""" High-Fidelity Quantum Approximate Optimization Algorithm (QAOA) Simulation using Google Cirq. QAOA is a hybrid quantum-classical algorithm designed for solving combinatorial optimization problems. This implementation demonstrates QAOA for solving the MaxCut problem on small graphs. """ import cirq import numpy as np import networkx as nx import sympy import random from cirq.contrib.svg import circuit_to_svg def create_maxcut_cost_operator(qubits, graph): """ Creates the cost Hamiltonian for the MaxCut problem. Args: qubits: Dictionary mapping node indices to qubits graph: NetworkX graph representing the problem Returns: A cirq.Circuit implementing the cost Hamiltonian evolution """ circuit = cirq.Circuit() # The cost Hamiltonian for MaxCut is sum_(i,j)∈E (1 - Z_i Z_j)/2 # For circuit implementation, we use ZZ rotations for i, j in graph.edges(): circuit.append(cirq.ZZ(qubits[i], qubits[j])**sympy.Symbol('gamma')) return circuit def create_mixer_operator(qubits): """ Creates the mixer Hamiltonian for QAOA. Args: qubits: List of qubits Returns: A cirq.Circuit implementing the mixer Hamiltonian evolution """ circuit = cirq.Circuit() # The mixer Hamiltonian is sum_i X_i # For circuit implementation, we use X rotations for qubit in qubits.values(): circuit.append(cirq.X(qubit)**sympy.Symbol('beta')) return circuit def create_qaoa_circuit(qubits, graph, p=1): """ Creates a QAOA circuit for the MaxCut problem. Args: qubits: Dictionary mapping node indices to qubits graph: NetworkX graph representing the problem p: Number of QAOA layers Returns: A cirq.Circuit implementing QAOA """ circuit = cirq.Circuit() # Initialize in superposition circuit.append(cirq.H.on_each(*qubits.values())) # Apply p layers of QAOA for layer in range(p): # Apply cost Hamiltonian with parameter gamma_layer gamma = sympy.Symbol(f'gamma_{layer}') for i, j in graph.edges(): circuit.append(cirq.ZZ(qubits[i], qubits[j])**gamma) # Apply mixer Hamiltonian with parameter beta_layer beta = sympy.Symbol(f'beta_{layer}') for qubit in qubits.values(): circuit.append(cirq.X(qubit)**beta) return circuit def add_noise(circuit, noise_prob): """ Adds realistic quantum noise to the circuit. Args: circuit: A Cirq circuit noise_prob: Probability of depolarizing noise Returns: A circuit with added noise operations """ if noise_prob <= 0: return circuit noisy_ops = [] for op in circuit.all_operations(): noisy_ops.append(op) for q in op.qubits: noisy_ops.append(cirq.DepolarizingChannel(noise_prob).on(q)) return cirq.Circuit(noisy_ops) def evaluate_maxcut(bitstring, graph): """ Evaluates the MaxCut value for a given bitstring. Args: bitstring: String of '0's and '1's representing the cut graph: NetworkX graph Returns: The value of the cut (number of edges between partitions) """ cut_value = 0 for i, j in graph.edges(): # Edge contributes to the cut if the endpoints are in different partitions if bitstring[i] != bitstring[j]: cut_value += 1 return cut_value def run_qaoa(n_nodes=4, edge_probability=0.5, p_layers=1, noise_prob=0.0, num_samples=100): """ Runs the QAOA algorithm for the MaxCut problem. Args: n_nodes: Number of nodes in the graph edge_probability: Probability of edge creation in random graph p_layers: Number of QAOA layers (depth) noise_prob: Probability of depolarizing noise num_samples: Number of circuit samples to take Returns: Dictionary with QAOA results and visualization """ log = [] log.append("=== Quantum Approximate Optimization Algorithm (QAOA) Simulation ===") # Create a random graph graph = nx.gnp_random_graph(n_nodes, edge_probability, seed=42) log.append(f"Created random graph with {n_nodes} nodes and {graph.number_of_edges()} edges") log.append(f"Edges: {list(graph.edges())}") # Create qubits qubits = {i: cirq.NamedQubit(f'q{i}') for i in range(n_nodes)} # Create QAOA circuit circuit = create_qaoa_circuit(qubits, graph, p=p_layers) log.append(f"Created QAOA circuit with