Spaces:
Running
Running
File size: 206,689 Bytes
cdc7a28 143dd5d cdc7a28 143dd5d cdc7a28 51e8b32 cdc7a28 51e8b32 143dd5d 51e8b32 cdc7a28 b1c583b 51e8b32 b1c583b 51e8b32 b1c583b cdc7a28 51e8b32 cdc7a28 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 143dd5d cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 143dd5d cdc7a28 51e8b32 cdc7a28 374746e cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 143dd5d cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 143dd5d cdc7a28 51e8b32 cdc7a28 51e8b32 143dd5d cdc7a28 51e8b32 143dd5d 51e8b32 cdc7a28 51e8b32 cdc7a28 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e cdc7a28 51e8b32 cdc7a28 143dd5d cdc7a28 143dd5d cdc7a28 143dd5d cdc7a28 143dd5d cdc7a28 143dd5d cdc7a28 51e8b32 cdc7a28 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e 51e8b32 374746e cdc7a28 374746e cdc7a28 143dd5d cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 374746e 51e8b32 374746e 51e8b32 374746e cdc7a28 143dd5d cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 374746e 51e8b32 374746e cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 374746e 51e8b32 374746e cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 374746e 51e8b32 374746e cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 51e8b32 cdc7a28 143dd5d 51e8b32 cdc7a28 143dd5d cdc7a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 🧬 Fine-Tuning a Post-trained Model on Functional BigWig Tracks Prediction (reproduce paper results)\n",
"\n",
"This notebook is designed to enable the reproduction of the fine-tuning results on functional genomics tracks in the paper. In contrast to the simplified fine tuning setup in [02_fine_tuning_pretrained_model_biwig.ipynb](https://huggingface.co/spaces/InstaDeepAI/ntv3/blob/main/notebooks_tutorials/02_fine_tuning_pretrained_model_biwig.ipynb), this more complex setup is designed to mirror the internal JAX pipeline used to run the evaluations in PyTorch and using our HuggingFace models.\n",
"As in the benchmark, the notebook finetunes the post-trained Nucleotide Transformer v3 (`NTv3_650M_post`) model to predict BigWig signal tracks directly from DNA sequences. The streamlined approach leverages a post-trained NTv3 backbone as a feature extractor. A new prediction head is added to the model, which outputs single-nucleotide resolution signal values for each of the functional bigwig tracks in the NTv3 benchmark for the selected species. The notebook uses the 34 tracks for the `human` species by default, but the user can change the config to use any species from the benchmark.\n",
"\n",
"**🦚 Features:**\n",
"In addition to the simplifed version, the following features are added:\n",
"- Learning rate scheduling\n",
"- Use fixed dataset regions for training\n",
"- Implement gradient accumulation for large batch sizes\n",
"- Use the best model (selected via validation Pearson) for evaluation \n",
"- Save the latest and best models for future use\n",
"\n",
"**🔦 JAX vs PyTorch:**\n",
"The values achieved by this pipeline are close (within 0.01 mean Pearson for human) to those reported in the paper. They differ slightly due to using here a PyTorch pipeline to make it easier for users, as opposed to the JAX pipeline used for the results in the paper. For most accurate performance, it is recommended to use 3x seeds and average the results, as shown in the paper.\n",
"\n",
"**🚆 Training:**\n",
"To run this training, you will need a large GPU (either A100 or H100). It takes around 28 hours on an H100 with the default settings. It might be possible to improve the tuning of the number of workers to improve efficiency. Our JAX pipeline is able to complete the training in around 12 hours.\n",
"\n",
"📝 Note for Google Colab users: This notebook is compatible with Colab! This notebook is designed to be run on a high-performance GPU. The default parameters can be used with a H100 with 80GB of HBM.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 0. 📦 Imports dependencies"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7def2b35ebeb45bc97960837f8a7041c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Login to HuggingFace (required for gated models)\n",
"from huggingface_hub import login\n",
"login()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: pyfaidx in ./.venv/lib/python3.11/site-packages (0.9.0.3)\n",
"Requirement already satisfied: pyBigWig in ./.venv/lib/python3.11/site-packages (0.3.24)\n",
"Requirement already satisfied: torchmetrics in ./.venv/lib/python3.11/site-packages (1.8.2)\n",
"Requirement already satisfied: transformers in ./.venv/lib/python3.11/site-packages (4.57.1)\n",
"Requirement already satisfied: packaging in ./.venv/lib/python3.11/site-packages (from pyfaidx) (25.0)\n",
"Requirement already satisfied: numpy>1.20.0 in ./.venv/lib/python3.11/site-packages (from torchmetrics) (2.1.3)\n",
"Requirement already satisfied: torch>=2.0.0 in ./.venv/lib/python3.11/site-packages (from torchmetrics) (2.5.1+cu121)\n",
"Requirement already satisfied: lightning-utilities>=0.8.0 in ./.venv/lib/python3.11/site-packages (from torchmetrics) (0.15.2)\n",
"Requirement already satisfied: filelock in ./.venv/lib/python3.11/site-packages (from transformers) (3.17.0)\n",
"Requirement already satisfied: huggingface-hub<1.0,>=0.34.0 in ./.venv/lib/python3.11/site-packages (from transformers) (0.36.0)\n",
"Requirement already satisfied: pyyaml>=5.1 in ./.venv/lib/python3.11/site-packages (from transformers) (6.0.2)\n",
"Requirement already satisfied: regex!=2019.12.17 in ./.venv/lib/python3.11/site-packages (from transformers) (2024.11.6)\n",
"Requirement already satisfied: requests in ./.venv/lib/python3.11/site-packages (from transformers) (2.32.3)\n",
"Requirement already satisfied: tokenizers<=0.23.0,>=0.22.0 in ./.venv/lib/python3.11/site-packages (from transformers) (0.22.2)\n",
"Requirement already satisfied: safetensors>=0.4.3 in ./.venv/lib/python3.11/site-packages (from transformers) (0.7.0)\n",
"Requirement already satisfied: tqdm>=4.27 in ./.venv/lib/python3.11/site-packages (from transformers) (4.67.1)\n",
"Requirement already satisfied: fsspec>=2023.5.0 in ./.venv/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (2025.3.0)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in ./.venv/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (4.12.2)\n",
"Requirement already satisfied: hf-xet<2.0.0,>=1.1.3 in ./.venv/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (1.2.0)\n",
"Requirement already satisfied: setuptools in ./.venv/lib/python3.11/site-packages (from lightning-utilities>=0.8.0->torchmetrics) (80.9.0)\n",
"Requirement already satisfied: networkx in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (3.6.1)\n",
"Requirement already satisfied: jinja2 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (3.1.6)\n",
"Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (12.1.105)\n",
"Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (12.1.105)\n",
"Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (12.1.105)\n",
"Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (9.1.0.70)\n",
"Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (12.1.3.1)\n",
"Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (11.0.2.54)\n",
"Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (10.3.2.106)\n",
"Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (11.4.5.107)\n",
"Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (12.1.0.106)\n",
"Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (2.21.5)\n",
"Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (12.1.105)\n",
"Requirement already satisfied: triton==3.1.0 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (3.1.0)\n",
"Requirement already satisfied: sympy==1.13.1 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (1.13.1)\n",
"Requirement already satisfied: nvidia-nvjitlink-cu12 in ./.venv/lib/python3.11/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=2.0.0->torchmetrics) (12.8.93)\n",
"Requirement already satisfied: mpmath<1.4,>=1.1.0 in ./.venv/lib/python3.11/site-packages (from sympy==1.13.1->torch>=2.0.0->torchmetrics) (1.3.0)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in ./.venv/lib/python3.11/site-packages (from jinja2->torch>=2.0.0->torchmetrics) (3.0.2)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in ./.venv/lib/python3.11/site-packages (from requests->transformers) (3.4.1)\n",
"Requirement already satisfied: idna<4,>=2.5 in ./.venv/lib/python3.11/site-packages (from requests->transformers) (3.10)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in ./.venv/lib/python3.11/site-packages (from requests->transformers) (2.3.0)\n",
"Requirement already satisfied: certifi>=2017.4.17 in ./.venv/lib/python3.11/site-packages (from requests->transformers) (2025.1.31)\n"
]
}
],
"source": [
"# Install dependencies\n",
"!pip install pyfaidx pyBigWig torchmetrics transformers"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import bisect\n",
"import functools\n",
"from typing import List, Dict, Callable, Any, cast\n",
"import os\n",
"import fnmatch\n",
"from pathlib import Path\n",
"from huggingface_hub import HfApi, snapshot_download\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"from torch.utils.data import Dataset, DataLoader\n",
"from torch.optim import AdamW\n",
"from torch.optim.lr_scheduler import LambdaLR\n",
"from transformers import AutoConfig, AutoModel, AutoTokenizer\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pyBigWig\n",
"from pyfaidx import Fasta\n",
"from torchmetrics import PearsonCorrCoef\n",
"from tqdm import tqdm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1. ⚙️ Configuration\n",
"\n",
"## Configuration Parameters\n",
"\n",
"### Model\n",
"- **`model_name`**: HuggingFace model name/identifier for the pretrained backbone model\n",
"- **`best_model_checkpoint_path`**: Path to use when saving the best model checkpoint\n",
"\n",
"### Data\n",
"- **`hf_repo_id`**: HuggingFace dataset repository ID containing the benchmark data\n",
"- **`species`**: Species name (e.g., \"human\", \"tomato\") to select bigwig data from the benchmark dataset\n",
"- **`data_cache_dir`**: Directory where downloaded data files (FASTA, bigWig) will be stored\n",
"- **`sequence_length`**: Length of input sequences in base pairs (bp)\n",
"- **`keep_target_center_fraction`**: Fraction of center sequence to keep for target prediction (crops edges to focus on center)\n",
"- **`train_overlap`**: Fraction of sequence that overlaps between unique training samples\n",
"\n",
"### Training\n",
"- **`mini_batch_size`**: Number of samples per mini batch on the device\n",
"- **`num_accumulation_gradient`**: Number of gradient accumulation steps\n",
"- **`num_steps_training`**: Total number of training steps (each step has an effective batch size of `mini_batch_size * num_accumulation_gradient`)\n",
"- **`initial_learning_rate`**: Initial learning rate for optimizer\n",
"- **`num_steps_warmup`**: Number of warmup steps (3% of `num_steps_training`)\n",
"- **`end_learning_rate`**: Peak learning rate after warmup\n",
"- **`weight_decay`**: L2 regularization coefficient for optimizer\n",
"- **`log_every_n_steps`**: Log training metrics every N steps\n",
"\n",
"### Validation\n",
"- **`validate_every_n_steps`**: Run validation every N steps\n",
"- **`num_validation_samples`**: Number of samples to use for each validation \n",
"\n",
"### General\n",
"- **`seed`**: Random seed for reproducibility\n",
"- **`device`**: Device to run training on (\"cuda\" or \"cpu\")\n",
"- **`num_workers`**: Number of worker processes for DataLoader (0 = single-threaded)\n",
"\n",
"NOTE: the default parameters will finetune the model on the human dataset, to finetune on the tomato dataset, set the 'species_name' to 'tomato' in the config. You can also update the config parameters regarding the number of training and warmup tokens based on the species genome size, as done in our benchmark (see paper details), although this is not neccessery to achieve top performance results."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using device: cuda\n"
]
}
],
"source": [
"config = {\n",
" # Model\n",
" \"model_name\": \"InstaDeepAI/NTv3_650M_post\",\n",
" \"best_model_checkpoint_path\": \"best_model_checkpoint.pth\",\n",
" \n",
" # Data\n",
" \"hf_repo_id\": \"InstaDeepAI/NTv3_benchmark_dataset\",\n",
" \"species_name\": \"human\", # Select the species to train on, i.e. \"tomato\"\n",
" \"data_cache_dir\": \"./data\",\n",
" \"sequence_length\": 32_768,\n",
" \"keep_target_center_fraction\": 0.375,\n",
" \"train_overlap\": 0.999,\n",
" \n",
" # Training\n",
" \"mini_batch_size\": 4,\n",
" \"num_accumulation_gradient\": 8, # For an effective batch size of 32\n",
" \"num_steps_training\": 19932, # Calculated to provide ~20.9B tokens\n",
" \"weight_decay\": 0.01,\n",
" \"initial_learning_rate\": 1e-5,\n",
" \"num_steps_warmup\": 598, # Calculated as 3% of 19932 steps\n",
" \"end_learning_rate\": 5e-5, \n",
" \"log_every_n_steps\": 50,\n",
" \n",
" # Validation\n",
" \"validate_every_n_steps\": 500, \n",
" \"num_validation_samples\": 1000,\n",
"\n",
" # General\n",
" \"seed\": 0,\n",
" \"device\": \"cuda\" if torch.cuda.is_available() else \"cpu\",\n",
" \"num_workers\": 16,\n",
"}\n",
"\n",
"# Set random seed\n",
"torch.manual_seed(config[\"seed\"])\n",
"np.random.seed(config[\"seed\"])\n",
"\n",
"# Set device\n",
"device = torch.device(config[\"device\"])\n",
"print(f\"Using device: {device}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 2. 📥 Genome & Tracks Data Download\n",
"\n",
"Download the reference genome FASTA file and BigWig signal tracks from public repositories. These files contain the genomic sequences and experimental signal data (e.g., ChIP-seq, ATAC-seq) that we'll use for training."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def prepare_genomics_inputs(\n",
" species: str,\n",
" data_cache_dir: str | Path = \"data\",\n",
" hf_repo_id: str = \"InstaDeepAI/NTv3_benchmark_dataset\",\n",
") -> tuple[str, list[str], list[str], pd.DataFrame, pd.DataFrame]:\n",
" \"\"\"\n",
" Downloads:\n",
" 1) FASTA from HF dataset under: <species>/genome.fasta\n",
" 2) BigWigs from HF dataset under: <species>/functional_tracks/**\n",
" (filtered by bigwig_file_ids if provided)\n",
" 3) Splits from HF dataset under: <species>/splits.bed\n",
" 4) Metadata from HF dataset under: benchmark_metadata.tsv\n",
" \n",
" Args:\n",
" species: Species name (e.g., \"human\", \"arabidopsis\")\n",
" data_cache_dir: Directory where downloaded data files will be stored\n",
" hf_repo_id: HuggingFace dataset repository ID\n",
" \n",
" Returns:\n",
" (fasta_path, bigwig_path_list, bigwig_file_ids)\n",
" \"\"\"\n",
" cache = Path(data_cache_dir).expanduser().resolve()\n",
" cache.mkdir(parents=True, exist_ok=True)\n",
" \n",
" # --- Download metadata + <species> files (FASTA, BigWigs, Splits) ---\n",
" metadata_file = \"benchmark_metadata.tsv\"\n",
" download_patterns = [metadata_file, f\"{species}/genome.fasta\", f\"{species}/splits.bed\"]\n",
" \n",
" # Download all BigWig files\n",
" download_patterns.append(f\"{species}/functional_tracks/*.bigwig\")\n",
" local_dir = Path(\n",
" snapshot_download(\n",
" repo_id=hf_repo_id,\n",
" repo_type=\"dataset\",\n",
" allow_patterns=download_patterns,\n",
" local_dir=str(cache),\n",
" )\n",
" )\n",
" \n",
" # --- Organize outputs ---\n",
" # FASTA file\n",
" fasta_path_repo = f\"{species}/genome.fasta\"\n",
" fasta_path = str(local_dir / fasta_path_repo)\n",
" \n",
" # BigWig files - use downloaded files directly\n",
" bigwig_dir = local_dir / species / \"functional_tracks\"\n",
" \n",
" # Find all downloaded BigWig files\n",
" bigwig_paths = [str(bigwig_file) for bigwig_file in bigwig_dir.glob(\"*.bigwig\")]\n",
" bigwig_ids = [bigwig_file.stem for bigwig_file in bigwig_dir.glob(\"*.bigwig\")] \n",
"\n",
" # Data splits file\n",
" splits_path_repo = f\"{species}/splits.bed\"\n",
" splits_path = local_dir / splits_path_repo\n",
"\n",
" splits_df = pd.read_csv(\n",
" splits_path, \n",
" sep=\"\\t\", \n",
" header=None, \n",
" names=[\"chr_name\", \"start\", \"end\", \"split\"],\n",
" dtype={\"chr_name\": str, \"start\": int, \"end\": int, \"split\": str},\n",
" )\n",
" \n",
" # Metadata file\n",
" metadata_path = local_dir / metadata_file\n",
" metadata_df = pd.read_csv(metadata_path, sep=\"\\t\")\n",
"\n",
" # Filter and order metadata \n",
" metadata_df = metadata_df[metadata_df[\"species_common_name\"] == species].reset_index(drop=True)\n",
" metadata_df = metadata_df.set_index(\"file_id\").loc[bigwig_ids].reset_index()\n",
"\n",
" return fasta_path, bigwig_paths, bigwig_ids, splits_df, metadata_df"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "93c67d6f058848d5b6e162815ccb4103",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Fetching 37 files: 0%| | 0/37 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "200a2fc6d4eb466f96f8dcb944a4d763",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR154HRN_M.bi(…): 0%| | 0.00/40.6M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "23d1768bbfa74a518fc72a0f499435fd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR114HGS_M.bi(…): 0%| | 0.00/69.3M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "999de466b6024924a39529ab7bd3f497",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR114HGS_P.bi(…): 0%| | 0.00/71.0M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1568766d8d3d4ff0b0e5b7d71d95027e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR100LIJ_M.bi(…): 0%| | 0.00/24.7M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5e9fd3c3c6c945d682d16630d2374933",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR100LIJ_P.bi(…): 0%| | 0.00/25.0M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c8e5c95bdcd4003a42e7b20d678225b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"benchmark_metadata.tsv: 0%| | 0.00/8.13k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "df48467d26364692b5af2ea86dea7074",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR046BCI_P.bi(…): 0%| | 0.00/15.8M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "06005a286e74472d9849492433661cd8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR046BCI_M.bi(…): 0%| | 0.00/20.5M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "988108a917be4334aaf3bbb6264f6787",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR154HRN_P.bi(…): 0%| | 0.00/44.0M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2bf57c3e172f4f258f44bc85348ed8c2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR249ROI_P.bi(…): 0%| | 0.00/105M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "956e58ee95574b13b590aabed03df184",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR321PWZ_M.bi(…): 0%| | 0.00/35.1M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7ba75c6e4f1942d095d3a06d4ab93217",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR249ROI_M.bi(…): 0%| | 0.00/99.6M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "42186c38069f4fad8db5e49edd0a6c82",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR321PWZ_P.bi(…): 0%| | 0.00/36.3M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "11191c8be14746958297afd0cc40b01b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR325NFE.bigw(…): 0%| | 0.00/5.67G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aa0ff097b9224139b9f0646f0841713f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR410DWV.bigw(…): 0%| | 0.00/2.46G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "16cf581baffb4c4da22d30fcfe99b351",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR484LTQ_M.bi(…): 0%| | 0.00/14.7M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3dd0b36540fd4dcf90f96b8e02b7ea60",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR484LTQ_P.bi(…): 0%| | 0.00/15.4M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "da238836293c45eea4bf0452c6a1cca4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR487QSB.bigw(…): 0%| | 0.00/1.84G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b9ee45a817864de5b588cc2831e664f2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR527JGN_P.bi(…): 0%| | 0.00/315M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c21c57384e24959aacd145f4a38e35f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR527JGN_M.bi(…): 0%| | 0.00/305M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b178c13594b249b09a9178707387e6e3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR619DQO_M.bi(…): 0%| | 0.00/127M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "72046d9b96e349cd98c0995a61de09fb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR619DQO_P.bi(…): 0%| | 0.00/134M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fb59c7d7a93e421997b5295695713fd3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR628PLS.bigw(…): 0%| | 0.00/902M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ea458fdcbe44a9f806abd3cf5c5c1cf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR682BFG.bigw(…): 0%| | 0.00/2.45G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1ffb7d79905b44f0912edeafb3b7d969",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR701YIC.bigw(…): 0%| | 0.00/977M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c69beb304e504092b18e12e5d677dc10",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR754DRC.bigw(…): 0%| | 0.00/2.64G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6715216ddce4472aa6c0a9931141d108",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR799DGV_M.bi(…): 0%| | 0.00/25.4M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1e1fae32c0b84a99a6d7aad4de37f754",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR799DGV_P.bi(…): 0%| | 0.00/27.8M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6a768a3db4474a249c06c3f1f5f75fb4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR814RGG.bigw(…): 0%| | 0.00/2.63G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "847996a7dcec47319d6c9a922b13e482",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR862QCH_M.bi(…): 0%| | 0.00/18.3M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "21bff9ef0c6c42698541055a97111e46",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR862QCH_P.bi(…): 0%| | 0.00/19.2M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5f91a29afb0d4923be524e1164268b8e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR863PSM.bigw(…): 0%| | 0.00/2.45G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f3eeaa7550e442729b4a8ceae3daf805",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR935RNW_P.bi(…): 0%| | 0.00/28.2M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8def4036e7f94c679b89d48eefb6959e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR935RNW_M.bi(…): 0%| | 0.00/27.8M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7de9534f23aa49edb6300ecc503acdc6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/functional_tracks/ENCSR962OTG.bigw(…): 0%| | 0.00/2.22G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cf7432b9d0db4a9a84f56ac2b4a4736d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"human/genome.fasta: 0%| | 0.00/3.27G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8b72ee66a3964ad5894f4e3d732bab6a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"splits.bed: 0%| | 0.00/9.95k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"os.makedirs(config[\"data_cache_dir\"], exist_ok=True)\n",
