File size: 206,689 Bytes
cdc7a28
 
 
 
 
 
143dd5d
cdc7a28
143dd5d
 
cdc7a28
51e8b32
 
 
 
 
 
 
cdc7a28
51e8b32
143dd5d
51e8b32
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
b1c583b
 
51e8b32
b1c583b
51e8b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1c583b
 
 
 
 
 
cdc7a28
 
51e8b32
cdc7a28
374746e
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
51e8b32
cdc7a28
51e8b32
cdc7a28
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
143dd5d
cdc7a28
 
 
51e8b32
cdc7a28
 
51e8b32
 
 
 
 
 
cdc7a28
 
 
 
 
51e8b32
cdc7a28
 
 
 
143dd5d
 
 
cdc7a28
 
 
 
51e8b32
cdc7a28
374746e
 
 
 
 
 
 
 
 
cdc7a28
 
51e8b32
cdc7a28
51e8b32
cdc7a28
 
 
143dd5d
cdc7a28
 
 
51e8b32
cdc7a28
 
51e8b32
 
 
cdc7a28
51e8b32
 
 
 
cdc7a28
 
51e8b32
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143dd5d
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
 
 
 
143dd5d
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
143dd5d
51e8b32
cdc7a28
 
 
 
 
 
51e8b32
cdc7a28
374746e
 
 
 
51e8b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374746e
 
 
 
51e8b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374746e
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
51e8b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374746e
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143dd5d
cdc7a28
143dd5d
cdc7a28
 
 
 
143dd5d
 
 
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
143dd5d
cdc7a28
 
143dd5d
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
374746e
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
 
374746e
51e8b32
 
 
 
 
 
 
374746e
 
 
 
 
 
51e8b32
374746e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
374746e
cdc7a28
 
 
143dd5d
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
51e8b32
cdc7a28
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
51e8b32
 
 
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
51e8b32
 
 
 
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
374746e
 
 
 
 
51e8b32
 
 
 
 
 
374746e
51e8b32
 
 
 
 
 
 
 
 
 
 
 
 
374746e
 
 
cdc7a28
143dd5d
 
 
 
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
51e8b32
cdc7a28
51e8b32
cdc7a28
 
 
 
 
51e8b32
cdc7a28
 
 
 
 
 
51e8b32
cdc7a28
 
 
 
 
 
51e8b32
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
 
51e8b32
cdc7a28
374746e
 
 
 
 
 
51e8b32
 
 
 
 
 
 
 
 
 
 
 
 
 
374746e
 
 
cdc7a28
 
51e8b32
 
 
cdc7a28
 
 
 
51e8b32
 
 
cdc7a28
 
 
51e8b32
cdc7a28
 
 
51e8b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
 
cdc7a28
51e8b32
cdc7a28
51e8b32
cdc7a28
 
51e8b32
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
 
 
 
 
51e8b32
cdc7a28
51e8b32
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
51e8b32
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
374746e
 
 
 
 
51e8b32
 
 
 
 
 
 
 
 
 
 
 
 
 
374746e
 
 
cdc7a28
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
51e8b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdc7a28
51e8b32
 
cdc7a28
 
 
 
51e8b32
cdc7a28
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
 
 
 
 
 
 
51e8b32
 
 
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
51e8b32
cdc7a28
374746e
 
 
51e8b32
374746e
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51e8b32
cdc7a28
51e8b32
cdc7a28
 
 
51e8b32
cdc7a28
 
51e8b32
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143dd5d
51e8b32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdc7a28
 
