""" Post-Quantum Lattice-Based Authentication System using Ring-LWE with Quantum Visualization Integration. This module replaces the original quantum fingerprinting with a modern lattice-based authentication scheme that is resistant to quantum attacks, while maintaining compatibility with the existing visualization framework. """ import cirq import hashlib import numpy as np from cirq.contrib.svg import circuit_to_svg import matplotlib.pyplot as plt from io import BytesIO import base64 class RingLWE: """Ring Learning With Errors implementation for authentication.""" def __init__(self, n=128, q=3329, sigma=2.0): """ Initialize Ring-LWE parameters. Args: n: Polynomial degree (power of 2 for efficient NTT) q: Modulus (prime for simplicity) sigma: Standard deviation for error distribution """ self.n = n self.q = q self.sigma = sigma def sample_uniform(self): """Sample uniformly from Z_q.""" return np.random.randint(0, self.q, self.n) def sample_error(self): """Sample from error distribution (discrete Gaussian).""" # Simplified: Using rounded Gaussian with rejection sampling e = np.round(np.random.normal(0, self.sigma, self.n)) return np.mod(e.astype(int), self.q) def polynomial_multiply(self, a, b): """Multiply polynomials in the ring.""" # Using negacyclic convolution (Z_q[x]/(x^n + 1)) c = np.zeros(self.n, dtype=int) for i in range(self.n): for j in range(self.n): if i + j < self.n: c[i + j] = (c[i + j] + a[i] * b[j]) % self.q else: # Apply the modulus x^n + 1 c[i + j - self.n] = (c[i + j - self.n] - a[i] * b[j]) % self.q return c def generate_keys(self, seed=None): """ Generate a public/private key pair. Returns: Tuple of (public_key, private_key) """ # Set seed for reproducibility if provided if seed is not None: np.random.seed(seed) # Sample a uniform polynomial (public) a = self.sample_uniform() # Sample small error polynomials s = self.sample_error() # Private key e = self.sample_error() # Error term # Compute b = a*s + e (mod q) b = (self.polynomial_multiply(a, s) + e) % self.q # Public key is (a, b), private key is s return ((a, b), s) def generate_challenge(self, public_key, seed=None): """ Generate an authentication challenge. Args: public_key: Public key (a, b) Returns: Tuple of (challenge, expected_response) """ if seed is not None: np.random.seed(seed) a, b = public_key # Sample small challenge polynomials r = self.sample_error() e1 = self.sample_error() e2 = self.sample_error() # Compute challenge u = (self.polynomial_multiply(a, r) + e1) % self.q v = (self.polynomial_multiply(b, r) + e2) % self.q # Expected response is a hash of r expected_response = hashlib.sha256(str(r).encode()).digest() return ((u, v), expected_response) def respond_to_challenge(self, private_key, challenge): """ Respond to an authentication challenge. Args: private_key: Private key s challenge: Challenge (u, v) Returns: Response hash """ u, v = challenge s = private_key # Compute v - u*s (approx ~ e2 - e1*s) w = (v - self.polynomial_multiply(u, s)) % self.q # Recover r approximately using threshold r_recovered = [] for coef in w: # Small coefficients (likely part of e2 - e1*s) if coef <= self.sigma * 10 or coef >= self.q - self.sigma * 10: r_recovered.append(1) # Simplified recovery else: r_recovered.append(0) # Hash the recovered polynomial response = hashlib.sha256(str(r_recovered).encode()).digest() return response def verify_response(self, expected_response, actual_response): """ Verify an authentication response. Args: expected_response: Expected response hash actual_response: Actual response hash Returns: Boolean indicating whether authentication succeeded """ return expected_response == actual_response def create_quantum_challenge_circuit(n_qubits=4, noise_prob=0): """ Creates a quantum circuit to be used in visualization. This creates a circuit representation of the lattice-based challenge-response, suitable for visualization with the existing quantum visualization components. """ log = [] # Create qubits qubits = [cirq.NamedQubit(f"q{i}") for i in range(n_qubits)] circuit = cirq.Circuit() # Apply Hadamard gates to create superposition (representing key setup) circuit.append([cirq.H(q) for q in qubits]) log.append("Applied Hadamard gates to create superposition (representing key setup)") # Apply CNOT gates to create entanglement (representing lattice relationship) for i in range(n_qubits-1): circuit.append(cirq.CNOT(qubits[i], qubits[i+1])) log.append("Applied CNOT gates to create entanglement (representing lattice relationship)") # Apply rotations to represent error terms for i, q in enumerate(qubits): # Apply different rotations based on position if i % 3 == 0: circuit.append(cirq.Z(q)) elif i % 3 == 1: