""" Quantum Gate Explorer module for GXS - QuantumNexus. This module provides a way to visualize the effects of various quantum gates on different input states. It calculates the resulting state vectors and matrix representations for educational purposes. """ import cirq import numpy as np import json from cirq.contrib.svg import circuit_to_svg # Constants for common quantum states STATES = { '|0>': [1, 0], '|1>': [0, 1], '|+>': [1/np.sqrt(2), 1/np.sqrt(2)], '|->': [1/np.sqrt(2), -1/np.sqrt(2)], '|i+>': [1/np.sqrt(2), 1j/np.sqrt(2)], '|i->': [1/np.sqrt(2), -1j/np.sqrt(2)] } # Map of supported gates with their cirq implementations GATES = { 'X': cirq.X, 'Y': cirq.Y, 'Z': cirq.Z, 'H': cirq.H, 'S': cirq.S, 'T': cirq.T, 'Rx_pi/4': lambda q: cirq.rx(np.pi/4)(q), 'Ry_pi/4': lambda q: cirq.ry(np.pi/4)(q), 'Rz_pi/4': lambda q: cirq.rz(np.pi/4)(q), 'Rx_pi/2': lambda q: cirq.rx(np.pi/2)(q), 'Ry_pi/2': lambda q: cirq.ry(np.pi/2)(q), 'Rz_pi/2': lambda q: cirq.rz(np.pi/2)(q) } # Two-qubit gates TWO_QUBIT_GATES = { 'CNOT': cirq.CNOT, 'CZ': cirq.CZ, 'SWAP': cirq.SWAP } def complex_to_json(complex_num): """Convert a complex number to a JSON-serializable format.""" return { 'real': float(np.real(complex_num)), 'imag': float(np.imag(complex_num)) } def matrix_to_json(matrix): """Convert a numpy matrix containing complex numbers to JSON-serializable format.""" if isinstance(matrix, np.ndarray): return [[complex_to_json(cell) for cell in row] for row in matrix] return matrix def create_initial_state(state_name, num_qubits): """ Creates the initial state vector based on the state name. Args: state_name: Name of the initial state (e.g., |00>, |+>|+>, |Bell>) num_qubits: Number of qubits in the system Returns: Numpy array representing the initial state vector """ # Handle standard basis states like |00>, |01>, etc. if state_name.startswith('|') and state_name.endswith('>'): bits = state_name[1:-1] # If the length matches num_qubits, it's a computational basis state if len(bits) == num_qubits and all(bit in '01' for bit in bits): # Create a one-hot vector for the basis state index = int(bits, 2) state = np.zeros(2**num_qubits, dtype=complex) state[index] = 1.0 return state # Handle special states if state_name == '|+>|+>' and num_qubits == 2: # Tensor product of |+> and |+> plus_state = np.array([1, 1]) / np.sqrt(2) return np.kron(plus_state, plus_state) if state_name == '|Bell>' and num_qubits == 2: # Bell state (|00> + |11>)/sqrt(2) bell_state = np.zeros(4, dtype=complex) bell_state[0] = 1 / np.sqrt(2) bell_state[3] = 1 / np.sqrt(2) return bell_state # Default to all zeros state if not recognized state = np.zeros(2**num_qubits, dtype=complex) state[0] = 1.0 return state def build_circuit_from_drag_drop(circuit_data): """ Builds a Cirq circuit from the drag-and-drop circuit data. Args: circuit_data: Dictionary containing circuit information from the frontend Returns: Tuple of (Cirq circuit, list of qubits, initial state vector) """ # Extract circuit parameters num_qubits = circuit_data.get('qubits', 2) initial_state_name = circuit_data.get('initial_state', '|' + '0' * num_qubits + '>') gates_data = circuit_data.get('gates', []) # Create qubits qubits = [cirq.NamedQubit(f'q{i}') for i in range(num_qubits)] # Create circuit circuit = cirq.Circuit() # Prepare initial state initial_state_vector = create_initial_state(initial_state_name, num_qubits) # Special circuit for Bell state preparation if initial_state_name == '|Bell>' and num_qubits == 2: circuit.append([cirq.H(qubits[0]), cirq.CNOT(qubits[0], qubits[1])]) # Circuit for |+>|+> state elif initial_state_name == '|+>|+>' and num_qubits == 2: circuit.append([cirq.H(qubits[0]), cirq.H(qubits[1])]) # Standard computational basis states elif initial_state_name.startswith('|') and initial_state_name.endswith('>'): bits = initial_state_name[1:-1] if len(bits) == num_qubits: for i, bit in enumerate(bits): if bit == '1': circuit.append(cirq.X(qubits[i])) # Sort gates by slot sorted_gates = sorted(gates_data, key=lambda