithm (QAOA) Simulation ===")
    
    # Create a random graph
    graph = nx.gnp_random_graph(n_nodes, edge_probability, seed=42)
    log.append(f"Created random graph with {n_nodes} nodes and {graph.number_of_edges()} edges")
    log.append(f"Edges: {list(graph.edges())}")
    
    # Create qubits
    qubits = {i: cirq.NamedQubit(f'q{i}') for i in range(n_nodes)}
    
    # Create QAOA circuit
    circuit = create_qaoa_circuit(qubits, graph, p=p_layers)
    log.append(f"Created QAOA circuit with p={p_layers} layers")
    
    # Generate random circuit parameters (in a real QAOA, these would be optimized)
    params = {}
    for layer in range(p_layers):
        # Typical ranges for parameters
        params[f'gamma_{layer}'] = random.uniform(0, 2 * np.pi)
        params[f'beta_{layer}'] = random.uniform(0, np.pi)
    
    log.append("Generated random parameters for demonstration:")
    for param, value in params.items():
        log.append(f"  {param} = {value:.4f}")
    
    # Resolve the circuit with the parameters
    resolved_circuit = cirq.resolve_parameters(circuit, params)
    
    # Add noise if specified
    if noise_prob > 0:
        resolved_circuit = add_noise(resolved_circuit, noise_prob)
        log.append(f"Added noise with probability {noise_prob}")
    
    # Add measurements
    measure_circuit = cirq.Circuit()
    measure_circuit.append(cirq.measure(*qubits.values(), key='cut'))
    
    # Combine circuits
    full_circuit = resolved_circuit + measure_circuit
    
    # Run the circuit
    simulator = cirq.Simulator()
    result = simulator.run(full_circuit, repetitions=num_samples)
    
    # Process the measurement results
    cut_counts = {}
    cut_values = {}
    
    for sample in result.measurements['cut']:
        bitstring = ''.join([str(bit) for bit in sample])
        if bitstring not in cut_counts:
            cut_counts[bitstring] = 0
            cut_values[bitstring] = evaluate_maxcut(bitstring, graph)
        cut_counts[bitstring] += 1
    
    # Find the best cut
    best_bitstring = max(cut_values, key=cut_values.get)
    best_cut_value = cut_values[best_bitstring]
    best_count = cut_counts[best_bitstring]
    
    log.append(f"\nSampling Results (from {num_samples} samples):")
    for bitstring, count in sorted(cut_counts.items(), key=lambda x: cut_values[x[0]], reverse=True)[:5]:
        log.append(f"  Cut {bitstring}: value = {cut_values[bitstring]}, frequency = {count}/{num_samples} ({count/num_samples:.2%})")
    
    log.append(f"\nBest cut found: {best_bitstring}")
    log.append(f"Cut value: {best_cut_value}")
    log.append(f"Frequency: {best_count}/{num_samples} ({best_count/num_samples:.2%})")
    
    # Brute force the optimal solution for comparison
    optimal_cut = 0
    optimal_bitstring = None
    for i in range(2**n_nodes):
        bitstring = format(i, f'0{n_nodes}b')
        cut_value = evaluate_maxcut(bitstring, graph)
        if cut_value > optimal_cut:
            optimal_cut = cut_value
            optimal_bitstring = bitstring
    
    log.append(f"\nOptimal cut (brute force): {optimal_bitstring}")
    log.append(f"Optimal cut value: {optimal_cut}")
    
    # Calculate approximation ratio
    approx_ratio = best_cut_value / optimal_cut if optimal_cut > 0 else 1.0
    log.append(f"Approximation ratio: {approx_ratio:.4f}")
    
    # Generate circuit SVG for visualization
    circuit_svg = circuit_to_svg(circuit)
    
    # Generate simple text representation of the graph and cut
    partition_visualization = "Graph partitioning based on best cut:\n"
    partition_0 = []
    partition_1 = []
    for i in range(n_nodes):
        if best_bitstring[i] == '0':
            partition_0.append(i)
        else:
            partition_1.append(i)
    
    partition_visualization += f"  Partition 0: {partition_0}\n"
    partition_visualization += f"  Partition 1: {partition_1}\n\n"
    
    partition_visualization += "Edge cuts:\n"
    for i, j in graph.edges():
        if best_bitstring[i] != best_bitstring[j]:
            partition_visualization += f"  ({i}, {j}) - Cut\n"
        else:
            partition_visualization += f"  ({i}, {j}) - Not cut\n"
    
    log.append(f"\n{partition_visualization}")
    
    # Return results
    return {
        "n_nodes": n_nodes,
        "n_edges": graph.number_of_edges(),
        "p_layers": p_layers,
        "noise_prob": noise_prob,
        "num_samples": num_samples,
        "best_cut": best_bitstring,
        "best_cut_value": best_cut_value,
        "best_frequency": best_count/num_samples,
        "optimal_cut": optimal_bitstring,
        "optimal_cut_value": optimal_cut,
        "approximation_ratio": float(approx_ratio),
        "params": params,
        "circuit_svg": circuit_svg,
        "graph_edges": list(graph.edges()),
        "partition_0": partition_0,
        "partition_1": partition_1,
        "log": "\n".join(log)
    }

if __name__ == '__main__':
    # Run QAOA examples
    qaoa_simple = run_qaoa(4, 0.5, p_layers=1)
    qaoa_larger = run_qaoa(6, 0.4, p_layers=2)
    qaoa_noisy = run_qaoa(5, 0.6, p_layers=1, noise_prob=0.01)