143dd5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdc7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 🧬 Fine-Tuning a Post-trained Model on Functional BigWig Tracks Prediction (reproduce paper results)\n",
    "\n",
    "This notebook is designed to enable the reproduction of the fine-tuning results on functional genomics tracks in the paper. In contrast to the simplified fine tuning setup in [02_fine_tuning_pretrained_model_biwig.ipynb](https://huggingface.co/spaces/InstaDeepAI/ntv3/blob/main/notebooks_tutorials/02_fine_tuning_pretrained_model_biwig.ipynb), this more complex setup is designed to mirror the internal JAX pipeline used to run the evaluations in PyTorch and using our HuggingFace models.\n",
    "As in the benchmark, the notebook finetunes the post-trained Nucleotide Transformer v3 (`NTv3_650M_post`) model to predict BigWig signal tracks directly from DNA sequences. The streamlined approach leverages a post-trained NTv3 backbone as a feature extractor. A new prediction head is added to the model, which outputs single-nucleotide resolution signal values for each of the functional bigwig tracks in the NTv3 benchmark for the selected species. The notebook uses the 34 tracks for the `human` species by default, but the user can change the config to use any species from the benchmark.\n",
    "\n",
    "**🦚 Features:**\n",
    "In addition to the simplifed version, the following features are added:\n",
    "- Learning rate scheduling\n",
    "- Use fixed dataset regions for training\n",
    "- Implement gradient accumulation for large batch sizes\n",
    "- Use the best model (selected via validation Pearson) for evaluation \n",
    "- Save the latest and best models for future use\n",
    "\n",
    "**🔦 JAX vs PyTorch:**\n",
    "The values achieved by this pipeline are close (within 0.01 mean Pearson for human) to those reported in the paper. They differ slightly due to using here a PyTorch pipeline to make it easier for users, as opposed to the JAX pipeline used for the results in the paper. For most accurate performance, it is recommended to use 3x seeds and average the results, as shown in the paper.\n",
    "\n",
    "**🚆 Training:**\n",
    "To run this training, you will need a large GPU (either A100 or H100). It takes around 28 hours on an H100 with the default settings. It might be possible to improve the tuning of the number of workers to improve efficiency. Our JAX pipeline is able to complete the training in around 12 hours.\n",
    "\n",
    "📝 Note for Google Colab users: This notebook is compatible with Colab! This notebook is designed to be run on a high-performance GPU. The default parameters can be used with a H100 with 80GB of HBM.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 0. 📦 Imports dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7def2b35ebeb45bc97960837f8a7041c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Login to HuggingFace (required for gated models)\n",
    "from huggingface_hub import login\n",
    "login()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: pyfaidx in ./.venv/lib/python3.11/site-packages (0.9.0.3)\n",
      "Requirement already satisfied: pyBigWig in ./.venv/lib/python3.11/site-packages (0.3.24)\n",
      "Requirement already satisfied: torchmetrics in ./.venv/lib/python3.11/site-packages (1.8.2)\n",
      "Requirement already satisfied: transformers in ./.venv/lib/python3.11/site-packages (4.57.1)\n",
      "Requirement already satisfied: packaging in ./.venv/lib/python3.11/site-packages (from pyfaidx) (25.0)\n",
      "Requirement already satisfied: numpy>1.20.0 in ./.venv/lib/python3.11/site-packages (from torchmetrics) (2.1.3)\n",
      "Requirement already satisfied: torch>=2.0.0 in ./.venv/lib/python3.11/site-packages (from torchmetrics) (2.5.1+cu121)\n",
      "Requirement already satisfied: lightning-utilities>=0.8.0 in ./.venv/lib/python3.11/site-packages (from torchmetrics) (0.15.2)\n",
      "Requirement already satisfied: filelock in ./.venv/lib/python3.11/site-packages (from transformers) (3.17.0)\n",
      "Requirement already satisfied: huggingface-hub<1.0,>=0.34.0 in ./.venv/lib/python3.11/site-packages (from transformers) (0.36.0)\n",
      "Requirement already satisfied: pyyaml>=5.1 in ./.venv/lib/python3.11/site-packages (from transformers) (6.0.2)\n",
      "Requirement already satisfied: regex!=2019.12.17 in ./.venv/lib/python3.11/site-packages (from transformers) (2024.11.6)\n",
      "Requirement already satisfied: requests in ./.venv/lib/python3.11/site-packages (from transformers) (2.32.3)\n",
      "Requirement already satisfied: tokenizers<=0.23.0,>=0.22.0 in ./.venv/lib/python3.11/site-packages (from transformers) (0.22.2)\n",
      "Requirement already satisfied: safetensors>=0.4.3 in ./.venv/lib/python3.11/site-packages (from transformers) (0.7.0)\n",
