File size: 8,538 Bytes
7968cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
import torch.nn.functional as F
import numpy as np
from collections.abc import Mapping, Sequence


# Thanks for StructTrans
# https://github.com/jingraham/neurips19-graph-protein-design
def nan_to_num(tensor, nan=0.0):
    idx = torch.isnan(tensor)
    tensor[idx] = nan
    return tensor


def _normalize(tensor, dim=-1):
    return nan_to_num(
        torch.div(tensor, torch.norm(tensor, dim=dim, keepdim=True)))


def cal_dihedral(X, eps=1e-7):
    dX = X[:,1:,:] - X[:,:-1,:] # CA-N, C-CA, N-C, CA-N...
    U = _normalize(dX, dim=-1)
    u_0 = U[:,:-2,:] # CA-N, C-CA, N-C,...
    u_1 = U[:,1:-1,:] # C-CA, N-C, CA-N, ... 0, psi_{i}, omega_{i}, phi_{i+1} or 0, tau_{i},...
    u_2 = U[:,2:,:] # N-C, CA-N, C-CA, ...

    n_0 = _normalize(torch.cross(u_0, u_1), dim=-1)
    n_1 = _normalize(torch.cross(u_1, u_2), dim=-1)
    
    cosD = (n_0 * n_1).sum(-1)
    cosD = torch.clamp(cosD, -1+eps, 1-eps)
    
    v = _normalize(torch.cross(n_0, n_1), dim=-1)
    D = torch.sign((-v* u_1).sum(-1)) * torch.acos(cosD) # TODO: sign
    
    return D


def _dihedrals(X, dihedral_type=0, eps=1e-7):
    B, N, _, _ = X.shape
    # psi, omega, phi
    X = X[:,:,:3,:].reshape(X.shape[0], 3*X.shape[1], 3) # ['N', 'CA', 'C', 'O']
    D = cal_dihedral(X)
    D = F.pad(D, (1,2), 'constant', 0)
    D = D.view((D.size(0), int(D.size(1)/3), 3)) 
    Dihedral_Angle_features = torch.cat((torch.cos(D), torch.sin(D)), 2)

    # alpha, beta, gamma
    dX = X[:,1:,:] - X[:,:-1,:] # CA-N, C-CA, N-C, CA-N...
    U = _normalize(dX, dim=-1)
    u_0 = U[:,:-2,:] # CA-N, C-CA, N-C,...
    u_1 = U[:,1:-1,:] # C-CA, N-C, CA-N, ...
    cosD = (u_0*u_1).sum(-1) # alpha_{i}, gamma_{i}, beta_{i+1}
    cosD = torch.clamp(cosD, -1+eps, 1-eps)
    D = torch.acos(cosD)
    D = F.pad(D, (1,2), 'constant', 0)
    D = D.view((D.size(0), int(D.size(1)/3), 3))
    Angle_features = torch.cat((torch.cos(D), torch.sin(D)), 2)
    D_features = torch.cat((Dihedral_Angle_features, Angle_features), 2)
    return D_features


def _hbonds(X, E_idx, mask_neighbors, eps=1E-3):
    X_atoms = dict(zip(['N', 'CA', 'C', 'O'], torch.unbind(X, 2)))

    X_atoms['C_prev'] = F.pad(X_atoms['C'][:,1:,:], (0,0,0,1), 'constant', 0)
    X_atoms['H'] = X_atoms['N'] + _normalize(
            _normalize(X_atoms['N'] - X_atoms['C_prev'], -1)
        +  _normalize(X_atoms['N'] - X_atoms['CA'], -1)
    , -1)

    def _distance(X_a, X_b):
        return torch.norm(X_a[:,None,:,:] - X_b[:,:,None,:], dim=-1)

    def _inv_distance(X_a, X_b):
        return 1. / (_distance(X_a, X_b) + eps)

    U = (0.084 * 332) * (
            _inv_distance(X_atoms['O'], X_atoms['N'])
        + _inv_distance(X_atoms['C'], X_atoms['H'])
        - _inv_distance(X_atoms['O'], X_atoms['H'])
        - _inv_distance(X_atoms['C'], X_atoms['N'])
    )