circuit.append(cirq.X(q)) else: circuit.append(cirq.Y(q)) log.append("Applied rotations to represent error terms (noise in lattice)") # Apply optional noise if noise_prob > 0: noisy_ops = [] for op in circuit.all_operations(): noisy_ops.append(op) for q in op.qubits: noisy_ops.append(cirq.DepolarizingChannel(noise_prob).on(q)) circuit = cirq.Circuit(noisy_ops) log.append(f"Added depolarizing noise with probability {noise_prob}") # Add measurements circuit.append([cirq.measure(q) for q in qubits]) log.append("Added measurements to extract classical information") # Generate circuit diagram for visualization circuit_svg = circuit_to_svg(circuit) return circuit, circuit_svg, log def generate_quantum_fingerprint_cirq(data, num_qubits=4): """ Compatibility function for the original API. Rather than directly using quantum fingerprinting, this now uses the lattice-based approach but returns results in the expected format for compatibility. """ log = [] log.append("=== Post-Quantum Lattice-Based Authentication Simulation ===") # Generate deterministic seed from data seed = int(hashlib.sha256(data.encode()).hexdigest(), 16) % (2**32) log.append(f"Authenticating data: {data}") log.append(f"Using seed: {seed}") # Set parameters n = num_qubits * 16 # Scale lattice dimension based on qubits q = 3329 # Modulus (prime number) sigma = 2.0 # Noise parameter log.append(f"Lattice dimension: {n}") log.append(f"Modulus q: {q}") log.append(f"Noise parameter σ: {sigma:.2f}") # Initialize Ring-LWE system ring_lwe = RingLWE(n=n, q=q, sigma=sigma) # Generate keys log.append("\nGenerating key pair...") public_key, private_key = ring_lwe.generate_keys(seed=seed) # Generate challenge log.append("\nGenerating authentication challenge...") challenge, expected_response = ring_lwe.generate_challenge(public_key, seed=seed+1) # Respond to challenge log.append("\nResponding to challenge...") actual_response = ring_lwe.respond_to_challenge(private_key, challenge) # Verify response log.append("\nVerifying authentication...") auth_success = ring_lwe.verify_response(expected_response, actual_response) if auth_success: log.append("✓ Authentication successful!") else: log.append("✗ Authentication failed!") # Create visualization circuits circuit, circuit_svg, viz_log = create_quantum_challenge_circuit(num_qubits) log.extend(viz_log) # Create a "fingerprint" representation from the private key for compatibility # This is just a visualization representation, not the actual authentication token fingerprint = [int(x % 2) for x in private_key[:num_qubits]] # Generate additional visualizations key_viz_base64 = generate_lattice_visualization(private_key, num_qubits) # Set fingerprint to a deterministic value for the API (not actually used in auth) fingerprint = [int(hashlib.sha256((data + str(i)).encode()).hexdigest()[0], 16) % 2 for i in range(num_qubits)] return { 'fingerprint': fingerprint, 'circuit_svg': circuit_svg, 'lattice_viz': key_viz_base64, 'auth_success': auth_success, 'log': "\n".join(log) } def verify_fingerprint_cirq(data, fingerprint, num_qubits=4): """ Compatibility function for the original API. Verifies if a given fingerprint matches the one generated from data. """ result = generate_quantum_fingerprint_cirq(data, num_qubits) return result['fingerprint'] == fingerprint def generate_lattice_visualization(coefficients, num_qubits): """Generate visualization of lattice points for quantum visualization.""" plt.figure(figsize=(8, 6)) # Create a subset of the coefficients for plotting n_coeffs = min(len(coefficients), 100) subset = coefficients[:n_coeffs] # Create a scatter plot for the lattice points plt.subplot(2, 1, 1) x = np.arange(n_coeffs) plt.scatter(x, subset, s=30, c=subset, cmap='viridis', alpha=0.7) plt.title('Lattice Coefficients (First 100 Values)') plt.xlabel('Index') plt.ylabel('Value Modulo q') plt.grid(alpha=0.3) # Create a histogram of coefficients plt.subplot(2, 1, 2) plt.hist(coefficients, bins=30, alpha=0.7, color='blue') plt.title('Lattice Coefficient Distribution') plt.xlabel('Coefficient Value') plt.ylabel('Frequency') plt.grid(alpha=0.3) plt.tight_layout() # Convert plot to base64 encoded string buffer = BytesIO() plt.savefig(buffer, format='png') buffer.seek(0) image_png = buffer.getvalue() buffer.close() plt.close() return base64.b64encode(image_png).decode('utf-8') if __name__ == '__main__': # Run with default parameters data = "example_user" result = generate_quantum_fingerprint_cirq(data, num_qubits=8) print("Lattice-Based Authentication Simulation:") print(f"Data: {data}") print(f"Fingerprint: {result['fingerprint']}") print(f"Authentication success: {result['auth_success']}") print("\nDetailed Log:") print(result['log'])