Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,538 Bytes
7968cb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import torch
import torch.nn.functional as F
import numpy as np
from collections.abc import Mapping, Sequence
# Thanks for StructTrans
# https://github.com/jingraham/neurips19-graph-protein-design
def nan_to_num(tensor, nan=0.0):
idx = torch.isnan(tensor)
tensor[idx] = nan
return tensor
def _normalize(tensor, dim=-1):
return nan_to_num(
torch.div(tensor, torch.norm(tensor, dim=dim, keepdim=True)))
def cal_dihedral(X, eps=1e-7):
dX = X[:,1:,:] - X[:,:-1,:] # CA-N, C-CA, N-C, CA-N...
U = _normalize(dX, dim=-1)
u_0 = U[:,:-2,:] # CA-N, C-CA, N-C,...
u_1 = U[:,1:-1,:] # C-CA, N-C, CA-N, ... 0, psi_{i}, omega_{i}, phi_{i+1} or 0, tau_{i},...
u_2 = U[:,2:,:] # N-C, CA-N, C-CA, ...
n_0 = _normalize(torch.cross(u_0, u_1), dim=-1)
n_1 = _normalize(torch.cross(u_1, u_2), dim=-1)
cosD = (n_0 * n_1).sum(-1)
cosD = torch.clamp(cosD, -1+eps, 1-eps)
v = _normalize(torch.cross(n_0, n_1), dim=-1)
D = torch.sign((-v* u_1).sum(-1)) * torch.acos(cosD) # TODO: sign
return D
def _dihedrals(X, dihedral_type=0, eps=1e-7):
B, N, _, _ = X.shape
# psi, omega, phi
X = X[:,:,:3,:].reshape(X.shape[0], 3*X.shape[1], 3) # ['N', 'CA', 'C', 'O']
D = cal_dihedral(X)
D = F.pad(D, (1,2), 'constant', 0)
D = D.view((D.size(0), int(D.size(1)/3), 3))
Dihedral_Angle_features = torch.cat((torch.cos(D), torch.sin(D)), 2)
# alpha, beta, gamma
dX = X[:,1:,:] - X[:,:-1,:] # CA-N, C-CA, N-C, CA-N...
U = _normalize(dX, dim=-1)
u_0 = U[:,:-2,:] # CA-N, C-CA, N-C,...
u_1 = U[:,1:-1,:] # C-CA, N-C, CA-N, ...
cosD = (u_0*u_1).sum(-1) # alpha_{i}, gamma_{i}, beta_{i+1}
cosD = torch.clamp(cosD, -1+eps, 1-eps)
D = torch.acos(cosD)
D = F.pad(D, (1,2), 'constant', 0)
D = D.view((D.size(0), int(D.size(1)/3), 3))
Angle_features = torch.cat((torch.cos(D), torch.sin(D)), 2)
D_features = torch.cat((Dihedral_Angle_features, Angle_features), 2)
return D_features
def _hbonds(X, E_idx, mask_neighbors, eps=1E-3):
X_atoms = dict(zip(['N', 'CA', 'C', 'O'], torch.unbind(X, 2)))
X_atoms['C_prev'] = F.pad(X_atoms['C'][:,1:,:], (0,0,0,1), 'constant', 0)
X_atoms['H'] = X_atoms['N'] + _normalize(
_normalize(X_atoms['N'] - X_atoms['C_prev'], -1)
+ _normalize(X_atoms['N'] - X_atoms['CA'], -1)
, -1)
def _distance(X_a, X_b):
return torch.norm(X_a[:,None,:,:] - X_b[:,:,None,:], dim=-1)
def _inv_distance(X_a, X_b):