"\n",
"# Download all species files + load the splits, and metadata\n",
"(\n",
" fasta_path, \n",
" bigwig_paths, \n",
" bigwig_ids, \n",
" species_splits_df,\n",
" metadata_df \n",
") = prepare_genomics_inputs(\n",
" config[\"species_name\"], \n",
" config[\"data_cache_dir\"], \n",
" config[\"hf_repo_id\"]\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 3. 🧠 Model and tokenizer setup\n",
" \n",
"In this section, we set up the model and tokenizer. \n",
" \n",
"Our approach uses any suitable pretrained backbone from HuggingFace Transformers (for example, `InstaDeepAI/ntv3_650M_pre`),\n",
"which is then extended with an additional linear head. \n",
" \n",
"This linear head is trained for regression on a set of genomic tracks, \n",
"allowing the model to make predictions for each track at single nucleotide resolution.\n",
" \n",
"The following code wraps the HuggingFace model together with this regression head for the end-to-end task.\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def crop_center(x: np.ndarray, keep_target_center_fraction: float = 0.375) -> np.ndarray:\n",
" \"\"\"Crop the central sequence-length fraction for arrays of size (..., seq_len, num_tracks)\"\"\"\n",
" seq_len = x.shape[-2]\n",
" target_offset = int(seq_len * (1 - keep_target_center_fraction) // 2)\n",
" target_length = seq_len - 2 * target_offset\n",
" return x[..., target_offset:target_offset + target_length, :]\n",
"\n",
"\n",
"class LinearHead(nn.Module):\n",
" \"\"\"A linear head that predicts one scalar value per track.\"\"\"\n",
" def __init__(self, embed_dim: int, num_labels: int):\n",
" super().__init__()\n",
" self.layer_norm = nn.LayerNorm(embed_dim)\n",
" self.head = nn.Linear(embed_dim, num_labels)\n",
" \n",
" def forward(self, x: torch.Tensor) -> torch.Tensor:\n",
" x = self.layer_norm(x)\n",
" x = self.head(x)\n",
" x = F.softplus(x) # Ensure positive values\n",
" return x\n",
"\n",
"\n",
"class HFModelWithHead(nn.Module):\n",
" \"\"\"Simple model wrapper: HF backbone + bigwig head.\"\"\"\n",
" \n",
" def __init__(\n",
" self,\n",
" model_name: str,\n",
" bigwig_track_names: List[str],\n",
" species_str: str,\n",
" keep_target_center_fraction: float = 0.375,\n",
" ):\n",
" super().__init__()\n",
" \n",
" # Load base model config and model\n",
" self.config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)\n",
" ntv3_base_model = AutoModel.from_pretrained(\n",
" model_name, \n",
" trust_remote_code=True,\n",
" config=self.config,\n",
" )\n",
"\n",
" # Extract the discrete conditioned model (i.e. remove the heads) for finetuning\n",
" discrete_conditioned_model = type(ntv3_base_model.core).__bases__[0]\n",
" self.core = discrete_conditioned_model(self.config) # follows name covention\n",
" # Load pre-trained weights (strict=False because we don't load the heads)\n",
" self.load_state_dict(ntv3_base_model.state_dict(), strict=False) \n",
"\n",
" self.supported_species = self.config.bigwigs_per_species.keys()\n",
" if species_str in self.config.species_to_token_id:\n",
" species_ids = self.config.species_to_token_id[species_str]\n",
" self.species_ids = torch.LongTensor([species_ids])\n",
" print(f\"Using species: {species_str} with ids: {self.species_ids}\")\n",
" else:\n",
" # Mask token id\n",
" print(f\"{species_str} not in supported species, using mask token id\")\n",
" self.species_ids = torch.LongTensor([2])\n",
"\n",
" self.keep_target_center_fraction = keep_target_center_fraction\n",
"\n",
" # Bigwig head (NTv3 outputs at single-nucleotide resolution)\n",
" self.bigwig_head = LinearHead(self.config.embed_dim, len(bigwig_track_names))\n",
" self.model_name = model_name\n",
" \n",
" def forward(self, tokens: torch.Tensor, **kwargs) -> Dict[str, torch.Tensor]:\n",
" # Prepare the species tokens\n",
" species_tokens = torch.repeat_interleave(self.species_ids, tokens.shape[0])\n",
" species_tokens = species_tokens.to(tokens.device)\n",
"\n",
" # Forward through core\n",
" outputs = self.core(tokens, [species_tokens], output_hidden_states=True)\n",
" embedding = outputs[\"hidden_states\"][-1]\n",
" \n",
" # Crop to center fraction\n",
" if self.keep_target_center_fraction < 1.0:\n",
" embedding = crop_center(embedding, self.keep_target_center_fraction)\n",
" \n",
" # Predict bigwig tracks\n",
" bigwig_logits = self.bigwig_head(embedding)\n",
" \n",
" return {\"bigwig_tracks_logits\": bigwig_logits}"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "67c12374c3aa46d5aa8db543d97febec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"tokenizer_config.json: 0%| | 0.00/1.48k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e1d7a6d0c31349048536dc2d7d280582",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"tokenization_ntv3.py: 0%| | 0.00/7.85k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"A new version of the following files was downloaded from https://huggingface.co/InstaDeepAI/ntv3_base_model:\n",
"- tokenization_ntv3.py\n",
". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bbbfa8b4ccc2444da71d47073d4a2f59",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"vocab.json: 0%| | 0.00/138 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8144c84dd7284c698901f71c6ccba048",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"special_tokens_map.json: 0%| | 0.00/149 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "07ccb6bd00c0466ea5507ad162289820",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"config.json: 0%| | 0.00/339k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "466ef76415874333bc5b023bf56a0c6d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"configuration_ntv3_posttrained.py: 0%| | 0.00/4.70k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "21ccfc9a88534af896e9bcdb0782e227",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"configuration_ntv3_pretrained.py: 0%| | 0.00/8.09k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"A new version of the following files was downloaded from https://huggingface.co/InstaDeepAI/ntv3_base_model:\n",
"- configuration_ntv3_pretrained.py\n",
". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n",
"A new version of the following files was downloaded from https://huggingface.co/InstaDeepAI/ntv3_base_model:\n",
"- configuration_ntv3_posttrained.py\n",
"- configuration_ntv3_pretrained.py\n",
". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "58c498f491e0475c83629fe7fb532f38",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"modeling_ntv3_posttrained.py: 0%| | 0.00/46.8k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2cacd945b23e498d86ff721185e359e3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"modeling_ntv3_pretrained.py: 0%| | 0.00/35.2k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"A new version of the following files was downloaded from https://huggingface.co/InstaDeepAI/ntv3_base_model:\n",
"- modeling_ntv3_pretrained.py\n",
". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n",
"A new version of the following files was downloaded from https://huggingface.co/InstaDeepAI/ntv3_base_model:\n",
"- modeling_ntv3_posttrained.py\n",
"- modeling_ntv3_pretrained.py\n",
". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n",
"2026-01-08 12:28:36.519397: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
"2026-01-08 12:28:36.533091: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
"E0000 00:00:1767871716.546099 928 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
"E0000 00:00:1767871716.549808 928 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
"W0000 00:00:1767871716.560433 928 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
"W0000 00:00:1767871716.560452 928 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
"W0000 00:00:1767871716.560454 928 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
"W0000 00:00:1767871716.560455 928 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
"2026-01-08 12:28:36.564579: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI AVX512_BF16 AVX512_FP16 AVX_VNNI AMX_TILE AMX_INT8 AMX_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ece6e71b525945d7a396eaff123ad335",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model.safetensors: 0%| | 0.00/2.72G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using species: human with ids: tensor([27])\n",
"Model loaded: InstaDeepAI/NTv3_650M_post\n",
"Number of bigwig tracks: 34\n",
"Model parameters: 679,842,582\n"
]
}
],
"source": [
"# Load tokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(config[\"model_name\"], trust_remote_code=True)\n",
"\n",
"# Create model\n",
"model = HFModelWithHead(\n",
" model_name=config[\"model_name\"],\n",
" bigwig_track_names=bigwig_ids,\n",
" species_str=config[\"species_name\"],\n",
" keep_target_center_fraction=config[\"keep_target_center_fraction\"],\n",
")\n",
"model = model.to(device)\n",
"model = torch.compile(model)\n",
"model.train()\n",
"\n",
"print(f\"Model loaded: {config['model_name']}\")\n",
"print(f\"Number of bigwig tracks: {len(bigwig_ids)}\")\n",
"print(f\"Model parameters: {sum(p.numel() for p in model.parameters()):,}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 4. 🔄 Data loading\n",
"\n",
"Create PyTorch datasets and data loaders that efficiently sample random genomic windows from the reference genome and extract corresponding BigWig signal values. The dataset handles sequence tokenization, target scaling, and chromosome-based train/val/test splits."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# Utility function to sample regions for a total length\n",
"def _sample_regions_for_a_total_length(\n",
" regions: list[tuple[str, int, int]],\n",
" total_length_needed: int,\n",
" seed: int = 0,\n",
") -> list[tuple[str, int, int]]:\n",
" \"\"\"\n",
" Sample fixed regions for a total length.\n",
" \"\"\"\n",
" # For each region, sample a window until we have total_length_needed\n",
" sampled_regions = []\n",
" rng = np.random.RandomState(seed)\n",
" accumulated_length = 0\n",
"\n",
" for _, (chr_name, start, end) in enumerate(regions):\n",
" region_length = end - start\n",
" remaining_length_needed = total_length_needed - accumulated_length\n",
"\n",
" if region_length >= remaining_length_needed:\n",
" # Sample a random start position for the window\n",
" max_start = region_length - remaining_length_needed\n",
" if max_start > 0:\n",
" window_start_offset = rng.randint(0, max_start + 1)\n",
" else:\n",
" window_start_offset = 0\n",
"\n",
" window_start = start + window_start_offset\n",
" window_end = start + window_start_offset + remaining_length_needed\n",
"\n",
" sampled_regions.append((chr_name, window_start, window_end))\n",
" accumulated_length += remaining_length_needed\n",
" print(\n",
" f\"Sampled window from {chr_name}:{start}-{end} -> \"\n",
" f\"{chr_name}:{window_start}-{window_end} \"\n",
" )\n",
" break # Stop after getting enough length\n",
" else:\n",
" # Add this smaller region and continue accumulating\n",
" sampled_regions.append((chr_name, start, end))\n",
" accumulated_length += region_length\n",
" print(f\"Added region {chr_name}:{start}-{end}, {accumulated_length=}\")\n",
"\n",
" # Check if we have enough accumulated length\n",
" if accumulated_length >= total_length_needed:\n",
" print(f\"Sufficient length ({accumulated_length} >= {total_length_needed})\")\n",
" break\n",
"\n",
" print(f\"Sampled {len(sampled_regions)=} with total {accumulated_length=}\")\n",
"\n",
" return sampled_regions\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Process-local cache for file handles (one per worker process)\n",
"# This allows safe multi-worker DataLoader usage\n",
"_fasta_cache = {} # Maps (process_id, file_path) -> Fasta handle\n",
"_bigwig_cache = {} # Maps (process_id, file_path) -> pyBigWig handle\n",
"\n",
"\n",
"def _get_fasta_handle(fasta_path: str) -> Fasta:\n",
" \"\"\"Get or create a FASTA file handle for the current process.\"\"\"\n",
" process_id = os.getpid()\n",
" abs_path = str(Path(fasta_path).resolve())\n",
" cache_key = (process_id, abs_path)\n",
" \n",
" if cache_key not in _fasta_cache:\n",
" _fasta_cache[cache_key] = Fasta(abs_path, as_raw=True, sequence_always_upper=True)\n",
" \n",
" return _fasta_cache[cache_key]\n",
"\n",
"\n",
"def _get_bigwig_handle(bigwig_path: str) -> pyBigWig.pyBigWig:\n",
" \"\"\"Get or create a BigWig file handle for the current process.\"\"\"\n",
" process_id = os.getpid()\n",
" abs_path = str(Path(bigwig_path).resolve())\n",
" cache_key = (process_id, abs_path)\n",
" \n",
" if cache_key not in _bigwig_cache:\n",
" # Check if file exists before trying to open\n",
" if not Path(abs_path).exists():\n",
" raise FileNotFoundError(\n",
" f\"BigWig file not found: {abs_path}\\n\"\n",
" f\"Original path: {bigwig_path}\\n\"\n",
" f\"Current working directory: {os.getcwd()}\"\n",
" )\n",
" \n",
" try:\n",
" _bigwig_cache[cache_key] = pyBigWig.open(abs_path)\n",
" except Exception as e:\n",
" raise RuntimeError(\n",
" f\"Failed to open BigWig file: {abs_path} with error: {str(e)}\\n\"\n",
" f\"File exists: {Path(abs_path).exists()}\\n\"\n",
" f\"File size: {Path(abs_path).stat().st_size if Path(abs_path).exists() else 'N/A'} bytes\"\n",
" ) from e\n",
" \n",
" return _bigwig_cache[cache_key]\n",
"\n",
"\n",
"class GenomeBigWigDataset(Dataset):\n",
" \"\"\"\n",
" A PyTorch dataset to access a reference genome and bigwig tracks. The dataset is \n",
" compatible with multi-worker DataLoaders (using process-local file handles and lazy \n",
" loading). For each sample, a random genomic region is picked from the specified split,\n",
" and a random window of length `sequence_length` within that region is returned.\n",
" \"\"\"\n",
"\n",
" def __init__(\n",
" self,\n",
" fasta_path: str,\n",
" bigwig_path_list: list[str],\n",
" chrom_regions: pd.DataFrame,\n",
" split: str,\n",
" sequence_length: int,\n",
" tokenizer: AutoTokenizer,\n",
" transform_fn: Callable[[torch.Tensor], torch.Tensor],\n",
" overlap: float = 0.0,\n",
" keep_target_center_fraction: float = 1.0,\n",
" limit_num_samples: int | None = None,\n",
" ):\n",
" super().__init__()\n",
"\n",
" # Store paths instead of opening files immediately (for multi-worker compatibility)\n",
" self.fasta_path = fasta_path\n",
" self.bigwig_path_list = bigwig_path_list\n",
" self.sequence_length = sequence_length\n",
" self.tokenizer = tokenizer\n",
" self.transform_fn = transform_fn\n",
" self.keep_target_center_fraction = keep_target_center_fraction\n",
" self.chrom_regions = chrom_regions\n",
" self.stride = int((1 - overlap) * sequence_length)\n",
"\n",
" # Filter regions by split\n",
" split_regions = self.chrom_regions[self.chrom_regions[\"split\"] == split].copy()\n",
" region_list = [\n",
" (row.chr_name, row.start, row.end) for _, row in split_regions.iterrows()\n",
" ]\n",
" if limit_num_samples is not None:\n",
" length_required = limit_num_samples * self.sequence_length\n",
" region_list = _sample_regions_for_a_total_length(region_list, length_required)\n",
" \n",
" # Build an index structure for efficient sequence access across genomic regions\n",
" self.chromosome_info, self._cumulative_starts, self.num_samples = (\n",
" self._process_regions(region_list)\n",
" )\n",
"\n",
" def __len__(self):\n",
" return self.num_samples\n",
"\n",
" def __getitem__(self, idx):\n",
" # Select the chromosome for the given index using binary search\n",
" chromosome_idx = bisect.bisect_right(self._cumulative_starts, idx) - 1\n",
"\n",
" # Explicitly cast types from dictionary of chromosome information\n",
" chrom: str = cast(str, self.chromosome_info[chromosome_idx][\"chr_name\"])\n",
" region_start: int = cast(int, self.chromosome_info[chromosome_idx][\"region_start_offset\"])\n",
"\n",
" # Calculate the index of the sample *within* the selected chromosome region\n",
" index_within_region = idx - self._cumulative_starts[chromosome_idx]\n",
"\n",
" # Calculate 0-based start and end for the specific sample in genome coordinates\n",
" start = region_start + index_within_region * self.stride\n",
" end = start + self.sequence_length\n",
"\n",
" # Sequence - get FASTA handle lazily (cached per worker process)\n",
" fasta = _get_fasta_handle(self.fasta_path)\n",
" seq = fasta[chrom][start:end] # string slice\n",
" # Tokenize with padding and truncation to ensure consistent lengths for batching\n",
" tokenized = self.tokenizer(\n",
" seq,\n",
" padding=\"max_length\",\n",
" truncation=True,\n",
" max_length=self.sequence_length,\n",
" return_tensors=\"pt\",\n",
" )\n",
" tokens = tokenized[\"input_ids\"][0] # Shape: (max_length,)\n",
"\n",
" # Signal from bigWig tracks (numpy array) -> torch tensor\n",
" # Get BigWig handles lazily (cached per worker process)\n",
" bigwig_targets = np.array([\n",
" _get_bigwig_handle(bw_path).values(chrom, start, end, numpy=True)\n",
" for bw_path in self.bigwig_path_list\n",
" ]) # shape (num_tracks, seq_len)\n",
" # Transpose to (seq_len, num_tracks)\n",
" bigwig_targets = bigwig_targets.T\n",
" # pyBigWig returns NaN where no data; turn NaN into 0\n",
" bigwig_targets = torch.tensor(bigwig_targets, dtype=torch.float32)\n",
" bigwig_targets = torch.nan_to_num(bigwig_targets, nan=0.0)\n",
" \n",
" # Crop targets to center fraction\n",
" if self.keep_target_center_fraction < 1.0:\n",
" bigwig_targets = crop_center(bigwig_targets, self.keep_target_center_fraction)\n",
"\n",
" # Apply scaling to targets\n",
" bigwig_targets = self.transform_fn(bigwig_targets)\n",
"\n",
" sample = {\n",
" \"tokens\": tokens,\n",
" \"bigwig_targets\": bigwig_targets,\n",
" \"chrom\": chrom,\n",
" \"start\": start,\n",
" \"end\": end,\n",
" }\n",
" return sample\n",
"\n",
" def _process_regions(\n",
" self, actual_regions_list: list[tuple[str, int, int]]\n",
" ) -> tuple[list[dict[str, Any]], list[int], int]:\n",
" \"\"\"\n",
" Build an index structure for efficient sequence access across genomic regions.\n",
"\n",
" This method analyzes each genomic region to determine how many sequences of\n",
" fixed length can be extracted from it, accounting for stride and overlap\n",
" settings. It creates an index that maps global sequence indices to their\n",
" genomic locations.\n",
"\n",
" Args:\n",
" actual_regions_list: List of genomic regions as (chromosome, start, end).\n",
"\n",
" Returns:\n",
" region_info: List of dictionaries containing chromosome, start position,\n",
" and number of sequences for each valid region.\n",
" cumulative_starts: List of cumulative sequence counts for binary search.\n",
" total_sequences: Total number of sequences across all regions.\n",
" \"\"\"\n",
" region_info = []\n",
" cumulative_starts = [] # For bisect\n",
" total_sequences = 0\n",
"\n",
" for chr_name, region_s, region_e in actual_regions_list:\n",
" region_length: int = region_e - region_s\n",
"\n",
" num_sequences: int = 0\n",
" if region_length >= self.sequence_length:\n",
" num_sequences = (\n",
" region_length - self.sequence_length\n",
" ) // self.stride + 1\n",
"\n",
" if num_sequences > 0:\n",
" region_info.append(\n",
" {\n",
" \"chr_name\": chr_name,\n",
" \"region_start_offset\": region_s,\n",
" \"num_samples\": num_sequences,\n",
" \"region_length\": region_length,\n",
" }\n",
" )\n",
" cumulative_starts.append(total_sequences)\n",
" total_sequences += num_sequences\n",
"\n",
" return region_info, cumulative_starts, int(total_sequences)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data preprocessing utilities"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"def create_targets_scaling_fn(\n",
" metadata_df: pd.DataFrame\n",
") -> Callable[[torch.Tensor], torch.Tensor]:\n",
" \"\"\"\n",
" Build a scaling function that uses the track means to normalise and softclip the targets.\n",
" \"\"\"\n",
" # Open bigwig files and compute track statistics\n",
" track_means = metadata_df[\"mean\"].to_numpy()\n",
" print(f\"Track means: {track_means}\")\n",
" print(f\"Number of tracks: {track_means.shape}\")\n",
"\n",
" # Create tensor from computed means\n",
" track_means_tensor = torch.tensor(track_means, dtype=torch.float32)\n",
"\n",
" def transform_fn(x: torch.Tensor) -> torch.Tensor:\n",
" # Move constants to correct device then normalize\n",
" means = track_means_tensor.to(x.device)\n",
" scaled = x / means\n",
"\n",
" # Smooth clipping: if > 10, apply formula\n",
" clipped = torch.where(\n",
" scaled > 10.0,\n",
" 2.0 * torch.sqrt(scaled * 10.0) - 10.0,\n",
" scaled,\n",
" )\n",
" return clipped\n",
"\n",
" return transform_fn"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Track means: [0.00219467 0.00128605 0.65863696 0.01080696 0.00494403 0.00370035\n",
" 0.72501702 0.00227474 0.48636405 0.00211876 0.00530738 0.00877379\n",
" 0.00627039 0.00400846 0.44757743 0.66685837 0.00335876 0.00820212\n",
" 0.0034627 0.72625355 0.00622468 0.00548278 0.00574464 0.63734638\n",
" 0.01177604 0.74402866 0.64354244 0.00343102 0.01549048 0.0463601\n",
" 0.0057952 0.00376132 0.00498001 0.01612531]\n",
"Number of tracks: (34,)\n",
"Added region chr2:52738399-68719540, accumulated_length=15981141\n",
"Added region chr2:94594361-95921948, accumulated_length=17308728\n",
"Added region chr2:95922032-97200446, accumulated_length=18587142\n",
"Added region chr2:97538791-106291501, accumulated_length=27339852\n",
"Added region chr2:110035770-110281551, accumulated_length=27585633\n",
"Added region chr2:110576673-111363357, accumulated_length=28372317\n",
"Added region chr2:111510960-112936893, accumulated_length=29798250\n",
"Sampled window from chr2:114061575-121781652 -> chr2:118561590-121531340 \n",
"Sampled len(sampled_regions)=8 with total accumulated_length=32768000\n",
"\n",
"Train samples: 65051340\n",
"Val samples: 997\n",
"Test samples: 10531\n"
]
}
],
"source": [
"# Pre-build the FASTA index in the main process to avoid race conditions\n",
"# when multiple DataLoader workers try to create it simultaneously\n",
"print(f\"Pre-building FASTA index for {fasta_path}...\")\n",
"fai_path = Path(fasta_path + \".fai\")\n",
"if fai_path.exists():\n",
" # Remove potentially corrupted index from a previous failed run\n",
" print(f\"Removing existing FASTA index: {fai_path}\")\n",
" fai_path.unlink()\n",