    HB = (U < -0.5).type(torch.float32)
    neighbor_HB = mask_neighbors * gather_edges(HB.unsqueeze(-1),  E_idx)
    return neighbor_HB


def _rbf(D, num_rbf):
    D_min, D_max, D_count = 0., 20., num_rbf
    D_mu = torch.linspace(D_min, D_max, D_count).to(D.device)
    D_mu = D_mu.view([1,1,1,-1])
    D_sigma = (D_max - D_min) / D_count
    D_expand = torch.unsqueeze(D, -1)
    RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
    return RBF


def _get_rbf(A, B, E_idx=None, num_rbf=16):
    if E_idx is not None:
        D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L]
        D_A_B_neighbors = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K]
        RBF_A_B = _rbf(D_A_B_neighbors, num_rbf)
    else:
        D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,:,None,:])**2,-1) + 1e-6) #[B, L, L]
        RBF_A_B = _rbf(D_A_B, num_rbf)
    return RBF_A_B


def _get_dist(A, B, E_idx=None, num_rbf=None):
    if E_idx is not None:
        D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L]
        D_A_B = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K]
    else:
        D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,:,None,:])**2,-1) + 1e-6) #[B, L, L]
    return D_A_B


def _orientations_coarse_gl(X, E_idx, eps=1e-6):
    X = X[:,:,:3,:].reshape(X.shape[0], 3*X.shape[1], 3) 
    dX = X[:,1:,:] - X[:,:-1,:] # CA-N, C-CA, N-C, CA-N...
    U = _normalize(dX, dim=-1)
    u_0, u_1 = U[:,:-2,:], U[:,1:-1,:]
    n_0 = _normalize(torch.cross(u_0, u_1), dim=-1)
    b_1 = _normalize(u_0 - u_1, dim=-1)
    
    n_0 = n_0[:,::3,:]
    b_1 = b_1[:,::3,:]
    X = X[:,::3,:]

    O = torch.stack((b_1, n_0, torch.cross(b_1, n_0)), 2)
    O = O.view(list(O.shape[:2]) + [9])
    O = F.pad(O, (0,0,0,1), 'constant', 0)

    O_neighbors = gather_nodes(O, E_idx)
    X_neighbors = gather_nodes(X, E_idx)

    O = O.view(list(O.shape[:2]) + [3,3]).unsqueeze(2)
    O_neighbors = O_neighbors.view(list(O_neighbors.shape[:3]) + [3,3])

    dX = X_neighbors - X.unsqueeze(-2)
    dU = torch.matmul(O, dX.unsqueeze(-1)).squeeze(-1)
    R = torch.matmul(O.transpose(-1,-2), O_neighbors)
    feat = torch.cat((_normalize(dU, dim=-1), _quaternions(R)), dim=-1)
    return feat


def _orientations_coarse_gl_tuple(X, E_idx, eps=1e-6):
    V = X.clone()
    X = X[:,:,:3,:].reshape(X.shape[0], 3*X.shape[1], 3) 
    dX = X[:,1:,:] - X[:,:-1,:] # CA-N, C-CA, N-C, CA-N...
    U = _normalize(dX, dim=-1)
    u_0, u_1 = U[:,:-2,:], U[:,1:-1,:]
    n_0 = _normalize(torch.cross(u_0, u_1), dim=-1)
    b_1 = _normalize(u_0 - u_1, dim=-1)
    
    n_0 = n_0[:,::3,:]
    b_1 = b_1[:,::3,:]
    X = X[:,::3,:]
    Q = torch.stack((b_1, n_0, torch.cross(b_1, n_0)), 2)
    Q = Q.view(list(Q.shape[:2]) + [9])
    Q = F.pad(Q, (0,0,0,1), 'constant', 0)