return 1. / (_distance(X_a, X_b) + eps)
U = (0.084 * 332) * (
_inv_distance(X_atoms['O'], X_atoms['N'])
+ _inv_distance(X_atoms['C'], X_atoms['H'])
- _inv_distance(X_atoms['O'], X_atoms['H'])
- _inv_distance(X_atoms['C'], X_atoms['N'])
)
HB = (U < -0.5).type(torch.float32)
neighbor_HB = mask_neighbors * gather_edges(HB.unsqueeze(-1), E_idx)
return neighbor_HB
def _rbf(D, num_rbf):
D_min, D_max, D_count = 0., 20., num_rbf
D_mu = torch.linspace(D_min, D_max, D_count).to(D.device)
D_mu = D_mu.view([1,1,1,-1])
D_sigma = (D_max - D_min) / D_count
D_expand = torch.unsqueeze(D, -1)
RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2)
return RBF
def _get_rbf(A, B, E_idx=None, num_rbf=16):
if E_idx is not None:
D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L]
D_A_B_neighbors = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K]
RBF_A_B = _rbf(D_A_B_neighbors, num_rbf)
else:
D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,:,None,:])**2,-1) + 1e-6) #[B, L, L]
RBF_A_B = _rbf(D_A_B, num_rbf)
return RBF_A_B
def _get_dist(A, B, E_idx=None, num_rbf=None):
if E_idx is not None:
D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,None,:,:])**2,-1) + 1e-6) #[B, L, L]
D_A_B = gather_edges(D_A_B[:,:,:,None], E_idx)[:,:,:,0] #[B,L,K]
else:
D_A_B = torch.sqrt(torch.sum((A[:,:,None,:] - B[:,:,None,:])**2,-1) + 1e-6) #[B, L, L]
return D_A_B
def _orientations_coarse_gl(X, E_idx, eps=1e-6):
X = X[:,:,:3,:].reshape(X.shape[0], 3*X.shape[1], 3)
dX = X[:,1:,:] - X[:,:-1,:] # CA-N, C-CA, N-C, CA-N...
U = _normalize(dX, dim=-1)
u_0, u_1 = U[:,:-2,:], U[:,1:-1,:]
n_0 = _normalize(torch.cross(u_0, u_1), dim=-1)
b_1 = _normalize(u_0 - u_1, dim=-1)
n_0 = n_0[:,::3,:]
b_1 = b_1[:,::3,:]
X = X[:,::3,:]
O = torch.stack((b_1, n_0, torch.cross(b_1, n_0)), 2)
O = O.view(list(O.shape[:2]) + [9])
O = F.pad(O, (0,0,0,1), 'constant', 0)
O_neighbors = gather_nodes(O, E_idx)
X_neighbors = gather_nodes(X, E_idx)
O = O.view(list(O.shape[:2]) + [3,3]).unsqueeze(2)
O_neighbors = O_neighbors.view(list(O_neighbors.shape[:3]) + [3,3])
dX = X_neighbors - X.unsqueeze(-2)
dU = torch.matmul(O, dX.unsqueeze(-1)).squeeze(-1)
R = torch.matmul(O.transpose(-1,-2), O_neighbors)
feat = torch.cat((_normalize(dU, dim=-1), _quaternions(R)), dim=-1)
return feat
def _orientations_coarse_gl_tuple(X, E_idx, eps=1e-6):
V = X.clone()
X = X[:,:,:3,:].reshape(X.shape[0], 3*X.shape[1], 3)
dX = X[:,1:,:] - X[:,:-1,:] # CA-N, C-CA, N-C, CA-N...