"_prebuild_fasta = Fasta(fasta_path, as_raw=True, sequence_always_upper=True)\n",
"del _prebuild_fasta # Close the handle; workers will reopen with existing index\n",
"print(\"FASTA index built successfully.\")\n",
"\n",
"# Create datasets & dataloaders\n",
"create_dataset_fn = functools.partial(\n",
" GenomeBigWigDataset,\n",
" fasta_path=fasta_path,\n",
" bigwig_path_list=bigwig_paths,\n",
" chrom_regions=species_splits_df,\n",
" sequence_length=config[\"sequence_length\"],\n",
" tokenizer=tokenizer,\n",
" transform_fn=create_targets_scaling_fn(metadata_df),\n",
" keep_target_center_fraction=config[\"keep_target_center_fraction\"],\n",
")\n",
"\n",
"train_dataset = create_dataset_fn(\n",
" split=\"train\",\n",
" overlap=config[\"train_overlap\"],\n",
")\n",
"\n",
"val_dataset = create_dataset_fn(\n",
" split=\"val\", limit_num_samples=config[\"num_validation_samples\"]\n",
")\n",
"test_dataset = create_dataset_fn(split=\"test\") # Use all test samples\n",
"\n",
"\n",
"# Create dataloaders\n",
"train_loader = DataLoader(\n",
" train_dataset,\n",
" batch_size=config[\"mini_batch_size\"],\n",
" shuffle=True,\n",
" num_workers=config[\"num_workers\"],\n",
")\n",
"\n",
"val_loader = DataLoader(\n",
" val_dataset,\n",
" batch_size=config[\"mini_batch_size\"],\n",
" shuffle=False,\n",
" num_workers=config[\"num_workers\"],\n",
")\n",
"\n",
"test_loader = DataLoader(\n",
" test_dataset,\n",
" batch_size=config[\"mini_batch_size\"],\n",
" shuffle=False,\n",
" num_workers=config[\"num_workers\"],\n",
")\n",
"\n",
"print(f\"\\nTrain samples: {len(train_dataset)}\")\n",
"print(f\"Val samples: {len(val_dataset)}\")\n",
"print(f\"Test samples: {len(test_dataset)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 5. ⚙️ Optimizer setup\n",
"\n",
"Configure the AdamW optimizer with learning rate and weight decay hyperparameters. This optimizer will update the model parameters during training to minimize the loss function.\n",
"A variable learning rate is used with linear warmup, followed by a polynomial decay."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Training configuration:\n",
" Mini batch size: 4\n",
" Gradient accumulation steps: 8\n",
" Effective batch size: 32\n",
" Total training steps: 19932\n",
" Log metrics every: 50 steps\n",
" Validate every: 500 steps\n",
"\n",
"Optimiser & learning rate scheduler:\n",
" Optimizer base LR (peak): 5e-05\n",
" Initial LR: 1e-05\n",
" Peak LR: 5e-05\n",
" Warmup steps: 598\n",
" Alpha polynomial decay: 0.1977\n",
" Final LR multiplier: 0.5\n"
]
}
],
"source": [
"print(f\"Training configuration:\")\n",
"print(f\" Mini batch size: {config['mini_batch_size']}\")\n",
"print(f\" Gradient accumulation steps: {config['num_accumulation_gradient']}\")\n",
"print(f\" Effective batch size: {config['mini_batch_size'] * config['num_accumulation_gradient']}\")\n",
"print(f\" Total training steps: {config['num_steps_training']}\")\n",
"print(f\" Log metrics every: {config['log_every_n_steps']} steps\")\n",
"print(f\" Validate every: {config['validate_every_n_steps']} steps\")\n",
"\n",
"# Setup optimizer (LR is set to peak LR for scheduler)\n",
"optimizer_lr = config[\"end_learning_rate\"]\n",
"\n",
"# Setup optimizer\n",
"optimizer = AdamW(\n",
" model.parameters(),\n",
" lr=optimizer_lr,\n",
" weight_decay=config[\"weight_decay\"],\n",
")\n",
"\n",
"# Setup learning rate scheduler\n",
"final_lr_multiplier = 0.5\n",
"num = np.log(1.0 / final_lr_multiplier)\n",
"denom = np.log(float(config[\"num_steps_training\"]) / float(config[\"num_steps_warmup\"]))\n",
"alpha_polynomial_decay = num / denom\n",
"\n",
"def _modified_square_decay(current_step: int) -> float:\n",
" \"\"\"LR multiplier function matching the pipeline's modified_square_decay.\"\"\"\n",
" if current_step < 0:\n",
" current_step = 0\n",
" if optimizer_lr == 0:\n",
" return 0.0\n",
" \n",
" # Phase 1: Warmup (linear increase from initial LR to peak LR)\n",
" if current_step < config[\"num_steps_warmup\"]:\n",
" start_multiplier = config[\"initial_learning_rate\"] / optimizer_lr\n",
" progress = float(current_step) / float(config[\"num_steps_warmup\"])\n",
" return start_multiplier + (1.0 - start_multiplier) * progress\n",
" \n",
" # Phase 2: Polynomial decay\n",
" denominator = float(current_step + 1)\n",
" decay_multiplier = (float(config[\"num_steps_warmup\"]) / denominator) ** alpha_polynomial_decay\n",
" decay_multiplier = min(decay_multiplier, 1.0)\n",
" \n",
" return decay_multiplier\n",
"\n",
"scheduler = LambdaLR(optimizer, lr_lambda=_modified_square_decay)\n",
"print(f\"\\nOptimiser & learning rate scheduler:\")\n",
"print(f\" Optimizer base LR (peak): {optimizer_lr}\")\n",
"print(f\" Initial LR: {config['initial_learning_rate']}\")\n",
"print(f\" Peak LR: {config['end_learning_rate']}\")\n",
"print(f\" Warmup steps: {config['num_steps_warmup']}\")\n",
"print(f\" Alpha polynomial decay: {alpha_polynomial_decay:.4f}\")\n",
"print(f\" Final LR multiplier: {final_lr_multiplier}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 6. 📊 Metrics setup\n",
"\n",
"Set up evaluation metrics to track model performance during training and validation. We use Pearson correlation coefficients to measure how well the predicted BigWig signals match the ground truth signals."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"class TracksMetrics:\n",
" \"\"\"Metrics to handle multi-track pearson correlations and losses\"\"\"\n",
" \n",
" def __init__(self, track_names: List[str], split: str):\n",
" self.track_names = track_names\n",
" self.num_tracks = len(track_names)\n",
" self.split = split\n",
"\n",
" # Initialise metrics \n",
" self.pearson = PearsonCorrCoef(num_outputs=self.num_tracks).to(device)\n",
" self.pearson.set_dtype(torch.float64) # Use float64 for improved numerical stability\n",
" self.losses = []\n",
"\n",
" # Record mean metrics per logging interval\n",
" self.step_idxs = []\n",
" self.mean_pearsons = []\n",
" self.mean_losses = []\n",
" \n",
" def reset(self):\n",
" self.pearson.reset()\n",
" self.losses = []\n",
" \n",
" def update(\n",
" self, \n",
" predictions: torch.Tensor, \n",
" targets: torch.Tensor,\n",
" loss: float\n",
" ):\n",
" \"\"\"\n",
" Update the metrics with predictions and targets of shape (..., num_tracks) and a scalar loss.\n",
" \"\"\"\n",
" # Flatten batch and sequence dimensions\n",
" pred_flat = predictions.detach().reshape(-1, self.num_tracks).to(torch.float64) # (N, num_tracks)\n",
" target_flat = targets.detach().reshape(-1, self.num_tracks).to(torch.float64) # (N, num_tracks)\n",
" \n",
" # Update metrics\n",
" self.pearson.update(pred_flat, target_flat)\n",
" self.losses.append(loss)\n",
" \n",
" def compute(self) -> Dict[str, float]:\n",
" \"\"\"Compute the pearson correlations and loss and return a dictionary of metrics.\"\"\"\n",
" # Per-track Pearson correlations\n",
" correlations = self.pearson.compute().cpu().numpy()\n",
" metrics_dict = {\n",
" f\"{track_name}/pearson\": correlations[i] for i, track_name in enumerate(self.track_names)\n",
" }\n",
" metrics_dict[\"mean/pearson\"] = correlations.mean()\n",
" \n",
" # Mean loss\n",
" metrics_dict[\"loss\"] = np.mean(self.losses)\n",
" \n",
" return metrics_dict\n",
"\n",
" def update_mean_metrics(self, step_idx: int):\n",
" \"\"\"Update the mean metrics over the logging interval and save to a csv file.\"\"\"\n",
" # Update mean metrics with the mean pearson & average loss\n",
" metrics_dict = self.compute()\n",
" self.step_idxs.append(step_idx)\n",
" self.mean_pearsons.append(metrics_dict[\"mean/pearson\"])\n",
" self.mean_losses.append(metrics_dict[\"loss\"])\n",
"\n",
" # Save metrics to a csv for plotting\n",
" data = {\n",
" \"step\": self.step_idxs,\n",
" \"mean_loss\": self.mean_losses,\n",
" \"mean_pearson\": self.mean_pearsons,\n",
" }\n",
" df = pd.DataFrame(data)\n",
" df.to_csv(f\"metrics_{self.split}.csv\", index=False)\n",
"\n",
" return self.mean_pearsons[-1]\n",
" \n",
" def print_metrics(self, print_per_track: bool = False, current_lr: float | None = None):\n",
" \"\"\"Print a summary of the metrics.\"\"\"\n",
" lr_str = f\"LR: {current_lr:.2e} | \" if current_lr is not None else \"\"\n",
" print(\n",
" f\"Step {self.step_idxs[-1]}/{config['num_steps_training']} | \"\n",
" f\"{lr_str}\"\n",
" f\"Loss: {self.mean_losses[-1]:.4f} | \"\n",
" f\"Mean Pearson: {self.mean_pearsons[-1]:.4f}\"\n",
" )\n",
" metrics_dict = self.compute()\n",
" if print_per_track:\n",
" for metric_key, metric_value in metrics_dict.items():\n",
" print(f\" {metric_key}: {metric_value:.4f}\")\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"train_metrics = TracksMetrics(bigwig_ids, \"train\")\n",
"val_metrics = TracksMetrics(bigwig_ids, \"val\")\n",
"test_metrics = TracksMetrics(bigwig_ids, \"test\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 7. 📉 Loss functions\n",
"\n",
"Define the Poisson-Multinomial loss function that captures both the scale (total signal) and shape (distribution) of BigWig tracks. This loss is specifically designed for count-based genomic signal data."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"def poisson_loss(ytrue: torch.Tensor, ypred: torch.Tensor, epsilon: float = 1e-7) -> torch.Tensor:\n",
" \"\"\"Poisson loss per element: ypred - ytrue * log(ypred).\"\"\"\n",
" return ypred - ytrue * torch.log(ypred + epsilon)\n",
"\n",
"\n",
"def safe_for_grad_log_torch(x: torch.Tensor) -> torch.Tensor:\n",
" \"\"\"Guarantees that the log is defined for all x > 0 in a differentiable way.\"\"\"\n",
" return torch.log(torch.where(x > 0.0, x, torch.ones_like(x)))\n",
"\n",
"\n",
"def poisson_multinomial_loss(\n",
" logits: torch.Tensor,\n",
" targets: torch.Tensor,\n",
" shape_loss_coefficient: float = 5.0,\n",
" epsilon: float = 1e-7,\n",
") -> torch.Tensor: \n",
" \"\"\"\n",
" Regression loss for bigwig tracks (Poisson-Multinomial). The logits and targets are\n",
" expected to be of shape (batch, seq_length, num_tracks).\n",
" \"\"\"\n",
" batch_size, seq_length, num_tracks = logits.shape\n",
" \n",
" # Scale loss: Poisson loss on total counts per sequence per track\n",
" # Sum over sequence dimension (axis=1)\n",
" sum_pred = logits.sum(dim=1) # (batch, num_tracks)\n",
" sum_true = targets.sum(dim=1) # (batch, num_tracks)\n",
" \n",
" # Compute poisson loss per (batch, track)\n",
" scale_loss = poisson_loss(sum_true, sum_pred, epsilon=epsilon) # (batch, num_tracks)\n",
" \n",
" # Normalize by sequence length\n",
" scale_loss = scale_loss / (seq_length + epsilon)\n",
" \n",
" # Average over batch and tracks\n",
" scale_loss = scale_loss.mean()\n",
" \n",
" # Shape loss: Multinomial loss\n",
" # Add epsilon to all positions\n",
" predicted_counts = logits + epsilon\n",
" targets_with_epsilon = targets + epsilon\n",
" \n",
" # Normalize predictions to get probabilities\n",
" denom = predicted_counts.sum(dim=1, keepdim=True) + epsilon # (batch, 1, num_tracks)\n",
" p_pred = predicted_counts / denom\n",
" \n",
" # Compute shape loss: -sum(targets * log(p_pred))\n",
" pl_pred = safe_for_grad_log_torch(p_pred)\n",
" shape_loss = -(targets_with_epsilon * pl_pred)\n",
" \n",
" # Sum over all dimensions and normalize by total number of positions\n",
" shape_denom = batch_size * seq_length * num_tracks + epsilon\n",
" shape_loss = shape_loss.sum() / shape_denom\n",
" \n",
" # Combine losses\n",
" loss = shape_loss + scale_loss / shape_loss_coefficient\n",
"\n",
" return loss\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 8. 🏃 Training loop\n",
"\n",
"Run the main training loop that iterates through batches, computes gradients, and updates model parameters. The loop includes periodic validation checks and real-time metric visualization to monitor training progress."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"def train_step(\n",
" model: nn.Module,\n",
" batch: Dict[str, torch.Tensor],\n",
" train_metrics: TracksMetrics,\n",
" num_accumulation_gradient_steps: int = 1,\n",
") -> None:\n",
" \"\"\"\n",
" Single training step for one batch (gradient accumulation handled in training loop).\n",
" \n",
" Args:\n",
" model: The model to train\n",
" batch: Batch of data\n",
" train_metrics: Metrics tracker\n",
" num_accumulation_gradient_steps: Number of gradient accumulation steps (for loss scaling)\n",
" \"\"\"\n",
" tokens = batch[\"tokens\"].to(device)\n",
" bigwig_targets = batch[\"bigwig_targets\"].to(device)\n",
" \n",
" # Forward pass\n",
" outputs = model(tokens=tokens)\n",
" bigwig_logits = outputs[\"bigwig_tracks_logits\"]\n",
" \n",
" # Compute loss\n",
" loss = poisson_multinomial_loss(\n",
" logits=bigwig_logits,\n",
" targets=bigwig_targets,\n",
" )\n",
" scaled_loss = loss / num_accumulation_gradient_steps\n",
" \n",
" # Backward pass (accumulate gradients)\n",
" scaled_loss.backward()\n",
" \n",
" # Update metrics (use unscaled loss for logging)\n",
" train_metrics.update(\n",
" predictions=bigwig_logits,\n",
" targets=bigwig_targets,\n",
" loss=loss.item()\n",
" )\n",
"\n",
"\n",
"def validation_step(\n",
" model: nn.Module,\n",
" batch: Dict[str, torch.Tensor],\n",
" metrics: TracksMetrics,\n",
") -> None:\n",
" \"\"\"Single validation step.\"\"\"\n",
" tokens = batch[\"tokens\"].to(device)\n",
" bigwig_targets = batch[\"bigwig_targets\"].to(device)\n",
" \n",
" with torch.no_grad():\n",
" # Forward pass\n",
" outputs = model(tokens=tokens)\n",
" bigwig_logits = outputs[\"bigwig_tracks_logits\"]\n",
" \n",
" # Compute loss\n",
" loss = poisson_multinomial_loss(\n",
" logits=bigwig_logits,\n",
" targets=bigwig_targets,\n",
" )\n",
" \n",
" # Update metrics\n",
" metrics.update(\n",
" predictions=bigwig_logits,\n",
" targets=bigwig_targets,\n",
" loss=loss.item()\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run Training Loop"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting training for 19932 steps\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Step 50/19932 | LR: 1.34e-05 | Loss: 4.9725 | Mean Pearson: 0.1257\n",
"Step 100/19932 | LR: 1.68e-05 | Loss: 4.7497 | Mean Pearson: 0.3412\n",
"Step 150/19932 | LR: 2.01e-05 | Loss: 4.6592 | Mean Pearson: 0.3977\n",
"Step 200/19932 | LR: 2.34e-05 | Loss: 4.4238 | Mean Pearson: 0.4344\n",
"Step 250/19932 | LR: 2.68e-05 | Loss: 4.7748 | Mean Pearson: 0.4435\n",
"Step 300/19932 | LR: 3.01e-05 | Loss: 4.3888 | Mean Pearson: 0.4834\n"
]
}
],
"source": [
"# Training loop\n",
"print(f\"Starting training for {config['num_steps_training']} steps\\n\")\n",
"\n",
"# Create iterator for training data (will cycle if needed)\n",
"train_iter = iter(train_loader)\n",
"model.train()\n",
"\n",
"highest_mean_pearson = 0.0\n",
"# Main training loop\n",
"for step_idx in range(config[\"num_steps_training\"]):\n",
" # Zero gradients once before accumulation\n",
" optimizer.zero_grad()\n",
" \n",
" # Gradient accumulation: process multiple batches before optimizer step\n",
" for acc_idx in range(config[\"num_accumulation_gradient\"]):\n",
" try:\n",
" batch = next(train_iter)\n",
" except StopIteration:\n",
" # Restart iterator if we run out of data\n",
" train_iter = iter(train_loader)\n",
" batch = next(train_iter)\n",
" \n",
" # Process batch (accumulates gradients)\n",
" train_step(\n",
" model,\n",
" batch,\n",
" train_metrics,\n",
" num_accumulation_gradient_steps=config[\"num_accumulation_gradient\"]\n",
" )\n",
" \n",
" optimizer.step() # Update optimizer once after all accumulation steps\n",
" scheduler.step() # Update learning rate scheduler\n",
"\n",
" # Logging\n",
" if (step_idx + 1) % config[\"log_every_n_steps\"] == 0:\n",
" train_metrics.update_mean_metrics(step_idx + 1)\n",
" train_metrics.print_metrics(current_lr=scheduler.get_last_lr()[0])\n",
" train_metrics.reset()\n",
" \n",
" # Validation\n",
" if (step_idx + 1) % config[\"validate_every_n_steps\"] == 0:\n",
" print(f\"\\nRunning validation at step {step_idx + 1}...\")\n",
" model.eval()\n",
" \n",
" for val_batch in val_loader:\n",
" validation_step(model, val_batch, val_metrics)\n",
" \n",
" mean_pearson_idx = val_metrics.update_mean_metrics(step_idx + 1)\n",
" val_metrics.print_metrics(print_per_track=True)\n",
" val_metrics.reset()\n",
"\n",
" # Back to training mode\n",
" print(\"\\n\" + \"-\"*100 + \"\\nTraining metrics:\")\n",
" model.train() \n",
"\n",
" # Save model checkpoint\n",
" torch.save(model.state_dict(), f\"model_checkpoint_{step_idx + 1}.pth\")\n",
" previous_checkpoint_path = f\"model_checkpoint_{step_idx + 1 - config['validate_every_n_steps']}.pth\"\n",
" if os.path.exists(previous_checkpoint_path):\n",
" os.remove(previous_checkpoint_path)\n",
"\n",
" if mean_pearson_idx > highest_mean_pearson:\n",
" highest_mean_pearson = mean_pearson_idx\n",
" print(f\"New highest mean Pearson: {highest_mean_pearson}\")\n",
" torch.save(model.state_dict(), f\"best_model_checkpoint.pth\")\n",
"\n",
"print(f\"\\nTraining completed after {config['num_steps_training']} steps.\")\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHWCAYAAAACZWhUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4FOXaxu/Z9J5ACi0kgiSEktAUKQIqiIoohGLBhmLDhqCon0IIoIgIcqzYPccj50hZyxEVEQQVC0iIRAwJPdQUAgnpye58fwyzOzM7Mzu7O9uS58e1Fzsz77zzzuzsZu73aQzLsiwIgiAIgiAIgiAIgvA5DN4eAEEQBEEQBEEQBEEQ8pBoJwiCIAiCIAiCIAgfhUQ7QRAEQRAEQRAEQfgoJNoJgiAIgiAIgiAIwkch0U4QBEEQBEEQBEEQPgqJdoIgCIIgCIIgCILwUUi0EwRBEARBEARBEISPQqKdIAiCIAiCIAiCIHwUEu0EQRAEQRAEQRAE4aOQaCcIgiAIgiAIghCwYMECMAyja59bt24FwzDYunWrrv0SrR8S7QTRhvnoo4/AMAz++OMPbw+FIAiCaIPwf4cYhsHPP/9ss51lWSQnJ4NhGFx//fVeGKF2UlNTLefCMAwSExNx+eWX47PPPvP20HyG/Px83HbbbUhOTkZISAjatWuH0aNH48MPP4TJZPL28HTjzTffxEcffeTtYRCtiEBvD4AgCIIgCIJo24SGhmL16tUYPny4aP22bdtw/PhxhISEeGlkjtGvXz/MmTMHAHDy5Em8/fbbyM7OxltvvYUHHnjAy6PzLu+99x4eeOABJCUl4fbbb0ePHj1w/vx5bN68Gffccw9OnTqF//u///P2MHXhzTffRHx8PO666y7R+hEjRqC+vh7BwcHeGRjht5BoJwiCIAiCILzKddddh7Vr1+LVV19FYKD18XT16tUYOHAgKioqvDg67XTu3Bm33XabZfmOO+7AxRdfjFdeecVjor2lpQVms9mnhOFvv/2GBx54AEOGDMHXX3+NqKgoy7ZZs2bhjz/+wF9//eXyccxmM5qamhAaGmqzrba2FhERES4fwxUMBoPs2AjCHuQeTxCEKrt378a1116L6OhoREZG4qqrrsJvv/0matPc3Izc3Fz06NEDoaGhaN++PYYPH45NmzZZ2pw+fRrTp09Hly5dEBISgo4dO+LGG2/EkSNHPHxGBEEQhK9xyy234MyZM6K/G01NTVi3bh1uvfVW2X3MZjNWrlyJ3r17IzQ0FElJSbj//vtx9uxZUbsvvvgC48aNQ6dOnRASEoLu3btj0aJFNu7Yo0aNQp8+ffD333/jiiuuQHh4ODp37oyXXnrJ6fPq0KEDMjIycPjwYcu6EydO4O6770ZSUhJCQkLQu3dvfPDBB6L9mpqaMH/+fAwcOBAxMTGIiIjA5Zdfjh9++EHU7siRI2AYBi+//DJWrlyJ7t27IyQkBH///TcA4LXXXkPv3r0RHh6OuLg4DBo0CKtXrxb1oeXvPB/GsH37dsyePRsJCQmIiIjAxIkTUV5ebvc65ObmgmEYfPLJJyLBzjNo0CCRVbq2thZz5syxuNGnp6fj5ZdfBsuyov0YhsHDDz+MTz75BL1790ZISAi+/fZby3i3bduGmTNnIjExEV26dLHs98033+Dyyy9HREQEoqKiMG7cOOzdu9fueXz44Ye48sorkZiYiJCQEPTq1QtvvfWWqE1qair27t2Lbdu2WUIlRo0aBUA5pn3t2rUYOHAgwsLCEB8fj9tuuw0nTpwQtbnrrrsQGRmJEydOYMKECYiMjERCQgKeeOKJVhVaQMhDlnaCIBTZu3cvLr/8ckRHR2Pu3LkICgrC22+/jVGjRmHbtm0YPHgwAC5Zy5IlSzBjxgxceumlqK6uxh9//IG8vDyMGTMGADBp0iTs3bsXjzzyCFJTU1FWVoZNmzahpKQEqampXjxLgiAIwtukpqZiyJAh+M9//oNrr70WACesqqqqcPPNN+PVV1+12ef+++/HRx99hOnTp+PRRx/F4cOH8frrr2P37t3Yvn07goKCAHCCMzIyErNnz0ZkZCS2bNmC+fPno7q6GsuWLRP1efbsWVxzzTXIzs7G1KlTsW7dOjz11FPo27evZVyO0NzcjGPHjqF9+/YAgNLSUlx22WUWsZmQkIBvvvkG99xzD6qrqzFr1iwAQHV1Nd577z3ccsstuPfee3H+/Hm8//77GDt2LHbs2IF+/fqJjvPhhx+ioaEB9913nyVW/N1338Wjjz6KyZMn47HHHkNDQwP27NmD33//3TIRovXvPM8jjzyCuLg45OTk4MiRI1i5ciUefvhhfPrpp4rXoK6uDps3b8aIESPQtWtXu9eMZVnccMMN+OGHH3DPPfegX79+2LhxI5588kmcOHECr7zyiqj9li1bsGbNGjz88MOIj49Hamoq8vPzAQAzZ85EQkIC5s+fj9raWgDAxx9/jDvvvBNjx47F0qVLUVdXh7feegvDhw/H7t27VZ9J3nrrLfTu3Rs33HADAgMD8b///Q8zZ86E2WzGQw89BABYuXIlHnnkEURGRuLZZ58FACQlJSn2yd/Dl1xyCZYsWYLS0lL84x//wPbt27F7927ExsZa2ppMJowdOxaDBw/Gyy+/jO+//x7Lly9H9+7d8eCDD9q9toQfwxIE0Wb58MMPWQDszp07ZbdPmDCBDQ4OZg8ePGhZd/LkSTYqKoodMWKEZV1WVhY7btw4xeOcPXuWBcAuW7ZMv8ETBEEQfo/w79Drr7/ORkVFsXV1dSzLsuyUKVPYK664gmVZlk1JSRH9nfnpp59YAOwnn3wi6u/bb7+1Wc/3J+T+++9nw8PD2YaGBsu6kSNHsgDYf/3rX5Z1jY2NbIcOHdhJkybZPZeUlBT26quvZsvLy9ny8nL2zz//ZG+++WYWAPvII4+wLMuy99xzD9uxY0e2oqJCtO/NN9/MxsTEWMba0tLCNjY2itqcPXuWTUpKYu+++27LusOHD7MA2OjoaLasrEzU/sYbb2R79+6tOmatf+f5z2n06NGs2Wy2rH/88cfZgIAA9ty5c4rH+PPPP1kA7GOPPaY6Fp7PP/+cBcAuXrxYtH7y5MkswzDsgQMHLOsAsAaDgd27d6+oLT/e4cOHsy0tLZb158+fZ2NjY9l7771X1P706dNsTEyMaH1OTg4rlUpy99LYsWPZbt26idb17t2bHTlypE3bH374gQXA/vDDDyzLsmxTUxObmJjI9unTh62vr7e0++qrr1gA7Pz58y3r7rzzThYAu3DhQlGf/fv3ZwcOHGhzLKJ1Qe7xBEHIYjKZ8N1332HChAno1q2bZX3Hjh1x66234ueff0Z1dTUAIDY2Fnv37sX+/ftl+woLC0NwcDC2bt1q47ZIEARBEAAwdepU1NfX46uvvsL58+fx1VdfKbrGr127FjExMRgzZgwqKiosr4EDByIyMlLkRh4WFmZ5f/78eVRUVODyyy9HXV0d9u3bJ+o3MjJSFJMeHByMSy+9FIcOHdJ0Dt999x0SEhKQkJCArKwsrF27FrfffjuWLl0KlmWxfv16jB8/HizLisY9duxYVFVVIS8vDwAQEBBgiUk3m82orKxES0sLBg0aZGkjZNKkSUhISBCti42NxfHjx7Fz507ZsTryd57nvvvuE5VBu/zyy2EymXD06FHFa8L3IecWL8fXX3+NgIAAPProo6L1c+bMAcuy+Oabb0TrR44ciV69esn2de+99yIgIMCyvGnTJpw7dw633HKL6PoHBARg8ODBNuEHUoT3UlVVFSoqKjBy5EgcOnQIVVVVms5PyB9//IGysjLMnDlTFOs+btw49OzZExs2bLDZR5ob4fLLL9d8fxL+C7nHEwQhS3l5Oerq6pCenm6zLSMjA2azGceOHUPv3r2xcOFC3HjjjUhLS0OfPn1wzTXX4Pbbb0dmZiYAICQkBEuXLsWcOXOQlJSEyy67DNdffz3uuOMOdOjQwdOnRhAEQfggCQkJGD16NFavXo26ujqYTCZMnjxZtu3+/ftRVVWFxMRE2e1lZWWW93v37sVzzz2HLVu22IhQqdDq0qWLTW3uuLg47NmzR9M5DB48GIsXLwbDMAgPD0dGRobFvbmsrAznzp3DO++8g3feecfuuP/5z39i+fLl2LdvH5qbmy3rL7roIpv95NY99dRT+P7773HppZfi4osvxtVXX41bb70Vw4YNA+DY33keqXt7XFwcAKhOyEdHRwPgJky0cPToUXTq1MlG5GdkZFi2C5E7d6VtvHHhyiuvVB2rEtu3b0dOTg5+/fVX1NXVibZVVVUhJiZGdX8p/LnIfQY9e/a0KYMYGhpqMzkTFxdHBpE2AIl2giBcZsSIETh48CC++OILfPfdd3jvvffwyiuvYNWqVZgxYwYALjvs+PHj8fnnn2Pjxo2YN28elixZgi1btqB///5ePgOCIAjCF7j11ltx77334vTp07j22mtF8bxCzGYzEhMT8cknn8hu54XNuXPnMHLkSERHR2PhwoXo3r07QkNDkZeXh6eeegpms1m0n9AqK4SVJEBTIj4+HqNHj1YcMwDcdtttuPPOO2Xb8JPd//73v3HXXXdhwoQJePLJJ5GYmIiAgAAsWbIEBw8etNlPaAHmycjIQFFREb766it8++23WL9+Pd58803Mnz8fubm5ms5HijPX5+KLL0ZgYCAKCgqcOqY95M5daRv/GXz88ceyRgNh5QIpBw8exFVXXYWePXtixYoVSE5ORnBwML7++mu88sorNveSO1C6/kTrh0Q7QRCyJCQkIDw8HEVFRTbb9u3bB4PBgOTkZMu6du3aYfr06Zg+fTpqamowYsQILFiwwCLaAaB79+6YM2cO5syZg/3796Nfv35Yvnw5/v3vf3vknAiCIAjfZuLEibj//vvx22+/qSY36969O77//nsMGzZMVbRt3boVZ86cgdFoxIgRIyzrhdncPUVCQgKioqJgMpkUhT3PunXr0K1bNxiNRpHlPycnx6FjRkRE4KabbsJNN92EpqYmZGdn4/nnn8czzzzj8N95ZwkPD8eVV16JLVu24NixY3b7TElJwffff4/z58+LrO18KENKSorTY+nevTsAIDEx0e5nIOV///sfGhsb8eWXX4o8DuRc6qXeGkrw51JUVGRj/S8qKnLpXInWBcW0EwQhS0BAAK6++mp88cUXorJspaWlWL16NYYPH25xIztz5oxo38jISFx88cVobGwEwGWObWhoELXp3r07oqKiLG0IgiAIIjIyEm+99RYWLFiA8ePHK7abOnUqTCYTFi1aZLOtpaUF586dA2C1TAotwU1NTXjzzTf1HbgGAgICMGnSJKxfv162JrmwdJrcuH///Xf8+uuvmo8n/dscHByMXr16gWVZNDc3O/R33lVycnLAsixuv/121NTU2GzftWsX/vnPfwIArrvuOphMJrz++uuiNq+88goYhnEqiz/P2LFjER0djRdeeEEUcsCjVr5O7jOpqqrChx9+aNM2IiLCcg+qMWjQICQmJmLVqlWi56FvvvkGhYWFGDdunN0+iLYBWdoJgsAHH3yAb7/91mb9ggULsGnTJgwfPhwzZ85EYGAg3n77bTQ2Norq1vbq1QujRo3CwIED0a5dO/zxxx9Yt24dHn74YQBAcXExrrrqKkydOhW9evVCYGAgPvvsM5SWluLmm2/22HkSBEEQvo+S67iQkSNH4v7778eSJUuQn5+Pq6++GkFBQdi/fz/Wrl2Lf/zjH5g8eTKGDh2KuLg43HnnnXj00UfBMAw+/vhjze7uevPiiy/ihx9+wODBg3HvvfeiV69eqKysRF5eHr7//ntUVlYCAK6//noYjUZMnDgR48aNw+HDh7Fq1Sr06tVLVvTKcfXVV6NDhw4YNmwYkpKSUFhYiNdffx3jxo2zWLAXL16s6e+8qwwdOhRvvPEGZs6ciZ49e+L2229Hjx49cP78eWzduhVffvklFi9eDAAYP348