      "Requirement already satisfied: tqdm>=4.27 in ./.venv/lib/python3.11/site-packages (from transformers) (4.67.1)\n",
      "Requirement already satisfied: fsspec>=2023.5.0 in ./.venv/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (2025.3.0)\n",
      "Requirement already satisfied: typing-extensions>=3.7.4.3 in ./.venv/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (4.12.2)\n",
      "Requirement already satisfied: hf-xet<2.0.0,>=1.1.3 in ./.venv/lib/python3.11/site-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (1.2.0)\n",
      "Requirement already satisfied: setuptools in ./.venv/lib/python3.11/site-packages (from lightning-utilities>=0.8.0->torchmetrics) (80.9.0)\n",
      "Requirement already satisfied: networkx in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (3.6.1)\n",
      "Requirement already satisfied: jinja2 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (3.1.6)\n",
      "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (12.1.105)\n",
      "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (12.1.105)\n",
      "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (12.1.105)\n",
      "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (9.1.0.70)\n",
      "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (12.1.3.1)\n",
      "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (11.0.2.54)\n",
      "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (10.3.2.106)\n",
      "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (11.4.5.107)\n",
      "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (12.1.0.106)\n",
      "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (2.21.5)\n",
      "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (12.1.105)\n",
      "Requirement already satisfied: triton==3.1.0 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (3.1.0)\n",
      "Requirement already satisfied: sympy==1.13.1 in ./.venv/lib/python3.11/site-packages (from torch>=2.0.0->torchmetrics) (1.13.1)\n",
      "Requirement already satisfied: nvidia-nvjitlink-cu12 in ./.venv/lib/python3.11/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=2.0.0->torchmetrics) (12.8.93)\n",
      "Requirement already satisfied: mpmath<1.4,>=1.1.0 in ./.venv/lib/python3.11/site-packages (from sympy==1.13.1->torch>=2.0.0->torchmetrics) (1.3.0)\n",
      "Requirement already satisfied: MarkupSafe>=2.0 in ./.venv/lib/python3.11/site-packages (from jinja2->torch>=2.0.0->torchmetrics) (3.0.2)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in ./.venv/lib/python3.11/site-packages (from requests->transformers) (3.4.1)\n",
      "Requirement already satisfied: idna<4,>=2.5 in ./.venv/lib/python3.11/site-packages (from requests->transformers) (3.10)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in ./.venv/lib/python3.11/site-packages (from requests->transformers) (2.3.0)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in ./.venv/lib/python3.11/site-packages (from requests->transformers) (2025.1.31)\n"
     ]
    }
   ],
   "source": [
    "# Install dependencies\n",
    "!pip install pyfaidx pyBigWig torchmetrics transformers"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import bisect\n",
    "import functools\n",
    "from typing import List, Dict, Callable, Any, cast\n",
    "import os\n",
    "import fnmatch\n",
    "from pathlib import Path\n",
    "from huggingface_hub import HfApi, snapshot_download\n",
    "\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.nn.functional as F\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "from torch.optim import AdamW\n",
    "from torch.optim.lr_scheduler import LambdaLR\n",
    "from transformers import AutoConfig, AutoModel, AutoTokenizer\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import pyBigWig\n",
    "from pyfaidx import Fasta\n",
    "from torchmetrics import PearsonCorrCoef\n",
    "from tqdm import tqdm"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 1. ⚙️ Configuration\n",
    "\n",
    "## Configuration Parameters\n",
    "\n",
    "### Model\n",
    "- **`model_name`**: HuggingFace model name/identifier for the pretrained backbone model\n",
    "- **`best_model_checkpoint_path`**: Path to use when saving the best model checkpoint\n",
    "\n",
    "### Data\n",
    "- **`hf_repo_id`**: HuggingFace dataset repository ID containing the benchmark data\n",
    "- **`species`**: Species name (e.g., \"human\", \"tomato\") to select bigwig data from the benchmark dataset\n",
    "- **`data_cache_dir`**: Directory where downloaded data files (FASTA, bigWig) will be stored\n",
    "- **`sequence_length`**: Length of input sequences in base pairs (bp)\n",
    "- **`keep_target_center_fraction`**: Fraction of center sequence to keep for target prediction (crops edges to focus on center)\n",
    "- **`train_overlap`**: Fraction of sequence that overlaps between unique training samples\n",
    "\n",
    "### Training\n",