U = _normalize(dX, dim=-1)
u_0, u_1 = U[:,:-2,:], U[:,1:-1,:]
n_0 = _normalize(torch.cross(u_0, u_1), dim=-1)
b_1 = _normalize(u_0 - u_1, dim=-1)
n_0 = n_0[:,::3,:]
b_1 = b_1[:,::3,:]
X = X[:,::3,:]
Q = torch.stack((b_1, n_0, torch.cross(b_1, n_0)), 2)
Q = Q.view(list(Q.shape[:2]) + [9])
Q = F.pad(Q, (0,0,0,1), 'constant', 0)
Q_neighbors = gather_nodes(Q, E_idx)
X_neighbors = gather_nodes(V[:,:,1,:], E_idx)
N_neighbors = gather_nodes(V[:,:,0,:], E_idx)
C_neighbors = gather_nodes(V[:,:,2,:], E_idx)
O_neighbors = gather_nodes(V[:,:,3,:], E_idx)
Q = Q.view(list(Q.shape[:2]) + [3,3]).unsqueeze(2)
Q_neighbors = Q_neighbors.view(list(Q_neighbors.shape[:3]) + [3,3])
dX = torch.stack([X_neighbors,N_neighbors,C_neighbors,O_neighbors], dim=3) - X[:,:,None,None,:]
dU = torch.matmul(Q[:,:,:,None,:,:], dX[...,None]).squeeze(-1)
B, N, K = dU.shape[:3]
E_direct = _normalize(dU, dim=-1)
E_direct = E_direct.reshape(B, N, K,-1)
R = torch.matmul(Q.transpose(-1,-2), Q_neighbors)
q = _quaternions(R)
dX_inner = V[:,:,[0,2,3],:] - X.unsqueeze(-2)
dU_inner = torch.matmul(Q, dX_inner.unsqueeze(-1)).squeeze(-1)
dU_inner = _normalize(dU_inner, dim=-1)
V_direct = dU_inner.reshape(B,N,-1)
return V_direct, E_direct, q
def gather_edges(edges, neighbor_idx):
neighbors = neighbor_idx.unsqueeze(-1).expand(-1, -1, -1, edges.size(-1))
return torch.gather(edges, 2, neighbors)
def gather_nodes(nodes, neighbor_idx):
neighbors_flat = neighbor_idx.view((neighbor_idx.shape[0], -1)) # [4, 317, 30]-->[4, 9510]
neighbors_flat = neighbors_flat.unsqueeze(-1).expand(-1, -1, nodes.size(2)) # [4, 9510, dim]
neighbor_features = torch.gather(nodes, 1, neighbors_flat) # [4, 9510, dim]
return neighbor_features.view(list(neighbor_idx.shape)[:3] + [-1]) # [4, 317, 30, 128]
def _quaternions(R):
diag = torch.diagonal(R, dim1=-2, dim2=-1)
Rxx, Ryy, Rzz = diag.unbind(-1)
# magnitudes = 0.5 * torch.sqrt(torch.abs(1 + torch.stack([
# Rxx - Ryy - Rzz,
# - Rxx + Ryy - Rzz,
# - Rxx - Ryy + Rzz
# ], -1)))
magnitudes = torch.abs(1 + torch.stack([
Rxx - Ryy - Rzz,
-Rxx + Ryy - Rzz,
- Rxx - Ryy + Rzz
],-1))
magnitudes[magnitudes == 0.0] = 1e-12
magnitudes = 0.5 * torch.sqrt(magnitudes)
_R = lambda i,j: R[:,:,:,i,j]
signs = torch.sign(torch.stack([
_R(2,1) - _R(1,2),
_R(0,2) - _R(2,0),
_R(1,0) - _R(0,1)
], -1))
xyz = signs * magnitudes
w = torch.sqrt(F.relu(1 + diag.sum(-1, keepdim=True))) / 2.
Q = torch.cat((xyz, w), -1)
return _normalize(Q, dim=-1)
def cuda(obj, *args, **kwargs):
"""
Transfer any nested container of tensors to CUDA.
"""
if hasattr(obj, "cuda"):
return obj.cuda(*args, **kwargs)
elif isinstance(obj, Mapping):
return type(obj)({k: cuda(v, *args, **kwargs) for k, v in obj.items()})
elif isinstance(obj, Sequence):
return type(obj)(cuda(x, *args, **kwargs) for x in obj)
elif isinstance(obj, np.ndarray):
return torch.tensor(obj, *args, **kwargs)
raise TypeError("Can't transfer object type `%s`" % type(obj))
|