rrjiCjz77LM4cuQIsrKy8N133+GLL77ArFmzLNZyZ4iOjsZbb72F22+/HQMGDMDNN9+MhIQElJSUYMOGDRg2bJjNZAHP1VdfjeDgYIwfPx73338/ampq8O677yIxMRGnTp0StR04cCDeeustLF68GBdffDESExNl4+iDgoKwdOlSTJ8+HSNHjsQtt9xiKfmWmpqKxx9/3OlzJVoZXspaTxCED8CXRFF6HTt2jM3Ly2PHjh3LRkZGsuHh4ewVV1zB/vLLL6J+Fi9ezF566aVsbGwsGxYWxvbs2ZN9/vnn2aamJpZlWbaiooJ96KGH2J49e7IRERFsTEwMO3jwYHbNmjXeOG2CIAjCR7BXepRHWvKN55133mEHDhzIhoWFsVFRUWzfvn3ZuXPnsidPnrS02b59O3vZZZexYWFhbKdOndi5c+eyGzduFJXeYlmu5JtcibQ777yTTUlJsXsuSmOUUlpayj700ENscnIyGxQUxHbo0IG96qqr2HfeecfSxmw2sy+88AKbkpLChoSEsP3792e/+uorm7HwJd/kSqq+/fbb7IgRI9j27duzISEhbPfu3dknn3ySraqqErXT8nde6XOSljCzx65du9hbb72V7dSpExsUFMTGxcWxV111FfvPf/6TNZlMlnbnz59nH3/8cUu7Hj16sMuWLROVm2NZruTbQw89ZHMce/fVDz/8wI4dO5aNiYlhQ0ND2e7du7N33XUX+8cff1jayJV8+/LLL9nMzEw2NDSUTU1NZZcuXcp+8MEHLAD28OHDlnanT59mx40bx0ZFRbEALOXflK7Xp59+yvbv358NCQlh27Vrx06bNo09fvy4qM2dd97JRkRE2JyL3DiJ1gfDsl6aaiQIgiAIgiAIgiAIQhWKaScIgiAIgiAIgiAIH4VEO0EQBEEQBEEQBEH4KCTaCYIgCIIgCIIgCMJHIdFOEARBEARBEARBED4KiXaCIAiCIAiCIAiC8FFItBMEQRAEQRAEQRCEjxLo7QF4GrPZjJMnTyIqKgoMw3h7OARBEAQBlmVx/vx5dOrUCQYDzafrAf29JwiCIHwJV/7WtznRfvLkSSQnJ3t7GARBEARhw7Fjx9ClSxdvD6NVQH/vCYIgCF/Emb/1bU60R0VFAeAuVnR0tEt9mc1mlJeXIyEhwS8tIzR+7+Pv5+Dv4wf8/xxo/N5Hj3Oorq5GcnKy5W8U4Tp6/b3393vU38cP+P850Pi9j7+fg7+PH/D/c/D23/o2J9p5F7no6GhdRHtDQwOio6P99uaj8XsXfz8Hfx8/4P/nQOP3PnqeA7lx64def+/9/R719/ED/n8ONH7v4+/n4O/jB/z/HLz9t97/rhhBEARBEARBEARBtBFItBMEQRAEQRAEQRCEj0KinSAIgiAIgiAIgiB8lDYX004QBOEvsCyLlpYWmEwmxTZmsxnNzc1oaGjw2xgxfx4/oO0cAgICEBgYSDHrBEEQBEE4DIl2giAIH6SpqQmnTp1CXV2dajuWZWE2m3H+/Hm/FIT+Pn5A+zmEh4ejY8eOCA4O9uDoCIIgCILwd0i0EwRB+BhmsxmHDx9GQEAAOnXqhODgYEUxyFvj/dWK6+/jB+yfA8uyaGpqQnl5OQ4fPowePXr4rVcBQRAEQRCeh0Q7QRCEj9HU1ASz2Yzk5GSEh4ertvV30evv4we0nUNYWBiCgoJw9OhRNDU1ITQ01MOjJAiCIAjCX6GpfoIgCB+FrLGtC/o8CYIgCIJwBnqCIAiCIAiCIAiCIAgfhUQ7QRAEQRAEQRAEQfgoJNoJgiAInyU1NRUrV6709jAIgiAIgiC8Bol2FzAagSuvbI/wcAZZWdwyQRBEW4RhGNXXggULnOp3586duO+++1wa26hRozBr1iyX+iAIgiAIwrcxFhqRtSoLYYvDkLUqC8bC1iPOSLQ7idEITJliwL59gWhsZFBQAEyaRMKdIAjfwWgEsrKAsDC4fWLx1KlTltfKlSsRHR0tWvfEE09Y2vLZ1rWQkJBgN4M+QRAEQRBtG2OhEZPWTEJBaQEaTA0oKC3ApDWTWo1wJ9HuJLm5AMOwYFmuvA/LAgwDLFzo5YERBNHqYFmgttax1+rV3ERiQQHQ0ADLxOLq1Y71w7LaxtihQwfLKyYmBgzDWJb37duHqKgofPPNNxg4cCBCQkLw888/4+DBg5gwYQK6dOmCqKgoXHLJJfj+++9F/Urd4xmGwXvvvYeJEyciPDwcPXr0wJdffunS9V2/fj169+6NkJAQpKamYvny5aLtb775Jnr06IHQ0FAkJSVh8uTJlm3r1q1DZmYmoqOjER8fj9GjR6O2ttal8RAEQRAE4Ri523LBgAEL7sGFBQsGDBZu48SZnBXenyzzVKfdSYqLYRHsPCwLFBV5aUAEQbRa6uqAyEilrQyAIMV9edHN/z9tmmPHrqkBIiIc20eJp59+Gi+//DK6deuGuLg4HDt2DNdeey0WLFiAiIgIfPzxxxg/fjyKiorQtWtXxX5yc3Px0ksvYdmyZXjttdcwbdo0HD16FO3atXN4TLt27cLUqVOxYMEC3HTTTfjll18wc+ZMtG/fHnfddRf++OMPPProo/j4448xdOhQVFZW4qeffgLAeRfccsstWLp0KcaPH4/6+nr8/PPPYLXOdBAEQRAEoQvFFcUWwc7DgkXRmSKLFZ4X9bwVHoDNuvVT1yM7I9sbp6AKiXYnSUsDCgpYkXBnGCA93YuDIgiC8GEWLlyIMWPGWJbbtWuHzMxMtLS0IDAwEIsWLcJnn32GL7/8Eg8//LBiP3fddRduueUWAMALL7yAV199FTt27MA111zj8JhWrFiBq666CvPmzQMApKWl4e+//8ayZctw1113oaSkBBEREbj++usRFRWFlJQU9O/fHwAn2ltaWpCdnY3OnTsjMDAQmZmZDo+BIAiCIAjnMBYakbstF42mRpttDBikt0+XtcLzyFnmfVG0k3u8k+TkyFvac3K8NCCCIFot4eGcxVvudf48i7Nnm3H+PCta36cPN5EohGGAvn2V+5J76RlOPmjQINFyTU0NnnjiCfTt2xdxcXGIjIxEYWEhSkpKVPsRCuOIiAhER0ejrKzMqTEVFhZi2LBhonXDhg3D/v37YTKZMGbMGKSkpKBbt264/fbb8cknn6Curg4AkJWVhauuugqZmZm4+eab8e677+Ls2bNOjYMgCIIgCCtaXNeFcexSKzsv0nNG5sha4eVgweLP0j9hyDUgdWWqT7nLk2h3kuxsYO1as2U5IIBL8jRxohcHRRBEq4RhOBd1R165udZcG3wfLMutd6QfqfB3hQiJn/0TTzyBzz//HIsWLcKPP/6I/Px89O3bF01NTar9BAWJwwEYhoHZbFZo7RpRUVHIy8vDf/7zH3Ts2BHz589HVlYWzp07h4CAAGzatAlff/01MjIy8PrrryM9PR2HDx92y1gIgiAIwt1ojfO2186VeHFpUrk9pXswac0kBC8KRurKVKSuTEXY4jBMM04TWdCF9E7sDeNUIyZmTERSZJJD14AFi6NVR30qkR2JdhfIFnhOtG9Pgp0gCN8hOxtYvx7IzARCQ7n/fW1icfv27bjzzjsxYcIE9O3bFx06dMCRI0c8OoaMjAxs377dZlxpaWkICAgAAAQGBmL06NF46aWXsGfPHhw5cgRbtmwBwE0YDBs2DDk5OcjLy0NwcDA+++wzj54DQRAEQeiB1gzs9trJbZ+ybgo2HNqgaRxSd3aeZnMzjlYdxdGqo2gwNaChpUHRgs4LdleZvGYyghcFo//b/TWP3x1QTLtOBAd7ewQEQRBisrPFk4u+Ro8ePfDZZ5/h2muvRVBQEObPn+82i3l5eTny8/NF6zp27Ig5c+bgkksuwaJFi3DTTTfh119/xeuvv44333wTAPDVV1/h0KFDGDFiBOLi4vD111/DbDYjPT0dv//+OzZv3owxY8agXbt22LVrF8rLy5GRkeGWcyAIgiAId2EsNGKakctWay/OWy1Te3ZGtuL2FXkrMP2y6YrHz92Wi+KKYjSaGjW5s6tRVluGHu17AABKa0qd7ocFi2ZzMwrKCjBj0wzExMRgcu/J9nfUGRLtOkGinSAIwjFWrFiBu+++GyNHjkR8fDyeeuopVFdXu+VYq1evxurVq0XrFi1ahOeeew5r1qzB/PnzsWjRInTs2BELFy7EXXfdBQCIjY2F0WjEggUL0NDQgB49euA///kPevfujcLCQvz4449YuXIlqqurkZKSguXLl+Paa691yzkQBEEQhBpC4ZsWn4ackTl2k6oZC42YvXE2jlYdld3OZ2AXopSp/e/yv5G1Kgt7SvfI9lN4phATP52I7w59h4aWBoQGhuKRSx/BZV0uE2V314PyunLL+7T4NNkxOQI/8bDop0VeEe0M28Zq01RXVyMmJgZVVVWIjo52qS+z2YyAAC7CoGdPoLBQjxF6DrPZjLKyMiQmJsJg8L9ICX8fP+DdczAaufjm4mKuGkJOjuNWWfoM3ENDQwMOHz6Miy66CKGhoaptWZa1ZF9n9AxA9xD+Pn5A+zmofa56/m0iOPS6pr74G+EI/j5+wP/Pgcbvffz9HITj/7zocxthDsBGePMCWK6EGS/uC8sL0Wxutnv8lJgUrBi7wnJcMEBDS4NsW2eEd0J4AirqKnQT7ADQOaozymrLEGAIQLOpGSbWpEu/oQGhqH+u3ql9Xfm7RJZ2nSBLO+FPGI3ApEnW5GQFBdzy+vW+7U5NEARBEATRVjEWGjFl3RTZeuNSlFzbpTXLtcAnZdOyjzPCW2gV14sT508AgKZJCa0wYJAe75363v431eSjSJIZE4RPk5vL/c/72fBZxhcu9N6YCIIgCIIgvA2f9Tx4UTDCng9D8KJgTdnP3ZlNnWfRj4sU643LIXRZ5487e+Nsp93Q9bSE+yMsWMwbMc8rxyZLu06QpZ3wJ4qLbdexLFBUZLueIAiCIAiiLcBboXl4Ky1v0Ra6mgvjx5Mik3C06qiNBZxvL7Vu89ufHPokNh7caOkD4JKmpcWnYWz3sZZtae3T8GjWoyg6U+SwcG42N1vqmLsa193WCTQEYmJP75ThIdGuEyTaCX8iLQ3YI/ndZhgg3TsePwRBEARBEF5HqdQYvzx742xZEc7HkstlUwcgm5UdAJb9ssymDwDYU7pHJLD5zOUJ4QlOuZK3dQu5HjBgkBaX5rXjk3u8TpB7POFP5OSIl/nYdul6giAIgiAIX0UPl3MhclnRhRytOoqYJTG4ed3NANTFMO+aPmnNJMWkbfb6kLZxR+w3ARhgQFZSFhgoJ5NlwWLOwDkeHJUYEu06QZZ2wp/IzgZ697YuZ2ZyyekmesfjhyAIgiAIwiF4a3dBaQEaTA0Wl/PUlakOx6PzpMXbt6RWN1VrTm7WYm5RFYKE9+gU1cnyPjIkEvkP5CMkIES2LQMG66asw3UXXeep4dlAot0FhMXySLQT/kZCgvV9fj4JdoIgCIIgfBepVV2aUI3//2jVUTSbm9HQ0mCJ556ybgo2HNqg2p+x0Ggpn6YX7IV//kiQIQgBTIC3h2FBbvKjX1I/p/sTxqaHB4UD4CZtpMdhwCAzKdNrsew8JNpdoKnJ+p7c4wmCIAiCIAhCHldc2Xmr+p7SPWgwNWBP6R4crTrqkGv5Q1seQsjzIQh7PgyBCwNF/QlLpwUZ6KEeAAIMAT51LcICw2zWGQzOSdnUmFSMSBlh03fOyBxLPgLAWnNe78kcZyDR7gKNjdb3ZGkn/A2GvLUIgiAIgvAASq7sWoV77rZcl8fQaGpEi7kFDS0NMLEm0TZh4riMhAyXj+XvMGCQ3j5d1vIspEe7HnZjwfWirqXOZt3Rc0dlWtpnxdgViAqOsiyHBXGiPTsjG+unrkdmUiZCA0ORmZQJ41QjJmZ43x2VRLsLCEU7WdoJgiBcZ9SoUZg1a5a3h0EQBEE4iZxFXZqVXZpd3R7FFTK1anWGL4k2uttotx/LmwQHBCM0MBQpMSlIjUm1WNPlrMtSy7OUsKAw5D+Qj7EXj3VpTN1iu9mMSYuVv7K+UnW7dNypMakWER4VYhXtvHs8wAn3/AfyUf9sPfIfyPcJwQ6QaHeJBuVEkATh87D+GWJFaKWkBMjLs32VlLjlcOPHj8c111wju+2nn34CwzDYI60z6AQfffQRYmNjXe6HIAiCcBx7Lu5KFvXC8kLZMmpFZ4o09a8lQZwesGCx4tcVluWQgBCkxKT4VGy3GlqE7kujX0L9s/U4MusIDs86jKZ5TYrWZaHlWa7vPaV7YCw0on1Ye5fG/eGED23GlJGQYdeCrxQewYBBSkyK5ZyykrJgnGrE4VmHLSI8MjjS0l7O9d7XoDrtLiC0tJvN3hsHQRCEiJISID1dfmYxNBQoKgK6dtX1kPfccw8mTZqE48ePo0uXLqJtH374IQYNGoTMzExdj0kQBEF4DmOhEVPWTbFYYnlB/uTQJ7Hx4EbOGs7AxqIOQDbbOu+CzVviC8sL0Wxutul//dT1yBmZY4k5d5RAQyBazC2a2/PHjwqOQvUz1ZZzd/b4noBPlpb/QD6MhUYs3LYQRWeKkBSRBAaMKP7/lr632OyfnZGN7Ixs2b75bVmrslBQWmAjlBduW4iRKSMdHq+wHznRbK/8nlKf/P+vjH1F1UoudI8XWtp9FbK0uwCJdoIgPALLArW12l/Hjim7AjU0cNu19qXRJeP6669HQkICPvroI9H6mpoarF27Fvfccw/OnDmDW265BZ07d0Z4eDj69u2L//znPy5eHDElJSW48cYbERkZiejoaEydOhWlpaWW7X/++SeuuOIKREVFITo6GgMHDsQff/wBADh69CjGjx+PuLg4REREoHfv3vj66691HR9BEIS/sujHRbKCfNkvyyyW9YaWBs1CiwWLi2IvsljmeWEv50KfnZGNBwc96NS4HRHswuPHhsZa1vEW546RHZ0agztQSpYmdO/mLdeDuwy27OesVVxJRBedKUL7cGufQjGsNG5pP3xMuRB78fRCnhjyhMNx6EJLe2hgqKbjeBMS7S4gfCYmV2PC36BEdH5EXR0QGSn7YqKiEBQXByYqyrp++HD1/oYPV+zP5lVnm/hFjsDAQNxxxx346KOPwAp+ENeuXQuTyYRbbrkFDQ0NGDhwIDZs2IC//voL9913H+644w7s3LnTlatjwWw248Ybb0RlZSW2bduGTZs24dChQ7jpppssbaZNm4YuXbpg586d2LVrF55++mkEXUhK8tBDD6GxsRE//vgjCgoKsHTpUkRGRiodjiAIotWgJbN70ZkiRUHubFmzz4s+V92fjzM3Fhpx38D7nDqGo/BCMSY0RrQ+OyMbr4x9xSNjsMeIriMcEqln6s5Y3g94Z4BDmft5lER0evt00URAckyyaj8hgSF4eczLonVylnalePogQ5DNxMPobqMdjkMXxrSbWd+3vpJodwFVS7uH40kJgiC8zd13342DBw9i27ZtlnUffvghJk2ahJiYGHTu3BlPPPEE+vXrh27duuGRRx7BNddcg3Xr1uly/M2bN6OgoACrV6/GwIEDMXjwYPzrX//Ctm3bLBMDJSUlGD16NHr27IkePXpgypQpyMrKsmwbNmwY+vbti27duuH666/HiBEj1A5JEAThNVwpoSbtx15m9w2HNnhN2LBgMWnNJIz9t2vJzrQgtAILLe08R84dsbwPNHgvyvjQ2UOYP3K+JpFqLDRif+V+y7Kjmft5eBEtt35v+V7LckmVHa3DAtf1uE60Ss7SLs3kzselN81rwrS+00RthQJcK8KJAmk1AV+EYtpdQFG0eyGelCCIVkx4OFBTI7uJZVm0tLQgMDAQDO8+kZ+vbm3/+WegXz/tx9ZIz549MXToUHzwwQcYNWoUDhw4gJ9++gkLF3LZgU0mE1544QWsWbMGJ06cQFNTExobGxEaqo9bWmFhIZKTk5GcbJ3l79WrF2JjY1FYWIhLLrkEs2fPxowZM/Dxxx9j9OjRmDJlCrp37w4AePTRR/Hggw/iu+++w+jRozFp0iSKwycIwifhhTYvMveU7sGkNZMQwAQgKCAIJrMJGQkZFpfp3G25KK4oRlp8GnJG5ojil+UyuwPANOM0gAWSIpJwtNq50lp6UlZb5vZjZCRkYFTKKLz5x5s2ot1YaMTTm5+2LJvMVqEnjaeeO3QuXvrlJbeN88T5E5Z4f6VYdB5puTxp2IFWeBF99xd3o6qxCgBw/8D7wYLFW3+8ZWlX02R9XpG6wjNgkB6fbuOOrpQITinWXrp/dEi05vOwjEXgcir8LH0VsrS7gKJ7fEWFejxpRYVbx0UQRCuDYYCICO2vMDtZUMPCtPflYBzFPffcg/Xr1+P8+fP48MMP0b17d4wcySWoWbZsGf7xj3/gqaeewg8//ID8/HyMHTsWTU1Nzl4Zh1mwYAH27t2LcePGYcuWLejVqxc+++wzAMCMGTNw6NAh3H777SgoKMCgQYPw2muveWxsBEEQWpEKbR4Ta0JDSwOazc0Wi6o9K7pSrHJDSwMaTA0+Idi1YnBR2hRVFOGdvHcAAD+X/Cy6Tvw15+HFrzBLOe+qvnTMUkVLfJAhCKkxqZYSZ8Ixp8SkYO7QuQDEMevC/4XH1lIyT65cnlzmfi1kZ2Tjrn53WZZHpoy0uS7S40hj7+eNmGdjWZeztKshFe324ujt4WjeA29Aot0FKBGdf2E0AllZnF7JyuKWCaJVEh/PefXIERrKbXcTU6dOhcFgwOrVq/Gvf/0Ld999t2U2e/v27bjxxhtx2223ISsrC926dUNxsX61dzMyMnDs2DEcO3bMsu7vv//GuXPn0KtXL8u6tLQ0PP744/juu++QnZ2NDz/80LItOTkZDzzwAIxGI+bMmYN3331Xt/ERBEHohZbM2sLtUiv65DWTLS71SZFJ7huom1ASaZenXK65DzmhaWJNFgF3ruGcaIJD7pqzYFFaWyobTy1NWscf79PJn+LwrMP4JPsTHK06CjOsIuJo1VEM7jLYpgRbkCFIU8k8OeRi0fnM/c4gPK/okGjVe/GNa9+wnEffpL54/+r3MbHnRBvRHRIQ4tAYpPuPWz3OYXd/Yfvfjv/mdHiJpyDR7gJCYzqJdt/GaAQmTQIKCrjPraCAWybhTrRKunblwnB27bJ9uTk8JzIyEjfddBOeeeYZnDp1CnfddZdlW48ePbBp0yb88ssvKCwsxP333y/K7K4Vk8mE/Px80auwsBCjR49G3759MW3aNOTl5WHHjh244447MHLkSAwaNAj19fV4+OGHsXXrVhw9ehTbt2/Hzp07kZGRAQCYNWsWNm7ciMOHDyMvLw8//PCDZRtBEIQcSnHlwvX93+6PDYc26NY34FhmbTmELvVHqzxnSXdlzELON52XXd+/Q3+sn7oeWUlZdmuWa0meJ7RmOyp+U2NTLe8DmACbhHFyFmqh27pwIiAj3rZmuVbhLU3oJs027ygdo6yiPSokSvVenNx7suU8dt+3G9ddxMWyS0U346BXX/EZ8YT/3+V/OxSnLy3hV9tc61Scvych0e4CZGn3H3JzOS9fPoyBZbnlhfa9igjCP+naFRgwwPblgXwa99xzD86ePYuxY8eiU6dOlvXPPfccBgwYgLFjx2LUqFHo0KEDJkyY4HD/NTU16N+/v+g1fvx4MAyDL774AnFxcRgxYgRGjx6Nbt264dNPPwUABAQE4MyZM7jjjjuQlpaGqVOn4tprr0VuLhfvZzKZ8NBDDyEjIwPXXHMN0tLS8Oabb+pyTQjgjTfeQGpqKkJDQzF48GDs2LFDse2oUaPAMIzNa9y4cR4cMUGoo5TAbe6mueL1ZQWYsWkGjIVGWSEuXJe6MhWpK1MRvChY1a1dKSmYrxMfHi8Ss3oQwARY3rcPb28RvE3zmrB+6noAtpMFqTGpME41IiIoQrVvoTXbUfHbLqyd5f3LV79skzBOyXIvZz2fN2Ke08JbmtBNa0k0JQ5WHrS8n/HlDIztPlY2yzug7BHhqGVdyqZDm0TLjoQLAOoTJr4KJaJzAaFod6jk2/vvA/37+2TNLaORE7jFxUBaGpCTA2Rrz1HhsxQX235GLMsZHQmC0JchQ4aIyr7xtGvXDp9//rloHZ9Ij2fr1q2qfd91110i672Url274osvvpDdFhwcrFoXnuLX3cenn36K2bNnY9WqVRg8eDBWrlyJsWPHoqioCImJiTbtjUajKNfBmTNnkJWVhSlTpnhy2AShilwCNwYMXtvxmuz6JzY9gaNVRy3beCEuRGr1lqtZzh870BDoF7G4Qs42nEVDi0LeJydJjU3FwbOckJSWAuMFa+62XBRVFCE9Ph0LRi6wCNbIDZGoba5V7Ftozeb7WrhtIYrOFCG9fTpyRuYoil+haO8Q2cFme1p8GgpKC2wTtclYz7MzsvHemPfw6p5XUXym2O6x5fZ3JOmcEsZCIxb+aBW2ByoPYNkvy/Dk0Cfx3cHvUHSmCFHBUSivKwegXP/cUcu6lNJaWy89R+L0HZkw8RXI0u4CipZ2tXhSAHjzTWDOHJ8zz7dmF/K0NNs5Eobhkvy3VXxwzoggiFbKihUrcO+992L69Ono1asXVq1ahfDwcHzwwQey7du1a4cOHTpYXps2bUJ4eDiJdsKtOFpCTenBv6GlQXZ9SVWJbJZ2rbBg8VfZX5i0ZhL2lO7xqmBPiUlxar+kiCRVkZwSk4KspCyH3OiFlvv24e1ttmdnZGP3fbtxZMYR7L5vt0jo2kuAJrVmS93W1URzXGic5X1ShG3eAEct9+O6jcPu+3Y7VItcb5SS8X138DvLdRnSZYhle7+3+7nF5VyaLwBwLE5f7zh/T0Ci3QUURbtaPOn8+VybV14B7rkHaPGdGdLW7EKekyO2tPPnmeNcOE+rwCHvEIIgCCdpamrCrl27MHr0aMs6g8GA0aNH49dff9XUx/vvv4+bb74ZERHKrqyNjY2orq4WvQDAbDa7/GJZVpd+vPXy9/F74hzW7V0n646+bu86xX0SI229RBgwCA0MlRUEgONCXYq360knhCdg3ZR1OF1z2m47wNYtvV9SP9V678uvXo68+/KwZvIazWMSenY9/f3Tip+Z3D0k5xXGE2QIwrop63Bj+o1O3VNC0Z4QnmCzfUL6BKydvBZ9k/oiNIBL1KZ2PF/4HhdVFMlbqCuKLN+jL4u/tGyTfo+E5yDE0XHc1Psm0f7CzPRa9p93uXy4gb399fgMnIXc453EaARWrLD+EJ06JWnQtat87OiAAUC3bpxg/+gj4ORJYMECIEQS2xEf7/Fa7q3ZhTw7G5g7F3jpQsnMzExOsE/0/CQlQRBEm6KiogImkwlJSWJLU1JSEvbt22d3/x07duCvv/7C+++/r9puyZIllvwEQsrLy9GgVIZVA2azGVVVVWBZFgaD/9k6/H38gGfOYf6W+bIu7Y9/+zjmb5mPQ1WH0C2mG+YMnINx3cZh4a8LUVJVYtMPCxYRgREiF3C+3y6RXXC85rhT45Mr7+ZJ0mPS8eQlT2Jcdy6vRLeYbiisLFRsX15XjgczH8S2E9tQVFlkmWzYU7pHcZ+Hsh7CsHbDUFZWhuHth+O9Me9hwa8LZK/ZtJ7T8Mm+TwAAW45ssaw/cu4IpqybgvfGvIdx3aw5MJTuoRaTsvFsZtZMy3ic4a+Tf1neT/p0EuYOmisaEwAMbz8cGydsFK2TO56vfI+7xXTDvsp9Ni793WK7oaysDPO3zBe1579HOT/kYGjcUNlzYMA4fI37xfazvA9gApDeLh1zBs7R/Hnx99eKvBU4eO4gusd2t7u/Hp/B+fPyCRS1QKLdCXg3ciF5edx6TfHfd94JxMYCU6cC333HvaSEhro9y7OUtDRgj+S3tDW5kF96qfV9fr7XhkEQBEE4wPvvv4++ffviUuGPuAzPPPMMZs+ebVmurq5GcnIyEhISEB0d7fTxzWYzGIZBQkKCX4pefx8/4JlzOFR1SNaCKBSMhZWFmLFpBm5Iu0FkTZRS2VApWu4Q2QGLhyzG3+f/xvLfljs1Pm8K9szETHw74VvR9V945UJMWaccrsKAwfbS7SiYWYDcbbmWOOjSOvmKIUGGILx6w6uiddMTp2P6ZdNhLDRi0U+LUFxRjLT4NMwfMR/nG89bRLsQXiS+uudVTL9sumW94j0kcAToFNUJJ8+ftCyP7zNeNueGFoyFRnxa/Kllef/Z/ZixaQbWTl7rVGy5r3yP+c+dn0Ti/1945UIkJibiUNUhm31YsDh07hASExNlz4FhGIevc1KtdRJ48RWLMXfYXIfPhb+/tKLHZxCqFj5tB//89fYyvBs5JC4/DrmR33gj8OqrytsbGoCKCmeG5zRSV/HW5kLuQ5EIPgHFtPs+am57hP/RVj/P+Ph4BAQE2JT3Ky0tRYcOtsmZhNTW1uK///0v7rnnHrvHCQkJQXR0tOgFcK74rr4YhtGlH2+9/H38rp7D50Wfo/87/RHxQgT6v9Mfnxd9brPdkcRYaoIdsBXYgzoNwpM/Pem0YHcFoXt6kCHIqZJrV3e/2ub6T+49GeunrleMbWfBovhMMQwGA+LCrG7iqbGpsqEDvRJ6KX5+k3tPxp8P/In65+rx5wN/gmEYTP9SWWwJj23vHhK66i++YrGon8jgSKfvuUU/LbIZEwMGi39a7NffY/5zl2ain9RrEgwGA9Lj0+VjxePTbc5BuN3RcYQHh1v2T45J9tj56/EZOAuJdieQcyMHnHAjv+QSXcajF9nZwMiR1uXMTM57oLW4kJu8GwZGEJoJCuJqy9bV1Xl5JISe8J8n//m2FYKDgzFw4EBs3rzZss5sNmPz5s0YMmSIyp7A2rVr0djYiNtuu83dwyRaKUpl2fhSa6krUzFpzSSbjOZ61RMHgP8V/8/G+u5uGDAwTjWKBPPV3a+GOceM+wbc51BfL//6smyd+eyMbByZdQSZSZmqSb2iQ6yeLnOHzXW5ZrhcuS6lY9tDKNojgsU5M8KDwqXNNVNcUWyzztezk2tFLRmfMzXhnckk/8uxXyzv52+d79P11fWC3OOdIC2Ny6wuFe6twY1c6I3f2lzISbQT/kJAQABiY2MtcVXh4eGKf9T4kmmBgYEul1DxBv4+fsD+ObAsi7q6OpSVlSE2NhYBAQEyvbRuZs+ejTvvvBODBg3CpZdeipUrV6K2thbTp3PWsjvuuAOdO3fGkiVLRPu9//77mDBhAtq3t80ITRBaUCrLNnvjbJvyakKCA4LRIbKDahtfhQGDzKRMTMyYiEe+ecSyni+/VVHnmCcnAwYr8lYouhLnjMzBpDWTbFymeaGWdyrP0nblbytF5cEcLV0GyGftF47VkUmA+uZ6y/unvn9KtM0V0e5IObfWhFpZPKUkbI5OkBkLjXhy05OW5cNnD2PSmklYP3W9LmXtfBUS7U6Qk8PFtDMMC5ZlROt1haxsukKinfAneLdhewlV+EymvNuWv+Hv4we0n0NsbKxdd/DWyk033YTy8nLMnz8fp0+fRr9+/fDtt99aktOVlJTYuA0WFRXh559/xndyeV+INoOx0Ijcrbn4u+JvBDKBMLEmZCRkIGdkjqYHdKWybNLya1JazC1YMXaFTR11X0cqWoV1skMCQzgPg32OWSVZsDh47qDidjWhZiw04o2db1ja7i3bi7/K/nJJYMkJYsA6WaF1EsBYaER1U7Vl+eg58QSNK6Ld3kRGa8bRmvCO/u1XmohbuG0hiXZCTHY2sH49F9v+998sWloY9O7tBjfy224D/vc/oG9fXbs1GrmxFxUx6NatPRYuBCZP1vUQPokwpp0vZ0cQvgrDMOjYsSMSExPR3Nys2M5sNuPMmTNo3769S7FS3sLfxw9oO4egoKA2aWEX8vDDD+Phhx+W3bZ161abdenp6W02DwDBwbu287SA+0POu7hrEX5KFk9APbmbiTX5pWCXilaRaA8IQe422woLwv3lrgkDBt1ju6seW0mouUNgKQni9VPXO2Sxl14L6bm7ItrVJjIIiNzZm0xNMBYaNd8PShNxrSH0QA0S7U6SnQ1MmMDi/fercN99cXDKcy8+nssSr1SK5uhRYPBg4PXXgauuAs6cke/DgQzzfOZ7Lskcg337AjFlCoP16zVmvvdjhJZ2Eu2EvxAQEKAq9sxmM4KCghAaGuqXotffxw+0jnMgCF9ESWA6Ivx4gcfDC7yUmBSHXd/1qrWuxoT0CVxiPA0l3rSI1rCgMMv70MBQ2Vhrno5RHS3Z06V9zxk4x6nzcYfA0ksQq10LwDXRDjhucW4rGAuNNpUHHHFvb6uhB/R04SK88FMI01Cna1cue92uXbavvDxg7Figvp6r6d6tGzBwoO0rPR0osa0TqgSf+Z43XrAsA4ZhwWe+b81GDamlnSAIgiAI30VNVLFg8Xf537LbjIVGZK3KQtjiMORuy8XlyZdbtqXGpsI41YgVY1c4PJ7QwFD0Teorm3RNDxgwOHzusCU7d5AhCAaVR/WuMV1FGbzlRKvU0p4Wn6Y43vZhVgtU78Telr7XTVmH6y66zqlzkjueHgJLLRmaK2PjCTIEISigbSUN9RSLflwke08s3KatDJczye5aA2RpdxFetDstArt2VbaUf/018OKLwHPPKc8K8KXhunblxLtcmTiBNV4u8z3LMo5nvvdDhJZ2sxlo456qBEEQBOHTJEUmqVrDm83NNm61vEs9/yC/p3SPaJ/r0663CLzsntkOxXfXt9QjNSZV1KcWi7iU2NBYnGs4Z7Oet0Dz52PPPT82NBZHZh1RbSONaZe6lgsRitQ/H/gTBoabMDCbzXbzqyjhy7HdSmMDuGtFuIeiM0UueV+01dADsrS7CO8J6ZSlXUvn//d/wNtv229bUsJZ3e1Y49PSgK4oQX/kWV4DsAs3Juc5ZLH3R8jSLobCAwiCIAhfxVhotOu+Lmedk8ZQS3ltx2uWeNrEiESHxyWt0c6CxWODH9O8/9yhcxETEiO7TWiBtlfWDIAmkRMWaHWPDwkIsQgevs52RJC1zFmL2fqgxAt2V5EeT80rwNNIx9YnsY+3h9QmSG+vUMvdAe8LPTwt/A2fEe0vvvgiGIbBrFmzVNutXLkS6enpCAsLQ3JyMh5//HE0KMWEewC3inaegQPVt997LzB/vnJsPG+NB/DizBLsQzryMNDy2oVB+O9+Tty3q2m9wl1qaW/r0MQFQRAE4WmErutZq7IU6ytrEa1C6xzf757SPXYt35PXTEbWqizsPr1btD4uNE5hD2UYMPh83+eK2xPCExAaEIpe7Xth3ZR1WDpmqawVV2qBVitrxqNF5Agt7fx7oeC5KO4iy/aiCve4XfqywBKO7c8H/vT2cNoE80bMa5Pu7a7iE6J9586dePvtt5GZmanabvXq1Xj66aeRk5ODwsJCvP/++/j000/xf//3fx4aqS0uu8frQV4e8M9/qrf57Tdg715cm3YQYVAW91GNjtXu9GWMRiArCwgL4/7/U/BbTKKdIAiCIDwL77q+p3QPGkwN2FO6B5PWTMLcTXNt2smV9JLCW+eE/WqBBYuC0gL8fuJ30fqXr34Z66euR0J4guZzYsHKegSkxKTAONWIsifLUPt/tdg8eTMm9uTEakiAVbQnhCfIWqDV4q15tIgcqXu8EGOhEX+V/WVZbjQ1Wt6rTai0VoSlx6hyhfvwZe8LX8bror2mpgbTpk3Du+++i7g49RnOX375BcOGDcOtt96K1NRUXH311bjllluwY8cOD43WFo9Y2u0xf779enMPPQT06QNceaVnxuRl+Cz5BQWco0FBAfDJJ9bt9FtMEARBEJ5l9sbZsuuX/bLMIhB5Aa4lTpwFi3MN5zB5jeN1a+X6jw6JRnZGNsqeLMOTQ590uE8eBgxiQ2MVRYhQPN874F5ZCzSfbEuJoV2GahI5Uvd4IWrl3/iyem1NuPO4s0IA4dveF76K1xPRPfTQQxg3bhxGjx6NxYsXq7YdOnQo/v3vf2PHjh249NJLcejQIXz99de4/fbbFfdpbGxEY6N15rC6uhoAl1TD7KLSNpvNYBj2wnsWZrObvuDt2oEJDQUj4/7OhoaCnT4dqKiA4bPPFLtgu3UDzp0DU1mpeijhObh6fdyN2WwGy7Ky48zNZSxl7QBepLPAhVnrlhazT1jb1c7B3XAzyoxlHM7gzfHrhb+fA43f++hxDv58/gQBcGI7d1suiiuKkRafhpyROTYJ4tRi1KcZpwn/TNuFd6ktqSrRTWAJY81fGvMSLutyGRZuW4i/yv6CiTWp7CnGXlItoXhWSniWnZGtWpauZ3xPTWNRs7Tby87P5wyYkD5B07FaE2RpJ3wNr4r2//73v8jLy8POnTs1tb/11ltRUVGB4cOHg2VZtLS04IEHHlB1j1+yZAlyc21nEsvLy12OhTebzaitbQHQDk1NLSgrk6mjrgehoTD89BMMMoLb3K4dzKGhCKysRLxKF2feegstmZkI/OMPxI8fr9huWPF7CEdP1CECFXl5ysfs0sWZM9EVs9mMqqoqsCxrUxu5qCjJItitWJfLyspRX+/9H2S1c3A3TU1xALg/4M5mhfXm+PWCP4cNG0KwYkUUDh0KRLduLZgzpwbjxjXa78DL+Ptn4O/jB/Q5h/Pnz+s8KoLwHNKM7byVVlh3WcnKztPQ4tgzGcMwAKuvRTTvVB7GdB9jWbaXxT3YEIyOUR1tJg7sJdUSimehqJZSWlOquG194XqMSxtnt661XEw7j1y9ayGu1lMnCEI/vCbajx07hsceewybNm1CaKjyD5aQrVu34oUXXsCbb76JwYMH48CBA3jsscewaNEizJs3T3afZ555BrNnW/9QVFdXIzk5GQkJCYiOjnbpHMxmM6KiqgAAAQGBSEx0PAupZuz1nZYGVsUa3y4tjeujQwfVbsYdXoWD+Axv4kEkDF8CptFWtLChoWALC5VL1XkIztOBQUJCgs2Dcno6UFDASoS7dQq/ffsExMZ6bKiKqJ2DuwkKsl4bZ+9db45fL8xmM775Jgz33hsHhuHumX37AjFjRhzWrjUjW/15yOv4+2fg7+MH9DkHrX8HCcIXkWZsF1ppszOyNWWCdxQzq793ykf5H+Gp4U+J1qm5kAPAirErHC5pJrS0q4l2NVFd1VhlMzEiR1iQsnu8Wvk3QJ966v4KuccTvobXRPuuXbtQVlaGAQMGWNaZTCb8+OOPeP3119HY2IgASSHtefPm4fbbb8eMGTMAAH379kVtbS3uu+8+PPvss7IPSyEhIQgJsXU9MhgMujwgBgTw7sUMDAYv1tBKTQWKimTrtDPx8WB4gZ2YCHNwKAxNMjPaQUEoD+yIDvUlWIgFgIKRkWlo4NzsU1M11YZ3JwzDyH6WOTlcTLu1HUQCnmEM8BV9oHQOnsSVY/vC+F1l+fJIi2AHuHuFYYDFiw2Y7HiopMfx98/A38cPuH4O/nzuBCGX6ZwFiz9L/0TqylS3HdeZGulqHD532Gadmgt5SmyKUzWjtVratYhqfmJECTX3eOHY/y7/G83mZp+sp+4NyD2e8DW8JtqvuuoqFBQUiNZNnz4dPXv2xFNPPWUj2AGgrq7O5sGGb+etL5dPZI/n6drVvlDu2hV71hbh7hs5of3F52fQuXMcd13j4/H4kx0RseYDLMJzSISdTPJ8bXi5MIPQUG4SwUvW+Oxs4L33gAvzO8jIAHr0AL74glsWhY9qmXjQOjnh5UkMwjkOHQq0CadgWe4WJgiCIDiU4taTIpMULel6W9iF6G0NTWufZrsuPk0xK/1DlzwEgBO/9tzUhYhi2gPkY9r5fnlR/WepbTkyLe7rwkR0chMEwrEbC42ykw9tJeeGMOlek6kJxkKjQ58rQbgTr4n2qKgo9OnTR7QuIiIC7du3t6y/44470LlzZyxZsgQAMH78eKxYsQL9+/e3uMfPmzcP48ePlxX5nsAnssc7SGNSV+wGJyAbepUC3RMsJ2IyAO/gfuxBX/yKYcqd3Hgj0L27/drwXhSqwkT5mzcDS5daly2TLFomHgBtkxM+PIkhB+NFxxCfgJ9gMZsxrqMZR44EgAWDCsTjGLqCYbiPkyAIoi3DC/XC8kKRJZaPW39y6JNuFeaepLqx2kao8dZuOcanK+cIUkOrpR2wiuqsVVk2rvJa3NdFlnaVCQLhsdoifF4GHhaspvADgvAUXs8er0ZJSYnIsv7cc8+BYRg899xzOHHiBBISEjB+/Hg8//zzXhujNXu814bgMEKvAOm4+W2NsBNfefw499KKnpZqgdgKrKwE2rXjJh0kfQnD8VkWaGmxLlvOu6JCfeIhLw8wmdTbHD8OJCfb78vLkxiEAMEEiwHAesGmeoQiHUU4xnZFjlavQPLEcB90zQjCowit6bwFXRqvzv/PgMHK31Z6cbSOYc+dvqSqxEaoCa3de8v3osVsfZgIDwp3ahxaY9qFSF3ltbqvq7nHE1akeRkAbeEHBOEpfEq0b926VXU5MDAQOTk5yNH8JO1+/NHSLhTtTrv1v/UWcPAg8PLLym2efBK4/34gMxPo318fSzUgElvxSn0BMB0uQf8LLv6Be4AOJ4H+ACoQD5btCtTWAj//rH6eEzXUjRx2wSNBJneCS5BYcR8qEyxhaECHwAr8Y01XTBxYAuRpmETyZU8MPe8jd/SlNvmm9zWj7xRBqCLNAs9b0NWyizebmx0+TpAhyKH9UmJScPL8SaeOJcSeO700gR4Pb4H+15//wp2f32lZL3Q9dwQtJd+kOBM7D6gnoiOsKOVloOz5hK/gU6LdH/GpmHYnUBp3BeK5h2Klh+XrruMeftVE+5Yt3CskRGz2FiK0QNuzVP/+O3D+vHqbI0c4q/exY8iYkI48XGh7DfAsuFczAmG+biBQkAc023kAiIzkPmQt5ZiUzpFn925u8oJh7AsWR8SKr4oyrf3pbaXW4RwS2pk5wa7lM7B33x4/DkREAHv3avPEcPQ8PSV63dSX4uRbcjL3fdbqvWLvunnrO0UQfoSctdEdOCK+jVONuDH9Rnz424eYsWmGS8dlwKBrTFcb7wEhakItMjhStOy0pd0B93ghzrivq5V8I6zIZepvy9nzCd+DRLuL+LulXck9/hi6Kmajtzy4ym0TctddwI8/AocOqbe76SZO2NfWqrebOlV9OwCMHMkJpLg4+Qz5AILQAuT9zi107AicOqXc37Zt3P8DByq3+fFHIC0N2LEDuOEG5XYzZgBLlnBt3nwTaGxUFiwnT6qLlQMHLJMTzgqRi6uBSlyYoIGTosZVwQjoa6VWaxcSArzyCvDnn8CGDbbbBRjLhgIjOql/Bk8+yR27pES1L4snhj2++w44exa4/nqHzlPV40RryIYWkepI+Ie9/uz1NXQody3q6uTb8Hz6KfejFRsL9Omjft0cuRZ+lJuCIPSksLzQp0pdBRmCLInQxnUbh64xXVFSpfyba2/CgQWL0tpSi8V6T+kem/ZqQk0o2gMNgQgKCHLwjDiccY93FnKP14az4QcE4SlItLuIkmg3GoHcXKC4mNNzOTnwmXrPmt3j7WWjj7djjc/N5YTl6tXAbbcp93PggN0xAwBiYoCoKPux9LW1dicAqmc+jejH7wGqqoBBg7QdX4mICCApCejcWb1dWBgXUvDKK8ptGhqASy8FSkvV+7rqKiA8HEhIcFqIrLrwfz1CgRINoubYMe2CsUsXYP9+9f7efJP74qi1+fprYMAA7phq7U6fBjp0AE6cUG7X2AjMnCm/TUIImoGjdhIrrVmjqS8LgYHixApSnnlGff+GBi6bYqdO6ufZ0AA8/jj3fTl9Wr3P8nLOmp2RId9fcDDw0kvctZCEK9mwYQPQvj0sGfyUJk5efdU6GabEiRPq23leeol7BQcDTU3ybRoagAceAM6dU+/rppu477G9e5JyUxCtFGOh0WX3cz1hwKBXQi/RuuVjlmPKuik24jzIwInnXgm90C2uGz7b95lin+nt0y0Wa2k4gD2hJhTtzrrGA2Lx7G6XdeE4yT1eGWfDDwjCU5BodxE593ijkasRztUGBwoKuOX1631DuItFu22ZK8101WCNBzhBoMabb3IP+QcPAvfdp9xuyxbufzWr988/cw/eW7cC996r2Kxu3BREX3wxJwbVJh7i463v7bWxN4mRlwfs3Am89hr3vxL2BLvlJOrsC8tbbuFyCkRGqsZwY8oUTpSrMXw4N2kSF6cuagYM4ASSyaTenzCdvxIPPmi/DQAMHqytXbduwPjxQGoqJ2wVuKv9l/ho8Qn1499zDzcjd+4c50GhxI8/AkOGAHv2qN+7ffuqT3QA3HdFC0aj/TYAcM016pMJTU3ArFna+po/n3slJalPnNx/v/2+3n8fGDWK84IZPly53dChQGEhZ5VX45tv7B/zwAHtE4gE0QrJ3Zbr0eOlxKSgqrEK5xrOWdbZE8+8sHrm+2dQXMnVTw8PDEfts9aJ+oXbFopEu1qfjgq1iKAIy3tnXeMBz1rahd4AZGlXpy1nzyd8HxLtLmIw2GaPz821CnaA+59hgIULfUO0C7WUVKQ7HJuvpTa8PQYP5oRebKxr/QCcNfvii4HqatVmlvPUOvGgpY2Wvnr2BHr3VhdvH37IWarHjFFu88svnJV982bOiqhEcTH3sseOHfbbAFxsv734/jNntPU1ejT3xdi0SblNt27cDXv2rN3PVBNr11ot9888Iysu6xGKvwOzgEvteE7MnMn1lZenLtojIjhhbI+PPuJ+SC65RLnNjTdyn/uZM8Bn8pYkAJwwTk3lJoBWrlRuxzDq1n+Am/QZOZILgchVeajv0wfYt8/+pNNFF3HXbf165Tb9+nGfvT3r+GuvcXkiPv9c/cd11izu92XBAuU2b7zBeWsUFKi3I4hWSnGFhr8VGtESF//K2Ffw6d5P8eneTwEAHSM7IjggGKW1pariOTsjG6NSR6H9S+0BAB2iOoi2C0Vwr4ReCDIEqQpyR4Sa0NLukmh3MqbdGbYdsXo2XfHPK5A7KpeEKUH4ISTaXYS3tAtFe3GxvBjmQ3i9jXCsHkmgZ88CrdVS7YjV2w6i89Yy8aB1ckKPSYzMTPttQkI0TU5YXPF//VXdnXvBAi6U4Z57lNts28aJmm3b1D0i/v1v4IoruDAGNQs4b2lXE+28yM7LU5/o2LKFE2979nAC0x6CCRaz2YzKykq0a9cOgy4xoALxMAV0BWAnZwOPnve3vTwR8+dbr4eaaL/vPms7NdH+229AWRnnfaDEhx9a+1IT7f/8J5CejkVpH2PeSRUPhXXruP/VRDuPlmvGMEBKino/t9/O/a8mxi+7jDvP1FQS7YTfIizXlhafhpyROZiQPkFTezC22xkwCA8KR22znZwzArKSslBUUYQGk0JeGUMQPp38KViwFsEOAKdrToMFq6ku9g+Hf7C8P1Z1TFRbXSiCu0R3wcbbNmoeuz2Eot0Vse1M9nhnMBYa8fTmpy3Le8v2Uu1xgvBTSLS7iJx7fFoaZ6wRruPDPH0BoWjn3/Mx+H/95YYDarVmO2j1FootgzQJWnw8WgJDEdgib0ltjtUm7r2GViFojxEjOCEyYoS6aFcTbTyRkdzNXVOj3i4jg4u7thdPrScxMZwlNTLSblML/ASL2YyWsjIgMRG7wSWp6MhC+2eg5/1tT7Q7ir1z6NBBmxeAlr7i44GICHxdcSnm6dEXoP3a6jV+gvBjpPHZBaUFmLRmEtZOXovh7W3DTPj2arBgUddsJyGkhJyROViwbQH2lO6R3f7p5E8xMWMislZl2dR/11IX21hoxOS1ky3LzeZmkRB1Z7Z0oWhnGJlZDo0EGAIs791paZdWA9B6jQmC8D1ItLuIXCK6nBwuhl0Iy3LrfQGppd1o5EKahS79ALdeN3d+PS3VMmLL8kEI2vx7XhFezeEe9r/8ggtP+GMXly39h45eTCSlRTxoFSt6ChG9RY2enhN6e2vAOlFVVMSgW7f2WLhQ0t4RwajX/a33eeo5UaDxenTtCsBeaLiCp4PN5Bvf1t619dXvFEF4ECWBtuinRdg4wdbarCWGXc7NXc31fe7QuZiYMREsWNkJAX474HxdbLmydEIh6s7Ea8Ka52ZWn7JB7hTtVHucIFoPJNpdRE60Z2dznp+8cI+PB955B5joIwkopTHtixYxNoId8J0YfGepCO+K3eAexBt7A4VhwO4L27xaos+OYDH+0RW544Hi4q5IS+uqXnlAByFSj1CEuUPUeDpfgAPtxMkiGezbF4gpU2SsJnqEOziCE+fpsuh1RKRquB53PRGP+gdCuQSHav1pmXzTiiPXTcukoF7WfYLwIEoCTRirLnSHbzQ12u1TTpxP7jUZa/9ei06RnXCy5iQAziVeGC+uJcGbs3Wx7QlRd5Y4MzDW3yhXRDsreOByZ0Z3qj1OEK0HEu0uIuceD4hF1s03+45gB2zd44uK5GPbfSUG31kaBc8jLAs0N4uXvYqCYHGq8oCTQuTBB4Hfd3CeByVOihpdrKR65wvQ0M42WSQDhmEt1RS8en84ep6uil6dReq193fF2JVFKN/H9ZfWgwuxv/JK5/rTjJ4TLJ6erCEIHZATaAAABlj460J8feRrHK22U3FEA52iOgGARbCHBoZi/sj5Did4c7Yutj0hKhLtbhTEJrOdCikqCMcudJXXG6o9ThCtBxLtLqJUp12I1wWiBPFYGaSnc/m7pPhKDL6zCA2HUtHuVUu7Cm6tPCARIgeirZ4HTvelh5XUC8gni2QE7z08IG+js0hlk7ti9z6uvzz9ElITRJtGmmRubPex2HhwIwrLCxFgCECzqVnWMt7Q0oC39