    "- **`mini_batch_size`**: Number of samples per mini batch on the device\n",
    "- **`num_accumulation_gradient`**: Number of gradient accumulation steps\n",
    "- **`num_steps_training`**: Total number of training steps (each step has an effective batch size of `mini_batch_size * num_accumulation_gradient`)\n",
    "- **`initial_learning_rate`**: Initial learning rate for optimizer\n",
    "- **`num_steps_warmup`**: Number of warmup steps (3% of `num_steps_training`)\n",
    "- **`end_learning_rate`**: Peak learning rate after warmup\n",
    "- **`weight_decay`**: L2 regularization coefficient for optimizer\n",
    "- **`log_every_n_steps`**: Log training metrics every N steps\n",
    "\n",
    "### Validation\n",
    "- **`validate_every_n_steps`**: Run validation every N steps\n",
    "- **`num_validation_samples`**: Number of samples to use for each validation \n",
    "\n",
    "### General\n",
    "- **`seed`**: Random seed for reproducibility\n",
    "- **`device`**: Device to run training on (\"cuda\" or \"cpu\")\n",
    "- **`num_workers`**: Number of worker processes for DataLoader (0 = single-threaded)\n",
    "\n",
    "NOTE: the default parameters will finetune the model on the human dataset, to finetune on the tomato dataset, set the 'species_name' to 'tomato' in the config. You can also update the config parameters regarding the number of training and warmup tokens based on the species genome size, as done in our benchmark (see paper details), although this is not neccessery to achieve top performance results."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using device: cuda\n"
     ]
    }
   ],
   "source": [
    "config = {\n",
    "     # Model\n",
    "    \"model_name\": \"InstaDeepAI/NTv3_650M_post\",\n",
    "    \"best_model_checkpoint_path\": \"best_model_checkpoint.pth\",\n",
    "    \n",
    "    # Data\n",
    "    \"hf_repo_id\": \"InstaDeepAI/NTv3_benchmark_dataset\",\n",
    "    \"species_name\": \"human\", # Select the species to train on, i.e. \"tomato\"\n",
    "    \"data_cache_dir\": \"./data\",\n",
    "    \"sequence_length\": 32_768,\n",
    "    \"keep_target_center_fraction\": 0.375,\n",
    "    \"train_overlap\": 0.999,\n",
    "    \n",
    "    # Training\n",
    "    \"mini_batch_size\": 4,\n",
    "    \"num_accumulation_gradient\": 8,  # For an effective batch size of 32\n",
    "    \"num_steps_training\": 19932, # Calculated to provide ~20.9B tokens\n",
    "    \"weight_decay\": 0.01,\n",
    "    \"initial_learning_rate\": 1e-5,\n",
    "    \"num_steps_warmup\": 598,  # Calculated as 3% of 19932 steps\n",
    "    \"end_learning_rate\": 5e-5,  \n",
    "    \"log_every_n_steps\": 50,\n",
    "    \n",
    "    # Validation\n",
    "    \"validate_every_n_steps\": 500, \n",
    "    \"num_validation_samples\": 1000,\n",
    "\n",
    "    # General\n",
    "    \"seed\": 0,\n",
    "    \"device\": \"cuda\" if torch.cuda.is_available() else \"cpu\",\n",
    "    \"num_workers\": 16,\n",
    "}\n",
    "\n",
    "# Set random seed\n",
    "torch.manual_seed(config[\"seed\"])\n",
    "np.random.seed(config[\"seed\"])\n",
    "\n",
    "# Set device\n",
    "device = torch.device(config[\"device\"])\n",
    "print(f\"Using device: {device}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 2. 📥 Genome & Tracks Data Download\n",
    "\n",
    "Download the reference genome FASTA file and BigWig signal tracks from public repositories. These files contain the genomic sequences and experimental signal data (e.g., ChIP-seq, ATAC-seq) that we'll use for training."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def prepare_genomics_inputs(\n",
    "    species: str,\n",
    "    data_cache_dir: str | Path = \"data\",\n",
    "    hf_repo_id: str = \"InstaDeepAI/NTv3_benchmark_dataset\",\n",
    ") -> tuple[str, list[str], list[str], pd.DataFrame, pd.DataFrame]:\n",
    "    \"\"\"\n",
    "    Downloads:\n",
    "      1) FASTA from HF dataset under: <species>/genome.fasta\n",
    "      2) BigWigs from HF dataset under: <species>/functional_tracks/**\n",
    "         (filtered by bigwig_file_ids if provided)\n",
    "      3) Splits from HF dataset under: <species>/splits.bed\n",
    "      4) Metadata from HF dataset under: benchmark_metadata.tsv\n",
    "    \n",
    "    Args:\n",
    "        species: Species name (e.g., \"human\", \"arabidopsis\")\n",
    "        data_cache_dir: Directory where downloaded data files will be stored\n",
    "        hf_repo_id: HuggingFace dataset repository ID\n",
    "    \n",
    "    Returns:\n",
    "      (fasta_path, bigwig_path_list, bigwig_file_ids)\n",
    "    \"\"\"\n",
    "    cache = Path(data_cache_dir).expanduser().resolve()\n",
    "    cache.mkdir(parents=True, exist_ok=True)\n",
    "    \n",
    "    # --- Download metadata + <species> files (FASTA, BigWigs, Splits) ---\n",
    "    metadata_file = \"benchmark_metadata.tsv\"\n",