g: g.get('slot', 0)) # Add gates to circuit for gate_data in sorted_gates: gate_name = gate_data.get('gate') if 'qubit' in gate_data: # Single-qubit gate qubit_idx = gate_data.get('qubit') if qubit_idx < num_qubits and gate_name in GATES: gate_op = GATES[gate_name] if callable(gate_op): circuit.append(gate_op(qubits[qubit_idx])) else: circuit.append(gate_op(qubits[qubit_idx])) else: # Two-qubit gate control_idx = gate_data.get('control') target_idx = gate_data.get('target') if (control_idx < num_qubits and target_idx < num_qubits and gate_name in TWO_QUBIT_GATES): gate_op = TWO_QUBIT_GATES[gate_name] circuit.append(gate_op(qubits[control_idx], qubits[target_idx])) return circuit, qubits, initial_state_vector def run_interactive_circuit(circuit_data_json): """ Runs a quantum circuit defined by the interactive drag-and-drop interface. Args: circuit_data_json: JSON string containing circuit data from the frontend Returns: Dictionary with simulation results """ log = [] log.append("=== Quantum Gate Explorer: Interactive Circuit Simulation ===") try: # Parse the circuit data circuit_data = json.loads(circuit_data_json) # Build the circuit circuit, qubits, initial_state = build_circuit_from_drag_drop(circuit_data) # Log the circuit information num_qubits = len(qubits) log.append(f"Created circuit with {num_qubits} qubits") log.append(f"Initial state: {circuit_data.get('initial_state', '|' + '0' * num_qubits + '>')}") log.append(f"Circuit has {len(circuit)} operations") # Generate circuit visualization circuit_svg = circuit_to_svg(circuit) # Simulate the circuit simulator = cirq.Simulator() result = simulator.simulate(circuit) final_state = result.final_state_vector # Calculate probabilities initial_probs = np.abs(initial_state)**2 final_probs = np.abs(final_state)**2 # Determine phase information initial_phases = np.angle(initial_state) final_phases = np.angle(final_state) # Format for JSON serialization return { 'num_qubits': num_qubits, 'initial_state_name': circuit_data.get('initial_state', '|' + '0' * num_qubits + '>'), 'initial_state': [complex_to_json(c) for c in initial_state], 'output_state': [complex_to_json(c) for c in final_state], 'input_probabilities': initial_probs.tolist(), 'output_probabilities': final_probs.tolist(), 'input_phases': initial_phases.tolist(), 'output_phases': final_phases.tolist(), 'circuit_svg': circuit_svg, 'log': "\n".join(log) } except Exception as e: log.append(f"Error: {str(e)}") return { 'error': str(e), 'log': "\n".join(log) } def calculate_gate_effect(gate_name, input_state_name, is_two_qubit=False): """ Calculate the effect of applying a quantum gate to an input state. Args: gate_name: Name of the quantum gate to apply input_state_name: Name of the input state is_two_qubit: Whether the calculation is for a two-qubit gate Returns: Dictionary with gate information, input state, output state, and visualization """ log = [] log.append(f"=== Quantum Gate Explorer: {gate_name} on {input_state_name} ===") try: # Set up the input state if not is_two_qubit: # Single-qubit case if input_state_name in STATES: input_state = np.array(STATES[input_state_name]) log.append(f"Input state {input_state_name}: {input_state}") else: raise ValueError(f"Unknown input state: {input_state_name}") if gate_name not in GATES: raise ValueError(f"Unknown gate: {gate_name}") # Create qubit and circuit q = cirq.NamedQubit('q') circuit = cirq.Circuit() # Prepare input state if input_state_name == '|1>': circuit.append(cirq.X(q)) log.append("Applied X gate to prepare |1> state") elif input_state_name == '|+>': circuit.append(cirq.H(q)) log.append("Applied H gate to prepare |+> state") elif input_state_name == '|->': circuit.append([cirq.H(q), cirq.Z(q)]) log.append("Applied H and Z gates to prepare |-> state") elif input_state_name == '|i+>': circuit.append([cirq.H(q), cirq.S(q)]) log.append("Applied H and S gates to prepare |i+> state") elif input_state_name == '|i->': circuit.append([cirq.H(q), cirq.S(q), cirq.Z(q)]) log.append("Applied