ryl2zgq6ytt+ncmuZmzdbHtCVGhC7s7Xc9dsbTvPmX965u1ivNScEeMOdUeJ4jWA4l2F2EY25JvUnxNAEgt7fPmsbKuwb4Sg+8sPm1pV8DXKw+0FtLSbCeqhJZ2wjVcyM9EEIQM0iRze0r3iBK9NZubVfbWl61Httqscza5mTN1se0JUU9Z2p0V7cZCI97Je8eyzCcMdFdGd6o9ThCtAxLtLqLkHu/LSGPas7OBq67iSn4LmTDBo8PSHX+0tMuLSf/3evA1pMkiSbATBOHLyCVf8xana2wrg3g6uZmaEHVnTLux0Gh5f/L8SVGpOa1QRneC8AC1JUCjTNhfSDwQ0VV7Gx+CRLuL+Lt7PD+2pCTbdrxrtr/ij5Z2WzHpW5UHWgvZ2cDkyVzJcIOBRc+eLVi4MACTJ3NfaF+9P/wFf/7dIAhfRC75mi/hS8nN3FXyTVoiT1pqTiuU0Z1wC94QoL4qemtLgP+lA2aZhLiGUGD8he+avTY+JtxJtLuIFtHua1ZduTrtcomjzWb/CFM2GoFFizjX8rQ0WLKt+6OlXRq3npnJnY8vJTJsLaSlcf9fey3w3ntnkJiYaNlGop0gCF8iLT5Nse65p5G64vtacjN3lXyzV2pOK5TRndAdLSLVEQGq1Uqt9Zh8f2YzAs9XAoHtOIHhjNVbS7vGCvlxAdx6fn97bUi0ty54Uav2kO9rAkDqHg8A9fW27Xxt3HJs2BCCGTMMstnWpaK9pUW87A/k53t7BK0X/h5oavLuOAiCIOzBJ19zBgNjsBt/nRCegPK6cqf67xLdBf+45h8+k9zMXe7xelnIKaN7G0BPAapF8GoRqVrFsVYxXnNY/ZgN5Tb9GQDEy/UHaDumlrGFdQZqj8mPiyf/Kf8RAgJItLsI7wbq7+7xSpZ2X2f58kibUl18tvXUVHFbf7C0ewt/D4VwBv4eEE7m8Pjad5YgiLaNK5nKtezL1x93Jm7+xdEv+oxgB8SiPdCg32OuXhZyyujug+gtsvUSoIC64L1qC7f/6S3az9PeMe1NAGy5GmgsA5rOqh9r03AgMgUIilHv78hq63ulNmU/AnFZwPkDdsY2BqgrAUwKbXhOf6++3Uch0e4irSF7POC/ov3QoUCbBGJ8tvUOHcTr/CGm3ZMIRXpbFu1kadeftnYvEYQ74Eu8FZYXuj07fFltGQCga0xXlNaWgmVZNJoa7ezF4c6yas7grvHoaSFvdRnd9RS97hqbkqVaT5EdngzUHlEXlsVvAuGd7bfb+zzAQr3NpqEaLgCA7bcAHcYAYZ3U+/v7JaDmkHpf5zV6lpgbgGoNbf98xn6bX2/XdszzF2rMMkEAq/KbmTEXAAMULtXWr49Aot1FfMk93mjk6nxLY7ulSOu0A/7rHt+tWwv27RMLdz7buloiOn+YkHA3ws/XHz5rveHPuVnmd70tXg89IdFOEK4hLfHmbngRGhsaiyOzjqDfqn74s/RPTfv6smhndfwxJwu5AnqKXjfGXSu6ZjeUqwvZA+9wIrvmiHq7jUOA5rOASeaBWohWoXjgHfttmEAgsht3zhW/KLc7X2wVtGrsf8N+mwErgQ6jOUv795crt7v8cyA4Gij7CShQmdiKGwiABc7mKbcJTeQezEx1QEutcrv+K4Au44HGs8B3lyq3S7mJ+59Ee9vCV9zjjUYullsutlsq3IUx7fy45US7PwjbOXNqMGNGnGgdn239pZfE68jSrkxbvB5kaScIwldxZ4k3pX6F8dlqseDS/X1NtAcYAizv9b5+rc5Cbg894qkPf3IhBvqgtrhrPV3QG8rsCO3L5I8lZO/z6tt5Gk5qa5d0JXcuTVXA6Y3K7bpceKg/tk65zZhfgPhLgMo84NuByu36vQjUnwJOfQdUFyq363gtNwmgJt4TLwdie3PHVCMiGWg3gHOPVxPtgy9MTqiNf9Q3XF/2zjNpJBB1MWAo4e4DpfsjJN763l4bH4JEu4v4Ssm33FyrYOePycd2S0W7XEy7v4r2ceMasXatGVOmcB9EYiKwahWXbX3RIms7f7S0B3rw2+kP10Nv1ER7W5zE0BOytBOEa7izxNv6qetx+2e3o7ZZbLESxmcrZV1nwCAjIQN/l/9tWedrol1YS33pz0vRJbpL2xLaemHPSj36R6D+GHDsC/V+9vyftuOV/QQYgoBvL7Uvxu1NFGy/GWg8Y9/Vu+GU/XEljgRC2gPN1eqx0IM/5ERj/UkunluJ/ssEAlRFtPe5cN3URDs/QRUSry5AU27hrps90Zu1mPtfi8Xd3jG9KXojulrj86UIJ3+0tPEhSLS7iK+4xxcX2x6Hj+2WojURnb8IF+GkxH33WcujCc/JZPI/d3B3i3ZpTHtbg9zjCYLwVZwp8abFMn9z75sxMWMium/rLupfGp8dHBBss43//6mhT+HOL+60bPcl0S6tpX6y5qRTtdQ9ji/Wu7YnjNXcj4W0GwQEx3JuzRW/KrfLm6Xej7kB2LMAYFvUrcWA+nGEDP4ACEkAfhyv3GbACm1W3rhMIPIi+wna3IFWkaoFrWJc6zG19qeljSMTBRFd7Z+3ljY+BIl2F1Fyj5cTxu4kLY1ziRcei4/tliKXiM5fLe1ShHXlhTHtUmuqP5xbUJDnjtUWRSq5xxME4asolXgzwAAz5P+AabHMf3fwOxgLjega01Uk2jOTMkXx2UL3+JSYFJyuPW2J4R7dbbRItOtZC91V9Kql7lG8EeutpV3zeTsHYoDYTCCyO3DcqNzs0re1id7wZKDOTqmuwx/aGdMF+swDkq4AWuqAbdcrt4vL0tafI2gVlnqKWUCbANVyTEcmALQK4wv9mc1mVJ6tRLu4djBIwyy0HFPPyQk/hES7i/DZ4wFxBm65WujuwmgEqqrkLe05MmEkcmPz1+zxUvjrbzQCJSXW9d9LPJr8QaSSaHcv/P0tZ2knCILwJtkZ2RjSZQh+PS62GPZo3wOV9ZVO11SvbKjEpDWTcFnnyyzr0tqnIf+BfFE7oRBfdf0qjL14rGW5ySSe6fQlS7tetdTtoqdl3JEa21rG5WpSOCYQiL8MKLdjrR69jYtvrsxTF+1aGfE50FgO/HCNcpuuU7kJAFMzUDBPuV2XCdaJAnvoLbK1CksHXbhVBa9WHBmbngKY789sRktLGdAuUWxlc+SYfmYd1xMS7S4ivOfMZiDgQniJp0S7MAGdkNBQYPVqq6u4EDkvgNbiImwwWK+JkOeeEy//8AMwbJjnxuUM7naPF36+/jhB4yr8+VNMu/5QTDtBuI5cffXiM67HujNgsO/MPstyeFC4TRuhpT0sKEy0LcggnlH2JdGuSy11e4LcEcu4lkRuWv/gaJkosDcBUHcMCAgHqvYqt2NbgPKf7Y8nMMJ6fL1dm5Xo9ZRVjKuJdh49Lct6W6C1ttMieB2hDYtef4dEu4soxQV7yj1emoCOx2CQF+yOjM0fhRzDKF8TIfPmAe+9B5SWqpfH8yZkaXcvlIiOIAhfpviMbYkmPZLTsWBxvtHq+hwWGGbTRhjTLhXlDMPAwBgskwq+JNpVa6nrlZVcq2XcXiK3of/mYq+Pfqp+UvnPcgnOCnIAs8wfLEMocM0OLmb8lEpiM0A9QZqQ9Me4BGw/aXgw0lP02svkLmzvoNVb1VJNVl7CDyDR7iJSSzuPXFk1dyCXgA6Qj1HnEXsBMIoxvf4o2g0G5Wsi5ehR7n+18njehBLRuRc19/i2eD30hCztBOE4xkIjcrflorCcS7LVbFaP3ZEKU60l4vh67GfqzwCwtaQDYvd4OVEvrH/uS6JdsZZ614HarOP2BPnOmep1ogHg6Bqg7jjQXKPe18+TtZ3U6W+5lxLmBuDrTG198TCBnEVdiYvu0D/pl5Z2erugC4+pl6WaILwEiXYX0SLa3SkA5BLQAUBwsHx7wDYRXU2NfDt/FC4Mo3xNlFArj+dNPFnyzR8/a1dRc48nCEJ/3njjDSxbtgynT59GVlYWXnvtNVx6qXIG6nPnzuHZZ5+F0WhEZWUlUlJSsHLlSlx33XUeHLVnmLtpLpb9skxz+5SYFMSGxlqE6djuY/HSLy/ZCPcAJgAm1vpAwm8f0mUIvtr/FQB5US4U7XKiXHgMtZru3kC2lnplnrqA3jUbaK4EzhWod35yg/0BFC4F7CQ3BwAERnKx17GZQP5c5XbdZwCVu4Czu9X7C+vEvSr/UG4z5meg/WXAuT/Vk8IB2q3UeuIOF3SCaCXQVJOLKFkrhaLdneTkyAuumBjlfaTu8evX22+nBaMRyMoCwsK4/4065CVxFINB+ZqooVQez5sEBXnumvqjV4Wr8OdsMjFt8vwJwpN8+umnmD17NnJycpCXl4esrCyMHTsWZWVlsu2bmpowZswYHDlyBOvWrUNRURHeffdddO7c2cMjdz+OCnYAeGXsK8h/IB/1z9Yj/4F8LB2zFOunrkdmUiZCA0ORlZQF41QjWua3YO3ktejVvhdCA0KRmZQJ41Qjeif2tvQlZ2kXusfLbRcSaGgF9p/j64HSH+y7Z6c9CvSyU3c8cRTQbiAQFKve7srNwNCPgZSbOCuyHIZQLhP64PfU+xq9DZh4gsvUrkZAmLW2txYiunIx5O0GoCUq0/LerWJZcEzRiwQ60cZpBb+03kWLpb2khBNcxcX6x09nZ3OiW5p4LUDlN1k4zu3bg/Hii/JzN44IGWFCPJb1nss5wyhfE3v7yZXH8yZ1dZ67pm3R0i68v6Uu8m3xehCEO1mxYgXuvfdeTJ8+HQCwatUqbNiwAR988AGefvppm/YffPABKisr8csvvyDoQoKP1NRUTw7ZIxgLjQ4L9rlD51pKswmRtTBfWD+8/XAkJiZyVlIAf5b+adkuZ2kPCrAmVfEl93enqdqrvv2i6UDSKAAs8Ntdyu26XSh19/cLym0GLNdW4oyf7NAj1jsw0treU0nhCILwKCTaXURY8k1JtG/f7l7hJdePsEa5FOHY/vOfMDAMC5a1DUJ1RLhIk7950uVcOE5+EkWahG/mTODNN+X358ctVx7Pm5SVee6atkWRKjzn5mZGcRvhOHIx7UYj9zvhjslLwrdpamrCrl278Mwzz1jWGQwGjB49Gr/+Kl9W6ssvv8SQIUPw0EMP4YsvvkBCQgJuvfVWPPXUUwhQmJVubGxEo+CPX3V1NQDAbDbD7II7jdlsBsuyLvWhRO7WXM1tQwND8e+J/8bEnhMdGovc+IMN4kRz0v6EyyGGENXjueO6yB1D8TNQSzDXUgOmYD6Y45+p999jpkVoq7mgms1mICQejCEUjIzgZQ2hYIPacQ+EZrP9vvjzCevCveQbau8rrAswrlD5eoR1caydoH93fQc8hb+fg7+PH/D/c9Bj/K7sS6LdRYSWdrUSWp4Ws3J11+XGdvJkgKxgl7ZTw2iUjyH3lMu5cJz85yEde2am7fKePdb3OTnK2fY9ifAaNjZ67pq2RZGqZmknXEMq2tU8cSZM8MoQCQ9SUVEBk8mEpKQk0fqkpCTs27dPdp9Dhw5hy5YtmDZtGr7++mscOHAAM2fORHNzM3IUZliXLFmC3FxbEVxeXo4GtT+KdjCbzaiqqgLLshZLtV78XfG35rZvXPkGhrUbphhSoITc+JsarMk82CbWps/ztdbs8tWV1ag1KCdfc3Q8jmBoOA5DcyVYM4uGmhqcrY4EY2BgDmoHc2gXGBqOI+G34WDMtpYKFgYArCXKXy0/ZuXZSrS0lMHQACQYQuT7M4SgogYwt4TCcNlPMDRX2rQxB7WDuTYUqNXal7Zr51hfoQBkJgBaANQKj6e1nXu/A57C38/B38cP+P856DH+8+fP22+kAIl2FxE+nCpZ2qV4QsxqFe2dOplQUiIv3IXtlKxkcjXReTzlct4iSIDKfx5S0S4VZcJnx/x8twzLKYRJ0cLCuCoAQkHtrmvqp5OeLiEW7ZTu3J2oeeKQaCfkMJvNSExMxDvvvIOAgAAMHDgQJ06cwLJlyxRF+zPPPIPZs2dblqurq5GcnIyEhARER0e7NBaGYZCQkKDrg6ax0IgWs0oG7wsEGYLwn0n/wcSezs0sy40/Psbq/hwfE4/ExETRPqFhVpf4jh06qvYv3Vc3akvAbL3cYtFOEGxiDaFgxxUCgZAVsgDAgPuRZ7tMAHvxg8CPNypax9t1SAMiEgEkgm2/D6yCBTreElet5ZytfZlZM86ePYu4uDgYGIOkLy1oHZd7cNd3wJP4+zn4+/gB/z8HPcYfGup8uBGJdhfREtMuxRNiVk2ECcc2dWo9li2Lkm3HP2CrWcnUaqJ7yuVceD5KlnZ/iVkWivbUVOBviRHGXdfUV6+HO6GYdvchtbTLlWH0xeSPhHuIj49HQEAASktLRetLS0vRoUMH2X06duyIoKAgkSt8RkYGTp8+jaamJgTLlEgJCQlBSIhtJnODweDyAyLDMLr0I2TRT4s0tQswBGBSLweStMggHX9okPXBMTwoXPW87J2z2x6+mysVM74z5gYwO2bI1y0XMuRfYC66nbOyK8SNMyHxYISiNyqVe+kB35fZDJOpDIb2ic5fLz3H5QTu+A54Gn8/B38fP+D/5+Dq+F05b/+8Yj6Eknu8kmj3hfhpoVgZPLgZixbJK3y+He9tKGclU6uJbjR6xuXcGUu7ryIU7R07ijP7Bwfre02Fn1tbFKkU0+450tJshbwvJn8k3ENwcDAGDhyIzZs3W9aZzWZs3rwZQ4YMkd1n2LBhOHDggCj+r7i4GB07dpQV7P5IcUWx3TYMGKS31/+LIkwuJ5cd3swqxI5X5gGVeegfAssLtSWOD0DQl+hVWwKwZqD8V6BwuXofpZuB8p/U28RYs+RTVnKCIPwZsrS7iBb3+N69gb0XEpd27gy8+qp346elddqHD1dvVyzzXMFbyZRqoickeO4cW6ulnc+Ez9O1q77XtK2LduE9QrXa3UtOjm0YjbcnLwnPMnv2bNx5550YNGgQLr30UqxcuRK1tbWWbPJ33HEHOnfujCVLlgAAHnzwQbz++ut47LHH8Mgjj2D//v144YUX8Oijj3rzNHQlLT4NBaUFoprnQvia6jkj9f+iCOuwy2WP339mv+V91qosvDhkJq4tnGWxfOcJde7/0jkrtlbxW1vC7SNnRWcCgJAEoOG0/X4yngIMQcDexdqOSxAE4ceQpd1FtIj2du2s7597zvsJz6R12pUEG78+Lc12G28lU6qJPnSo6+PUSmu1tEvPQW9PIrXEiW0B4Tm3tJCl3Z3wZRiFeMoTh/ANbrrpJrz88suYP38++vXrh/z8fHz77beW5HQlJSU4deqUpX1ycjI2btyInTt3IjMzE48++igee+wx2fJw/oCx0IisVVkIWxyGrFVZMBYaMbb7WJFgZy6kSkuNSUVooLWmulx5N1cJCRSIdoml3VhoxDcHv7EsF5QW4NlvHlB0VYe5wep2rmZB52msUO6LNXGCPTAK6Hit+kmkTAWS6UeEIIi2AVnadcBgYGE2M4oiSCgq3SEGlFzxTSb5eu3C9iyrLNj49VIrmdDFf+JE+ZroPXpoH7+rSM9H+D+PP1rapWOUK6PlCtLJm7aG8JzJ0q4vcveqtFoGCfa2x8MPP4yHH35YdtvWrVtt1g0ZMgS//fabm0flfoyFRkxaM8liOS8oLcCkNbYx6ixYzB06F0vHLHX7mNQs7bnbxBn4WbCqmdctqFnQDaGcNd4QDJz4Ur2f/suBtJlA1d/AqW/U21K9cYIg2ggk2nVAzrorFJJC0e4Oi6ZSTfa6OiBKJsec1D1eSbDx7aQP29ISaXKl6zwpAuWur7+6xws/S09a2n31ergTsrS3bahuPOEpcrflWgQ7AFV3+I0HN3pEtKvFtMvF2o+y9aAXs+txIK6fujV+yxjgvP04fiSNAgJCtQnyiK6KCeYs2wmCIFoBJNp1wGDgRLo/inY1S7uScNFSIs2Tokd4rbWKdl9FzdJOot1x1IQZxbS7D729QvRGrSIGX8qSBD2hF8UVxYpCXQgLFkVnPFNSQegeH2c6z7mwX+CGxC44UHkA5SagayDwUjww1J5oL/+Re6nBC/boDKC60P4gBYLcbDaj8mwl2sW147IvCwV5RFcS5wRBtHpItOsAL6aUsserxSnrgZJor62VX681pt1f4py1WNpb7JfC9Qkopl0/7AkzrdnjScC1PtTqxgPq9w1BOEpafBr2lO6x285dmeLl4N3jkwOBy/fMAP60/vH5NBJAJGBigYALP431ZiBM7W9Q+izgbD5QtlW5Td9FQI/7gLrjwLcDtQ2UF+RmM1payoB2ifr/MSQIgvAD6JdPB+y5xwtFtTssmkpWwmuv5QSHFHEMOGM3pt0ZfN3S7quCVU206229bO2WdnvCTCnvBN8WsAr/ggKgocEq4OS+V4T/oFY33t59QxCOYCw0oqqhSlNbd2WKl4O3tMcHAAZW/iEigAFaWGBtU3v82nMp55IuQ70Z+CawJzDATom2ztcBoYlWt3c5KA6dIAhCFrK064BcmTFfsLTv3y9vIXI0e7wz+FNMu8nkOxP35B6vH2rCDJC6x8vPiKgJOLK6ugdPeDbIlarkK2IUFanfNwShFWECOi0EGYLckileDmEiOjUCL1+HKV0vJM3LuBk3fXIVDlQeEDn7nzEBcTVv4drkS7QdnOLQCYIgHMZHpIp/I+cerxQv60nRrmQhkiaiI0u7e8blDJ50j/dG9nijEcjKAsLCuP/dabFWK1UIiM9ZKXzCnvD3NTx5fdVw1ivEU54NcqUq+YoYaWm24xfeNwShFWkCOnv0Sujl5hFZ2XJ4i7aGkRdZ30d0xZdlx5HXCOwWvEpawMXiO2JBj+gKtBtg+yLBThAEIQuJdh1wxD3ek6IdkBcY0hJprTGm3V7JNyFKJfO8gbeyx3vis/a0q3mOxMtUWKoQULe089fGnwScL7nyOyvaPeWaLq0bHxVlrRsvFfTS+4YgtKI1AR2Pp1zjjYVG3PfVfUgNBFYmOLZvWnyajeeAJRaft6Bfs8v2Nb6IBDlBEIQLkGjXAXvu8UpCTC+rmJpolxMYWrPHuyLk/v1vz1n7nHGPF+JLot2Tddo97R7v6Vjh7Gzghhusy5mZVmEGiO8RpUR0rgo4PS3f9vpatIjx+1hsT3o2CF3uhw4Vl7Bct866LSkJSEkBbr3Vu94LhP8hJ3CVSI1J1d81vraEywpfmYfA83ss79//8Rn8XxywNwUYYS8rvISckTkX6rZz58V7ElgmHMiCThAE4RZItOuAvezxcqJdT6uYUiI6/gH+3Dnxg77WOu2uCLkzZzxn7XPVPd5XRXtrq9PuDVfziy+2vs/Ptwoz/tg8SvcHb5ENCuKWL7pILPzV0PM7rqWv1hCL7S3PBul1E36+p08DJSXe914g/A9e4GphxdgV+h68tgT4Xzrw7UAYvrsE8TvHwvDdJcC3A/G/yGI8Hw+EG4Bf6oFGpQl6maRw2RnZWD91PTKTMhEaGIrMpEwYpxo9FotPEATRViHRrgP2LO1yolJPq6OSpT3+wt9a6QPn4cPWNu6ytAv7d+a8HLFQupqIzpfCAFqzaLcXY+4O1M5LzdIuJDubs7YCwKpV2gQ7oO93XEtfctfRV135lfCWa7r0uyZc9nfvBcJ7ZGdk4+lhT9ttN3foXMdFr8CKLnrVlnDbGysAc4PsrgYGONMC3HYaGHYc6HEUGFgC3FzTQ5NLe3ZGNvIfyEf9s/XIfyCfBDtBEIQHoOzxOmAvpl0ILzD1tDoqifbwcPkHzj//tD2uHHqJWUfPy159bSmtydL+++/W9/v2iScr/D0RXU4O9znyeEKQaRXtSt4qPPw94sh3Qs/vuJa+5s1jMWWKdfLBm7HYzoZy8J4N/H3SpQvwj39onyhxFjXR7u/eC4T3MBYasWrXKtltQYYg9ErohZyROc4J9v+ly4tyQygntk3qP2rZp4CfGhgALI63MDjWwuK5y5dyruwEQRCEz0GWdh2Qs7QrPdzz4lFPN1Al0X7ypPwDZ5WgZKzZrFynXS8h5+h5OWqhdMbSrmWCxdMYjcC771qXGxrEItffE9FlZwPDh1uXpTHm7kDtvITnv3hxFPr3Z2S3AdZ7xJHvhJ6eBVp+L7KzgfHjrctar6+vZJznEU7MLVzofsEO2N4nwt8Ef0lESPgWfLm3cw3nbLYxYNAroZfzVmoVKzrMDcDmK4BNw1S7yBm9jFzcCYIg/AgS7TpgL6ZdCC8w9XQDVRLtHTvKP3BGR1uX3Z093pnzctRC6YylXSj0fUW05+barhN+fv7uHg9wCb14pDHmnqaszPreZGJQUGBdll4PpftKDXvZ63m0iGatvxepqdb3Wq6vuzLO65U0Ue97XgmtlnbKJE9ohS/3JgcLliuR5i5qDgFQ/7G68qIrycWdIAjCjyDRrgOOuMfz4jE7G7j7buv6Pn2ctzoqufZOniz/wNlLUArWXXXaeVJSHD8vRy2UzpR8U8o54E2Ki23XST8/PfGGaNf7HOyhdl5HjkjbKg/OUUu70chNwghFp5zlW6tozs4G1q61LnfuLP+9UquSIIenM/o7SkCAZ46jJtoffdT63pXfaaJtUVheqJiEzlIizVnO/KG+fcA/gFFfO98/QRAE4XOQaNcBe4nohAgfqrsK8rv8/LPzD4JKlvZLLgE+/NC63KMH98DZsaN1nZqlXQ8h50jiLh6tFkoeZyztcvt4G6XJCp7WYGn3lOWUR+2zra/X3o8jMe1CIS5sP3++7XfBEdF8443W9089Jf+9Ek5gacHTGf0d/fx9wdJ+ySXW97/+SoKdsI+x0Ihms/IMmqhEmiPUlwK/3A7svF+9XeJwIKY3F98uh0xWeIIgCMK3IdGuA864xwNAZaX99oB991kl0c6ywBVXWJfXruUeOD1Rp50nONjxfbKzxaW67MXmOhPT7ouWdrlJCeE95e8x7YBvWdrDVOoTuxLTLhXiPHJC3BHRLLxPlSYcHLW0e6LEmqP3sDvveS3HBJR/E3xlgo/wbWZvnK24LTUmVT1+XC4rfMVO4K/nga96Akf+rW0QEV25hHTX7IL56p2ouGQjzFfvVM0KTxAEQfgulD1eB5xxjweAs2et75UsZFoyqSuJdrMZqK0VL0vHqVanXY8H1EAn77AOHYADB7j3+fnqbVtLTHt2NnDDDcCXX3LLwcHAf/9r/Zz9PXs84HlLu9p5de4M7N9vXWYYVtFF3hFLu5wQB+SFeFoa952WhkHIiWYtot1eFnwp0oz+gD4x28KJALPZ6uauZdJGeI19wdLuDY8Uwn8xFhpxtOqo7LYgQxAOzzqsvLNaVnieuAFAnxxg+03K2eN5K3pEV+5lNqOlpQxol+j5H2GCIAhCF+jXWwecyR4PABUV1vdKwlGL+6yaaK+psS7zfQiPpWZp9+YDalCQ9rb+ZmkXek70789gw4YQyzZhIrHkZLF3AcW0O46ayI6Ntb43GFj07Wu/Hy3XSS7MAZAX4tIEc/wx5ESzFtHuqHs8X2KNJyxM/5htRy3nwnMQtndnlns10e6NyS3CPzEWGjHNOE1xe6+EXorbAKhnhQeAjLnA2B1A8g0WK7rNi6zoBEEQrRKytOuAI+7xQvFYXm59r/SwrcV9Vsm6JrW08/2oPaBqWe8IzvbhiGjXYmmXXl9vWdrlPCdmzIhDTIwZkyeL7w/pOXgipp1PoFZczInPnBxxCS5X8bRoF2I2i6+h8PynTq3HJ5+EIiDAdUu7nPWaXy9FWpc8IMAaxqI0BkA/93h+DDx9++oj2KWWdrn1SsiJdi0eR65Aol0es9mMAwcOoKysDGbJRRoxYoSXRuWb8CXe1HAqjl1Iyk2A4YLbCm9FJwiCINoEZGnXAUfc4/kHUqMR+PNP6/oNG+Tba8mk7qilXfxAyrjsHq/2IOvsQ64jsfBassdLRbu3EtHZek4wYBgWixZxN5FQdEm9INwd0+6u8l9CvOkeL/1OCq9tU5O6mnQkpj07G5gwwXa9khgWis7YWOV27hLt7kBJtGv5/IXnybvVuzvLvVqddl9MWukJfvvtN1x88cXIyMjAiBEjMGrUKMvrCmGyFAKAeok3gItlt1tWra3NChEEQRCaIdGuA45mj587lxNDwgfsBx5Qrs8sRC6TuloiOnsx7Xq4x6s9yMr1ocXN1RHR7mr2eE9a2uU9JxhLuTeppV04Nndb2j1R/sub7vFqol1N7GoJe5HSo4f6dul3gEftOyccf12dfBtH3eOluEMz6OEe7+4s92qWdmk4UVvhgQcewKBBg/DXX3+hsrISZ8+etbwqhVlUCQBAcUWxYok3AFgxdoV6B01VwO4ndB4VQRAE0Vog0a4DjrjHl5QAy5bZrlcSR9nZQEyMdVmaSd1oBD75RP5YWmLa9UhEpyZ6pX1otea21ph2ec8J1uI5IQx1YFnx2Nwd0+6J8l++ZGkXbmtuVr64wnvpySe1xVSrfXfkvgNyY5IiHL9wMk6Iq5Z2d4hSV9zj+fbuznJPot2W/fv344UXXkBGRgZiY2MRExMjehFikiKTZNeHBoaqZ4sHgLN/At8OAsq2umdwBEEQhN9Dol0HHHGP5y2qUnhxJGeFFgqd/HyxYJ80SVw6ToiWmHY9Sr6piV7pQ65Wa67eMe2+kj3e1nOCy1g+bx53QaSWdqWkXHogvQ88Uf7Ll0S7Vku7cL9jx7SFDqiJO7nvgJb9hOMQTsYJcTR7vCdw1NIuJ5KlCfvkPI5cQatob0vu8YMHD8YBvoQHoYpaxvjV2avVBfuhj4DvLgNqDgBhnQGDgpsZ1VYnCIJo01AiOh1wJHu8koUMAJKS5JMthYbKt1eqBy0cg72YdpZV3l8P93jpNq3WXKF7vDSBmBR/co/PzgamTOGSjQFc4q/HHjuLiRM5y5W33OPNZveV/xLiu+7xtgPLyuLu14svtq6Tm2ySS4Sm9p1QKglnbz+paOeTBhYVMejWrT0WLvQdS7teiej48WRnA6+9BjzyCLeclgYsWaI9aZ69BItqddrbqqX9kUcewZw5c3D69Gn07dsXQZKZ1MzMTC+NzPfg49ml7vHBhmCrYK8t4bLD85gagcJlwPHPuOWO1wJDPwZaasXteELiKfEcQRBEG4ZEuw444h4fFqYu3OWs0Eox64WF6g+RSnXapSLXk5Z2rXWphc+HjY3cdVPCGfd4uX3soVdm9V6Cqj+7d7MoK7N+wNJEdM5Y2rWOU2rhlWYy5/vSs/yXULTx97encNQ9nr9P9+6V708tdEDunuInn9LSgD17lPtUQjj+EyeEE3wM9u0LxJQpDLp1U97fW7gS0y68jldeaX3/0UfAZZfZ78toBGbPBo4KjKDCzPNyx5EuS7+TbYVJF34I7r77bss6hmHAsiwYhoHJ07UyfZjC8kLZePYmcxOMhUZkdx2kXn89fTYwYBnAGICQ9iTOCYIgCBvIPV4HHElE17mz/PrbbwdKS+Wt0ErJ3OxZ1aSJ6JRKvrkzpl3at1Y3V6Fob1ApWys9vtbSXI66x3siszogdm+WusdrEbiOjFPOLVsq7vUU7IBYtHnimV94DGmSNnvu8XLu60LUQgfk7j9+LHLJJdX2k+4PAKdOyVchOHlSeX9P4kr2eDlLOyD+bqhNfPLw34WjEq9luZAcNdGuNJ7WzuHDh21ehw4dsvxPcBgLjWg2K/8xnrRmErbsW6Nef/2iaZxgJwiCIAgF6K+EDjgS0x4TA/zjH9Zl3g185kzlmGI5cnPtj8td7vHSRFyOuMdnZwPPPWdd7ttX3porfLi3J9q1lHyT4qh7vJ6Z1dXEt5p7vBbBoBQvPXu2bVutsdR6Ijx3VzOda0Ftcsaee7wa9mKq5a4n/9lKJ0aEXsZaLe3NzfJVCJS8crTi7uzxWiaelGLIhaJdKaZfCP9dUBqT0EtCq2hvSzHtKSkpqi+CI3eb+h9jBgze2fWOh0ZDEARBtFZItOuAI+7xzc3A5Zdz7zt1Arpe8IJraVG2QsuhlNBOiJZEdM7UaZdacB2xtAPW8weAHTvkrbnC/RyxtCu5x/Pwn5Wjot0TmdUBdfd4LYJBKV766FFba7s0pt0R+ISJ4eEMrryyvWaPA+FkjKOiXUupQClqol3sHu/YWJKS1EMH5K6n0vnm58uPSYq9+5RhWIcSOMrh7uzxrljahZ+RFtGuljtA6iWhVqe9rVraAeDgwYN45JFHMHr0aIwePRqPPvooDh486O1h+RSF5YWq21mwiknqCIIgCEIrJNp1wNE67fX13PuwMCAw0No+O5srKcXTq5eyMJGzykuRWtrlYtqdzR4vtDQ7KtqFKAkZYZ/2rIdaYtp5eFHjaEZoPTOrO2tp1zpOJaReAVKPC60IXfAbG/l4aoMmEe2spd3Z8ATh9dTT0j59OifYlSYSHBHtwnwNap/Dd98pb+OrEPhiJS69YtodtbSrfRekXhLkHm/Lxo0b0atXL+zYsQOZmZnIzMzE77//jt69e2PTpk3eHp7PEGAIUN3OgEFKDHkmEARBEK5Bol0H5NzjlZJXnT0rL9r5B0NhciU1S57UKi+HNku789njeUuzI+7xgFi4KVk4hfvZt7RbO7Qn2oNlqulosbTLXW9nM6uriXa1mHYtol1tPFKvAGfd421d8Ll4ai2hAs6KdmfDE7S7xyv3ER5uu66+Xn0iQe6zUjqG8P5WuyarVilvS09vwbp1Zpct7efOOe7NIIeSF4cnLe1K34WQENvfVkpEZ8vTTz+Nxx9/HL///jtWrFiBFStW4Pfff8esWbPw1FNPeXt4PoPJrPwHhM8of9/A+zw4IoIgCKI1QqJdB+Tc47dtk29bUWEV7aGhQMCFSXpeUAiFxblzysfkM33zlrW4ONs2e/YAv/9uOya96rTzlmZHLe16i3ZnLO1C5MYvtaAC4mzTcg/+eiAVCI7GtGdnA1262K6X8wpwVrTLhwow+PtvxwSfI6Ld2fAEre7xTU3KYSL9+tmuq69Xn0iQ60vL+fJt5Cz40oRqQj77rBITJ7qeJ+DwYX2SLSrdW9LqAXJoiWnfscP+vaZU2WHMGNvvLcW021JYWIh77rnHZv3dd9+Nv//+2wsj8k0yEjJk1zNgkJmUCeNUI67sORVgFCzyVH+dIAiC0ACJdh2Qc48/c0a+bVOTVYTKWdqFD6xnz6ofNzsbGD2aez95su32f/3LOkEAAAsW2FoB1RLR2XtA5S3Njop2tYzecm30jGnXYmlXsqAKSU11XrA74h7vjGCYN8/2eHJeAc7GtMuHZrBobrYv+BzNJaB2TC3hCcLrp5Y9vqXFMY+T+nr1iQRH3OOlKN1/7dop78NfSz2swnokW1S6t4SfodLnr8U9fs0a5ycX5K6j9FpRnXYgISEB+cKECxfIz89HYmKi5wfko8wfMV+0zIC7yddPXY/8B/K5Ou1hnYDgC8I8awlwzS7ra3wRlXgjCIIg7OIzov3FF18EwzCYNWuWartz587hoYceQseOHRESEoK0tDR8/fXXnhmkAnLu8UoP2IGBYvd43tIuJ9rVLO08/DG1uMXKxaCrWdrtPaDylmZH3eOFD+WetrRrEe1aXLFdKVfmzph2ALj6avEynxtBOsngrKXdNmEiC4DR5L6uZMF0/JjawhMciWl3ZPKqvl59IsER93gpSvefFLEAZmyOoYdV2Nlki1rc45U+fy3u8cJtjk4u8F5JapNW5B4P3HvvvbjvvvuwdOlS/PTTT/jpp5/w4osv4v7778e9997r7eH5DGcbrLPrDBh0jekK41QjJ9Z5Tm0EGku5Guw9HwfaDbC+SLATBEEQGvAJ0b5z5068/fbbyBTWPpKhqakJY8aMwZEjR7Bu3ToUFRXh3XffRWel4uceQs49XhibLiQsTDkRnfB/QH/RLmcFdMXSzotALZZ2obvvQw9Zt2sR7fYS0ckJW6VzkrtO0vPU4ortiiBScxFWyx6vVTBIxdDGjfYz9DsiRrKzgbVrrctdupgQFMRqcl/X4mWhdExheIK97O1yx7AX0+7I5FV9vfpEgiuWdqX7r7JSvC411fpeztKuh2h3Ntmi0r0lFO2uWNrljqd1coGfKJXm9hBC7vHAvHnzMH/+fLz22msYOXIkRo4ciddffx0LFizAc8K6nW0YY6ER9/5PPIFxtOooWEi+wAff4/5PvQMICPHQ6AiCIIjWhNdFe01NDaZNm4Z3330XcXKB2QI++OADVFZW4vPPP8ewYcOQmpqKkSNHIosPOvYScu7x3bopt5WztG/fzolaYQihVLSrCU6tlnapFdCVmHZehI8fr9yGZW3dfUtKrNt9MaZdLuu0vRJRziLtR5qIzhlLu/R8lCY9nM0eDwDXXWd9/+KL1cjI0Oa+7qylHRDHKD/8sLbwBO0l35Qt7UqiPTtbnBwuI0Pd+0Tr+SpZ8JOTxev+8Q/bvvW2CjubbFFJEGsR7Uru6GqeCo5MLsgl5JReK7K0AwzD4PHHH8fx48dRVVWFqqoqHD9+HI899hgYe6VL2gi523It7vAAV96NAYOF2wRuH/WngRP/4953t80RQBAEQRBa8Lpof+ihhzBu3DiM5oOzVfjyyy8xZMgQPPTQQ0hKSkKfPn3wwgsvwKRi6m1sbER1dbXoBQBms1mXFyt4imtpsa43meSf7pqbWdTVcU+EISEsAgO5dsuXAwUFrOjB/rffWJgFT4/BwazN8fnj8P2owbLAvHnisZlMgNksv6/wfOQoKGDR0ADs36987JYWM3Jz2Qslqazj4Glqkr+uLS3WRnV16tdf2NZkYi/sLz/moCDbsTY3i/ucN0+8Lz924Xqz2faz0PoCzKJjs6y1r+ZmVnSMpiZrW/7c7L2E+wBAQ4Nj964QpWPU1lrbBQWxeO45s43LPH/N5O5XQPmzV792HCyrrb3wem7aZEZWFovQUBZZWSzq6oRjAUwm+XuGlVFq9fXcZ3HFFdZ9vvrKjBtvVP7+Nzaqf5945s0zS8Qhdy2nTRPvJ743+M/Kun39evH5rltn/7qmpFgPHBfH7cOfk9Jr3Tq54wi/k9a2XCiFdfzCe1Hu/hXelw0N8tdN6V5Tus5yvxHS75Zwm/AeEp6L3PfJ2d8ELfeFN4mKikJUVJS3h+FzFJYX2ljVWbAoOiNw+zj8L4A1AfFDgNjeHh4hQRAE0VoI9ObB//vf/yIvLw87d+7U1P7QoUPYsmULpk2bhq+//hoHDhzAzJkz0dzcjBwFc9CSJUuQm5trs768vBwN9ky4djCbzaiqqkJLSzsAITh3rhplZVyfNTVRACJs9mlpASoq6gBEAqiHyRQAIATcg7nYerFtmxknT5YD6ACAE0dlZWWiNg0NcQBC0NRUe6FPK2PGNGDTplDL8mOPncewYbVobo4H/9HX1zdceNCPthlrdfV5lJXxmew62Gznxysdt5CqqmoUFcUotiktrURioq0Jsr4+BgBXwLq8XDgOK/z1r6mJBn+tGxqaUFZ2FmfPhgCw9dxgmBYAYnP72bPWzw0Ahg8HDIYkmM3cmDMyWjBnTg2GDWsEfx2am80oKytXPG81amoiAHAPwKdOlaGpqQosy8JgMKCpKREAf12BioqzANoDABobuXOzR3l5IABrNuLTpyvRrp3tNTaZEgBwrh5nz55DWRlv5rd+1tL7jefkSQMALhlVXV0NxoxpxLJlEXjyyRgAQFpaC+bO5a6ZsAvuswq/0HclEhIcTXfe4UI/tSgrq7XTFmhoaA/+8/6//zMA4OLvCwrE3zeWZXDqVDmAjjZ9NDXZ3jPV1S0oKzuD06cDACQAAE6dOoOwMNOF41rvX57y8kqUlfHna/t94hk+vAzvvReCGTO4+zcsjMXrr59DWBgLwJoso7KyCvw9fvbs+Qt9d7Jsv/VWg6V+e0EBiylTDHjvvbMYN07O9YIbT0SE9VzHjGnAsGFVULgFAAAbNnDjlB6nf/8mAMEXzvsMwsO562I2W397Tp8uR0sLa/ke89+BM2es313hb1BlZTjkfqeE30/bsdpe5717G1FWdu6CxxO33WQS/7aeORMM/lrX1TWA/ywrKs4gNtZ2klh6Ds5w/vx5p/bTkwEDBmDz5s2Ii4tD//79VS3qeXl5HhyZ72EsNKLZbOv+wYBBevsLbh8sa3WNJys7QRAE4QJeE+3Hjh3DY489hk2bNiE0NNT+DuAejBITE/HOO+8gICAAAwcOxIkTJ7Bs2TJF0f7MM89g9uzZluXq6mokJycjISEB0dG2D4COwFmOGJw/zz3kPvJIDN58Mwbz5rEIDpZ/2GluBgICOIHZrl0YTp/mt9i2P3vWgGuuSbIsh4QwNll7AwO5/WJjbYtJJyeLY+dGj45AYmKE6EEsJCQUERG2kwsAEBkZhcRE16wrUVHRSE+HjUiybm8HuUTEQUHCMcqPg7/+QUFWcRQYGIzExEQoGYXCw21v+YiIaCQmiu8F4bNqQUEAgBjJXganMygLx9auXSIaGhgkJCTAYDCgpUVccz4qyjrxEBQUrOmYx4+LlyMj5a+x8D6IiYmVbaN0vKoq6/vw8EgkJsZg6lQDnnySW/fjjwGIj5deM+4eth5TflxaiIzk7mUeoxFYtIhBURHnJj1vHnvBnV54z7GwTogwomUAiI5OkD1WQIDtPdPSEojExETB9xeIimpvOR/h/Wvdru18ExMTMX06MGMGt9yjB4O77oqBNN9mWJj1+kZERCM+XjxJxQtpgDtfhmHx6quxmD5d2TMmMNB6rsHBoUhMtI2/FV5rhpE/zsGD1kmOdu2s18VgsF6XuLgEJCZav8f8dyBSMPcYEWH97iv9mZD/fiqzeXMofv45UZSwkWXFv63CPw0Gg/XAcXHtZT9D6Tk4g9a/g+7kxhtvREhIiOU9ucErk7vN1hgAcJb2nJEXnkfKfwLO7wcCI4GuN3lwdARBEERrw2uifdeuXSgrK8OAAQMs60wmE3788Ue8/vrraGxsRAAf8H2Bjh07IigoSLQ+IyMDp0+fRlNTE4JlUoOHhIRYHkKEGAwGpx+uhHz9dSj++ovrp7mZQUEBMGUKg6uukm/Psgzq6rj34eGMnVh0rvY1T2AgI3ro5frj/g8Otj2XmhpxW4YxwGCQxnIyilZwljXA9UtkQE6OuGSaMDO2ySR/DOEYGxuVx8EwjCVzNjdm22skRH4yRf085e4Ts1n9OGoIu2NZAxiGgcFgAMMYJDHt4s/GbGbw+ecMcnO5ZGVpaVy8sbQetdSbu6VF/vzE7uzybZS+I8I4ee6aG8CyBsE6+8c0m52/v4TjNRqBKVOs9xX/HVy/XhoHLf28xMvNzfKDkft+1Ndzn7/wPm1pMeDzz7ns73/9ZduP0r0uRXrNz5/njmUbd21tZzIxNuOXjptlGRQXQ/W+lXofSNtKr7VSHzU1ojOSTdYpvEf474DBYBBdU+HnrBTT7szv+OLFBhvRrnRdhL8vSt8Tbpv1HJxBj79HriKc/F6wYIH3BuIHFFcUy64PMgRZM8cfuGBlT7kZCIqUbU8QBEEQWvDaU8JVV12FgoIC5OfnW16DBg3CtGnTkJ+fbyPYAWDYsGE4cOCAKPavuLgYHTt2lBXsnmD58khAENPGlx/avVt5nwth9aJEdErYy/DNXwo58S/1trQKZfE6RxJwOcqOHZyoXLrUuk5oqVJKziV8cPd0Ijot6BV+aq9uufDcysrk63dL61NLr6lS1m1n67QD4s+E31dL0jxns8dLEY5drUSfI8dQStinlIgOEAvJjRutn4/c+Tt7vvz3WHp/SMvZ2auyoCVZm717QnqtlY4jtJYr9aml5JuwvUzJcADAunXKY1FCWkVDeq5K42xLiei6deuGM2fO2Kw/d+4cuillWm1DpMXbZixlwKBXQi9uoekccOxCmY3uMzw3MIIgCKJV4jXRHhUVhT59+oheERERaN++Pfr06QMAuOOOO/DMM89Y9nnwwQdRWVmJxx57DMXFxdiwYQNeeOEFPCSsIeZhDh0KhNRix7Lq5dp40R4aai35JpexXIqcqHNEtMsJWleyx2vhH//gROWgQdZ106db3zc3i8vBZWVxy46IdkdKvmmp0662v/Q4ziCur219L2dJFK47etR+/Xhpn4CyaJfeB45QL0gxwPejlqld7piuiHYhaiX6lI4h5/Xrqmh/7z11Qevs+fK/F9JrKuyvpUW9JJrWuvZC5O5xuWstd5wePeT7Eb7XUvJNeKytW+XbL1qkPB4lpFU0pOeqNLnUlkT7kSNHZJO8NjY24rg0BqcNYnGBvwADRuwaf2Q1YGoAYvoA7S/1wggJgiCI1oT3/fFUKCkpwalTpyzLycnJ2LhxI3bu3InMzEw8+uijeOyxx/D00097bYzdurUAkuyxDAPEqIRY8mJaaGlXa88j9xCtJtr5h30epVJHSu7x9gSwFnhRKZxAEIrwrVvlrccnTljbvPSSVczL4Q1LuzP78CgJF3uivb7efv14wDlLuyuiXc6Dw92WdiFKJdLS05VdqjMzbWOkXRXtJSXq11GtZJka/OenZmk3mxmb8ffqZX2fmamtrr09S7vctRbCH6eDIP+bUp9aSr4J28sYfQFor88uJCdH/X5Vmlzy4QTvuvHll1/iyy+/BABs3LjRsvzll1/is88+w6JFi3DRRRd5eZTeJzsjG1ddxMXBBRoCkZmUCeNUo9U1/uD73P/dZ6h/aQiCIAhCA17NHi9lq8SUIl0GgCFDhuC3337zzIA0MGdOjSXLMw/LAr17Az//LL+P0D2et7QrPQyK479tt/P7Bcp8ktrc4xnFY6sdV0jfvpzYVuqjqEhZtH/yia31GAB27bK2MZmsYj4lBSgt5cTD1VcDGza0Fz202xPtcpZ2ubbutLRLhSs/cWNPtIeF2Qp3OZdnrXXa9RLtfJZ9T1raheNVypmQkwPcd5/8/vn5YhduQJtHAg8/duE5dOkCHDmiv6Wdx56l/X//E28XjkPJtVwNufNWy08BAL/9xk2GvPeefD/Ctlrc44Xt4+KAigrb9lq8lIRcdRU3eVFaal0nvbbCMbe1Ou0TJkwAwMXo33nnnaJtQUFBSE1NxfLly53q+4033sCyZctw+vRpZGVl4bXXXsOll8pboT/66CNMF7plgctR42rVFz1JiOCSVy4bswyzLptl3VCZB5zNAwzBwEW3eWdwBEEQRKvCpy3t/sC4cY0YMED8JGc0Ap06KewAYM8e7n97op1hAGHooKvu8XKWdrNZ+UFULlZZDrUk/LyoVBLtJ07IH1/OogxwLuINDdw1fPllA/btC7SIRgAoLxePXYovxLQrWRvlRKNQMHTqJH9dpC7Pnohpt+ceryXkQi9Le3Y2cP311uU+faxWZbVjSK+lI5Z2fr3w85k6VV3UuTpJoSbat28PxiOPiH/OCwudPx4g/xlmZwOvv25d7t0bePZZ6zJ/XyjdW466xwvbDxwo337uXPn1SqSk2Pbd3Kwt9r4tiHa+ZnzXrl1RVlYmqiPf2NiIoqIiXC/8wmnk008/xezZs5GTk4O8vDxkZWVh7NiximUlASA6OhqnTp2yvI4ePerKqelObRNXdjIiSFKBhbeyd5kIhLT38KgIgiCI1giJdh3o3Fm8PHGi9YFUTiTyIio/32pllXuA7dIFeOMN67Kj7vF6xbTbE7VqsbS8qBSORSj4OtqWxXYA2zJyfKilI5Z2Z0S7Kw/vSsnn7Fna4+KA9evFy3Iuz1pj2vWztNseV4vrs6PXXWmMRiOwbZt1+amnrNdEzSVdeo84asDLzAR+/NG6PHAg8Oijyu0ddY8XetTW16uL9v/+NwwMo6+iVPoOXXON9f3WrcCwYdZlOdHuSiI64b7JyfbHowUlbxylCQUtYR+tkcOHDyM+Pl63/lasWIF7770X06dPR69evbBq1SqEh4fjgw8+UNyHYRh06NDB8kpKSlJs6w1qmrgyCZHBAredljrgyCfc+4spAR1BEAShDz7lHt9aaGqyPuiFhio/rK9dC0tpOLmHweZmYMsW6/L580BqqtU9PCdHXbRLLYeOWtq1usdLRWH79sDZs1zfM2dyAuq556zbheJowgTg1VfV+1dGrhQX97+rlnZ7ItaVmHZHRLu4BJy4vNsNN8jHKHs6pt1Tlna58RqNYndtALjtNs6LJTtb/Rj8WAwGFmYzo+k6Cdm7V1zarakJUPD0BWAdi9ZrHRRk/ewGDQKuuEK8XXi/nDoVoJibwhEc9b4wmcTXWA9Lu5JIVvoddfS7qDQZKQxVacvu8UJqa2uxbds2lJSUoEnyBXlUbYZKQlNTE3bt2iVKLGswGDB69Gj8+uuvivvV1NQgJSUFZrMZAwYMwAsvvIDevXsrtm9sbESj4A9f9YVYNN5TwFnMZjNYlrXpg7e0hwWGWbcdXQtDcxXYiFSwCaN8YqZHafz+hL+fA43f+/j7Ofj7+AH/Pwc9xu/KviTadYCvu85TWioW7VKLN8/x4/IPiTy1tVwSNiG8dyAf4929O7esXu+dQ6nkm96W9ptu4s7tyy+Bfv24dUqW9v79ObfiNWvsDl8GFlLhzl8Hd1va3eEez4uDkBDrhIs42Zi4H6XcRp7OHi93X2kRZI6Kdrk+5UqQ8ckP7Yl2fp+QEO58lNzj1XI+CI/d1MT1pQQ/Fi0Wd6NR/Lnt22fr7i48tw4dTDh+3HXhrkW0SydehJ+L3KSZo4nolCztSvexs5M/0vNrabF+fm3ZPZ5n9+7duO6661BXV4fa2lq0a9cOFRUVCA8PR2JiokOivaKiAiaTycZSnpSUhH379snuk56ejg8++ACZmZmoqqrCyy+/jKFDh2Lv3r3o0qWL7D5LlixBbm6uzfry8nKXYuHNZjOqqqrAsiwMBquDYlV9FQCgpa7F4ubfruhtBAOoSZyK2nKZJAxeQGn8/oS/nwON3/v4+zn4+/gB/z8HPcZ/XkkUaoBEuw7U1IiXr7zSGuctzVAtJCXFGtMu9wBbW6tcQooXDCdPcsuOiHbb7PHy7V1xj+cFJd+3Ukx7czMXg6wm2hkG6NrVOmEh2CI7FqNR+ZzkrpMzAlzPRHQ8/HVUEu3Sc1IS7XrGtBuNnDAuLrZ6d2Rni0W7yWSbiM4dlna5+1Ct3JtcHDhg/U7yY3FWtPPH4mlq4iz8SvCfpVo4CY9Ud0gnCIT9AcCECQ147TVJZj0n0PIZSidn5ES70r3laCI64b5K1036GfP3rFJWeSX3eKXjtlXR/vjjj2P8+PFYtWoVYmJi8NtvvyEoKAi33XYbHnvsMbcff8iQIRgyZIhleejQocjIyMDbb7+NRQp1/p555hnMnj3bslxdXY3k5GQkJCQgWi35ih3MZjMYhkFCQoLoQa3B3IDkQCAtvAaJgceB2qMwnPsVLBhEdJ+AiPhEp4+pJ0rj9yf8/Rxo/N7H38/B38cP+P856DH+UDVhaAcS7TogLE8GAAcPWh/u1D6b2lrg8GHuvVq8uhIsaxXAvMVeDUdj2pUsUlKkD9MM45holxt7RAR3fQDOWp+XJ3aFjooCQkPZC4nnxOp14ULg/vvlx7p6te06X7S0S9c5ckw9Y9onTbKKRd67Y/1679RplxN/aWncuOQy6iv1HxUl7o//jjqaiI4/ltDSrlbZiR+PFtFeXGx/HMLz69+/GYsWmTFvnvWPSPfu3G+RI2i537RY2rXEtDtqaVfyUBC2538jlCY7hX2qiXaliTU/9ehzivz8fLz99tswGAwICAhAY2MjunXrhpdeegl33nknsoWxOnaIj49HQEAASoUp+wGUlpaig7A+oApBQUHo378/Dhw4oNgmJCQEITLuLgaDweUHRIZhbPqJNVfj1xQgbLc4yz0DFsyWK4HxRUBEV5eOqxdy4/c3/P0caPzex9/Pwd/HD/j/Obg6flfO2z+vmI9x+rR4WfiwqCbaT50CNmzg3is9wGot76rlHnDG0m40AiNHqvcrFSH//S93bsJjKbnHC+NIhWRlWd/z4QfCZ8RrruFL59leoKIi5YdrPru8EE+Ldnsx7VpFu56WdqV7QFqOj3c9t5eITouVVg9Le06OckZ9pf4jIqztAOv1VhLtSkiFoT0x7oh7vFwZM+nnLRWZl18u3h4ba/84UtxtadcyaaN0H2mxtMuFS0hRi2m3N862ZGkPCgqyPFwkJiaipKQEABATE4Njx4451FdwcDAGDhyIzZs3W9aZzWZs3rxZZE1Xw2QyoaCgAB1dy16qK2GmWoQp/e01NwCNvuEeTxAEQfg/JNp1QE18qIl2LVYkew+J/Pbt29XbCdtqrdO+dy9ntVIIObQgDQ84cwb4/XfxMR21tAvHxIt24broaL4+ue0FSk93TFS7klTOGexZ2oVx9+6Madci2pVcz/WwtDt63eXaZ2cD//qXeN3773MJ+tTEsfC8eNHu6HewRw/g3nuty/Ys7Y64xwvLqAHyQlR8vW2/x85MLGmZeJF+hsJx8N9tb1na5cIlpDjqHt9WE9H1798fO3fuBACMHDkS8+fPxyeffIJZs2ahT58+Dvc3e/ZsvPvuu/jnP/+JwsJCPPjgg6itrbXUYr/jjjtEieoWLlyI7777DocOHUJeXh5uu+02HD16FDNm+EZGdpPZhEaThi8zQRAEQegAiXY3s3evtnZKD/K33qpt/08+sd/GbLa1rPPr5Ni61b7VCrBNxCeE3/dCEl8AYsGnJNqFVk++f6Hwj4kB5s2zTUQHiLPqa8HTol3O0m40Anfdxb0XhlsI7wutgkE6iaTF7VvpeklFKO96bi8RnTti2pVio6Ulo/kSYEr9nzghLp1nz9KudC6rVwO9elmXm5rU77v8fM6D5OKLldvw3HCDeDk1FbjzTvE64fm1tMhPsDiKo5Z2Le7xSp+bo3XatVja5TwUpCi5xytNkLVVS/sLL7xgsWo///zziIuLw4MPPojy8nK88847Dvd300034eWXX8b8+fPRr18/5Ofn49tvv7UkpyspKcEp3kULwNmzZ3HvvfciIyMD1113Haqrq/HLL7+gl/BL50XqmlX+8BEEQRCEzlBMuy4om9fUBK0QpQfSbt207a/FW3HHDttJALWY9jNntD2k2nNFNRrFSaGqqqzvm5vlvRH4eHbAeg3PnbOuCwnhrKyhoWY0NBgQGMg9XHfqxFlZX3nF/riFY/QkUkGwYUMIZswwWASyUDx6O3u8kuu5MDeA2WybiM7d2ePVvAT4dkr9NzcDU6ZYl52NaTeZxJ9PU5P6OX38sbZJML5vIcuXA/v3i9cJj20y2d4fzghMaZ9ySK3lzmaP1+Ie72j2+Jwc2xKAUrS4x1NMOzBo0CDL+8TERHz77bcu9/nwww/j4Ycflt22detW0fIrr7yCVxz5IfcwfI12giAIgvAEZGl3kQ0bVGo82UEoupQeSLWK/uRk+20+/9z2QVXN0t6+vbZjq5Gfzz1EC8WA0GLe0iL/8C50ua+v58Z59qx1HX8evGDkXaT5eGWtlmNhX55CamlfvjwSDMPKfg7OJKLTM6ZdaJEODOQmYCZO9E6ddiVLvpJbuJp7vPA+sFra5WdB1M5Fmv3f3r2kVUhL+5GKY8DWPV7atzMCU9inlrrojlraHXWPV3JTVxpPdrZ9aztljyf0oLa51n4jgiAIgtAJsrS7gNEIzJgR5/T+mZlA796c1dJV0X733bZxsFJOn5a3xik93A8fzp2jowitid9+q25dbG62L9oBLlZWKNr5yYamJk5o8aW2+HNROl7HjtYyeTzeFu2HDgUq1td2puSbnjHtwuR/sbGcYAfsJ6Jzh6VdSfApiXYtNdoB++7xahZhRyztjqBFtLvD0i5XglCKFku7lph2LSXfnKnTHh8vn31f2ieJdlv69+8PRmP207y8PDePxrepbapFhQloYIFQuUtmCAVC4j0+LoIgCKJ1QqLdBRYtYi5YSDWmeBfQqxdnhV66lBPtSlYkraJ91Cj7bTp0sBXhR44EKFqmzGbOgq81UXBUFHce6elcoriffgLKytQfdJub5c9dKtrr6mxFu3A/ae1tuYkIgwF44glAUMYXgPcT0XXr1oLCwkDIhVm4M3u80piU4EWt0Qj89pt1/fPPR+K55xgkCkoSu9vSruRCLTyGWv/CiSRfFO3SfqQWbWkbOdHuqqVdSwy5J2PalX4jp03j8hSkpXHu8fZwxdI+fTo36ccfy4GqZ37BhAkTvD0Ev6GmqQbHWoAxZ7vip1s/s20QEu8z5d4IgiAI/4dEuwsUFcEhwS6sPR4dzf0faOcT0CratZR8693bNqZ98+ZQGAzyqvrzz7kEWFoZORL43/+497fdxv2fkMBZ+JWEu5J7vPSBWk60C0WW1NIuJ1gYRv46ORunmpXFWfQcfYCXis85c2oUPTbcFdPuTNKyxkZrHWwh585xmQSPH1ceA49e2eNddY93l6Vdrwkgxy3ttu7xnrK0C/fRwz3e0ZJvfC36ggLu3uSqSijjSkz74cPcufHHWr++dQn3HC2zHgQAq3v8+cA4oN0AL4+GIAiCaO1QTLsLpKcDDGP7ZBwWZi3bJbQ+8kId4LKfA/KZ04XoIdr5iYG//pITeix27VLet7RU2/EB8bnw4xkzxr6lXYt18vPPgXnzrMtFRY6LdoNB35j2ggLObZ9/gNcaSiC14o0b14hbb7WuDAqyfmZCoSLNP+CKpd0ZgdfUZK2DLYeWbPTucI931NJuMIirLWzZwv3/3//Kt1eLpZaKXHe5x9uztLe0aHePNxq5CaewMO5/pftWSwy5L7jHC9syjH3PID3c4/ljLVyofix/59y5c3jvvffwzDPPoLKyEgDnFn9CWOKijbL5EFdzfk/pHmStyoKx0IlYMoIgCILQCIl2F5g3j3ON54U7L2Z69ODiKgHg0Uet7YWiXaulvVZjrhs10d6lC/e/vMWbEWVzlyKsqe7IGPhr0acP8NpryvsoucdLeewxQFANCN98wwl5AAgIYBEUxL13xtK+dq19ASOHsw/wcm7eQutgc7N1vTSmXXhe9izt/LnKiR1n45+11MEWjkHtuHq5xytZ2jdulO8nJAQYN866zN//Qk8OIUrjlIZoeNrSLhWZWhLR8Z4S0gknObRY2qWTCfzvhZx1XVpuUi/3eCEsK863IIej7vFKE1AsK66K0drYs2cP0tLSsHTpUrz88ss4d6F8h9FoFNVTb4sYC4146ZeXAAAsWBSUFmDSmkkk3AmCIAi3QaLdBbKzgffeO4u+fbmY6q4XwteioqwPvJGR1vbOiHY9Le1JSfKWdt7qL0d4uLbjA2JLO38clgUuv1x5H62WdjmB+sor3MqQEOv5O2Npr6x0zmIuRPgAbzRyYQUGA/dKTRX3KWcxLigQD4wXN0ePivfTcq34NvxnJ+f27Wym8bQ05ckCLf3pVfLNnmg3Grn8BUr9iM+fkfwvxlcT0Ykt7YymiRjeU0I64SSHlph2Ryzt0vHobWkHuHPhvW6UUPqNcLRSA8PYd8X3Z2bPno277roL+/fvR6igLud1112HH3/80Ysj8z6523LBCH4vWLBgwGDhtlbuekEQBEF4DRLtLjJuXCN272ZRXw+89Ra3rq7OKpT4EmQAROLYk+7x/DGuv17e0t6vn2BJ8gCvtU688DjC8ZjN6uegFNMuRU6AHDrE/R8crE20K1nahcdw1uWVf4DnLZlHj1oti0ePiicD5MSn0jPwjh3W97W14mtlz9LOi3a93OMBLnbfW5Z2R9zj1dz45ZK2qaHmJu7NRHTS7PFaJmLkPCXUKjvIoWZpV4tplx5Hr5h2Hn4ygp88VYIfh/T499xj/Y7auz/4Y7XmEPCdO3fi/vvvt1nfuXNnnD592gsj8h2KK4rBQnxDs2BRdKYVu14QBEEQXoVEu47wFp76eqto9yVLe79+wAcfiLddfnmj5SH3ttu4MnS8+L7uOqBTJ23Hl45BaGlXc/G35x7Pj11OgPFJ8uQs7XJCRMnSLsRZl1f+AT43V7kNPxkgJ1zPnLF/jHPngDhBvjp7Me2OinY+1lmt3bhxXPItuftWeK97Mnu8nKVdzY3fUdGuNh5H67Q70rd02dHs8XLnL+cp4aql3V4iOqUYcun58PffmjW2+xqN9n8LMzO5du3bq7fjx7Ftm3j94cPc5NrcufY/x759uWPxJRBbIyEhIaiurrZZX1xcjISEBC+MyHdIi7ctucKAQXr7Vux6QRAEQXgVEu06IhTt/ANvVJR1u5xo94SlnY/3ZllOiAtJTjZZHmL79uXK0P3f/3HLF11kf1JBiJJ7vNo52HOP54WgnACZPp1b6Yh7vL0s+3Iur/YEXmys9QFerT40PxkgJz6FYlwN4QQHnzVbCt8nfz/y96IwAdmgQeJ98vKssc5ChAIKAKqrubAQuWd2YZ9arKiuZI+3J9rtufEL97cmk3Qs3bpcTLv36rTbZo+Xu2/lPCWUJjeciWlXs7SrxZBv2BCCKVMMKCgQt9u3T75igRz5+dx3UMvEHAD885/y25cts/0eSPn119Yt2AHghhtuwMKFC9F84UZjGAYlJSV46qmnMEnLB9KKyRkpdrFgwIAFa7OeIAiCIPSCRLuO8JZNYWI3oXu8XPZ4T1razWZ5axz/EMv3wf/Pss6Ldr3c43nR/uCDYmF7xRXA0KHce62inWHUH+iVXF7tCbFrr7U+wCvVvAeskwFy4vOSS9SPIcfOnfLr5Szt0gRke/eK99mwQRzrzLN4sXiZN7zJXV8tMcGeco+358YvHGvHjtz/fOk3rXgypl2v7PHZ2ZynBP9dio9Xz5ov14dwHLNmAUuWWJe//56bGLqQaFw0DjVL+/LlkWAY1uZ427erhzo4Az8OYYlCKT/8oN6HlqR4/s7y5ctRU1ODxMRE1NfXY+TIkbj44osRFRWF559/3tvD8yrZGdnondAbABBkCEJmUiaMU42YmNHKZ3IIgiAIr0GiXUd4y+aFJLsA7LvHe7LkmzT7OCAW8vyDsVAA81Z6R8fgiKVd7QGY91To2RO45hrr+uRkawiCXpZ23r1WakGzZxEWHkstxpXfJic+U1K4/+WTBcojvM+EyFna5RKQCSkrkxdo+/eLl8+fFx9DiDTGWg6paNdafkzap5ql3WTixOnTTyv3xQtegwHIzeVOvEMH5fZK4/Gl7PFaKwJkZwNjx3Lvb70VuOEG5XHITUIIj3PsmO0ESkEB52ouba+WiO7QoUCwrO2NX1mpvWKBVvjx8FU15KioUO9Dr8kZXyYmJgabNm3CV199hVdffRUPP/wwvv76a2zbtg0RwtnoNoqJ5W78jbdtRP4D+STYCYIgCLdCol1H5LIWC59thJnA587lBIo9S7ZWEeCsaGdZxsbSzotGs1kf93h7Me1aLO11dbZCjRftjiSiUxPEeXmcYNea5ZpH2D47G3jnHfH2zp3FkwFy4pMXfw8/DKxbp348nthY+fVylnZ7wicxUX599+7i5cmTuXORu75KJbOECM/9wAHO+r9nj7bs/Y6WfFPzXhCKdv47WlOj3F5pPJ6q064le7wjFQH4+81efL+ci7yal4PcOiVL+4oV1s+6W7cWQZiClXbttFcs4NHqHn/LLcr724uLb+2W9ubmZgQGBuKvv/7CsGHDMHPmTMydOxejR4/29tB8htM1XDK+DpEOzvYRBEEQhBOQaNcRaXm0gACuFBzPxx9b3x85wgkUJRdnR9Eq2uUeqNUs7fY8AYQ44x5vT7TzMbLPPSeuu20y6W9p58epFnsrh7T9lVeKl7/9Vmy9l7O088cICuKEv9ArQ4n+/eXX833ydcePHJEv+yZE6MUgZPhw8fKhQ9x9y9fjFuKopX33bvE2e9n7HXGPl45HaawMY/3eqk0uyeFOS7sz2ePtWdqFXg2bNinvJ0ROtDuaxI9v//nn4vWnT1snaebMqZG1tA8erL1igaPjuewy+e0sa3vfS2ntlvagoCB07doVJr1u6FZGQ0sDzjWcA0CinSAIgvAMJNp1RGppDw4Wu5cLLUC8QJEm+nIW/iFcDrWYdrNZPabdkWc2Z9zjW1rUxdVff3H/m0ziXAFCS/v/t3fm4VFUWRt/q7MSsgJJ2PddCAgo4gZKFJRRJIjIoCgqjgsfKjAioxAWFUREVFxQVFwYUSAiMygOoLiBokAwCASJQFAgYcvGkq3r+6O43VXVtXZXd3Wnz+958qSruurec2vpqveec881mj1ez9PORJv8hVzvGMjrkgtkufBR8hizOtm5EncAjR+vXG+LFsrrWVniDiG5jfLj0L27clnyDNvsutUT7UY87QqJqTWz95v1tGtdV0qe9vPnzQ2ctjsRnTx7vJanXZ7TgB37/fuNj/1nov/OO423A3CXP3eu53ccB8yezWHIkEqsWOF50bRrJ3RiiWe9MJJMUgt5x17Hju4cIw0aCENV5B0Mcuq6px0AnnzySfzrX//CKXGCAgIAUFRRBACIjohGcmyyvcYQBEEQYYGJ4GdCj5gY6bjhmBipaFfycmslQzLDQw+pf6cdHq/taTcj2tXC45m3XAk9T7saTqdbDBsNj9fztKuJdrOedrloly9redrZuRLbGR2tXK+RDO1qxMRIhbeacBOPTRZvq7S9WU97QoK0I4aRnq68r5po98XT7nB4RsgYJZgS0dXWcpqednlOA8b27cY87Uz0K5UhR74NK3//fs9ted4940JWluf3bF8WCeJwCENmlDp8jCKfpz01FejXT8gmf+qUEKGi18a67mkHgEWLFmH//v1o2rQpWrVq5TGOffv27TZZZj8f7foIAFBVW4Wei3siu382srooXMAEQRAEYREk2i2E44RweCZSlTzt4pdBjhO8pX/8YU3dai+aeqJda0y71supvE618HgmhqOjPb3Ovoh2s+Hxep52NqbZDk87E39K89KrZTVXs8vI8TQ67VfLlp5iS9whI8Zs9ng14XXokCAS5SJOLTzeG0+7ODze25xa8jHtlZXWhMf36AHs2eNZl1Z4fE2N9jlVy2lQWmpMtKuJfiUyMgTxe/iwsMzKb9cO2L1buq3SFItKbRB3aul52vWQ/0ZEREg7boy0MRxE+y233GK3CUFJzp4cTN041bWcV5SH4Z8Mx6rbVpFwJwiCIPwGiXaLiYtzi3YlTzt78WX/77pLO+O4UbReNL31tGuFx0dHC2Gk4uzieuHxiYmeWZn1sserYZen3eFQF4kMeei4lqf9hRc4PPVUukuYs+vF3572Nm2EObAZatfP3XcL+QQY7LqNjPQ8TkY87eKhEmp1snHtctFuZXi8PzztJ08CK1Z4V5aYvDzPY/Puu9Jp1AD97PHi5Y4dhYR/chITjYl2oxncW7QQ5ku/6CL3Orbf5MnAPfdIt+d5YNo09YKZbex8R0bqh7+bDY8XD5EwSl0Pj6+pqQHHcbjnnnvQXCvNfhgy85uZrnnZAYAHDw4cZn0zi0Q7QRAE4TdoTLvFiMe1y0X7I48IXqjYWPf0YgMGKJdjds5orRdVb+dp1/K079zpKVDUwuOZUGPjRsXozdOuhreJ6IyMaZe/kIvtU0rM54un/dgxoLKSc3mdd+5028pQm3aPlSOfNu3gQeXtxdx7r3RZTZD16yddTk0V6lPaXtxONSFoZApDtXHtVobHK41pN0ttLXD8uHQdS/7nC0rH9sQJz2Mq9bRrh8dPn65cV7duxsa0G83grnT/sc833ijdluOEOeNZkkal34GCAul3ERG+e9rl2ey96bip6572yMhIPP/886ip6w31gn0n9rkEO4MHj/yTKsk4CIIgCMICSLRbjFi0y8Pje/cWvFDnzgn/hw1Tn1JNnHXeCMx7D3i+XJudp10cHq/mMXU4PG3Xyx6vJNr37gW2bVOuQ16fWFyJPe1i0c46IdTC47Ve+I2ExysJl02bpPOMmxHtACf5/5//eNaj5WmXJxjLywM2bxa+HzFCeT/Aczo0NZEtb8uoUcJ1q7S9eFsjY9rVUAuZtjI8np1jcfZ4szidwNGj3u1rBWYS0ckjndnvS9Om2ueEZXc3msFdKRGk2pRvPC/ttFSKUvjyS6F+M552ozayMsnTrsy1116Lb+SZKAl0bNTRYx0HDp0aaozzIAiCIAgf8Uq0Hz58GH+KMqht3boVjz76KN6UT1AdZuTkuMdxAoI4FwtZJSGjNqWa3NOuN/Xa22+7vfgtW0q/057yzXOedrEAVnO0OByeNqmFxzMPtpJo18suf/PNwv/bbxc6PRjCmHahErFoZ2X64mnXC4+XU14unWdc/p6rFR4v59gxz3q0RLt8rLH4/PbooV6PfE5yNUEmt/3MGfVEdOJt1dpoJPM3zysPGQnG8HilKdEChVy0a3na5d+1aaO+n5j9+4VrGgCWLtW3SUm0//STcC2yOjnO/dtx2WXuudqffVb55pw1y5yn3Wx4vHhMuzisX4twcEDfcMMNeOKJJzB58mR89NFHWLNmjeQvXMnuL/1xYqHy8vUEQRAEYSVejWn/+9//jvvvvx933nknjh07huuuuw4XXXQRli1bhmPHjmG6WixmHYZ5PMUcOOB+IQWURbtRT3u9ep5CS8xNN7nHi8pt8SV7vJZoN+tpNzL3uJyuXYE1azwTcaklomPfqU35ZsWYdjVYtIPcY6jtaZfStKlnPVrh8VpjjdXEPiB0NIhRK0Nu+5kz6iLPyJj2yEhtoduyJfDii9J57ZXK9DY8nnUKiMPjIyOB6GgeVVXmXLi1tcK5sUu4y7PHayWiUwutV7tXxGWwHANa00rK6xGX+dJLnh1L7Pzt3w+MGOHAkiUxrlB4Ofn50kR0avY6ncZC57XC443OBx8OnvaHLkxJsmDBAo/vOI4L2zncs7pkISE6AeVV5YiOiEaXRl2Q3T8bw7oo/GgRBEEQhEV45WnftWsXLr30UgDAJ598gm7dumHz5s1YtmwZlhpxx9RBmMdTzqxZ7s9KYseoaNcLlxe/rMpfXMUC2sg87UbD4+Wedm/GtOvBBKvcFvGYdnEiOratN552I+HxeqKA5z1DpuWiTln0Cidh5EhhyUh4vNOpPdZYS7T74mk38q6uJuz1vKDJycqCXV6mt552FgYtzh4PAHFxBtWaiNpaYdo6u5BnjzfjaWf76nnaWTli4ayFkmhXWhav5zgeCxbEuzzxcjp1kobHq92D8s5HPRuVwuOLirT3ZYSDp93pdKr+hatgB4Blvy5DeZXQ69mhQQdM7z+dBDtBEAThd7wS7dXV1Yi5EL+9YcMG3Hwhhrlz5844aucgTxtR83iKE2opvRwbDY/3VrSLw0m9yR6v9nIaEeHZ4aAUHr9vn3se5rVrtdugBBPtSp52pTHt7DtvxrT//LPwX8vTrjdMgeM85xmXC1+l912WC+HKK4X/RsPj5WONjYh9wFO0qwk3eYfD2bPGxqV7O6ZdKQGdUpneetrZfSUOjweAevXMi3an0/MY610f/kLJY26VaGc5BnwR7VrwPIeCgkg89JDyTtnZ0vB4NVFu5LoUb6fkaT950lgZ4eBpJzzJ2ZODOz69w7W8+/huDP9kOHL25GjsRRAEQRC+45Vov+iii/DGG2/gu+++w/r16zF48GAAwJEjR9CwYUNLDQwV1DyeYgE3e7Y0XB4AvvpKuTxfPO1iO8QvuUbnaRd75r31tLMy/vMft/Az+kIsRku0u8PjeUs87cuXC+fHW087CwHOzJSuN+Jp79xZ+K80T7uWaM/Kkobjt2wpZATX2g8w72ln51YrPF6M2jZ6DjqtObvVvOvyuth2SsKKtUMcHg94J9rFU76xzgC7HJBK2eO1jhGz+5tvhN8uNcQ5BsxEWBgV0EIdPNq1q0H//sKyuEPwmmuEyAsznnY95OHxERHmE9GFg6cdAL755hvcdNNNaN++Pdq3b4+bb74Z3333nd1m2cbsb2eDg/vHWTzdG0EQBEH4E69E+3PPPYfFixdjwIABGDVqFHpcyHi1Zs0aV9h8uKGWXfnQIffnI0fc2ZgB4f8jjyiXJ85CD3jvaRcLVaOednF4vLdj2s1keGb7Ke3DhKfZMe1qol0vvF2c9IphdEx748bCOZWLICNj2lkdSvO060359re/udc9/zzQoIHw2UrRnpIi/DcaHu+tp10pAZ3Svt6Gx7NrzarweFZOo0amd7cUvezx8mPE8jeUl3tGgohp3Vq4pocNMyZU2Xkx62kfMKDSdZ80bgw8+6zwuUUL4b8RTzur25t52s0mIwwHT/uHH36IzMxMxMXFYcKECZgwYQLq1auHgQMH4t///rfd5tlC/sl8mu6NIAiCsAWvEtENGDAAJ06cQFlZGVLY2zyA+++/H3HepmIOcbKyhDmHH3rIPS4yLk7IIC9OwMSSOmVleWb+FmNleLxYhGuNe1XKHm/G067m7dciLk4Yx3zkCNChgzDHuFjkqnnai4uFafMAYOFCTpIxX9zOiAjpy7yeXUpjd42K9okTBXHD7GIYCY8XJ9qS16PlaVcqn5VlZSK6Bg2EucJ98bTrCbkrr1Qfzw6YD49XShDH5lW3IjxeLtr/+st0EZahJNrVwuM5TvhdMsJLLwlJLgHvw+PZPch+6yIjpWVxHI/XXotHs2bCzvIpHMV1W+lp92XKt3DwtD/zzDOYN28eHnvsMde6CRMmYMGCBZg9ezb+/ve/22idPXRq2Am/Fv8qWUfTvREEQRCBwCtP+7lz51BZWekS7IcOHcLChQuRn5+PtLQ0Sw0MJbKygClT3Mvnzyu/SLNxu1qZv61KRKc3pl0scP2RPV6P2lp3HStXegpetUR0e/YApaXC56NHhSnhGHLRLrbJiF0bN0qXN20SpqyqVw84fVp9P1b2+fPS9UbC4+Wi3Wh4vLx8cUeLGdGuJnis9LRrdQABwpR54vnutfb31tPOjjPLX+CraGfl2T0qqLbWMzxeTbRHRxv3hKtFN+htLy6f7ce85k6n9PrmeQ4cx+OddziXfeKORnEZWvO0m01EpzTlm1HCwdP+xx9/4CbWYyPi5ptvxoEDB2ywyH6mXT1NskzTvREEQRCBwivRPnToULz//vsAgJKSEvTt2xcvvPACbrnlFrz++uuWGhhqJCdLP8tfIFlSJ0A787fY0x4VpZ/gyoinXW2edvl+bPtNm4Ddu5Xr+/xz8+HxSuvE3srISM9QcDVP+4USXW0Qly1OyiW3Se+FvrISeOop6bqZMwVBef68toeNHT+559uIp118DMRlAfrh8WLRPnkysHWr8PmXX9RtlSd8MxoebzQRndI2avuxNpeWSue7lwt3K8LjGSwpIscJ9WzfrnKQNdizx33st20zvbvXKM04UVNjPDxe7XpSQryfr4noWGeWctI8DoWFwmctT7vWPO1GQ/OtCI8PB097ixYtsFHegwkh+WwL1gMTZmR1ycJNHYWOjAguAhnpGci5LYeyxxMEQRB+xyvRvn37dlx11VUAgJUrVyI9PR2HDh3C+++/j5dfftlSA0MN0WgB9O3rDokHpEmdAPVx8IDUsx4Vpf8iqhaa7s2Y9u3bhf9yb6yY+fONhccPHOhe16qVZzk1NdLx3OZEu7QdDDOedrk3Wny+xG0x4plUE+1mPO1KY9rNeNoPH3bbysYFK8GEPcNIeDzgm6ddTbTLBZB4GIlamd5mj2cUFwv/z50T5gmvqDA3Rzsg7VRgUR+BQEm0Kw19UevYMJPhXlyGr6JdnNTQ8x7j0ayZ8DkmxjtP+1VXCZEaP/2kbaPSPO1mw+Ofeko7KqQuMGnSJEyYMAEPPvggPvjgA3zwwQd44IEH8Oijj2Ly5Ml2m2cbjeMbAwBmDJiB3AdySbATBEEQAcEr0X727FkkXJig+H//+x+ysrLgcDhw2WWX4ZA481oYIva0d+0qjHPPyBBEeEaGO6kTIITTXwhY8EAs2qOj9b2bn33m/qzmaV+8WCqiAeV52tes0a4LAH7/3Vh4fNOm7nVjxiiXxTxwkZGeZRoV7XJPu/iFXLyNkbH2RueYliMX7cx7ZyYRnVJ4vDy/gbwctURiZpIBGvW019YaGw+tdL2aSU4nHkaitL8ZT7vScUhNFf6XlgqCETAv2u1CyVNeU8N5nEOtY2SULVvcQ0PEQ1DU0Moez+7z+vXl0xTy4HkOw4cLK6OjpUN0AGOe9t27hTpYkj09G8Vj2s162v/8UzsqpC7w4IMPYvny5cjLy8Ojjz6KRx99FLt27cLHH3+Mf/zjH3abZxtllWUAgIToBJstIQiCIMIJr0R7+/btsXr1ahw+fBhffvklrr/+egBAcXExEhMTLTUw1BB72mNiBGGemysIndxcz0Rbw4crl2PW0/700+7PctH+xx/C5+JiTwGp5Gk/ckS7LkAI7dea8o2VJfZ2LlumXJb34fH8hbp4iYfcjKe9dWtlz7rWshryMe3sVpCLaiVBoxUeb8bTLsZMBm81UcfOmXhaOa0IDLltRupQEqHiYSRK+5sR7UrRE9dc495GPEQkFFDytOvNty4+XmY6cxYscA8NKSjQ396Ipz0uTujMZL+VjRsDb799Gj17Cst6iejM2K9lo/g3IjJSOweEGuzamj07tK4howwbNgzff/89Tp48iZMnT+L777/H0KFD7TbLVsqrhB/AhBgS7QRBEETg8Eq0T58+HZMnT0br1q1x6aWXol+/fgAEr/vFF19sqYGhhtjTruYhFaM2vlTuadcTYGKvpFy0y0Ohxcjnac/JMRb+/K9/CS+ramPplUT74cPaZSqFxzOBIk9E16qV2zvWqpVgNxPoWqJd/sL/8MNyr5/3nnZWFxMnTLQb8bSLow2YrQy1a0QrSzpgPLIAUG/jqVPCfxZODgBlZfrlmfG0K02XJh5GorS/mfD48ePd0S7svurQQfgfFcU87cGJkpBUuh6UsseLEUdHmBG94vvB6H2glDtDXmZWFnDLLcLy//0fjxtvrHTdN3qJ6IwmudSyT1w2+93zdpw6zwtJResKp0+fxiuvvIIyhRu9tLRU9btwobzygmgnTztBEAQRQLx6/bn11ltRWFiIX375BV9++aVr/cCBA/Hiiy9aZlwoIva0GwlJVfKaAZ6J6ORTNskReyXlQlor47nc0z5zpr7NgPuFW2zL7NnuMFFmg1i0K41pF6PkaWdCWO5pT0wEOncWPi9axGPYMGlIrZJol3cyAMD117vHfnOcIO7kwzUffVTbboY8PF5NtCtdF2fPCv9Z+41kj9+3TztsmeeNew/NeOXlc7wrYcbTzsbLixEPI1Eq04ynvV8/d7QLu2aYQGvUiHnag1O4K3X8eeNpZ9cXYM2wCS2UEs2JYfeJuJMNcN83Yk/7+vXCNc7uSa3weDP2if8fOiREPHk7hEApKiSUWbRoEb799lvFqLmkpCR89913eOWVV2ywLDhgnvbEmPCOKiQIgiACi9evP40bN8bFF1+MI0eO4M8//wQAXHrppejM3orDlPh492fxi7IaHKecGErL064U7iv2Soq/i4iQdiTIkXva1TxGkZFSmyIiPL3yf/3lHt8p97RHRgoeTy3MiHbxdHTy5G1mPO0OBzBokPC5SRNB3PXuLd2mVy9tuxnsODLxcSHtg6Hs8SxE20x4fGWl4KFnwx/kPPecf0S7kfB4M9njlYSp0nztauHxep528TXFjiu7dhITgRUrnGjY0Lxi69HD9C6mMe5p95zyTYx4nLeRSBqGN6HoRkU7+8/sYecrJsY99WNZmXCNX3jE4ORJ68LjWb07dnhfJotEmDYtODt9vGHVqlV44IEHVL//xz/+gZUrVwbQouDC5Wmn8HiCIAgigHgl2p1OJ2bNmoWkpCS0atUKrVq1QnJyMmbPng2nt+6KOsLq1e7P77xjLEGR0ku41pj2VauAdu3cy5GRUpEjD4+//HL1up1OTuJpV5uGrn176bLD4emVF2f9ZmUwL3NkJHDDDVK75CiFx2uJdrVx4FpTvsm9dA6HWzQycS0Pky0p8bRVCbaffEy7kfB4hpnweIaaQMrMlLY/IUF/jmsjPPaY/jZm5mkXX+uMnBx3AjSWodtbT7v4+LHjwb5zOIRQ7dGjDWTXk8E6ZZSyoVuFGU+7llAWi3Z2fRrBDk97dLR7Sj65HQUF+p52ccepEvLw+NJS79oJeCYXrQsUFBSgAxs/okCHDh1QYCTBQR3FNaadwuMJgiCIAOKVaH/yySexaNEizJ07Fzt27MCOHTvw7LPP4pVXXsG0adOstjFkyMmRJpY7edJYZmGll3Ct8Hh51nn5/nLR3rGjet1yTzubhk4uQh55RPpiq+aVZ1m/5eHxkZHAhg3u7Ro39txXabyqmmivrfXMuK7kaZcPFVDytDPRyESDfKow8XhuLeTZ3M0komMoCXS1IRR6yI9nx47q4sSMaGFeTy189bQPH+5OgMYydO/c6f7eStEuXm8GFkmjJ5h9QenYsPnMxdTUGPe0q802oMSDD7o/a0XsiFGafk6Mp6edk9gVEwMcO6a875kz+h0kF1KsaNon/i/OQ2IWpeSioU5ERASOaGQjPXLkCBy+jlEIYVzZ48nTThAEQQQQr5687733HpYsWYIHH3wQGRkZyMjIwEMPPYS33noLS5cutdjE0GHmTOXM4/L5puXoedp37gR++036vdL0akrLel5A+Zj2rCxPTz4A3HijZ8I2pc4ANr5THh7vdAIPPeTeTumdUEmcWhke762nvajI0y4l5KKdeWK98bSLRY+3oj0iQtr+5s0BtaGoaqLTSDJFJcx42pXqkCdA4zhg40blstSmOtMS7ewcs+s0IsK86hbnIfCXp10pPF5p/nk977beNGhqiIcAiCNltNCzhR0r+bRuVVXCFzExyp16gHBPWT2m/dJLfSuvrnHxxRdjtThkTMann34atglna5w1OF8jhKqQp50gCIIIJF69/pw6dUpx7Hrnzp1xiqWbDkP27VPOPC6fb1qOkmj/9FNpGfK5sdWytit9pyUolOZpz8oCPvlEup2ScJRn92ZCKzvbU7RXVkrtkB8npenYxDbJs8frhcebGdPORGN1tbDfzz9Lt2Hja/Vg9rHwYzXRruWFtFK0yz3tDoc7gaAcNZGVluZd3Vqedvn1riTale6jEyfcy8HgaWf3ZGpqYD3tStTUGE9EZwa1IQl6+5gJj5d3dkVHA2qzil10kX4HidpsCgxmG6u3Y0f9JJnhxPjx4/HCCy9g0aJFqBWd9NraWrzyyit48cUX8fDDD9tooX2w8ewAedoJgiCIwOKVaO/RowcWLVrksX7RokXIyMjw2ahQRWk8uJHMwkqi7IsvtPfR8rTLE9Hpeabk87QDnh4+JVGTlSXN/N2hg3t8pzw8Xu9FXk2YWp2ITsvTDgidFW+9Jd1GLuLVYPbohccb8bSLt7HK0x4R4Z4mT46a4GNJ58x6krWyx0dFSc+DmqddvtywoXL5dofHN2okRKf4w9tuNJGgcH+pG+Ctp10cdWJUtJtNRCefujAmBrjkEuk+9eoJ/1u10v890+ugUJqnfcEC4bO/IiZCieHDh+Pxxx/HhAkT0KBBA1x88cW4+OKL0aBBAzz66KOYOHEibr31VrvNtAU2nj06IhrREQZvToIgCIKwAK/kwLx58zBkyBBs2LDBNUf7li1bcPjwYXz++eeWGhhKZGcLY2+Zx1nsedZCL9GYEkY97Xrh8UqedsBTSEVGKr+Ix8e75/Jevx5o2VL4rJQ9Xku4V1UJobjyY6U1pt2sp11p3nKOk7b16aeV7TNCba3QafHXX8Lyq68K/8142tm14C9Pu5poVzsvbHo3s55krXnaHQ7BNnZclISpkqf96quBFSukZSlta0S0y8PjIyO9D4+PiRE6sBo1Ao4fd5drhffdqKf95EkH3nhD/XtvRbv42jU6j7kViejk92mrVsDevcJ1oyes9dqqNE87GxY0a5YwFMnbOdvrCs888wyGDh2KZcuWYf/+/eB5Hv3798ff//53XBrG4wmYp52meyMIgiACjVee9v79+2Pfvn0YNmwYSkpKUFJSgqysLPz222/44IMPrLYxZGAvfhkZwph0o5mFvRHt/hrTzjDiaQc8506X28Be+lNSpAnulGxiCceU6pXPQ22lp13c1v37Pe0yCrOf2XX0qPD/9Gn3NuLjrYRcyIjXmUXJ0x4To3zs1UQWa8tbb7nD/cUebzW0PO0REdJrXkmYfvih+3NqqnAfiRNae+tpl0eAyL2+ZmDh8cx+cdZycV4HXzCeU4DTTJi4fbt39ftDtMvHtMvD48XztDNYB4mRyCGjnnZxJxIg/H7n5gqzfhDCFK4vvfQS1q5di88//xwLFy4Ma8EOAP/Z9x8AwMmzJ9HjjR7I2WNgehiCIAiCsACvU/o0bdoUzzzzDFatWoVVq1bh6aefxunTp/H2229baV/IwV78zp0znlnYn552vTHt8uzxDKOedvELcoJoiJ/c056Q4NmhIbdLKWu9PJyZ4e2Ub0pj2jnOLdzbtPFso1G+/lp53L44zYOeB5LtLxal3ibeGjRImguBla/kbdfzCo8YAfTvL3zOytKvW2tMu8OhL9p793Z/HjdOuI/Uxlf74mlnx9abaAZWD7NffP1/+aVniLc3iDuU4uOFe0c8JEWK+o1uZOpJJcSi3Ux4vJHs8fIOKnF4vPw+ZdexFZ52eXi8/P4yOiSBMM+rr76K1q1bIzY2Fn379sXWrVsN7bd8+XJwHIdb1JJyBIC1f6zFk18/CQDgwSOvKA/DPxlOwp0gCIIICOE7b0sQ4Y1gMONp1xJ98nnaGUqedj3RLhfIgFRYyzs0lMpTSlAHKIeYezPlm9qxYsLLl/xKJ04ot8nouGDxvmbmTVdj717pdHWsrUqiXa+++vXd51cv0RegnT3eiGg/fNj9mXlg5WXKxZd8vb+zxzOUPO1Wzd0uvg+vuEK4dwKpW/Ly3J+tDo9X87RHR/vX0y4Pj5dHspBo9w8ff/wxJk6ciOzsbGzfvh09evTAoEGDUKwzp+bBgwcxefJkXHXVVQGyVJkXtr0ATtQxxoMHBw6zvtGZHoYgCIIgLIBEexCg5GlftUoY4x0bK/xv3lz6vZanXZ6IzipPuxJqcz4rzdMuRyns24yn3Zsp35Q87YB7ir0BA4BrrvG0ywgNGigfa/FxNSrajXo1tZALJ3YszHrao6OF88fOoRHRruVpj4iQXg/i6Q0Z99zj/symO5SXyY6RXYnoGEqiXZ5PwNeyAc/rPBB89537s79Eu3xMu92edjORT1Z0roULCxYswLhx4zB27Fh07doVb7zxBuLi4vCOxniE2tpajB49GjNnzkTbtm0DaK0nf5T+AR7SC5sHj/yTOtPDEARBEIQFeJniirASpZfErCxpGHLXrtLvxS+aakIU8P+YdjWUPO1yEhKAkhLpPmpCUy4UhenZOEnZ3o5pB6RztbPwY4fD3Ev55ZcDn33mud7pdCfZGzxYfX+xbf4QA1qedi2RVb++8F+tA0UJXz3tf/7p/rxunRDeLS+ztlYox5vweH+IdvFxNSIujSC2i7VDvVweWiHy3iAe2mGkswYwn4iuthZYuzYGX38tLM+eDdx2m2eZgDWdIWpj2hlmPO1OZ2A7UUKVqqoqbNu2DVOnTnWtczgcyMzMxJYtW1T3mzVrFtLS0nDvvffiO3EPkgqVlZWoFPUkl5WVAQCcTiecPvyoOp1OtE1qi72n9kqEOwcOnRp28qnsQOB0OsHzfNDbqUWot4Hst59Qb0Oo2w+EfhussN+XfU2J9iydwawlYgVGGMZIeLz8HBsNj1eb/5yh5mmX22T2xdSIaK9f3y3aOU4Y556dLe2sUBPt4mW5B3LUKKCgQPgsTgLncABffSUt57//Be68UyraL7znoX5995RnRmjXTkigdscdnt+xJHXiBGvyTgomjgH/iHZvPe1y0W5EvIlFN8NMIjo5s2YB8uhYa8Pj3duY7axhIo9NS8bKs0LMiQW6mqc9MpJHTQ2HiAhrIjTEJCcDJ08Kn9WiauSYTURXUAC8+WYKcEEM/fWXewo2OVYMO1DKHi+GPO3Wc+LECdTW1iI9PV2yPj09HXv37lXc5/vvv8fbb7+N3Nxcw/XMmTMHM2fO9Fh//PhxnD9/3pTNYpxOJx7o/AAe2fyIax0HDjx4TOgxQTfE326cTidKS0vB8zwcIdrLFOptIPvtJ9TbEOr2A6HfBivsLzcjLGSYEu1JSUm6348ZM8ZrY8IVpZdE5pllAlZtrLf8s3xZ7SWXCUY1T7sSZqawko9F1wuP79xZGOeuto1cjIgFRGSk4IllQlGcAV78PlhUBEyaJC1nzBhBlIpFO7ufzN5XNTVST7pYlLMke3Pnur/v1g3YtYt3za8tFu2+iC/5lIMMb8e0s7BvM+HxW7cK50TcAWMmEZ2c/HxhTLcYrfB4cbSFMU+7+0A1bw4UFurbxGD2i0W7VZ52MWqe9n79hDD22lr1Cr2dgq5HD3dHl1WiXe5p374d4Dj3faB07TKs9LRbMaa9Lov2oqIiTJ48GRs3bkRxcTF42QmptbqHSER5eTnuvPNOvPXWW2jUqJHh/aZOnYqJEye6lsvKytCiRQukpqYiUTy9iUmcTidGcCOw48wOLN25FA7OgW5p3TD96ukY1tlAtlmbcTqd4DgOqampIfmiDIR+G8h++wn1NoS6/UDot8EK+2OVxoQaxJRof/fdd72uiFBHSbQzz+yqVYLwUQsbB7wb0x4ZyULMlT3tSph56Zd72pXCj8XrxKJe/MKuZpP4ffG//wX+/nd9mwoKPMUAxwleXCVPu1nEc8cDynON//67e3nbNmDgQPe4YfF14IsYaNJECGvu1AkoLQUOHhTWW+VpNxIeDwjHVSza5fO0M4yIpE6dlMPjAeXweLGNZsPjzQh2wH3tiH+HrfK0i1HztBupx6xgj40Fzp8XriWG1aKd/S8thUuwM9T2t8LTbuWYdj/qVtu5++67UVhYiGnTpqFJkybgfDjwjRo1QkREBIqKiiTri4qK0LhxY4/tCwoKcPDgQdx0002udSykMDIyEvn5+WjXrp3HfjExMYhR6AV0OBw+vyByHIcujboAAO7IuAPv3fKeT+UFGo7jLDkOdhLqbSD77SfU2xDq9gOh3wZf7fel3TSmPQhQ8kIzbxMTPlZ72iMiBOFixtOuhdhLrFSWnqddLqxY+LKRscZz5nCGPIlnzigL6fx8oGdPYVnsaTdLba3bC83aL+8gaN/enVhNHiYuPka+iPZZs4B77xU+9+njFu1WjWk3OrY5X5afyZfw+Oxs4PPPpeu0PO1qop0dA3l4fGSk79nj7fK0f/ONxRUB6NUL2LxZeq7NiHat65cNiWHXU2IiUFrKS4S7Pz3trFyrxrTXVb7//nt899136Ml+HH0gOjoavXv3xsaNG13TtjmdTmzcuBHjx4/32L5z587IE09dAOCpp55CeXk5XnrpJbRo0cJnm7yhqla4IaIdNMUAQRAEEVhCs5ujjqHm2WGCEtAe066ViE5tTDvbX21Mu5o9ashFu+e4W3Ub5N/LOx204Dge+/YZ8yTWr+95rDhO8OJa5WkXzzUtF+w8Lw3P5zhpu8WfffHgicWj0rH0VrSbCY8HhOMqxkwiOrHXumtXYZ52o9nj5REPRuZpNyME5dekkmj3h6ediUnPyBrvOxzUYOdcfByt8rSzYSysHd27M0+7sJNWB5wVnSHyYUEUHq9MixYtPELifWHixIl466238N5772HPnj148MEHcebMGYwdOxYAMGbMGFeiutjYWHTr1k3yl5ycjISEBHTr1g3RNs3L5xLtESTaCYIgiMBCoj0IUBPtTFAC2p52b7LHsxdVtXnajZCT4/58+rR02aynXfy9eL2eaI+KEo6REds7dVL2tGdnu4XXuXPee9pratyCtn59YWhDaqqw3LChcHzYmHeHQ7BZzdPui2gXi3KlYRRmx7R762nPzlauQx4eryTaW7Z0f05IEP57Gx6vdG3Jw+ONJINUKg9QDo9n59dXlBLRycuVh5ZbAbtGzHjamX033aR9/bLp29ixb9YMWLLktOs4tm0LiJKMS7CqM0Qs2ik8XpmFCxfiiSeewEEWquMjI0eOxPz58zF9+nT07NkTubm5WLdunSs5XWFhIY4ePWpJXf6CifaYSAPhQQRBEARhISTagwD5eG72nwlKQHtMu5ag1xPtZjztYnJyhDH3jOpqYZkJdyOiXbxOyRsq/6xERASPadN4Vc9c797uz82bA598Iv1+xQrBi8sEw+nT7pf5557TrluO2MMbHS2dtu/UKWDGDGH8vWC38F/cbqvGtIudUFZ62s2Mae/WTTiuYsSeTfH1oSTaxXNtM7GoJtqVwuPFCRDlOR7EbVCb8k1LcKuJdrGnXVy2VTAbA+lpNyPa2TET521Qgl1/7o5DYMiQSrRqJSy/+64wfaISVg070BLt5GkXGDlyJDZt2oR27dohISEBDRo0kPx5w/jx43Ho0CFUVlbip59+Qt++fV3fbdq0CUuXLlXdd+nSpVi9erVX9VpFZa1wE5CnnSAIggg0NKY9CBCLtQ4dhERYnToJgp0JH/nLoZYgMJqIDgAKCyNcL+Zffw1ccokxm2fOVE/qlpXlaZ+ZRHRmwuOjooT6Vq0SplpjXjxG8+ZCwjdm34gR0u/Z8WVe0hMn3Ns+8AAwZYp2/WLE4fFRUUIHxuLFwrLTKSQXvP9+aRv94WkfPx6YP184LkY97Vqi/b//FdpiJjxe6Z1eHB4vrk8pkaZYtLOZmtTC47U87XKvqfqUb+5CLr5YKGPPHuW2ystkIk88U0GPHtaPaRd36IkJFk87O6Z6EdWtWwv/2fXIzqM4j4Xa75tVnnanU31MO035JrBw4UK7TQg6KDyeIAiCsAsS7UGA+CVxxQphvnI5YhHTowfw+OPuZb0kdUovuUzUCC/lwkv/lClCojTmHdaar1ppHLl4DL4v4fFaSfbUysjKEsbGbt2qXodSWWwd85YePy78T0gQEmSZQRweHx3t2bEhnspKydNuVSK6gwfdMw9Y4Wk/eVIo7+abhWUjol3JfrUxxP7wtK9dK3w+d046faIRT3uTJsL+334L9O/vaZtc1MXECJ0ab73lXpeX590Ua1qojb+fO9eJJ56w1q2v5GnX60gyes2yISNiT7u4fC1vuvy79HSguNj8sRYny6Mx7crcdddddpsQdLjC4yMoPJ4gCIIILBQeHwSojedm5OQIwomRlyd4ldUwEh5fUcE+STM2z5qlbQujY0f1pG7ssxiz2eON2CCUy4s+a9fBjovYs8vslIv2xETpGH0jiD3t0dHqHRtiW3wV7UrnVjzzgBVj2lk9P/4ofDYi2pUEnjgcWXxclESSOAT/8GEh9HzdOuU65Lbv2wf83/+5l9n0iTk5xsa0s2Oq1mGkFB7POmgYVgl2ccZ8Zo/8nA8aZE1dYpQ87XoYzQsg73yQe9q1MsTLv3voIWGeerNYFR5fl8e0A8Jc7KtWrcLTTz+Np59+Gp9++qlf52cPdig8niAIgrALEu1BgNKUVGJmzpQuM1GmhjxJndK27AVZXq54mi4twZydLbVDPgbfl+zxWqJd7uVUE/sMpYR98rHHgFu0s/B4npeO2TeCeEx7VJR6x4bYVrH9W7YIXuGcHONiQE0csnOp5GmXT8WmVY74e9ZxxNqoJdKUOgG+/Vb4v3On8Ce3S42aGiFEvrRUul4tPP6nnzwFNOvEUJvyzeFwF6KXUV7J