    "    download_patterns = [metadata_file, f\"{species}/genome.fasta\", f\"{species}/splits.bed\"]\n",
    "    \n",
    "    # Download all BigWig files\n",
    "    download_patterns.append(f\"{species}/functional_tracks/*.bigwig\")\n",
    "    local_dir = Path(\n",
    "        snapshot_download(\n",
    "            repo_id=hf_repo_id,\n",
    "            repo_type=\"dataset\",\n",
    "            allow_patterns=download_patterns,\n",
    "            local_dir=str(cache),\n",
    "        )\n",
    "    )\n",
    "    \n",
    "    # --- Organize outputs ---\n",
    "    # FASTA file\n",
    "    fasta_path_repo = f\"{species}/genome.fasta\"\n",
    "    fasta_path = str(local_dir / fasta_path_repo)\n",
    "    \n",
    "    # BigWig files - use downloaded files directly\n",
    "    bigwig_dir = local_dir / species / \"functional_tracks\"\n",
    "    \n",
    "    # Find all downloaded BigWig files\n",
    "    bigwig_paths = [str(bigwig_file) for bigwig_file in bigwig_dir.glob(\"*.bigwig\")]\n",
    "    bigwig_ids = [bigwig_file.stem for bigwig_file in bigwig_dir.glob(\"*.bigwig\")]         \n",
    "\n",
    "    # Data splits file\n",
    "    splits_path_repo = f\"{species}/splits.bed\"\n",
    "    splits_path = local_dir / splits_path_repo\n",
    "\n",
    "    splits_df = pd.read_csv(\n",
    "        splits_path, \n",
    "        sep=\"\\t\", \n",
    "        header=None, \n",
    "        names=[\"chr_name\", \"start\", \"end\", \"split\"],\n",
    "        dtype={\"chr_name\": str, \"start\": int, \"end\": int, \"split\": str},\n",
    "    )\n",
    "    \n",
    "    # Metadata file\n",
    "    metadata_path = local_dir / metadata_file\n",
    "    metadata_df = pd.read_csv(metadata_path, sep=\"\\t\")\n",
    "\n",
    "    # Filter and order metadata \n",
    "    metadata_df = metadata_df[metadata_df[\"species_common_name\"] == species].reset_index(drop=True)\n",
    "    metadata_df = metadata_df.set_index(\"file_id\").loc[bigwig_ids].reset_index()\n",
    "\n",
    "    return fasta_path, bigwig_paths, bigwig_ids, splits_df, metadata_df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "93c67d6f058848d5b6e162815ccb4103",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Fetching 37 files:   0%|          | 0/37 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "200a2fc6d4eb466f96f8dcb944a4d763",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR154HRN_M.bi(…):   0%|          | 0.00/40.6M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "23d1768bbfa74a518fc72a0f499435fd",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR114HGS_M.bi(…):   0%|          | 0.00/69.3M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "999de466b6024924a39529ab7bd3f497",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR114HGS_P.bi(…):   0%|          | 0.00/71.0M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1568766d8d3d4ff0b0e5b7d71d95027e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR100LIJ_M.bi(…):   0%|          | 0.00/24.7M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5e9fd3c3c6c945d682d16630d2374933",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR100LIJ_P.bi(…):   0%|          | 0.00/25.0M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7c8e5c95bdcd4003a42e7b20d678225b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "benchmark_metadata.tsv:   0%|          | 0.00/8.13k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "df48467d26364692b5af2ea86dea7074",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR046BCI_P.bi(…):   0%|          | 0.00/15.8M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "06005a286e74472d9849492433661cd8",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR046BCI_M.bi(…):   0%|          | 0.00/20.5M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "988108a917be4334aaf3bbb6264f6787",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR154HRN_P.bi(…):   0%|          | 0.00/44.0M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2bf57c3e172f4f258f44bc85348ed8c2",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR249ROI_P.bi(…):   0%|          | 0.00/105M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "956e58ee95574b13b590aabed03df184",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR321PWZ_M.bi(…):   0%|          | 0.00/35.1M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7ba75c6e4f1942d095d3a06d4ab93217",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR249ROI_M.bi(…):   0%|          | 0.00/99.6M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "42186c38069f4fad8db5e49edd0a6c82",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR321PWZ_P.bi(…):   0%|          | 0.00/36.3M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "11191c8be14746958297afd0cc40b01b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR325NFE.bigw(…):   0%|          | 