p={p_layers} layers") # Generate random circuit parameters (in a real QAOA, these would be optimized) params = {} for layer in range(p_layers): # Typical ranges for parameters params[f'gamma_{layer}'] = random.uniform(0, 2 * np.pi) params[f'beta_{layer}'] = random.uniform(0, np.pi) log.append("Generated random parameters for demonstration:") for param, value in params.items(): log.append(f" {param} = {value:.4f}") # Resolve the circuit with the parameters resolved_circuit = cirq.resolve_parameters(circuit, params) # Add noise if specified if noise_prob > 0: resolved_circuit = add_noise(resolved_circuit, noise_prob) log.append(f"Added noise with probability {noise_prob}") # Add measurements measure_circuit = cirq.Circuit() measure_circuit.append(cirq.measure(*qubits.values(), key='cut')) # Combine circuits full_circuit = resolved_circuit + measure_circuit # Run the circuit simulator = cirq.Simulator() result = simulator.run(full_circuit, repetitions=num_samples) # Process the measurement results cut_counts = {} cut_values = {} for sample in result.measurements['cut']: bitstring = ''.join([str(bit) for bit in sample]) if bitstring not in cut_counts: cut_counts[bitstring] = 0 cut_values[bitstring] = evaluate_maxcut(bitstring, graph) cut_counts[bitstring] += 1 # Find the best cut best_bitstring = max(cut_values, key=cut_values.get) best_cut_value = cut_values[best_bitstring] best_count = cut_counts[best_bitstring] log.append(f"\nSampling Results (from {num_samples} samples):") for bitstring, count in sorted(cut_counts.items(), key=lambda x: cut_values[x[0]], reverse=True)[:5]: log.append(f" Cut {bitstring}: value = {cut_values[bitstring]}, frequency = {count}/{num_samples} ({count/num_samples:.2%})") log.append(f"\nBest cut found: {best_bitstring}") log.append(f"Cut value: {best_cut_value}") log.append(f"Frequency: {best_count}/{num_samples} ({best_count/num_samples:.2%})") # Brute force the optimal solution for comparison optimal_cut = 0 optimal_bitstring = None for i in range(2**n_nodes): bitstring = format(i, f'0{n_nodes}b') cut_value = evaluate_maxcut(bitstring, graph) if cut_value > optimal_cut: optimal_cut = cut_value optimal_bitstring = bitstring log.append(f"\nOptimal cut (brute force): {optimal_bitstring}") log.append(f"Optimal cut value: {optimal_cut}") # Calculate approximation ratio approx_ratio = best_cut_value / optimal_cut if optimal_cut > 0 else 1.0 log.append(f"Approximation ratio: {approx_ratio:.4f}") # Generate circuit SVG for visualization circuit_svg = circuit_to_svg(circuit) # Generate simple text representation of the graph and cut partition_visualization = "Graph partitioning based on best cut:\n" partition_0 = [] partition_1 = [] for i in range(n_nodes): if best_bitstring[i] == '0': partition_0.append(i) else: partition_1.append(i) partition_visualization += f" Partition 0: {partition_0}\n" partition_visualization += f" Partition 1: {partition_1}\n\n" partition_visualization += "Edge cuts:\n" for i, j in graph.edges(): if best_bitstring[i] != best_bitstring[j]: partition_visualization += f" ({i}, {j}) - Cut\n" else: partition_visualization += f" ({i}, {j}) - Not cut\n" log.append(f"\n{partition_visualization}") # Return results return { "n_nodes": n_nodes, "n_edges": graph.number_of_edges(), "p_layers": p_layers, "noise_prob": noise_prob, "num_samples": num_samples, "best_cut": best_bitstring, "best_cut_value": best_cut_value, "best_frequency": best_count/num_samples, "optimal_cut": optimal_bitstring, "optimal_cut_value": optimal_cut, "approximation_ratio": float(approx_ratio), "params": params, "circuit_svg": circuit_svg, "graph_edges": list(graph.edges()), "partition_0": partition_0, "partition_1": partition_1, "log": "\n".join(log) } if __name__ == '__main__': # Run QAOA examples qaoa_simple = run_qaoa(4, 0.5, p_layers=1) qaoa_larger = run_qaoa(6, 0.4, p_layers=2) qaoa_noisy = run_qaoa(5, 0.6, p_layers=1, noise_prob=0.01)