0250BgOzsOnRAPXweDPh3EYxO1MAACQlGdtOHt3ArhWxaFf7fZN3QnKcd+HyYk87hccrs3//fnTp0gVjxoxBTk4OcnJycMcdd+Ciiy5CQUGB3ebZAoXHEwRBEHZBoj0I0BOe+/Z5rhMLBL3M8kovwEreJLGnXM0WBhtHnpEheK4zMgSxycaIWxUeryfaxWOR9cbNs3K1RPsffwj///rLcxs95J521rHBEIfKM1sOH3Z/z/Nur7CRZG9iu+Wwcylvf04O8OabntsXFmrXw3FAo0bCZ3GSNzksrFre6ZCTAzzzjPCZ54GzZ6V2eYOap72kRH3ohpHweDVxzFDytCt10FiNWmeC/J5QO55mjjPb1oxoN9p+PU+71rh1uaddbfiPHqtXAxs3Cp+ffloaVWPG0y6OhKhrTJgwAe3atcPhw4exfft2bN++HYWFhWjTpg0mTJhgt3m2QKKdIAiCsAsS7UGAXni8lsdWCSOeqIYNPdeJPeVqtojJygJyc4Vxw7m50mzhcvv0BLXR8Hj5C7VaeLnS/swmpfBwJn69EesM+Zj2rCwhRwGja1eA5XZidv3yi7QM5hU2KtpTUjzXiaMe5B0g8jBuRl6eeh2svGuuEZbFyfbkJCcL/+VCWq1ewHrRnpSkPnRDbZ52X8PjlSJPrEYtPH7oUOkKtfv2vvuM12V2ej8AKCtT/y4+3v1ZLtqVxrRrJaKT/77p/U4pMXq0296//pLOfPHZZ8bLeeAB88NoQoVvvvkG8+bNk2SKb9iwIebOnYtvvvnGRsvsg6Z8IwiCIOwiaET73LlzwXEcHn30UUPbL1++HBzH4ZZbbvGrXYFALzxeLRSd4Y2nXSmUdeFCqfD25mVYyQbA+/B4Pa+i3vh3s552X5B72gHg1lvdbXM63QkE2Xbi8GeGeBo+JcRj8o8d8/y+ZUt31IO8/Wph3FqCq1kzobzu3aW2K51Tdl3JPe1a4eNqAk1P+KqFx/furRzhkJ2tnj1eHB6vJ7yVwuOVIk+MzsRgFGaPPPJGPtxB7b6NijLeQcK2M9p5pLet+PdGPkTETHi8XNB7Gx6vNnxCPpWlkXLEeUDqEjExMSgvL/dYX1FRgWgz4Qh1CBrTThAEQdhFUIj2n3/+GYsXL0aGUtp0BQ4ePIjJkyfjqquu8rNlgUEvPF4tFF0NI6JdqZ7rr9ffxij+SkTnOabdeHi8EU+7GkY8p/Ix7Qx2PvbudQvesjLhHCpNjaY3R7h8Wjv5vsnJ7s4XuafdmzDuZ56RdgCIPaJy1DztWvWqiS6lKAIxt90mHEN5Xa1aAU88IXzmOOnQDX8logM8I0+aN9e23wjiY8bs+f576TbyKd/Ucg1ERhq/p70Jj9fqaBKLdjVPu5FEdDt2eB4Tb0S72vAJrYgQtXKUckTUBf72t7/h/vvvx08//QSe58HzPH788Uc88MADuJlNJRFmVNcKPxwk2gmCIIhAY7tor6iowOjRo/HWW28hRe8tHUI229GjR2PmzJlo27ZtACz0P2rjucVohaJ742lXerE3EtJuFKvGtMvt1/K0G80eb1a0c5wwDZgeSp52QH3+6tGjhSn25HVpiR89gaKVTNDh8Bxnz9BKqMXaoteBAqh72tXqBdRFUrNm6jYBQEGB4BX99VfpeqdT8LYDwFVXSe8XeRuUxrTrJaKTX2dqTkd5GLdZWIeD3C7xTBJKaHnajd7T3oTHayG+Hr79VprJ34ynfeFC4OhR97IVnna23KmT+YSC8jwgdYmXX34Z7dq1Q79+/RAbG4vY2FhcccUVaN++PV566SW7zbMFmvKNIAiCsAvbRfvDDz+MIUOGIDMz09D2s2bNQlpaGu69915D21dWVqKsrEzyBwBOp9OSP57nfS4jMtKtmDjO+H5ueNl66Xcc56nIxAnc3EjLF4cMS+vTP35SG4T65NuIyxd/L69XbKvYsw4IU74p7ec+nrzks9PpRGystHyn04k9ezyPEdt3xQonJk/WTxP90088HnhA2Ke4WNxeZRVw/jyPLVvc6iEykkf37jxWrvQ81vI2uJGWzXE8OnVy1y1uv8PhxC23OPHaa+ZSXkdEsOMr3U883R4jIYG/YLP0fN9yixP33ee8YAePuDjxvsr2JCZqqychrJnHxo3S7WpreZw9K5QZHc3Lrjl5XbzCev7Cva1sl/wajIpSvgfEx175ftNmxQontm8X2yCU27ChdllqdUVE8Ir3iBLsN6OqSn376Gge8utPDXFHUnk5j+HDga1bhTpqagCe513CXqhb+dhzHI/du8X3tPJ9r4cgzHlXmTwPTJvmRMeOvOS8qewtKWfaNOueBcFEcnIyPvvsM+zbtw8rV67EypUrkZ+fj08//RRJRqcKqGNQIjqCIAjCLgzOrOsfli9fju3bt+Pnn382tP3333+Pt99+G7m5uYbrmDNnDmbK50wDcPz4cZw/f95wOUo4nU6UlpaC53k4vM2mBaCyMg5AIgDg9OkTiIgw+vLWGABQU+NEcfFxUXnu7yorz6GiohqA9CWL56sBSF88Tp06ieJit0uM41IBCO6w4uJiV5nuZXXKymIAuCMnqqrOorhYOj6ypiYZgDBAu7ra/T3PNwK7NIuLixERkS4ag1wL8WXLcTUoLi6Bw+GQlCeuFxBSmldWnkNxcRkcDvd2xcXFWLs2BkuWeEZ5NGtWi5kzy3HFFZXYs8d9jtQQMqILInzrVg7vvluCIUMqERmZrjjFnrAt79rnzTdLcMMNlRe+kx/rxhfaKz8X3AXR4f4/YcJpFBcL5dTUJAEQBvGfOVOB4uKz6N+fA5Cu2RZpu0pRXFyJc+ekx8DhkJ4LAIiMPAcgDlVVtSguPiH5rnlzYf+hQ8/j4MEI7NghXH+nT58EkOpRb2RkFQBtjxbPczh+XCqyzpw5j+PHqwAkweGoRHFxieu7c+fqA0hwLa9cCeTl8cjKcl/3VVXnUVxcipKSSACNFOqU3jtnzpxCcbHnCa6qch97s572yy+vxBVXnIZwmwnn+uzZMyguPoPLLkvCmjXuxAzsvDOEDghPl3pV1Rk4HHFg15sWZ85UAEjU9LQLwtdow9zXObtmP/nECcCBysoqnDpVAp4XwllOnz5+4dh7ZsvkeQ7l5e7zfeZMBWpqoiG/7/V48cUSTJ2aiPPnOTRvXosZM4T7fMKEGNx3X4rHMRUTESF0DAEcZs4swxVXnEVxse/PAqXx48FA+/bt0b59e9TW1iIvLw+nT582FBVXF6msoTHtBEEQhD3YJtoPHz6MRx55BOvXr0dsrP4LV3l5Oe6880689dZbaNTI80VajalTp2LixImu5bKyMrRo0QKpqalITNQWYXoI3jQOqampPol2sdMiLa0RTDQPABAR4UBaWpprWZwQql69ekhI8Dy+sbGesc2pqQ0hKgZRUe6XVnH5Ssty5O90CQlxSEuTZoCLi3OXn5jo/j4mRlqv+NDGxkZIXqhjYiIubONA/fqeL9nx8e5Y+Li4ekhLi0VKirT8l1/mFF7SeTRoEIG77066YJ9mcy8g3f/ll5MxdiyPhg2BoiL9fTp3ToLSYRUf64gI6XLv3jyqq4F9+3h07AhMn+7EsGHuC6pePXf5SUnxSEuLd407N0pqqmCXfL+YGE9h2KgRE6kRHtcICyNPSoqVhNanpipMZQAgJUX/xZjjeKSmShPyRUfHIubCeIfExBiJHfLz6HRy2Ls3Es884x7/EBsbi7S0GMUkfwAQFye9dx54oCGefppHVpZ0O/GxN/vz0KlTtMfxS0ioj7S0+ujVC1izhq3l0a2bNPt/VJRyZcnJcYiM1BfZkZE8kpOFdO+1terbt2gBHDigLm6lSLfheQ5FRcL143BEIz4+2fVdkyapigkaAeF8Jya6EzgmJsYjNtb82IMnnkhydaQsXuzAoEHCPTN2LJCU5MTs2Rx27+ZRU+NZ9qBBwtj6o0eBm24S7ikrngVGnoOB5NFHH0X37t1x7733ora2Fv3798fmzZsRFxeH//73vxgwYIDdJgYc8rQTBEEQdmFbePy2bdtQXFyMXr16ITIyEpGRkfjmm2/w8ssvIzIyErWyQbEFBQU4ePAgbrrpJtf277//PtasWYPIyEgUFBQo1hMTE4PExETJHwA4HA5L/jiO87mMiAj3aYiKMr6fG6kNkZHu7xwOTlI+IyLC82U0IkJul1h0SMsw0yahXZ7HSSwgxN+Xl7vXX3yxQyIKIiI4OBzi/aBYHkO8zuEQ6hB3FjgcDuzbxykIDw779nEqx9sI7v3FnQSeuL2GzZop1yVeZtcbo0ULDjt3cjh3Tvg/fLj6MY6MFNbFxpprS0yM53UFSDt1GMuXC+tqaz3Pd1WVsL8gsqR2KREfry3GhPH/HAYM8BSElZVCmfXqqd8b4u2loeyc6rYAcOqUtL59+ziMGOHA6tXy+0B67ZlBfD+47fK8t2JjOWzbJh8yolxXVJRD8b6XEx2t/Jsh5557uAvHTndTDzgOaN5c2JHnpZ0D0dGevx8MnufQvbv0/jXSESGnspLD+fMsKkZ63m691YGdOzns2KFcbocO7t8gnrf2WRBMrFy5Ej169AAA/Oc//8Eff/yBvXv34rHHHsOTTz5ps3X2UOWkKd8IgiAIe7DtLWHgwIHIy8tDbm6u669Pnz4YPXo0cnNzESHLmNS5c2eP7W+++WZcc801yM3NRYsWLWxqie9oTXFmBL1EdEplKiWkkm8nzlJ+4d3NMN5mj8/JAQoL3evz8gDxKAaHLFu03pRvH3wg3RfwTESnltlcnGDKm/PC9teeHcld8d/+pj/ns9wOtUzhStt7qwnYuZHXpVQ3GzVRUeH5XeWFyH950j81u+rX17arTRvheMkTgX3+uTt7/JEj0u/UErGJO230pnz74w/5vspTf/ly7NmxFV8PL70kLIvtiojwLNvXRHTR0ca2u/Za6awWZhzFPA+MGiV8djqFiAeGUpsY06cLUxoyvE1EJ+bDD5XXa812IE+iVxc5ceIEGjcWhmZ8/vnnuO2229CxY0fcc889yBOHdoQRFB5PEARB2IVtoj0hIQHdunWT/NWvXx8NGzZEt27dAABjxozB1KlTAQihg/Ltk5OTXeWE8ryx8pdwK8tTWlarR7xdTo40S7PZdzQj4lIp87s8/YC8Q0L+Qi9OhqZUxwnRsGq1Kd/UMptnZ3vuawa2v9FLc9cuIRu6XLiLO0zMina9Tg1Av21mssczlMKbxaJdfLzVRNeqVdp2vfqqkBVefu5KS92ZyDdulB5P9WPgOU+7ml1nzniuU5r6S2m6NqNERnrOGX70qLC8e7d7XUQEm2FB+z5g642KdiP2OhzSWS0uukh5O44DHn/cvZycLLTtyiuF5dpaSHI+aGWPHzDAszPEV9Eu7iQUo1auuM66LNrT09Oxe/du1NbWYt26dbjuuusAAGfPnvXoVA8XKDyeIAiCsIvgiseTUVhYiKNi5VhHUfMcG0VvijCjol1sh5541sPbKd/27dMuNyJCfZo3vWPH2if2lDJB/K9/SbcdNkw6rZ5ZYTB0qHt/JdHuPj7STNQcB4hSMACQdpiYnZbPiLdX7LlUgolzM6K9pkY4tvXqCf9zcqSi/dQp97ZDhiiXceKE8nrGd98J//WEk9gDrtT5JM9nwK51teOVkOC5TmnqL1897UpzhnMc8NVX7mV2Toz8hhj1tMfEGLNXbfo8OXFxwjhwxg03CPeG2FstFu1annbWScHgON87Olu3Vl6vZoPYu1+XRfvYsWNx2223oVu3buA4zjXDy08//YTOnTvbbJ090JRvBEEQhF0ElWjftGkTFi5cKFleunSp6vZLly7F6tWr/W6Xv/E1PF4LtfBRvXna9cSzkXrFKL1YK4XHq4Wqi/dR87QbEbA5OcDy5e51eXmC91K+r9xraNbTLt5fLNoTEoQw4owM1mb5eGxPz5+WV9oKT/vLL2uXwew3Eh4vhg1tYMd4715h/f79whzrDLmH2ij//rfwX084sfJzcoAlSzy/b9kSeOWVEtcyK0/tnF8IBHIhjK2XRmbI9zd7X0dFKc8ZzvPSzgx2To2cZ6vD4+VtUmtjvXrSZJtsO/a/ttY9pp15sdWOfWSk9Z72Bx9UXm/E0y5LvVKnmDFjBt5++23cf//9+OGHH1zJHSMiIvAEG38SZpCnnSAIgrCLoBLt4Yo/Pe1C6Kznej1Pu5541sPb8HgWqq42rthTtGvXIYbjPL2XrC4mANXKMnssxEJd/Pm664RQ4txcoEsXaVizkXpYxwNjzRrtcfBGvL164ftGPO2sHfJjy/5zHLB9u7C8aZO0HLNRHIy//pLur3TsxB5wNc91UhIweHClax0T7WrHq00b6f4ZGcI5EEdmyPf3xtOudA9yHJAqmh3PjKddLnjVEJI76m9n1NNer540a79ctDudbvGr1B4x8tB5s2Pala71wYOVt9US7XV9THt1dTUGDhyIjIwMPPbYY2jevLnru7vuugtDhw610Tp74HkelbU0pp0gCIKwBxLtQYAVycK0UBIzep52PfFstk6joj0rS5rcKiMDaNhQuo+aaNcbp+9wqHsvDx/WtlftvCQlKQsBsaAVfy9OwiYcY04ieHle8PyqHe+qKuk459OnlcfBM9Q8sGqdCkqoiXbxMWrSRDhfHTsql8HzwlhzADh+XLs+ozRtKvxnwkme4I7Vyzzgaud+3z4gIsL9hZ6nXdzunj2FDhi5YJfvb/a+5jjle5DnhY4fhlvk6o9pN+NpNzqmXWuZERenPGWiWPgyTzuzXe3Yy+9/sYA2gtKQDrVhHmo2hEN4fFRUFH799Ve7zQgqapzuMRwk2gmCIIhAQ6I9CPBVtPvD064kns3gbfZ4VjdLbpWbKx1DLH9pj4pSDo+PihLsFk8qwHHq3kv5uG6jnvYhQ4AffvBcryaKxcIyKwtYscKJLl1qEBvLuzy2Cxaod5icOaNsvzxzOUPt2oqPd3/WGpsutl9+TMT7PfEEj3PnxPOHe9rI6kxP9y2Kg8E6L9j1X6+e5zb33ecW1GrRI+np0muHeX3V7kVxu5XEKEM+i4Me4mvj/HnlezAnRzkxoVpHlhgzieiMbCffRm0feXg8S+QnDjFnY9qZ7f7ytCttq3b9h3t4/B133IG3337bbjOChmpnteszTflGEARBBBqdgGIiEPhzel61MZ9yzzLgKSyysoQ/te/16hWjJCSMhrbLvcVq3mPx55YthbHTy5YBd9zhtik7WxB7zGvJ/o8bB0yZom6P1gu8ku1GRDsgHN8rrzyJtLQ0iOfyXrVKEOL5+UJ4986dwnpxwi6GUuZyhtrxiY93J4OzwtOuJB4Z7Bi3awfs2CGI6EWLPM+BUaKjhYiD3r2FZebtVBJfl17q/szOvZxDhzj873/uE2PG066UlI5hdlaI2Fh3sj423aL8HgSAF1/0LNfKMe27dwPbtulvZ9TTvnMn0Leve7m8XGqnOBGdWU+7XaK9rofHA0BNTQ3eeecdbNiwAb1790Z92RyMCxYssMkye2Ch8QB52gmCIIjAQ572IMBX0e6Np33rVs91n3/umx3yesWY8bTLkY/XNTLlGytb7pVT816KQ46V7NUSEUpCSC083uhc1vJoA7FdSp52eeZyhhFPuxVj2lnZSseCHePkZGH5iiuk56BrV/W6lY57ly7Cf+blZMJJqW7x8c7KAlq1UqqDx4svug+I3ph2cbvFx1GO2QgacVuZaNcr1x/Z48+eBUT5QFUxOqad56VZ+ysqpNvX1rrnaTc7pt1sIjql68kXT3tdFu27du1Cr169kJCQgH379mHHjh2uv1zxj1KYwDztHDhEcOE55R1BEARhH+RpDwL8KdoB4x7y+fOBu+/2zRa1OvWyx5vxtBsZ064k2tl+St5L+VRgRkW72phao552syQlASdPenqp5ZnLGWoe2Koq9+fbb9eu00j2eC2xtWOHYOf8+cJyTIzgbWfn4MQJaXI1xoMPAps3C57fandkqsu7zUQ7u/6VriF5J0lRkec2PM+hoMC9s1Wi3eyYdqOiXcmDLx7TrpWIzuj4byPRD0Y97YC0LCbajXraExLc3nl5Mj2zU74p2ajWaRXOY9oB4Ouvv7bbhKDCNd1bZAw4K8b3EARBEIQJyNMeBPgzPF7N067E/v3W1ett9nglvBHtSi//WsdZ7m0zGh6v5mn3l2ivX185UkApERqg7O3NyZGe699/167TTHj8//7nuT8T1+J52tVsFHPppUKUgTwCRC7amXAyItqVcxrwaNfOPe6AletreLxZT7u4Y2LtWvXkgnqedl8T0QHGhisY9bTLYQLc6Jj2lBRpnb542mlMO+EtzNNOofEEQRCEHZCnPQj4+Wf35x49BK+p3BOshV54vNGX2g4djNeph5Xh8Vpj2s2Gx6uhNwe5lqfdlzHtZnE4lCMF1FDytM+cKd1GT6AZm/JNEJn33++5/8qVgjffrGhn9Ym3j452H08j4fHyupRzGnCYNKkC996bIilPLrqVOgdkw3wlmPW0Mw80AJSVCXauWuV5rpU87UbGtBud8o3VYaWnXYxctOtljxeXO2QI0Lq11M5AhMeLz3+4jGkHgF9++QWffPIJCgsLUSUOzwGQozXXZB2E5mgnCIIg7IQ87TbDsoUz8vK0p/Ayi5anXT5H+BNPWFMnq1dMoD3tWuHxSuiJdrOedl/HtKthNipDydu7b5+5Mlj79I6R0jzogDvBn7eiXXz84uLc670Jj1fKabBypRM33ug5T7u4LeKyjYbHi/EmmlZtVgB/e9qNJgY04mlXmgFBKTxea572gwfdn/fuBb74Qlqnr+HxavuLt42Lc38Ol/D45cuX4/LLL8eePXvw6aeforq6Gr/99hu++uorJImnAwgTqpwk2gmCIAj7INFuM3Khw7x/alN4KeFNIrrbbwe6d5eOhb35ZuN16hG48HjlsbxmPe164fFmE9H5y9NuVvwpHRO1qc/MlAV4etqV5kEHgMJCoRPKCk+7kmg3moiOIU/yJx9aoORpV5vpwKhoNyMsGWqzAih1RFmRiC4hwd2R8a9/6dtnxNOuNGVkZaUQUfTVV8KyUni82vUpv758zR4fFaUdRcMQX0fhEh7/7LPP4sUXX8R//vMfREdH46WXXsLevXtx2223oaV8jswwoLpWCI+PiaDp3giCIIjAQ6LdZpSEjtYUXmZRE+3dugE7dvC49lq3h9HKsfVmE9F5nz1e+7O/Pe2BTkRnhac9O1t9HngttMa0c5zQGaDGrFnmRTsr36hoV+r48eZ4K83TLi57zx7357lzjUXFeHNvqc0KoOxp9z0R3dVXuzsyrrxS3z4jnnbWOTJ9unR9Xh7w2GPCZ6XweDNh/L6Ex2v97oi3lYv2cAiPLygowJAhQwAA0dHROHPmDDiOw2OPPYY333zTZusCzzd/fgMAOFhyED3e6IGcPeE1PIAgCIKwFxLtNqOcGEt9Ci+zqL3UKk3RZWVC3MCFx1vjafd2THtEhLLtauHx3ohIsSg8dMjc0AmlYyIPEe/WzVhZ8nbKBY9aBntA6ITyl6fdTHi8EZTC48VtXbbM/fmvv4wNZzEjQtl/tVkB9Ma0exseL+48NGKvmTHtSnkUWDvMeNqVbPAlPF5rukM1T3u4hMenpKSg/EICgmbNmmHXrl0AgJKSEpw9e9ZO0wJOzp4czPtlHgCAB4+8ojwM/2Q4CXeCIAgiYJBotxklr6fWFF5KeBMeryTarfS0+zM8/swZ9/Kbb9Z3CSZ/jmk3O+WbVaI9J0cQhYyqKnM5D9QymItDxHfsMFaWXni8+jzoQieUmmjX6hAB9Me0mw2P10MvPF6M0eEsRu6t+HhjswJ4O0+7nqddLECN2CvP6q+1j1IeBfa7JR7TruZpV4sK8aen3Uh4fF0W7VdffTXWr18PABgxYgQeeeQRjBs3DqNGjcLAgQNtti6wzP52Nji4Lx4ePDhwmPWNiXFsBEEQBOEDJNptRikxltYUXmbRF+28ZFur8Ff2+MJCwbvJKCpyYMQIB3JyfAuPt3rKt7vucgtrXxLRKSV3M5PzwEhWcaOeSq3weAZLqijP0zB9OnD+vLDsi6c9NtYeT7tWp5KR4SxG7q2YGO2x9kpleZuITsnDLBagRq6J+++Xdh5p3V9qEUWAcB5ZeLxSZ9ugQdLfx6FDpXX6OqbdyLbhOKZ90aJFuP322wEATz75JCZOnIiioiIMHz4cb7/9ts3WBZb8k/ngIe0d58Ej/6RF49gIgiAIQgcS7UGAXmIsPXzxtCvNtW0F/gqP377doyZwHI9Zs+wJj+c4ZdsPHHB7xH3xtPua88DsXOFa6HnaAWknFGPxYuCmm9zt8EW0iztJ/DWm3YynHTA2nMVfUSxmxrRHRbn3VRKrZsPjKyulUR9a+6hFFAHC8daap71jR+nvo/hYc5xv4fHejGkX11mXPe0NGjRA06ZNAQAOhwNPPPEE1qxZgxdeeAEpKSk2WxdYOjXsJPG0AwAHDp0aWjSOjSAIgiB0INFex7FrTLu8Tr1EdFqiSFxWaann9zzPIT/f2vB4I0m2hLqV2yYOm/ZFtPua88DK4Q96HRsM1gnF5jDPzHSHxgP+E+1Wh8erjWkXf2d0OIs32ePV8GWedvadFaKd2cKiPrT2UYooYrnM9MLjte5Fs552Co83R0FBAZ566imMGjUKxcXFAIAvvvgCv/32m82WBZZpV0+TeNo5cODBI7u/iXFsBEEQBOEDJNrrAL552nmPdVbgr/D45GSlunh06qQfHq/VKSF/+dfytIvtcTrVRRLziPsi2n3NeWBkrLNR9LLHq21fW6st2tXOCytffPyURLtWeHzfvuYS9wH6nvYxY8wPZ1HqbJJjZG50uV3eTvmmdL+ZDY8HpFEfevvII4puvFFYLw6PV7pv5eXK72kKj/cP33zzDbp3746ffvoJOTk5qKioAADs3LkT2WaSrtQBsrpk4R8Z/wAAOOBARnoGcm7LwbAuFo1jIwiCIAgdSLTXcdREO1snfjE142nv0UNbDFmZiO74cffnqirpdxzHg+c5ZGf75mmX26Al2sUiUku0M4+4L2Pafc15YKWnXd5OvSgNJdHucGifa6X95WPLzYTH5+WZS9wnLldNtGdkmB/O8scfxuvXw9sx7f7ytLOoD7PXlzjEnIXHG0msJ//N8sXT7m32+HAIj3/iiSfw9NNPY/369YgWHahrr70WP/74o42W2UPP1J4AgAFtBiD3gVwS7ARBEERAIdFeB5B76MQCZckSYPNmz32UxrRriXa56NETQ/Kybr/dc1sjoj0nRzqO/cIMRC5at67FypVODBumHyKs1ymhJdrFL/DiF/3aWmXRIPaI+zrlmy85D6z0tOsNIVDbvqZGPXO8FmpDKuShyVqi3Wh2dzFmE9EFGmXR7v4ROHRIeT8ziei0hLBa1IdZ0e4+jxxqarzztJud8k0usrU87atXuz9v2CCtMxzC4/Py8jBM4ccmLS0NJ06csMEie3Hywsl2cPTaRBAEQQQeevrUMeRThBUXA88+67mdUvZ4LdTmWVYTQ199JV3+/XdPkW8kPF5er5ylS0+7RKxYWPnT0y4Pjxd/16iRp0fcV9HuC/70tOtFaSh52q0Q7WbC49n3RhP3Acrh8VrizirkUSRqKHXEiI/VunXK+1kRHp+aqh714a2nHQCqq4X/SmPa5deWL552eTi72nnNyQFuu829XFIirT8cRHtycjKOHj3qsX7Hjh1o1qyZDRbZC4l2giAIwk7o6VPHUJsiTI5SIjot1OZZVhNDixd7bisX+UY87Ur1iklIUM6abXZMOyB9gdfytIvLkb+033mnp0fcTtHuzzHtwSLatRLRMduMJu4Tl2elp93I0JOKCmNh/Hrh8WpYER6fnq4e9eGtpx0A/vWvRABAUZGwrNXZJv/OzLAe+f2qdl6VfkfFdYbDmPbbb78dU6ZMwbFjx8BxHJxOJ3744QdMnjwZY8aMsdu8gOMEiXaCIAjCPujpUwcQv2yrTREmx6xoN5vFXClEVy7yjXjaO3bUtis+Xlm0+9PTriXaldohLsubbOa+4M/s8WbGtDPvb1GRfj4EpfLF64x42r1N3CcuV22cuDezLIiTCWphJIxfeco3/f2sEO1sRgA9u4zw3/+6P7Pw+K1bhWtDa6pCb/NwAMZFttLvqLjOcBjT/uyzz6Jz585o0aIFKioq0LVrV1x99dW4/PLL8dRTT9ltXsDhL1wQJNoJgiAIO6CnTx1DTVzLUcoer4XZLOatW3uuk4t8I552efnyttSv77Y/UOHx4nLkIkCvE6SuetqVYMdwwwbgiSfc640mh2P7i7f74gthqAWgnYiuRQvvEveJy7PS086SCeqJTCNh/N562sUe4guJwCWIRaratRIfr12+GebNU14/a5Y5T7vRrPuA5/2qtq/S76i4znAIj4+OjsZbb72FP/74A//973/x4YcfYu/evfjggw8QYeUchiEChccTBEEQdkJPnzqA+MVTTVzLUZoqSguzWcwfeki6rCTyjYj2rCzgqqvcy23aCOPG5e1QKy/Q4fFK7di0yf35yivNT0HmC/4c056b6/48dSqnmmjw7belx8xocriICM8cDSUlwnUICN7QHj3cy3/+6d7uxRe9S9wHGJun3SwsmWDbtu51StejkTB+JS+00dwU7JwUFHh+J84tpnatWCnaWeeLnPx8c2PaxeidJ6MiW+l3VFx/XQ6PdzqdeO6553DFFVfgkksuwauvvoprrrkGt912Gzp06GC3ebZBop0gCIKwE3r61DGUxLVSMjel7PFGyjaaxfz666XLXbt6inxx3Vov223auD9//LG6dywYw+NzcoDp093Lu3aZn4LMF/yZPf71192fDx9WTzR4+LDykA09r3JEhHaOhi+/FLz27ByIO0d8iWgQi3ZWlz+yxyuFzBsJ49fztN95p/q+WteAuNNDbTsrw+PVhr506mTc0y7vlNQT7UY97fLf0ebNpXXW5fD4Z555Bv/6178QHx+PZs2a4aWXXsLDDz9st1m2Q6KdIAiCsBN6+tQB5C+ecnEt9lQz3GLERGypCeRiZPNmT5FvdJ528Ut7gwbAmTPK2+mFx1s15ZtctIuF6muvSZflotObKch8wZ+edmm7OI92sWOYkuJZlpHkcBER+jka1ESX1vzbeoiFHWujP7LHL18uiEJGfLyxqAC9Me29e6vvqyXaz51TrkOMlaJdbVh0drZxT7s8PN4q0Q5If0fF13VdD49///338dprr+HLL7/E6tWr8Z///AfLli2D04LGvvrqq2jdujViY2PRt29fbN26VXXbnJwc9OnTB8nJyahfvz569uyJDz74wGcbvIUS0c2sr7IAAE9ASURBVBEEQRB2Qk+fMEDpZdpsIjpf61R6mTYq2sUv2ikpwPnzytvZ4Wk/cEAavn3smNTjrCY6zUxB5gtWetrlx0+vXaw+lhFcvq2eVzkiwniOBjm+iHal+cr1ku55w7Bh0iEGRm3W87RrRRloXQPiJIlq90q9eur7mxXt4vuGcf31wnEx42kXY6VoV6uzrov2wsJC3Hjjja7lzMxMcByHI0eO+FTuxx9/jIkTJyI7Oxvbt29Hjx49MGjQIBQXFytu36BBAzz55JPYsmULfv31V4wdOxZjx47Fl19+6ZMd3kKJ6AiCIAg7oadPiCL25upNFWXFlG9mkdepJEjEc0xrCaGyMvfnpCT17Xwd067ViaBWzs6dyqKSeebMZt23Gis97eKwYLYs/14t0aCc1q31vcoREcZzNMixIjye1cdssRq9ThAj+7nvIffOWuJf6/w1aaK8nRgrRbvS9mzItL887XKR7c0xF88NXxfHtNfU1CBWNs1FVFQUqqurfSp3wYIFGDduHMaOHYuuXbvijTfeQFxcHN555x3F7QcMGIBhw4ahS5cuaNeuHR555BFkZGTg+++/98kOb6HweIIgCMJO/DBSk/A38uRcTqewvGqVENIpx4rs8WaRi1y16bsEG7TLKi11f9YSBr562sUYDY8vK9P2OGdnC+eGiU1vpiDzBSs97awM8VRrHMdfCI0X/qslGpRz7Jh+XZGR7rHFs2YJx7RTJ+Dii4GlS7X39aen3ReMTKumhxWe9ssuE8K+8/PdkSviDjE127SmLDTbHpYzQHxMlDrbzIxp1ztPVnnaWT2vvAI8/TTQsSOHCRNiMHassfKCGZ7ncffddyNGdCGdP38eDzzwAOqLxkfkmEjMUVVVhW3btmHq1KmudQ6HA5mZmdiyZYshm7766ivk5+fjueeeU92usrISlZWVruWyCz2+TqfTp/B+p9OJWl64eDhwlgwVCCROpxM8z4ec3WJCvQ1kv/2EehtC3X4g9Ntghf2+7EuiPQRh46TFL5zMu2tWtPvqfVVDXK6a98sb0a6Fr1O+aU3xpeZpT0jwFO5ij7OS6MzONp/R3Fus8LTn5LivK3F5kyYB69cD+fk8OnUCZsxQTzQoxmikAasrK0t6Xb/0kvC/Vy9g+3b3+qFDgc8+Ez6Hgqfd2zB7pY4YcVlaHRZs3zZtgH//W7qvkQ4FK0U7INhfU+NeZteMt552PRu89YzLf0cOHhQ+s6EfeXnAffelICnJiVtv9a6OYOGuu+7yWHfHHXf4VOaJEydQW1uL9PR0yfr09HTs3btXdb/S0lI0a9YMlZWViIiIwGuvvYbrrrtOdfs5c+ZgpkLm1ePHj+O82rgqAzidTpw9exYAUFVZpRrSH6w4nU6UlpaC53k4/PXQ9zOh3gay335CvQ2hbj8Q+m2wwv7y8nKv6yfRHoKYHSetNabdH1mxAWPTZTHBoRfSqibaOU56EHwNj9cS7eJjKE7YVV0t9aAredLlojOQKHllzSKO4hAfl8svB+bN41FcXIy0tDQ4HNIDrFSfmUgDNXvZenmCu65d3aLdrKd97Vq3yj91yt1R4c9hJN6KdqWOKLF9Wh0W+/cL/z/+GPjtN+l5EHdWqLXXatEu38dIZ5vWPa1ng1Xh8b/8Ii9HiDaZPZsLedH+7rvv2m2Ci4SEBOTm5qKiogIbN27ExIkT0bZtWwwYMEBx+6lTp2LixImu5bKyMrRo0QKpqalITEz02g6n04mYWOHGiqsXh7S0NK/LsgOn0wmO45CamhqSL8pA6LeB7LefUG9DqNsPhH4brLBfPvzMDCTaQ5COHQXPjpp3V472mHb/h8eriXI2NLGkRJhvOztbWdweP+7+3Lq1tI61a90hqf4MjxeXI57P+oLzBS1bCl63QHvSzeBLODaL4jDjuWfbtm0L/PGHsH337saPj55oF3eeANJzZsbTnpMjeEkZtbXujgpfIlKsSlgnRzl7vP6Y9pwcYPVq4bPTKfyGyIfZML74QrmMPXvU7fKmY0O+j1lPuzziyKyn3dvw+JISz214nsO+ff75PQ11GjVqhIiICBTJslIWFRWhcePGqvs5HA60b98eANCzZ0/s2bMHc+bMURXtMTExkrB+cTm+viDyEM5thCMiJF82OY6z5DjYSai3gey3n1BvQ6jbD4R+G3y135d2h+YRC3PUknOpeS+VxANbt3u3W+n06GHd/OF64fE5OdIpn5iAkNefkwOII0kOHXJ/djoFscX28XXKNzFa05vJ4TggOdnY/PV2oiWqtNonjuJQ6hgxWt/DD5s7PnqiXR7tKt7ejKd99mzOI2qDdVQohcf7S4wbRSl6woinXR41LBesv//uvv8WLFAuQ03MA9Z42s2OaZeHx5vtOPBWtCtPY8gHLMFkqBEdHY3evXtj48aNrnVOpxMbN25Ev379DJfjdDolY9YDCSWiIwiCIOyEnj4hCBsnnZEhhKtmZAgv22piSM3TnpMDvP++O7GQmnD2Bj1Pu9H5yxWGJ4prcYWkAvrh8WZEhZmw20BO4eYLWm3Q+k4cxSHuGDE6hd6pU8J/s9GpZkW7GDOe9vx8wUsqhp1Tf8+y4A1Kol28Tq3t+/Zpl1tZ6b7/CwqUtzl8WP33wUrRLsZbT7uRzhVvRDvHAXKdyRIxTptGnnY1Jk6ciLfeegvvvfce9uzZgwcffBBnzpzB2AuhUmPGjJEkqpszZw7Wr1+PP/74A3v27MELL7yADz74wOfx9d7iEu302kQQBEHYAD19QpSsLMFracS7qzamXe5hVBPO3qAn2o2Oy9cTGkJIqvBZLzzezJh2s9+FgodNT5irrRdHcVRVub/7v//T7uBh54CFEpsV7Wr5FtTC43ftcn+++mrjnU+dOnnmR2Dn1OpEdFoi0bcp39zr1KIMlKYflMPu/wsRyYqodex5I9rlY8yVjrMZT7t4W9apqYU3x9zhkN7vHCcM+3j77dNBG2UTDIwcORLz58/H9OnT0bNnT+Tm5mLdunWu5HSFhYU4evSoa/szZ87goYcewkUXXYQrrrgCq1atwocffoj77rvPFvvJ004QBEHYCT19wgA1T7uWh9FX9MLjjc5fric0xCGpvmaP10JNOAR6CjezGElEl5MjzeDNiIqSRnHk5ACnT7u/P3gQGDHCIUniJkZen3hKMSOY9bSvXOn+/NtvxqNGpk1zT1sHSM9pqHjaxdenmmgvLZUOq1GC3f9TpmjXr9Sx5839Jb/ufPW0i88T69TUYvduY9eI2pRvADBwILBjB48bb7QnbDuUGD9+PA4dOoTKykr89NNP6Nu3r+u7TZs2YaloLsenn34av//+O86dO4dTp05h8+bNGDlypA1WCzhBop0gCIKwD3r6hAFqol3Lw2hlnUqi3ei4fPl20jqkIalWJqLzrMv9uXFj40MTggm19qsNQejaVRrFoTQmmuN4LFgQr7i/XIBZHR6vJcjMRI1kZQFLlpxG9+6e51QpEZ2/xrQbLVfZ084rfi+msFD437Kl0M7YWPWOM63rWa1jzwrR7o2n3Rcbzp831rkjr9NIJwlRt+Av9A6RaCcIgiDsgJ4+YYCaaNfyMFpZp9JLrdFx+fLtWrUSMsjHxnqGpFo55ZvWd4mJxocmBBNqIlhtCMKvv0rFjNJ2PM+hoEA5jl1en1nRrnY+jIxpF2wzHjUyZEglduzgPc6p1eHxVqAkWo1c56wjgyVNXLZMvePMaI4DMd6Idnk29+pq5frU6jGbPV4JI5078uNLoj38oPB4giAIwk7o6RMGqI1p1/IwWlmn2pRvRsfli7c7eBA4cED4LA9JDVR4vN3Zw71Frf1qQxB4XuqF7NjRcxuO49GunUJsPXwX7WqoiXYjwy3MEsjweKvGtBtNmqjVcaY2e4JWx54Vs7codcT4M3s8YKxzRz6m3Ui2fqJuQaKdIAiCsBN6+oQBWvO0q3kYraxTLaGY1Si9sHs75Zu/yrETNbvZEAS1fZgXctAgz+94nsOkSRWK+/pLtKuJQzPTIBolkInojKI3pt1M0kS1jjP5MTYyHMRfol3P0753r3t5927zdRrp3KHweIJEO0EQBGEn9PQJA7TmafcX4pfaYBHt4e5pV4N5XNW87fn5glB7/nnP7yZPdqom4JKfd7OJ6NRQE9BPPGF9rgGlMe12Y3ZMuzcdGeIyYmONRcRYcV8YEe3i5a++kiYg1Es8p1S2kWNC4fEEiXaCIAjCTujpEwZoedoDUWegxgPrZZ62akx7XRPtgCDcu3dXDzGfOVP5u//9T/1g+Ds8Xs4VV1ifa8BqT7sV147ePO3eeMnlyEW7EayIIvjgA8+kcFrJ5hYv9r4uM8dEHh4vXqbw+PCAByWiIwiCIOwjQD5Qwk7UxrT7k2AMj7cqe3xdFO2A4G0cPtztfRR7If/+d09RxvPqSewAz/MxYAAwY4bQQeALagLaH+dFaUy7L/VYIWz1xrTL7cvNNV+HuIxAivZTp4RrcNUqZVvky4cOeV+XGa+81pRv5GkPD8jTThAEQdgJPX3CADs87RQeHxxs3uz+3KOH9tRWWonJlJLV6Y0FZlOMMXbtMj53uhZqot0f13QoztMuF5W+YtSTbIVoBzyzuWt52lu3Dsz9qBUeT5728IBEO0EQBGEn9PQJA8IlPN7XRHR1LTw+JweYO9e9nJenL5rVEpOxZHXy8dHTpqkrte3bpctm5k7XIpCiPRinfJMLdEA6pp3jrLXXqKfdKuTZ3LWyxz/0kPS69BeUiI4g0U4QBEHYCT19wgC7RXugPO1KbQpnT7t8HLovolnLC69GSYnnOjNzp6thR3i8VfeLljfaqKfayJh2O0S7lZ729HT38lNPSTuaxOdi0CDpdSm2VS+yxAxakQwk2sMDEu0EQRCEndDTJwywY0y7HeHxSoSzp33fPuVx6N6KZjUvvBopKZ7rrJg73Q5Pu3gqseees04MeoORMe1W3nNGw7+dTt/rYhEc4rHqf/4pjRCR34vsuly2TJp9nkWWWAGFxxOUiI4gCIKwE3r6hAF2TPlmh6ddz45w87R7Mw7dSi6/3LNuK+ZOt2NM+wcfuNcdOeL92Hx/ZY/355j2QHnaY2N5ZGQArVppR4io3YszZ3raY9W9SuHxBHnaCYIgCDuhp08YEC7h8Xp2hJunXW0cuq+i2Shdurg/c5x1c6cHMjxerUxvhxloCVuj9huZp90OT7svop3jeJw5wyM3Fygq0o4QUeuIU5rJwMqQfXGd5GkPP0i0EwRBEHZCT58wwO7weDuTeJnxtJ865f4sHw8biqLdm3HoViI+79dcY93c6XZ42uVYMTZfqUwj6I1ptysRnS8CWdzJoBchouZpV9tPCbPXirxOGtMefpBoJwiCIOyEnj5hAHnaBbTanJMD/P67e1meaT0Uw+MB8+PQrUQsbKzMQG5HIjo7hxnIURLt4mMSilO+ie3VixBRu6fV9tOrzwgUHk+QaCcIgiDshJ4+YUC4iHaxZ/yZZ4Rlox5ytfGwLATaqrHx4YT4vAdCtPszEZ2dwwzkKE35Ju9UCrXw+Kgo9856ESJqHWhK+z3+uHJ91dXmchJQeDxBiegIgiAIO6GnTxhgh2gPdHh8To40UzRLFrZhg7JNctTGw7IQ6FD1tNtJoD3t/gyPf/BB/w8zCPUp33zJHi/vZNCKENHqQJPvt26dep1mkglSeDxBnnaCIAjCTujpEwbYMaY90J52tTnJ33hD2SY5euNoQ3FMu92IhY2V3kg7EtFdcok1wwysSIym1CEmvz6tvOcCMaZdnEhPDzMdaEqdceJ9jSYTJE87QaKdIAiCsBN6+oQB4RAerzYn+YED7mWtNpsZR0ui3Rh1ydPuTdkFBe7P8sSGShi9rpQ97dLs8b562sW2fvyxMY+0VYno9DBzLyp1xjHMJBOkMe0EiXaCIAjCTujpEwbYPU97IMLj1Tzlbdsq2yTH23G0hDp1aUy72Ws4J0cams0SG54967tNekNPfBXt8qEmJ04YCyVXEu1GOisAc/YqjelXg3XGKWEmmSCJdoJEO0EQBGEn9PQJA+zwtIsJhKddzVP+8MPubfTabHQcLYl2Y9Sl7PFmRbBaYsPSUvV9rJzyzZd7Tj7UhJWpF0quZL98FgY1IiONu+nN3IusM65VK88yzCQT1BrTTuHx4QGJdoIgCMJO6OkTBtgxpl1MVJT/61DzlF9/vXsbX0QdZYw3T6iHx+fkALt3C5+feMJctnG1xIbV1b7bpTem3VdPu9pQE71QciXRLp+FQQ0znQxmPO2A8Ntw8KDw+9Cjh3fJBMnTTpBoJwiCIOyEnj5hgN2e9kCExwP6c5L70mbyrpsnlEU7CxE/d05YPnzYXLZxteEaVnRg6U0/6KunXS8poxpq2ePVBL/4WB4+HGH42Hob9aL3+2C0TkpEF544QaKdIAiCsA96+oQBdov2QM3TroRV86vLM9MT+gR6TLuVHStqsxEYzTauNlwjMdF32/ztaddLyqiGmideSfDLx81XVQEjRjhMRTMAgfsdk3cU0JRv4Qd52gmCIAg7oadPGECi3fOzWSg83jz+8rSrnQsrz5G3IeIMteEacXG+22ZkTLsvol0vKaMSOTnA6tXKtioJfs9x8xw4jjfcKSIuPxDIQ/IpPD78YKI9whGg0DGCIAiCEGGjnCIChVoIbaAIVHi8EuRpt49Qnqe9Y0chiZr4XJvJNg4I4jcrS7rukUd8t82Ip93XjjIl27WQJ95jxMQA//63p+BX7hThDHeKMAL1O6b1O0Lh8eEBf+GCJU87QRAEYQf09AkDlF5sAyk8ydMenoTymHZvQ8QDgd50ir562r1BKfEeQ8lDrzxunjfVKQLYFx5fW+teJk97eEDh8QRBEISd0NMnDLA7iVqwiHZKRBdYQnmedm9CxH3FaEdaIDztZjGbvM6zU4QHz3OmO0XsCo8Xi3bytIcHlIiOIAiCsBN6+oQBdnvagyU83pcXfAqPN0+oz9PuS7Zxf+LvMe3eYDYyQdopwqNLlxqsXOk0fYzt8LQ7HNKp+wIxpSVhP+RpJwiCIOyEnj5hgNKL7aBB5uad9oW64Gmn8HjzhHJ4vL/Q6vAx2umgdE3bLdq9iUxgnSJnzvDYuPGkV50idoxp5zigpsa9bGenJBE4SLQTBEEQdkJPnzBA6cU2P1+YYmntWv/HdtYF0U7h8eYJ5fD4YEYvPB6w556zIzLBLk+7WLQT4QEloiMIgiDshJ4+YYBaeDzH8ViwIN4vdYq9+DNmBM6rL4cS0dlHoKd8C/WOFaPDLpTD46U7h4v3164x7Vu3upd79LDv940IHORpJwiCIOyEnj5hgNqLLc9zKCiw3iWXkwMMH+5e/vNPYdmOF1vytNuHv0S7vGxGuHSsGPG0Hz3q/lzXRKVVHXHesnYtsHixezkvL3BRS4R9UCI6giAIwk6C5ukzd+5ccByHRx99VHWbt956C1dddRVSUlKQkpKCzMxMbBW7PAhF1D2TPNq1sz7Oc+ZMz8RtHAfMmmV5VbpQIjr78Nc87YDyuQyXjhW9Kd9ycoAffnAv5+XZ12nmb+zoqJk/X7rs76glIjggTztBEARhJ0Hx9Pn555+xePFiZGRkaG63adMmjBo1Cl9//TW2bNmCFi1a4Prrr8dff/0VIEtDEyXhKmR35jBpUoXl9e3b5ylseV4YRx9oKBGdffjL056Tozym+MsvravDX1jR4aPnaZ8507NOuzrN/E2gOmrE562gQOl7/0QtEcEDiXaCIAjCTmx/+lRUVGD06NF46623kJKSorntsmXL8NBDD6Fnz57o3LkzlixZAqfTiY0bNwbI2tBE/GLburU7u/PKlU7ceGOl5fWZnbPZn5Cn3T6cTvdnK0W7XJQyXnrJujqCGb0p3/bt89zHrk4zf2NHZ1r79kq/b/6JWiKCB0pERxAEQdiJ7a6Bhx9+GEOGDEFmZiaefvppU/uePXsW1dXVaNCggeo2lZWVqKx0C9OysjIAgNPphFOsKrzA6XSC53mfy/E3wruG8KLxyitO3HCDsN7pdOL4cevtnzZNGOPJcTx4nnP9nzbNCSurMnL8xW0HfK2flcPD6bRGuYfKNaSGlv3CbSccs+hovWPv+SKsdkz27OEAePbAFBR4d14Cew7ctrvr8+a6El/TTkkiuo4deeTlCd5fV60cj06dYNl1ayVmj7+wmdB+nrf2N8VInVOmODFmjOfv26RJ5XA6E32oIzR/A8IF8rQTBEEQdmKraF++fDm2b9+On3/+2av9p0yZgqZNmyIzM1N1mzlz5mCmgmvu+PHjOH/+vFf1MpxOJ0pLS8HzPBxBHD8thBI3BgCUlJSguLgKgP/sv/JKYMmSGCxYEI+Cgki0a1eDSZMqcMUVlSgutqwaQ/afPOkAkAYAOH36JIqLa32oUTiG1dXVKC4+5UM5bkLlGlJDy/516+IBCON8+/SpxaRJFRgyRC2yo7HHmmKFi2Xt2hhUVytH5PA88O67pRp1mG+D1TidqQAE97i7fULbeZ5XbLOcTz+NASAcg4EDa/H44+U4d64SQDIAYMKEEtx3X4qHqJww4TSKi62PrPEVs8e/pCQagNBRe/x4cUBC5E+ejATQCABw+eXHsWRJtOT3beLEcvTrV4Ti4vNeX0Pl5eUWWkxYDSWiIwiCIOzENtF++PBhPPLII1i/fj1ivYidnTt3LpYvX45NmzZp7j916lRMnDjRtVxWVoYWLVogNTUViYnee0UAXPBwcUhNTQ1qwVUr0qkpKclIEzSsX+0fO1b4A3gIIiXJ0vIB8/Y3atTQ1XZfiIyMQpoVBSF0riE11OzPyQFeecW9vHdvJO67LwUrVjiRlWWsbKVj/PLLHIRrylOpVVfDdB1abfAHDofbbs/2cbrXVU4O8NBDbhv374/EuHENcNddZ1zrxo5NQlKSE7Nnc9i3j0fHjsD06U4MG2b9PWgFZo9/crL7c3q6NfehHuK+lPT0VI/fN6czEcePV/p0DXnzHCQCB3naCYIgCDuxTbRv27YNxcXF6NWrl2tdbW0tvv32WyxatAiVlZWIUJlseP78+Zg7dy42bNigm7wuJiYGMQqpqx0OhyUv6BzHWVZWIIiIcEjGgYaa/XL07BdfQvK2+1CrRHz5XFodPAezZ7Nkh8Ky4PEFnn7agVtvNVbu6tUOD/GtNF6b4U0dWm3wN5516V9XyseVx/r1bsHncAjtlx6D4E6tb+b4S+dMD8z5kib/U/4d8fUaCtX7P1wg0U4QBEHYiW1Pn4EDByIvLw+5ubmuvz59+mD06NHIzc1VFezz5s3D7NmzsW7dOvTp0yfAVocmds9rbCf+aDslotPHihkElKYpU0py6EsdgcbXa0f5uHIoLg4fIWHHb5j4mJO2Dk8oER1BEARhJ7Y9fRISEtCtWzfJX/369dGwYUN069YNADBmzBhMnTrVtc9zzz