0.00/5.67G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "aa0ff097b9224139b9f0646f0841713f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR410DWV.bigw(…):   0%|          | 0.00/2.46G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "16cf581baffb4c4da22d30fcfe99b351",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR484LTQ_M.bi(…):   0%|          | 0.00/14.7M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "3dd0b36540fd4dcf90f96b8e02b7ea60",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR484LTQ_P.bi(…):   0%|          | 0.00/15.4M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "da238836293c45eea4bf0452c6a1cca4",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR487QSB.bigw(…):   0%|          | 0.00/1.84G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b9ee45a817864de5b588cc2831e664f2",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR527JGN_P.bi(…):   0%|          | 0.00/315M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7c21c57384e24959aacd145f4a38e35f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR527JGN_M.bi(…):   0%|          | 0.00/305M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b178c13594b249b09a9178707387e6e3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR619DQO_M.bi(…):   0%|          | 0.00/127M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "72046d9b96e349cd98c0995a61de09fb",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR619DQO_P.bi(…):   0%|          | 0.00/134M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "fb59c7d7a93e421997b5295695713fd3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR628PLS.bigw(…):   0%|          | 0.00/902M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8ea458fdcbe44a9f806abd3cf5c5c1cf",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR682BFG.bigw(…):   0%|          | 0.00/2.45G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1ffb7d79905b44f0912edeafb3b7d969",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR701YIC.bigw(…):   0%|          | 0.00/977M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c69beb304e504092b18e12e5d677dc10",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR754DRC.bigw(…):   0%|          | 0.00/2.64G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "6715216ddce4472aa6c0a9931141d108",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR799DGV_M.bi(…):   0%|          | 0.00/25.4M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1e1fae32c0b84a99a6d7aad4de37f754",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR799DGV_P.bi(…):   0%|          | 0.00/27.8M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "6a768a3db4474a249c06c3f1f5f75fb4",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR814RGG.bigw(…):   0%|          | 0.00/2.63G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "847996a7dcec47319d6c9a922b13e482",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR862QCH_M.bi(…):   0%|          | 0.00/18.3M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "21bff9ef0c6c42698541055a97111e46",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR862QCH_P.bi(…):   0%|          | 0.00/19.2M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5f91a29afb0d4923be524e1164268b8e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR863PSM.bigw(…):   0%|          | 0.00/2.45G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f3eeaa7550e442729b4a8ceae3daf805",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR935RNW_P.bi(…):   0%|          | 0.00/28.2M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8def4036e7f94c679b89d48eefb6959e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR935RNW_M.bi(…):   0%|          | 0.00/27.8M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "7de9534f23aa49edb6300ecc503acdc6",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/functional_tracks/ENCSR962OTG.bigw(…):   0%|          | 0.00/2.22G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "cf7432b9d0db4a9a84f56ac2b4a4736d",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "human/genome.fasta:   0%|          | 0.00/3.27G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8b72ee66a3964ad5894f4e3d732bab6a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "splits.bed:   0%|          | 0.00/9.95k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "os.makedirs(config[\"data_cache_dir\"], exist_ok=True)\n",
    "\n",
    "# Download all species files + load the splits, and metadata\n",
    "(\n",
    "    fasta_path, \n",
    "    bigwig_paths, \n",
    "    bigwig_ids, \n",
    "    species_splits_df,\n",
    "    metadata_df \n",
    ") = prepare_genomics_inputs(\n",
    "    config[\"species_name\"], \n",
    "    config[\"data_cache_dir\"], \n",
    "    config[\"hf_repo_id\"]\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 3. 🧠 Model and tokenizer setup\n",
    " \n",
    "In this section, we set up the model and tokenizer. \n",
    " \n",