    Q_neighbors = gather_nodes(Q, E_idx)
    X_neighbors = gather_nodes(V[:,:,1,:], E_idx)
    N_neighbors = gather_nodes(V[:,:,0,:], E_idx)
    C_neighbors = gather_nodes(V[:,:,2,:], E_idx)
    O_neighbors = gather_nodes(V[:,:,3,:], E_idx)

    Q = Q.view(list(Q.shape[:2]) + [3,3]).unsqueeze(2)
    Q_neighbors = Q_neighbors.view(list(Q_neighbors.shape[:3]) + [3,3])

    dX = torch.stack([X_neighbors,N_neighbors,C_neighbors,O_neighbors], dim=3) - X[:,:,None,None,:] 
    dU = torch.matmul(Q[:,:,:,None,:,:], dX[...,None]).squeeze(-1)
    B, N, K = dU.shape[:3]
    E_direct = _normalize(dU, dim=-1)
    E_direct = E_direct.reshape(B, N, K,-1)
    R = torch.matmul(Q.transpose(-1,-2), Q_neighbors)
    q = _quaternions(R)
    
    dX_inner = V[:,:,[0,2,3],:] - X.unsqueeze(-2)
    dU_inner = torch.matmul(Q, dX_inner.unsqueeze(-1)).squeeze(-1)
    dU_inner = _normalize(dU_inner, dim=-1)
    V_direct = dU_inner.reshape(B,N,-1)
    return V_direct, E_direct, q


def gather_edges(edges, neighbor_idx):
    neighbors = neighbor_idx.unsqueeze(-1).expand(-1, -1, -1, edges.size(-1))
    return torch.gather(edges, 2, neighbors)


def gather_nodes(nodes, neighbor_idx):
    neighbors_flat = neighbor_idx.view((neighbor_idx.shape[0], -1)) # [4, 317, 30]-->[4, 9510]
    neighbors_flat = neighbors_flat.unsqueeze(-1).expand(-1, -1, nodes.size(2)) # [4, 9510, dim]
    neighbor_features = torch.gather(nodes, 1, neighbors_flat) # [4, 9510, dim]
    return neighbor_features.view(list(neighbor_idx.shape)[:3] + [-1]) # [4, 317, 30, 128]


def _quaternions(R):
    diag = torch.diagonal(R, dim1=-2, dim2=-1)
    Rxx, Ryy, Rzz = diag.unbind(-1)
    # magnitudes = 0.5 * torch.sqrt(torch.abs(1 + torch.stack([
    #         Rxx - Ryy - Rzz, 
    #     - Rxx + Ryy - Rzz, 
    #     - Rxx - Ryy + Rzz
    # ], -1)))
    magnitudes = torch.abs(1 + torch.stack([
        Rxx - Ryy - Rzz,
        -Rxx + Ryy - Rzz,
        - Rxx - Ryy + Rzz
        ],-1))
    magnitudes[magnitudes == 0.0] = 1e-12
    magnitudes = 0.5 * torch.sqrt(magnitudes)
    
    _R = lambda i,j: R[:,:,:,i,j]
    signs = torch.sign(torch.stack([
        _R(2,1) - _R(1,2),
        _R(0,2) - _R(2,0),
        _R(1,0) - _R(0,1)
    ], -1))
    xyz = signs * magnitudes
    w = torch.sqrt(F.relu(1 + diag.sum(-1, keepdim=True))) / 2.
    Q = torch.cat((xyz, w), -1)
    return _normalize(Q, dim=-1)


def cuda(obj, *args, **kwargs):
    """
    Transfer any nested container of tensors to CUDA.
    """
    if hasattr(obj, "cuda"):
        return obj.cuda(*args, **kwargs)
    elif isinstance(obj, Mapping):
        return type(obj)({k: cuda(v, *args, **kwargs) for k, v in obj.items()})
    elif isinstance(obj, Sequence):
        return type(obj)(cuda(x, *args, **kwargs) for x in obj)
    elif isinstance(obj, np.ndarray):
        return torch.tensor(obj, *args, **kwargs)

    raise TypeError("Can't transfer object type `%s`" % type(obj))