2HadOm4Z133kHr1q1x7NgxHDt2DBUV1k9bVpcIN6EuJpzbbidWzCCgNE1ZdrZ7CjO1feyYpcAKjFyryseVR1oaJTHzJyTaCfK0EwRBEHYS1E+fwsJCHD161LX8+uuvo6qqCrfeeiuaNGni+ps/f76NVoYW4SZiwznKwE7k4pqFdGdnGy9DyWuelQWsWiVMWRgV5S7b2zoCzblz7s89ekgjCYx44ZWPK4fOnatVyyWshX5HvOfVV19F69atERsbi759+2Lr1q2q27711lu46qqrkJKSgpSUFGRmZmpu728oER1BEARhJ0H19Nm0aRMWLlwoWV66dKlr+eDBg+B53uNvxowZAbc1VAm3F05/tJfC4/URi+vYWOF/Tg4wbJjntmoCU81rnpUF5OYCVVXG6wgGcnKA06fdy3l5whAAMygd18mTnfjqK/eYdlZuXRXu33/v/hyoDooNG9yfe/euu8fWn3z88ceYOHEisrOzsX37dvTo0QODBg1SnTFh06ZNGDVqFL7++mts2bIFLVq0wPXXX4+//vorwJYLkKedIAiCsBN6+oQZ4Szaw63tdsPE9blzwn81Ma0wIyMAY15zo3UEA/J2aoX5ayFv8//+x0nmaWflyocW1AVycqTtCkQHRU4OMGlSYOusiyxYsADjxo3D2LFj0bVrV7zxxhuIi4vDO++8o7j9smXL8NBDD6Fnz57o3LkzlixZAqfTiY0bNwbYcgES7QRBEISd2DpPOxF4wlm4hnPbgxm1jPBRUcEtws2i1E4rojby84UQeXm5wZyQz1tmzpRnz3d3UJiZ5i/Y66xrVFVVYdu2bZIcNQ6HA5mZmdiyZYuhMs6ePYvq6mo0aNBAdZvKykpUVla6lsvKygAI0wo6nd7nfXA6nS7RDh4+lWUHTqcTPM+HnN1iQr0NZL/9hHobQt1+IPTbYIX9vuxLoj0MEHuExo0Dnn8+fF42KZQ9+OnYUfBeis8VxwFdu9pnkz9Qa6ev12inTkBeHi8R7qGckE8LK2YlCIU66xonTpxAbW0t0tPTJevT09Oxd+9eQ2VMmTIFTZs2RWZmpuo2c+bMwUyF0J3jx4/j/Pnz5owW4XQ6UVNbAwAoLSlFcaxySH+w4nQ6UVpaCp7nQ3ZqwVBvA9lvP6HehlC3Hwj9Nlhhf3l5udf1k2iv4+TkSMfNHjggLK9aBdxyi21m2QJ52oOT7GzhmmQCNhQSynmDWjt9Zdo0HiNGOMBxvGuu+rp4/AD1jg9/dlDYUSchZe7cuVi+fDk2bdqE2NhY1e2mTp2KiRMnupbLysrQokULpKamIjEx0ev6nU4nuAsPkIYNGiItLc3rsuyA2Z+amhqSL8pA6LeB7LefUG9DqNsPhH4brLBf6xmmB4n2Oo5WaGc4iPY1a9yfBw4Enn7a9ygD8t5bC0uuNmuW4L3s1EkQnHUpNB5Qb6ev12NWFrBkyWm8/HIy9u2ru8cPsKeDJ1w6lfxJo0aNEBERgaKiIsn6oqIiNG7cWHPf+fPnY+7cudiwYQMyMjI0t42JiUFMTIzHeofD4fMLIsseHxkRGZIvmxzHWXIc7CTU20D220+otyHU7QdCvw2+2u9Lu0PziBGGCefQzpwc4O673ct791ICqWAllBLK+YK/2jlkSCV27ODD4vgFesYAO+qsa0RHR6N3796SJHIsqVy/fv1U95s3bx5mz56NdevWoU+fPoEwVRVKREcQBEHYCXna6zjhHNrprwRS5Gkn/AFdV8bIygp8Tg476qxrTJw4EXfddRf69OmDSy+9FAsXLsSZM2cwduxYAMCYMWPQrFkzzJkzBwDw3HPPYfr06fj3v/+N1q1b49ixYwCA+Ph4xMfHB9x+/sINSqKdIAiCsAMS7XWccA7tDOcoA4IgiGBi5MiROH78OKZPn45jx46hZ8+eWLdunSs5XWFhoSRs8PXXX0dVVRVuvfVWSTnZ2dmYMWNGIE0HQJ52giAIwl5ItNdxtMYLh+iMC4YJ5ygDIvSgRIlEXWf8+PEYP3684nebNm2SLB88eND/BpmAjWkn0U4QBEHYAYn2MCBcQzv9FWVAYcyEP6DriiCCF/K0EwRBEHZCTx+izkIJpAiCIAgrINFOEARB2Al52ok6jT+iDMgjShAEEV5QIjqCIAjCTujpQxAEQRAEoQF52gmCIAg7oacPQRAEQRCEBpSIjiAIgrATevoQhEkoPJ4gCCK8IE87QRAEYSf09CEIgiAIgtCARDtBEARhJ/T0IQiCIAiC0IAS0REEQRB2Qk8fgiCIIICGXRBE8EKedoIgCMJO6OlDEARBEAShASWiIwiCIOyEnj4EYRLyiBIEQYQX5GknCIIg7CTSbgMIgiDClZwc9+dz54TlrCz77CEIQhkS7QQRvtTW1qK6utpWG5xOJ6qrq3H+/Hk4HKH5OxTqbTBqf3R0tF/aR6KdIExCnnbCCnJygOHD3cs8LyyvWkXCnSCCCV70o0+inSDCB57ncezYMZSUlNhtCnieh9PpRHl5OTiOs9scrwj1Nhi13+FwoE2bNoiOjra0fhLtBEEQNjBzJsBx0k4gjgNmzSLRThDBBPOyAyTaCSKcYII9LS0NcXFxtgpNnudRU1ODyMjIkBS8QOi3wYj9TqcTR44cwdGjR9GyZUtL20minSAIwgb27fOM2uB5ID/fHnsIglCGRDtBhB+1tbUuwd6wYUO7zQl5wQuEfhuM2p+amoojR46gpqYGUVFRltVPTx+CMAmFxxNW0LGj4FkXw3FAp0722EMQhDIk2gki/GBj2OPi4my2hAg1WFh8bW2tpeXS04cgCMIGsrOFDiAm3FmofHa2vXYRBCGFRDtBhC+h6BEm7MVf1ww9fQjCJORpJ6wgK0tIOpeRAcTGCv9zcoBhw+y2jCAIMSTaCYIgCLuhpw9BEIRNZGUBubnCdG+5uSTYCSIYIdFOEES407p1ayxcuNBuM8IaevoQBEEQBEGoQKKdIIhQgeM4zb8ZM2Z4Ve7PP/+M+++/3yfbrrnmGtcc5rGxsejatStee+01n8oMJ+jpQxAmofB4giCI8IFEO0EQvpCzJwc93uiBek/XQ483eiBnT47f6jp69Kjrb+HChUhMTJSsmzx5smtblg3dCKmpqZYk5bv33ntx5MgR7N69G7fddhsefvhhfPTRRz6Xq0ZVVZXfyg409PQhCIIgCIJQoZZ3ZwAm0U4Q4QvP8zhTdcbU37/z/o3hnwxHXlEezteeR15RHoZ/Mhz/zvu3qXJ4gx6jxo0bu/6SkpLAcZxree/evUhISMAXX3yB3r17IyYmBt9//z0KCgowdOhQpKenIz4+Hpdccgk2bNggKVceHs9xHJYsWYJhw4YhLi4OHTp0wJo1a3Tti4uLQ+PGjdG2bVvMmDFDsl9JSQnuu+8+pKamIjExEddeey127tzp2teonbNnz8aYMWOQmJiI+++/H1VVVRg/fjyaNGmC2NhYtGrVCnPmzHHtU1hYiKFDhyI+Ph6JiYm47bbbUFRU5Pp+xowZ6NmzJz744AN06NABycnJuP3221FeXm7onFgFzdNOEARBEAShgtjTzoEySRNEuHK2+izi58R7tS8PXvJ/dM5oU/uXP1GOGEeMV3XLeeKJJzB//ny0bdsWKSkpOHz4MG688UY888wziImJwfvvv4+bbroJ+fn5aNmypWo5M2fOxLx58/D888/jlVdewejRo3Ho0CE0aNDAsC316tVzecNHjBiBevXq4YsvvkBSUhIWL16MgQMHYt++fWjQoAEqKioM2Tl//nxMnz4d2Rem43n55ZexZs0afPLJJ2jZsiUOHz6Mw4cPAwCcTqdLsH/zzTeoqanBww8/jJEjR2LTpk2uMgsKCvDZZ5/h008/RXl5OUaOHIm5c+fimWeeMXPofYJEO0EQBEEQhApMtHPgaPongiBCnlmzZuG6665zLTdo0AA9evRwLc+ePRuffvop1qxZg/Hjx6uWc/fdd2PUqFEAgGeffRYvv/wytm7disGDB+vaUFtbi48++gi//vor7r//fnz//ffYunUriouLERMjdE7Mnz8fq1evxsqVK3H//fejR48ehuy89tprMWnSJNdyYWEhOnTogCuvvBIcx6FVq1au7zZu3Ii8vDwcOHAALVq0AAC8//77uOiii/Dzzz/jkksuASCI+3fffRf16tVDZGQk7rzzTmzcuJFEO0EQBEEQRDDARDuFxhNEeBMXFYeKqRWm9rns7cvwW/FvLg87IHQAdkvrhi33bjFcTr3IeqitrdXf0AB9+vSRLFdUVGDGjBlYu3Ytjh49ipqaGpw7dw6FhYWa5WRkZLg+169fH4mJiSguLtbc54033sA777yDqqoqRERE4LHHHsODDz6I119/HRUVFWjYsKFk+3PnzqGgoMCUnfL23X333bjuuuvQqVMnDB48GH/7299w/fXXAwD27NmDFi1auAQ7AHTt2hXJycnYs2ePS7S3bt0aCQkJrhwATZo00W2r1ZBoJwiTUCI6giCI8IGJ9ghHhM2WEARhJxzHoX50fVP7zBwwE8M/GQ4OHHjwrv8zB8w0VZbRMe1GqF9fWu/kyZOxfv16zJ8/H+3bt0e9evVw66236iZxi4qKkixzHAen06mytcCoUaPw1FNPIS4uDk2aNIHDIXSGVlRUoEmTJpKQdEZycrIpO+Xt69WrFw4cOIAvvvgCGzZswG233YbMzEysXLlS01Zf22o1JNoJgiAIgiBUIE87QRDektUlC6tuW4VZ38xC/sl8dGrYCdn9szGsyzC7TXPxww8/4O6778awYYJNFRUVOHjwoF/qSkpKQvv27T2GGvXq1QvHjh1DZGQkWrdubbmdiYmJGDlyJEaOHIlbb70VgwcPxqlTp9ClSxfXGHfmbd+9ezdKSkrQtWtXr9vpD0i0E4RJyNNOEAQRPpBoJwjCF7K6ZCGrS5bdZqjSoUMH5OTk4KabbgLHcZg2bVrAvciZmZno168fbrnlFsybNw8dO3bEkSNHsHbtWgwbNgx9+vTx2s4FCxagSZMmuPjii+FwOLBixQo0btwYycnJyMzMRPfu3TF69GgsXLgQNTU1eOihh9C/f3+PMHu7oScQQRAEQRCECiTaCYKoyyxYsAApKSm4/PLLcdNNN2HQoEHo1atXQG3gOA6ff/45rr76aowdOxYdO3bE7bffjkOHDiE9Pd0nOxMSEjBv3jz06dMHl1xyCQ4ePIjPP/8cDocDHMfhs88+Q0pKCq6++mpkZmaibdu2+Pjjj/3dZNNwvJWDJEKAsrIyJCUlobS0FImJiT6V5XQ6UVxcjLS0NNeYjFCC7DcHi+Tp2BHIz7emTDoH9hPqbSD77ceKNlj5bCIErDqm+07sQ6dXOyExJhGlT5RaaGFgoHvMfsh++zHbhvPnz+PAgQNo06YNYmNjA2ChNjzPo6amBpGRkSE7i0Wot8Go/VrXji/PpdC88wjCRsKrm4sgCCK8IU87QRAEYTf0BCIIgiAIglCBRDtBEARhN/QEIgiTkKedIAgifCDRThAEQdgNPYEIgiAIgiBUINFOEARB2A09gQiCIAiCIFQg0U4QBEHYDT2BCIIgCIIgVCDRThAEQdgNPYEIgiAIgiBUINFOEARB2A09gQjCJJSIjiAIInwg0U4QBEHYDT2BCIIgCIIgVCDRThAEQdgNPYEIgiAIgiBUINFOEES4MWDAADz66KN2m0GIoCcQQZiEwuMJgiDCBxLtBEF4zZlC4NR2z78zhX6p7qabbsLgwYMVv/vuu+/AcRx+/fVXn+tZunQpOI4Dx3FwOBxo3rw5xo4di+LiYp/LJpSJtNsAgiAIgiCIYMUl2snPQRCEGc4UAv/pBDjPe37niAVuygfqt7S0ynvvvRfDhw/Hn3/+iebNm0u+e/fdd9GnTx9kZGRYUldiYiLy8/PhdDqxc+dOjB07FkeOHMGXX35pSflyqqqqEB0d7ZeyQwF6AhGEScjTThAEYZ5XX30VrVu3RmxsLPr27YutW7eqbvvbb79h+PDhaN26NTiOw8KFCwNnqAzytBMEAUB4Aaw5Y/zv7GFlwQ4I688eNl6WwZfPv/3tb0hNTcXSpUsl6ysqKrBixQrce++9OHnyJEaNGoVmzZohLi4O3bt3x0cffWT6cHAch8aNG6Np06a44YYbMGHCBGzYsAHnzp0DACxZsgRdunRBbGwsOnfujNdee02y/5QpU9CxY0fExcWhbdu2mDZtGqqrq13fz5gxAz179sSSJUvQpk0bxMbGAgBWrlyJ7t27o169emjYsCEyMzNx5swZ4bA6nZg1axaaN2+OmJgY9OzZE+vWrXOVefDgQXAch5ycHFxzzTWIi4tDjx49sGXLFtPtDzTkaScIgiAIwq98/PHHmDhxIt544w307dsXCxcuxKBBg5Cfn4+0tDSP7c+ePYu2bdtixIgReOyxx2yw2A2JdoIgAAC1Z4FP4q0rb/2VxrcdUQ4gRnezyMhIjBkzBkuXLsWTTz4JjuMAACtWrEBtbS1GjRqFiooK9O7dG1OmTEFiYiLWrl2LO++8E+3atcOll17qZWOAevXqwel0oqamBsuWLcP06dOxaNEiXHzxxdixYwfGjRuH2NhY3HPPPQCAhIQELF26FE2bNkVeXh7GjRuHhIQEPP74464y9+/fj1WrViEnJwcRERE4evQoRo0ahXnz5mHYsGEoLy/Hd999B/5Cp8ZLL72EF154AYsXL8bFF1+Md955BzfffDN+++03dOjQwVXuk08+ifnz56NDhw548sknMWrUKOzfvx+RkcErjYPXMoIIInJy3J///FNYzsqyzx6CIIhQYsGCBRg3bhzGjh0LAHjjjTewdu1avPPOO3jiiSc8tr/kkktwySWXAIDi90pUVlaisrLStVxWVgZA8Lw4nU6vbf/m4DcAgD0n9qDH6z0w7eppyOoSOg8Ap9MJnud9OgZ2E+ptIPvtx2wb2PbsDwDA8+D8aKMezA5ex+s+duxYPP/889i0aRMGDBgAQAiNHz58OBITE5GYmIhJkya5th8/fjy+/PJLfPzxx67fXVaPWl1yW37//Xe88cYb6NOnD+Lj45GdnY358+dj2LBhAIDWrVvjt99+w5IlS3DPPfeA53k8+eSTrvJatWqFSZMm4eOPP8Y///lPV9lVVVV47733kJqaCgDYvn07ampqMGzYMLRq1QoA0K1bN9f28+fPx+OPP46RI0cCAObOnYuvv/4aL774Il599VWXvZMmTcKNN94IQPDod+vWDb///js6d+6seWyNnAN23JSePb7cQyTaCUKHnBxg+HD3cnW1sLxqFQl3giAIPaqqqrBt2zZMnTrVtc7hcCAzM9PSkMQ5c+Zg5syZHuuPHz+O8+dVQlR1WPvHWsz6bhYAgAePvOI8jFg5AkuuW4IhbYf4ZG+gcDqdKC0tBc/zcDhCM1og1NtA9tuP2TZUV1e7vMY1NTXCSj4aGHbaeKUlOxH19QD1Oq7ZBCT3MFQU74xCrbMWAFzeczXat2+Pfv364e2338aVV16J/fv347vvvsP06dNRU1OD2tpazJ07FytXrsSRI0dQVVWFyspKxMbGutrKhKer7TLY8UxISIDT6cT58+dxxRVX4I033kBpaSkKCgpw33334f7773ftU1NTg6SkJFRXV4PjOHzyySd49dVX8ccff6CiogI1NTVITEx01el0OtGqVSukpKS41l100UW49tprkZGRgeuuuw7XXXcdsrKykJKSgrKyMhw5cgSXXXaZxO5+/frh119/lZzLiy66yPWZdQgcPXoU7du3Vz8HPI/aWv1zUFNTA6fTiZMnTyIqKkryXXl5uep+epBoJwgdZs4EOE46nIjjgFmzSLQTBEHoceLECdTW1iI9PV2yPj09HXv37rWsnqlTp2LixImu5bKyMrRo0QKpqalITEz0qsyXP30ZHDjwuOBdAQ8OHF7+9WWMvWysJXb7G6fTCY7jkJqaGtKCK5TbQPbbj9k2nD9/HuXl5YiMjJSGTEclGa80WjuUPjI6Hog1UV51tYcIVOPee+/FhAkT8Nprr+GDDz5Au3btcO2114LjOMyfPx+LFi3Ciy++iO7du6N+/fp47LHHUFNT42orywyvFi7ucDiQkJCAbdu2weFwoEmTJqhXrx4AoKioCADw5ptvom/fvpL9nE4noqKisGXLFtx1112YMWMGBg0ahKSkJCxfvhwLFixw1elwOFC/fn2JDZGRkVi/fj02b96M//3vf3jttdcwffp0/Pjjj2jYsCEAICIiQrKPuC1sfWxsrOszO6Za7RWjdw4iIyPhcDjQsGFD1zh8hnzZDCTaCUKHffs883/wPJCfb489BEEQhCcxMTGIifEc8+lwOLwWGvtO7nMJdgYPHvtO7gsp8cKmZQolm+WEehvIfvsx0waHw+ESe3qebVViU4Us8SrZ47nYVMELZACe5112GLFn5MiRePTRR/HRRx/hgw8+wIMPPuhq9+bNmzF06FDceeedAAQhvW/fPnTt2lVStlbb2bEUjxNnsOR0Bw4cwB133CFpA/Nub9myBa1atcJTTz3l+r6wsFDSPrX2chyHK6+8EldeeSWys7PRqlUrrF69GhMnTkTTpk2xefNm17AA1t5LL71U0h75Z732MvuNnAPxVHjya82X+4dEO0Ho0LEjkJfn6Wnv1Mk+mwiCIEKFRo0aISIiwuV9YRQVFaFx48Y2WWWMjo06Iq8oTyLcOXDo1JAeAARB6FC/pTCtW+UJz+9iGlk+3ZuY+Ph4jBw5ElOnTkVZWRnuvvtu13cdOnTAypUrsXnzZqSkpGDBggUoKipC165dLat/5syZmDBhApKSkjB48GBUVlbi559/xsmTJzF58mR06NABhYWFWL58OS655BKsXbsWn376qW65P/30EzZu3Ijrr78eaWlp+Omnn3D8+HF06dIFAPDPf/4T2dnZaNeuHXr27Il3330Xubm5WLZsmWVts4vQ7S4jiACRnS0IdtapxkLls7PttYsgCCIUiI6ORu/evbFx40bXOqfTiY0bN6Jfv342WqZPdv9sV0g8AFeofHZ/egAQBGGA+i2BBr08//wo2Bn33nsvTp8+jUGDBqFp06au9U899RR69eqFQYMGYcCAAWjcuDFuueUWS+u+7777sGTJErz77rvo3r07+vfvj/feew+tW7cGANx888147LHHMH78ePTs2RObN2/GtGnTdMtNTEzEt99+ixtvvBEdO3bEU089hRdeeAE33HADAGDChAmYOHEiJk2ahO7du2PdunVYs2aNYkRAqMHxeikI6xhlZWVISkpCaWmp12PcGE6nE8XFxUhLSwvJcCGy3zg5OcIY9vx8wcOenQ1cSIjpE3QO7CfU20D2248VbbDy2RSMfPzxx7jrrruwePFiXHrppVi4cCE++eQT7N27F+np6RgzZgyaNWuGOXPmABCS1+3evRsAcOONN2L06NEYPXo04uPjNRMFibHqmK78bSWyv87GHyV/oFOjTsjun41hXSx4AAQIusfsh+y3H7NtOH/+PA4cOCCZH9xOWGh5ZGSk9+H6NhPqbTBqv9a148tzicLjCcIAWVmUdI4gCMJbRo4ciePHj2P69Ok4duwYevbsiXXr1rmS0xUWFkpepI8cOYKLL77YtTx//nzMnz8f/fv3x6ZNmwJqe1aXLFzZ8MqQFiwEQRBEaEOinSAIgiAIvzN+/HiMHz9e8Tu5EG/durXuXMQEQRAEES5QlzFBEARBEARBEARBBCkk2gmCIAiCIAiCIAgiSCHRThAEQRAEQRAEIYOG6RBm8dc1Q6KdIAiCIAiCIAjiAlFRUQCAs2fP2mwJEWpUVVUBACIiIiwtlxLREQRBEARBEARBXCAiIgLJyckoLi4GAMTFxdk6TVmoT5cGhH4bjNjvdDpx/PhxxMXFITLSWplNop0gCIIgCIIgCEJE48aNAcAl3O2E53k4nU44HI6QFLxA6LfBqP0OhwMtW7a0vI0k2gmCIAiCIAiCIERwHIcmTZogLS0N1dXVttridDpx8uRJNGzYEA5HaI5uDvU2GLU/OjraL+0LGtE+d+5cTJ06FY888ggWLlyout2KFSswbdo0HDx4EB06dMBzzz2HG2+8MXCGEgRBEARBEAQRFkRERFg+PtksTqcTUVFRiI2NDUnBC4R+G+y2PyiO2M8//4zFixcjIyNDc7vNmzdj1KhRuPfee7Fjxw7ccsstuOWWW7Br164AWUoQBEEQBEEQBEEQgcN20V5RUYHRo0fjrbfeQkpKiua2L730EgYPHox//vOf6NKlC2bPno1evXph0aJFAbKWIAiCIAiCIAiCIAKH7eHxDz/8MIYMGYLMzEw8/fTTmttu2bIFEydOlKwbNGgQVq9erbpPZWUlKisrXctlZWUAhBAHp9PpveEXymBJCUIRst9+Qr0NoW4/EPptIPvtx4o2hHL7CYIgCILwL7aK9uXLl2P79u34+eefDW1/7NgxpKenS9alp6fj2LFjqvvMmTMHM2fO9Fh/4MABxMfHmzNYhtPpRFlZGcrKykJ2bAbZby+h3oZQtx8I/TaQ/fZjRRsqKioACNlpCWtgx5J11nuL0+lEeXl5SI/DDGX7gdBvA9lvP6HehlC3Hwj9NlhhP3seefOst020Hz58GI888gjWr1+P2NhYv9UzdepUiXf+r7/+QteuXdGrVy+/1UkQBEEQ3lBeXo6kpCS7zagTlJeXAwBatGhhsyUEQRAE4cabZ71ton3btm0oLi6WiOfa2lp8++23WLRoESorKz0yNTZu3BhFRUWSdUVFRa55FJWIiYlBTEyMazk+Ph6HDx9GQkKCz/PnlZWVoUWLFjh8+DASExN9KssOyH77CfU2hLr9QOi3gey3HyvawPM8ysvL0bRpU4utC1+aNm1qyfM+1K/RULcfCP02kP32E+ptCHX7gdBvg93PettE+8CBA5GXlydZN3bsWHTu3BlTpkxRnFqhX79+2LhxIx599FHXuvXr16Nfv36G63U4HGjevLnXdiuRmJgYkhcfg+y3n1BvQ6jbD4R+G8h++/G1DeRhtxarn/ehfo2Guv1A6LeB7LefUG9DqNsPhH4b7HrW2ybaExIS0K1bN8m6+vXro2HDhq71Y8aMQbNmzTBnzhwAwCOPPIL+/fvjhRdewJAhQ7B8+XL88ssvePPNNwNuP0EQBEEQBEEQBEH4m6DOAlBYWIijR4+6li+//HL8+9//xptvvokePXpg5cqVWL16tYf4JwiCIAiCIAiCIIi6gO1TvonZtGmT5jIAjBgxAiNGjAiMQTrExMQgOztbMmY+lCD77SfU2xDq9gOh3way337qQhsIdUL9/Ia6/UDot4Hst59Qb0Oo2w+Efhvstp/jaX4ZgiAIgiAIgiAIgghKgjo8niAIgiAIgiAIgiDCGRLtBEEQBEEQBEEQBBGkkGgnCIIgCIIgCIIgiCCFRDtBEARBEARBEARBBCkk2r3k1VdfRevWrREbG4u+ffti69atAbdhzpw5uOSSS5CQkIC0tDTccsstyM/Pl2wzYMAAcBwn+XvggQck2xQWFmLIkCGIi4tDWloa/vnPf6KmpkayzaZNm9CrVy/ExMSgffv2WLp0qSVtmDFjhod9nTt3dn1//vx5PPzww2jYsCHi4+MxfPhwFBUVBY39rVu39rCf4zg8/PDDAILz+H/77be46aab0LRpU3Ach9WrV0u+53ke06dPR5MmTVCvXj1kZmbi999/l2xz6tQpjB49GomJiUhOTsa9996LiooKyTa//vorrrrqKsTGxqJFixaYN2+ehy0rVqxA586dERsbi+7du+Pzzz/3yf7q6mpMmTIF3bt3R/369dG0aVOMGTMGR44ckZShdN7mzp0bEPv12gAAd999t4d9gwcPlmwTrOcAgOI9wXEcnn/+edc2dp4DI7+dgfztCYbnCaFMsJybUH/eh/qzHgi95z096+lZ72sb6FkvEDTPep4wzfLly/no6Gj+nXfe4X/77Td+3LhxfHJyMl9UVBRQOwYNGsS/++67/K5du/jc3Fz+xhtv5Fu2bMlXVFS4tunfvz8/btw4/ujRo66/0tJS1/c1NTV8t27d+MzMTH7Hjh38559/zjdq1IifOnWqa5s//viDj4uL4ydOnMjv3r2bf+WVV/iIiAh+3bp1PrchOzubv+iiiyT2HT9+3PX9Aw88wLdo0YLfuHEj/8svv/CXXXYZf/nllweN/cXFxRLb169fzwPgv/76a57ng/P4f/755/yTTz7J5+Tk8AD4Tz/9VPL93Llz+aSkJH716tX8zp07+Ztvvplv06YNf+7cOdc2gwcP5nv06MH/+OOP/Hfffce3b9+eHzVqlOv70tJSPj09nR89ejS/a9cu/qOPPuLr1avHL1682LXNDz/8wEdERPDz5s3jd+/ezT/11FN8VFQUn5eX57X9JSUlfGZmJv/xxx/ze/fu5bds2cJfeumlfO/evSVltGrVip81a5bkvIjvG3/ab+Qc3HXXXfzgwYMl9p06dUqyTbCeA57nJXYfPXqUf+edd3iO4/iCgoKgOAdGfjsD9dsTLM8TwpNgOjeh/rwP9Wc9z4fe856e9fSs9+c54Hl61jMC9awn0e4Fl156Kf/www+7lmtra/mmTZvyc+bMsdEq4YECgP/mm29c6/r3788/8sgjqvt8/vnnvMPh4I8dO+Za9/rrr/OJiYl8ZWUlz/M8//jjj/MXXXSRZL+RI0fygwYN8tnm7OxsvkePHorflZSU8FFRUfyKFStc6/bs2cMD4Lds2RIU9st55JFH+Hbt2vFOp5Pn+eA//vIfYafTyTdu3Jh//vnnXetKSkr4mJgY/qOPPuJ5nud3797NA+B//vln1zZffPEFz3Ec/9dff/E8z/OvvfYan5KS4moDz/P8lClT+E6dOrmWb7vtNn7IkCESe/r27cv/4x//8Np+JbZu3coD4A8dOuRa16pVK/7FF19U3SdQ9qu14a677uKHDh2quk+onYOhQ4fy1157rWRdMJ0D+W9nIH97gvV5QgT3uQm1531de9bzfGg97+lZrww96+lZH0rPegqPN0lVVRW2bduGzMxM1zqHw4HMzExs2bLFRsuA0tJSAECDBg0k65ctW4ZGjRqhW7dumDp1Ks6ePev6bsuWLejevTvS09Nd6wYNGoSysjL89ttvrm3E7WXbWNXe33//HU2bNkXbtm0xevRoFBYWAgC2bduG6upqSd2dO3dGy5YtXXUHg/2MqqoqfPjhh7jnnnvAcZxrfbAffzEHDhzAsWPHJPUlJSWhb9++kmOenJyMPn36uLbJzMyEw+HATz/95Nrm6quvRnR0tMTm/Px8nD59OqDtKi0tBcdxSE5OlqyfO3cuGjZsiIsvvhjPP/+8JNQpGOzftGkT0tLS0KlTJzz44IM4efKkxL5QOQdFRUVYu3Yt7r33Xo/vguUcyH87A/XbE8zPk3An2M9NKD7v68qzHgj95z096xE09tOznp71Rok001gCOHHiBGprayUnDwDS09Oxd+9em6wCnE4nHn30UVxxxRXo1q2ba/3f//53tGrVCk2bNsWvv/6KKVOmID8/Hzk5OQCAY8eOKbaFfae1TVlZGc6dO4d69ep5bXffvn2xdOlSdOrUCUePHsXMmTNx1VVXYdeuXTh27Biio6M9foDT09N1bQuU/WJWr16NkpIS3H333a51wX785bA6leoT25OWlib5PjIyEg0aNJBs06ZNG48y2HcpKSmq7WJlWMH58+cxZcoUjBo1ComJia71EyZMQK9evdCgQQNs3rwZU6dOxdGjR7FgwYKgsH/w4MHIyspCmzZtUFBQgH/961+44YYbsGXLFkRERITUOXjvvfeQkJCArKwsyfpgOQdKv52B+u05ffp0UD5PiOB91gOh+byvS896IPSf9/Ssp2c9PetD71lPor2O8PDDD2PXrl34/vvvJevvv/9+1+fu3bujSZMmGDhwIAoKCtCuXbtAm+nBDTfc4PqckZGBvn37olWrVvjkk08sfcAGgrfffhs33HADmjZt6loX7Me/LlNdXY3bbrsNPM/j9ddfl3w3ceJE1+eMjAxER0fjH//4B+bMmYOYmJhAm+rB7bff7vrcvXt3ZGRkoF27dti0aRMGDhxoo2XmeeeddzB69GjExsZK1gfLOVD77SSIYCUUn/d16VkP0PM+mKBnfXBAz3r/Q+HxJmnUqBEiIiI8MgsWFRWhcePGttg0fvx4/Pe//8XXX3+N5s2ba27bt29fAMD+/fsBAI0bN1ZsC/tOa5vExETLH7bJycno2LEj9u/fj8aNG6OqqgolJSUedevZFmj7Dx06hA0bNuC+++7T3C7Yjz+rU+v6bty4MYqLiyXf19TU4NSpU5acFyvuI/YQP3ToENavXy/peVeib9++qKmpwcGDB4PCfjlt27ZFo0aNJNdNsJ8DAPjuu++Qn5+ve18A9pwDtd/OQP32BOPzhBAI1nNTV573ofqsB+rG856e9QeDwn459Kx328a+09om3J71JNpNEh0djd69e2Pjxo2udU6nExs3bkS/fv0CagvP8xg/fjw+/fRTfPXVVx7hJUrk5uYCAJo0aQIA6NevH/Ly8iQ/CuyHr2vXrq5txO1l2/ijvRUVFSgoKECTJk3Qu3dvREVFSerOz89HYWGhq+5gsf/dd99FWloahgwZorldsB//Nm3aoHHjxpL6ysrK8NNPP0mOeUlJCbZt2+ba5quvvoLT6XS9pPTr1w/ffvstqqurJTZ36tQJKSkpfm0Xe4j//vvv2LBhAxo2bKi7T25uLhwOhysMzU77lfjzzz9x8uRJyXUTzOeA8fbbb6N3797o0aOH7raBPAd6v52B+u0JpucJISXYzk1de96H6rMeqBvPe3rW07OenvUh+Kw3nLKOcLF8+XI+JiaGX7p0Kb97927+/vvv55OTkyWZBQPBgw8+yCclJfGbNm2STKVw9uxZnud5fv/+/fysWbP4X375hT9w4AD/2Wef8W3btuWvvvpqVxlsKoPrr7+ez83N5detW8enpqYqTmXwz3/+k9+zZw//6quvWjaNyqRJk/hNmzbxBw4c4H/44Qc+MzOTb9SoEV9cXMzzvDAVQ8uWLfmvvvqK/+WXX/h+/frx/fr1Cxr7eV7IANmyZUt+ypQpkvXBevzLy8v5HTt28Dt27OAB8AsWLOB37Njhyrg6d+5cPjk5mf/ss8/4X3/9lR86dKjiNDAXX3wx/9NPP/Hff/8936FDB8kUJCUlJXx6ejp/55138rt27eKXL1/Ox8XFeUzhERkZyc+fP5/fs2cPn52dbWgKDy37q6qq+Jtvvplv3rw5n5ubK7kvWJbPzZs38y+++CKfm5vLFxQU8B9++CGfmprKjxkzJiD267WhvLycnzx5Mr9lyxb+wIED/IYNG/hevXrxHTp04M+fPx/054BRWlrKx8XF8a+//rrH/nafA73fTp4P3G9PsDxPCE+C6dyE+vO+LjzreT60nvf0rKdnvT/PAYOe9YF71pNo95JXXnmFb9myJR8dHc1feuml/I8//hhwGwAo/r377rs8z/N8YWEhf/XVV/MNGjTgY2Ji+Pbt2/P//Oc/JfOG8jzPHzx4kL/hhhv4evXq8Y0aNeInTZrEV1dXS7b5+uuv+Z49e/LR0dF827ZtXXX4ysiRI/kmTZrw0dHRfLNmzfiRI0fy+/fvd31/7tw5/qGHHuJTUlL4uLg4ftiwYfzRo0eDxn6e5/kvv/ySB8Dn5+dL1gfr8f/6668Vr5u77rqL53lhKphp06bx6enpfExMDD9w4ECPtp08eZIfNWoUHx8fzycmJvJjx47ly8vLJdvs3LmTv/LKK/mYmBi+WbNm/Ny5cz1s+eSTT/iOHTvy0dHR/EUXXcSvXbvWJ/sPHDigel+wuXS3bdvG9+3bl09KSuJjY2P5Ll268M8++6zkIelP+/XacPbsWf7666/nU1NT+aioKL5Vq1b8uHHjPH7Yg/UcMBYvXszXq1ePLykp8djf7nOg99vJ84H97QmG5wmhTLCcm1B/3teFZz3Ph9bznp719Kz3tQ30rBcIlmc9d6FRBEEQBEEQBEEQBEEEGTSmnSAIgiAIgiAIgiCCFBLtBEEQBEEQBEEQBBGkkGgnCIIgCIIgCIIgiCCFRDtBEARBEARBEARBBCkk2gmCIAiCIAiCIAgiSCHRThAEQRAEQRAEQRBBCol2giAIgiAIgiAIgghSSLQTBEEQBEEQBEEQRJBCop0gCIIgCIIgCIIgghQS7QRBAACOHz+OBx98EC1btkRMTAwaN26MQYMG4YcffgAAcByH1atX22skQRAEQRBeQ896gghNIu02gCCI4GD48OGoqqrCe++9h7Zt26KoqAgbN27EyZMn7TaNIAiCIAgLoGc9QYQmHM/zvN1GEARhLyUlJUhJScGmTZvQv39/j+9bt26NQ4cOuZZbtWqFgwcPAgA+++wzzJw5E7t370bTpk1x11134cknn0RkpNAnyHEcXnvtNaxZswabNm1CkyZNMG/ePNx6660BaRtBEARBEPSsJ4hQhsLjCYJAfHw84uPjsXr1alRWVnp8//PPPwMA3n33XRw9etS1/N1332HMmDF45JFHsHv3bixevBhLly7FM888I9l/2rRpGD58OHbu3InRo0fj9ttvx549e/zfMIIgCIIgANCzniBCGfK0EwQBAFi1ahXGjRuHc+fOoVevXujfvz9uv/12ZGRkABB60T/99FPccsstrn0yMzMxcOBATJ061bXuww8/xOOPP44jR4649nvggQfw+uuvu7a57LLL0KtXL7z22muBaRxBEARBEPSsJ4gQhTztBEEAEMa5HTlyBGvWrMHgwYOxadMm9OrVC0uXLlXdZ+fOnZg1a5ar9z4+Ph7jxo3D0aNHcfbsWdd2/fr1k+zXr18/6n0nCIIgiABDz3qCCE0oER1BEC5iY2Nx3XXX4brrrsO0adNw3333ITs7G3fffbfi9hUVFZg5cyaysrIUyyIIgiAIIrigZz1BhB7kaScIQpWuXbvizJkzAICoqCjU1tZKvu/Vqxfy8/PRvn17jz+Hw/3z8uOPP0r2+/HHH9GlSxf/N4AgCIIgCE3oWU8QwQ952gmCwMmTJzFixAjcc889yMjIQEJCAn755RfMmzcPQ4cOBSBkld24cSOuuOIKxMTEICUlBdOnT8ff/vY3tGzZErfeeiscDgd27tyJXbt24emnn3aVv2LFCvTp0wdXXnklli1bhq1bt+Ltt9+2q7kEQRAEEXbQs54gQhdKREcQBCorKzFjxgz873//Q0FBAaqrq9GiRQuMGDEC//rXv1CvXj385z//wcSJE3Hw4EE0a9bMNQ3Ml19+iVmzZmHHjh2IiopC586dcd9992HcuHEAhOQ0r776KlavXo1vv/0WTZo0wXPPPYfbbrvNxhYTBEEQRHhBz3qCCF1ItBME4VeUMtESBEEQBFF3oGc9QfgXGtNOEARBEARBEARBEEEKiXaCIAiCIAiCIAiCCFIoPJ4gCIIgCIIgCIIgghTytBMEQRAEQRAEQRBEkEKinSAIgiAIgiAIgiCCFBLtBEEQBEEQBEEQBBGkkGgnCIIgCIIgCIIgiCCFRDtBEARBEARBEARBBCkk2gmCIAiCIAiCIAgiSCHRThAEQRAEQRAEQRBBCol2giAIgiAIgiAIgghS/h9D5UbuK2hz2gAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1200x500 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plot training results\n",
"fig, axes = plt.subplots(1, 2, figsize=(12, 5))\n",
"\n",
"df_train = pd.read_csv(\"metrics_train.csv\")\n",
"df_val = pd.read_csv(\"metrics_val.csv\")\n",
"\n",
"# Plot Loss\n",
"axes[0].plot(df_train[\"step\"], df_train[\"mean_loss\"], 'b-o', label='Train Loss', markersize=4, linewidth=1.5)\n",
"axes[0].plot(df_val[\"step\"], df_val[\"mean_loss\"], 'r-s', label='Val Loss', markersize=4, linewidth=1.5)\n",
"axes[0].set_xlabel('Step')\n",
"axes[0].set_ylabel('Loss')\n",
"axes[0].set_title('Loss')\n",
"axes[0].legend()\n",
"axes[0].grid(True, alpha=0.3)\n",
"\n",
"# Plot Pearson Correlation\n",
"axes[1].plot(df_train[\"step\"], df_train[\"mean_pearson\"], 'g-o', label='Train Pearson', markersize=4, linewidth=1.5)\n",
"axes[1].plot(df_val[\"step\"], df_val[\"mean_pearson\"], 'orange', marker='s', label='Val Pearson', markersize=4, linewidth=1.5)\n",
"axes[1].set_xlabel('Step')\n",
"axes[1].set_ylabel('Pearson Correlation')\n",
"axes[1].set_title('Mean Pearson Correlation')\n",
"axes[1].legend()\n",
"axes[1].grid(True, alpha=0.3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 9. 🧪 Test evaluation\n",
"\n",
"Evaluate the fine-tuned model on the held-out test set to assess final performance. This provides an unbiased estimate of how well the model generalizes to unseen genomic regions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calculate number of test steps (based on deepspeed pipeline)\n",
"num_test_samples = len(test_dataset)\n",
"num_test_steps = num_test_samples // config[\"mini_batch_size\"]\n",
"print(f\"Running test evaluation with {num_test_steps} steps ({num_test_samples} samples)\")\n",
"\n",
"# Load the best model checkpoint\n",
"model.load_state_dict(torch.load(config[\"best_model_checkpoint_path\"]))\n",
"model.to(device)\n",
"print(f\"Loaded model from {config['best_model_checkpoint_path']=!s}\")\n",
"\n",
"# Set model to eval mode\n",
"model.eval()\n",
"\n",
"# Run test evaluation with progress bar\n",
"for test_batch in tqdm(test_loader, desc=\"Test evaluation\", total=num_test_steps): \n",
" validation_step( \n",
" model, \n",
" test_batch, \n",
" test_metrics,\n",
" )\n",
" \n",
"# Compute final test metrics\n",
"test_metrics_dict = test_metrics.compute()\n",
"print(\"\\n\" + \"=\"*50)\n",
"print(\"Test Set Results\")\n",
"print(\"=\"*50)\n",
"print(f\"\\nMetrics:\")\n",
"print(f\" Mean Pearson: {test_metrics_dict['mean/pearson']:.4f}\")\n",
"for track_name in bigwig_ids: \n",
" print(f\" {track_name}/pearson: {test_metrics_dict[f'{track_name}/pearson']:.4f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test set results obtained for reference (human)\n",
"\n",
"===== Test Set Results =====\n",
"\n",
"Metrics:\n",
"Mean Pearson: 0.6050\n",
"- ENCSR154HRN_M/pearson: 0.5132\n",
"- ENCSR154HRN_P/pearson: 0.5095\n",
"- ENCSR935RNW_P/pearson: 0.5690\n",
"- ENCSR114HGS_M/pearson: 0.3433\n",
"- ENCSR487QSB/pearson: 0.7101\n",
"- ENCSR046BCI_M/pearson: 0.5188\n",
"- ENCSR100LIJ_M/pearson: 0.5632\n",
"- ENCSR754DRC/pearson: 0.6046\n",
"- ENCSR682BFG/pearson: 0.6839\n",
"- ENCSR862QCH_M/pearson: 0.5441\n",
"- ENCSR046BCI_P/pearson: 0.4872\n",
"- ENCSR249ROI_M/pearson: 0.6077\n",
"- ENCSR484LTQ_P/pearson: 0.4738\n",
"- ENCSR410DWV/pearson: 0.7949\n",
"- ENCSR619DQO_P/pearson: 0.6981\n",
"- ENCSR321PWZ_M/pearson: 0.6895\n",
"- ENCSR962OTG/pearson: 0.9150\n",
"- ENCSR321PWZ_P/pearson: 0.6903\n",
"- ENCSR484LTQ_M/pearson: 0.4812\n",
"- ENCSR628PLS/pearson: 0.6479\n",
"- ENCSR249ROI_P/pearson: 0.5761\n",
"- ENCSR799DGV_P/pearson: 0.5704\n",
"- ENCSR862QCH_P/pearson: 0.5402\n",
"- ENCSR527JGN_M/pearson: 0.5144\n",
"- ENCSR619DQO_M/pearson: 0.6975\n",
"- ENCSR814RGG/pearson: 0.7958\n",
"- ENCSR935RNW_M/pearson: 0.5600\n",
"- ENCSR863PSM/pearson: 0.6915\n",
"- ENCSR114HGS_P/pearson: 0.3447\n",
"- ENCSR325NFE/pearson: 0.8314\n",
"- ENCSR701YIC/pearson: 0.5613\n",
"- ENCSR527JGN_P/pearson: 0.7226\n",
"- ENCSR100LIJ_P/pearson: 0.5643"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test set results obtained for a new species (tomato)\n",
"\n",
"===== Test Set Results =====\n",
"\n",
"Metrics:\n",
"Mean Pearson: 0.7596\n",
"- SRX29291439/pearson: 0.8581\n",
"- SRX27799718/pearson: 0.4512\n",
"- SRX29291446/pearson: 0.9152\n",
"- SRX29291430/pearson: 0.9069\n",
"- SRX27799731/pearson: 0.5254\n",
"- SRX27799719/pearson: 0.4435\n",
"- SRX29291442/pearson: 0.9151\n",
"- SRX27799733/pearson: 0.4725\n",
"- SRX27799722/pearson: 0.4795\n",
"- SRX29291444/pearson: 0.9139\n",
"- SRX29291440/pearson: 0.8633\n",
"- SRX27799727/pearson: 0.6209\n",
"- SRX29291438/pearson: 0.8770\n",
"- SRX27799703/pearson: 0.4722\n",
"- SRX29291448/pearson: 0.9160\n",
"- SRX29291441/pearson: 0.9169\n",
"- SRX29291447/pearson: 0.9171\n",
"- SRX29291445/pearson: 0.8990\n",
"- SRX29291431/pearson: 0.9181\n",
"- SRX29291443/pearson: 0.9103\n",
"\n",
"NOTE: to achieve these results, set the 'species_name' to 'tomato' in the config."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|