    "Our approach uses any suitable pretrained backbone from HuggingFace Transformers (for example, `InstaDeepAI/ntv3_650M_pre`),\n",
    "which is then extended with an additional linear head. \n",
    " \n",
    "This linear head is trained for regression on a set of genomic tracks, \n",
    "allowing the model to make predictions for each track at single nucleotide resolution.\n",
    " \n",
    "The following code wraps the HuggingFace model together with this regression head for the end-to-end task.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def crop_center(x: np.ndarray, keep_target_center_fraction: float = 0.375) -> np.ndarray:\n",
    "    \"\"\"Crop the central sequence-length fraction for arrays of size (..., seq_len, num_tracks)\"\"\"\n",
    "    seq_len = x.shape[-2]\n",
    "    target_offset = int(seq_len * (1 - keep_target_center_fraction) // 2)\n",
    "    target_length = seq_len - 2 * target_offset\n",
    "    return x[..., target_offset:target_offset + target_length, :]\n",
    "\n",
    "\n",
    "class LinearHead(nn.Module):\n",
    "    \"\"\"A linear head that predicts one scalar value per track.\"\"\"\n",
    "    def __init__(self, embed_dim: int, num_labels: int):\n",
    "        super().__init__()\n",
    "        self.layer_norm = nn.LayerNorm(embed_dim)\n",
    "        self.head = nn.Linear(embed_dim, num_labels)\n",
    "    \n",
    "    def forward(self, x: torch.Tensor) -> torch.Tensor:\n",
    "        x = self.layer_norm(x)\n",
    "        x = self.head(x)\n",
    "        x = F.softplus(x)  # Ensure positive values\n",
    "        return x\n",
    "\n",
    "\n",
    "class HFModelWithHead(nn.Module):\n",
    "    \"\"\"Simple model wrapper: HF backbone + bigwig head.\"\"\"\n",
    "    \n",
    "    def __init__(\n",
    "        self,\n",
    "        model_name: str,\n",
    "        bigwig_track_names: List[str],\n",
    "        species_str: str,\n",
    "        keep_target_center_fraction: float = 0.375,\n",
    "    ):\n",
    "        super().__init__()\n",
    "        \n",
    "        # Load base model config and model\n",
    "        self.config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)\n",
    "        ntv3_base_model = AutoModel.from_pretrained(\n",
    "            model_name, \n",
    "            trust_remote_code=True,\n",
    "            config=self.config,\n",
    "        )\n",
    "\n",
    "        # Extract the discrete conditioned model (i.e. remove the heads) for finetuning\n",
    "        discrete_conditioned_model = type(ntv3_base_model.core).__bases__[0]\n",
    "        self.core = discrete_conditioned_model(self.config) # follows name covention\n",
    "        # Load pre-trained weights (strict=False because we don't load the heads)\n",
    "        self.load_state_dict(ntv3_base_model.state_dict(), strict=False) \n",
    "\n",
    "        self.supported_species = self.config.bigwigs_per_species.keys()\n",
    "        if species_str in self.config.species_to_token_id:\n",
    "            species_ids = self.config.species_to_token_id[species_str]\n",
    "            self.species_ids = torch.LongTensor([species_ids])\n",
    "            print(f\"Using species: {species_str} with ids: {self.species_ids}\")\n",
    "        else:\n",
    "            # Mask token id\n",
    "            print(f\"{species_str} not in supported species, using mask token id\")\n",
    "            self.species_ids = torch.LongTensor([2])\n",
    "\n",
    "        self.keep_target_center_fraction = keep_target_center_fraction\n",
    "\n",
    "        # Bigwig head (NTv3 outputs at single-nucleotide resolution)\n",
    "        self.bigwig_head = LinearHead(self.config.embed_dim, len(bigwig_track_names))\n",
    "        self.model_name = model_name\n",
    "    \n",
    "    def forward(self, tokens: torch.Tensor, **kwargs) -> Dict[str, torch.Tensor]:\n",
    "        # Prepare the species tokens\n",
    "        species_tokens = torch.repeat_interleave(self.species_ids, tokens.shape[0])\n",
    "        species_tokens = species_tokens.to(tokens.device)\n",
    "\n",
    "        # Forward through core\n",
    "        outputs = self.core(tokens, [species_tokens], output_hidden_states=True)\n",
    "        embedding = outputs[\"hidden_states\"][-1]\n",
    "        \n",
    "        # Crop to center fraction\n",
    "        if self.keep_target_center_fraction < 1.0:\n",
    "            embedding = crop_center(embedding, self.keep_target_center_fraction)\n",
    "        \n",
    "        # Predict bigwig tracks\n",
    "        bigwig_logits = self.bigwig_head(embedding)\n",
    "        \n",
    "        return {\"bigwig_tracks_logits\": bigwig_logits}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "67c12374c3aa46d5aa8db543d97febec",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenizer_config.json:   0%|          | 0.00/1.48k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e1d7a6d0c31349048536dc2d7d280582",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenization_ntv3.py:   0%|          | 0.00/7.85k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "A new version of the following files was downloaded from https://huggingface.co/InstaDeepAI/ntv3_base_model:\n",