H, S and Z gates to prepare |i-> state") # Get the gate to apply gate_func = GATES[gate_name] # Apply the gate if callable(gate_func): gate = gate_func(q) circuit.append(gate) log.append(f"Applied {gate_name} gate") else: circuit.append(gate_func(q)) log.append(f"Applied {gate_name} gate") # Simulate the circuit simulator = cirq.Simulator() result = simulator.simulate(circuit) output_state = result.final_state_vector # Get the gate's matrix representation gate_matrix = cirq.unitary(gate) # Create a visualization circuit_svg = circuit_to_svg(circuit) # Calculate probabilities input_probs = np.abs(input_state)**2 output_probs = np.abs(output_state)**2 # Determine phase information input_phases = np.angle(input_state) output_phases = np.angle(output_state) # Format for JSON serialization return { 'gate_name': gate_name, 'input_state_name': input_state_name, 'input_state': [complex_to_json(c) for c in input_state], 'output_state': [complex_to_json(c) for c in output_state], 'gate_matrix': matrix_to_json(gate_matrix), 'input_probabilities': input_probs.tolist(), 'output_probabilities': output_probs.tolist(), 'input_phases': input_phases.tolist(), 'output_phases': output_phases.tolist(), 'circuit_svg': circuit_svg, 'log': "\n".join(log) } else: # Two-qubit case if gate_name not in TWO_QUBIT_GATES: raise ValueError(f"Unknown two-qubit gate: {gate_name}") # For two-qubit gates, we use a simple |00> state as input by default # or the first Bell state (|00> + |11>)/sqrt(2) if specified q0 = cirq.NamedQubit('q0') q1 = cirq.NamedQubit('q1') circuit = cirq.Circuit() # Prepare input state if input_state_name == '|00>': # Default state, no preparation needed input_state = np.array([1, 0, 0, 0]) log.append("Using default |00> input state.") elif input_state_name == 'Bell': # Create a Bell state (|00> + |11>)/sqrt(2) circuit.append([cirq.H(q0), cirq.CNOT(q0, q1)]) input_state = np.array([1/np.sqrt(2), 0, 0, 1/np.sqrt(2)]) log.append("Created Bell state (|00> + |11>)/sqrt(2)") else: raise ValueError(f"Unsupported two-qubit input state: {input_state_name}") # Apply the two-qubit gate gate_func = TWO_QUBIT_GATES[gate_name] circuit.append(gate_func(q0, q1)) log.append(f"Applied {gate_name} gate") # Simulate the circuit simulator = cirq.Simulator() result = simulator.simulate(circuit) output_state = result.final_state_vector # Get the gate's matrix representation gate_matrix = cirq.unitary(gate_func) # Create a visualization circuit_svg = circuit_to_svg(circuit) # Calculate probabilities input_probs = np.abs(input_state)**2 output_probs = np.abs(output_state)**2 # Determine phase information input_phases = np.angle(input_state) output_phases = np.angle(output_state) # Format for JSON serialization return { 'gate_name': gate_name, 'input_state_name': input_state_name, 'is_two_qubit': True, 'input_state': [complex_to_json(c) for c in input_state], 'output_state': [complex_to_json(c) for c in output_state], 'gate_matrix': matrix_to_json(gate_matrix), 'input_probabilities': input_probs.tolist(), 'output_probabilities': output_probs.tolist(), 'input_phases': input_phases.tolist(), 'output_phases': output_phases.tolist(), 'circuit_svg': circuit_svg, 'log': "\n".join(log) } except Exception as e: log.append(f"Error: {str(e)}") return { 'gate_name': gate_name, 'input_state_name': input_state_name, 'error': str(e), 'log': "\n".join(log) } def run_gate_explorer(gate_name=None, input_state=None, is_two_qubit=False, circuit=None): """ Run the gate explorer with specified parameters. Args: gate_name: Name of the gate to apply input_state: Name of the input state is_two_qubit: Whether to use a two-qubit gate circuit: JSON string describing a circuit for the interactive mode Returns: Dictionary with gate exploration results """ # If circuit data is provided, use the interactive mode if circuit: return run_interactive_circuit(circuit) # Otherwise, use the single gate mode return calculate_gate_effect(gate_name, input_state, is_two_qubit)