      "- tokenization_ntv3.py\n",
      ". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "bbbfa8b4ccc2444da71d47073d4a2f59",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "vocab.json:   0%|          | 0.00/138 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8144c84dd7284c698901f71c6ccba048",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "special_tokens_map.json:   0%|          | 0.00/149 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "07ccb6bd00c0466ea5507ad162289820",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "config.json:   0%|          | 0.00/339k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "466ef76415874333bc5b023bf56a0c6d",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "configuration_ntv3_posttrained.py:   0%|          | 0.00/4.70k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "21ccfc9a88534af896e9bcdb0782e227",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "configuration_ntv3_pretrained.py:   0%|          | 0.00/8.09k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "A new version of the following files was downloaded from https://huggingface.co/InstaDeepAI/ntv3_base_model:\n",
      "- configuration_ntv3_pretrained.py\n",
      ". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n",
      "A new version of the following files was downloaded from https://huggingface.co/InstaDeepAI/ntv3_base_model:\n",
      "- configuration_ntv3_posttrained.py\n",
      "- configuration_ntv3_pretrained.py\n",
      ". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "58c498f491e0475c83629fe7fb532f38",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "modeling_ntv3_posttrained.py:   0%|          | 0.00/46.8k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2cacd945b23e498d86ff721185e359e3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "modeling_ntv3_pretrained.py:   0%|          | 0.00/35.2k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "A new version of the following files was downloaded from https://huggingface.co/InstaDeepAI/ntv3_base_model:\n",
      "- modeling_ntv3_pretrained.py\n",
      ". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n",
      "A new version of the following files was downloaded from https://huggingface.co/InstaDeepAI/ntv3_base_model:\n",
      "- modeling_ntv3_posttrained.py\n",
      "- modeling_ntv3_pretrained.py\n",
      ". Make sure to double-check they do not contain any added malicious code. To avoid downloading new versions of the code file, you can pin a revision.\n",
      "2026-01-08 12:28:36.519397: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
      "2026-01-08 12:28:36.533091: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
      "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
      "E0000 00:00:1767871716.546099     928 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
      "E0000 00:00:1767871716.549808     928 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
      "W0000 00:00:1767871716.560433     928 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
      "W0000 00:00:1767871716.560452     928 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
      "W0000 00:00:1767871716.560454     928 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
      "W0000 00:00:1767871716.560455     928 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.\n",
      "2026-01-08 12:28:36.564579: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
      "To enable the following instructions: AVX2 AVX512F AVX512_VNNI AVX512_BF16 AVX512_FP16 AVX_VNNI AMX_TILE AMX_INT8 AMX_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ece6e71b525945d7a396eaff123ad335",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model.safetensors:   0%|          | 0.00/2.72G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using species: human with ids: tensor([27])\n",
      "Model loaded: InstaDeepAI/NTv3_650M_post\n",
      "Number of bigwig tracks: 34\n",
      "Model parameters: 679,842,582\n"
     ]
    }
   ],
   "source": [
    "# Load tokenizer\n",
    "tokenizer = AutoTokenizer.from_pretrained(config[\"model_name\"], trust_remote_code=True)\n",
    "\n",
    "# Create model\n",
    "model = HFModelWithHead(\n",
    "    model_name=config[\"model_name\"],\n",
    "    bigwig_track_names=bigwig_ids,\n",
    "    species_str=config[\"species_name\"],\n",
    "    keep_target_center_fraction=config[\"keep_target_center_fraction\"],\n",
    ")\n",
    "model = model.to(device)\n",
    "model = torch.compile(model)\n",
    "model.train()\n",
    "\n",
    "print(f\"Model loaded: {config['model_name']}\")\n",
    "print(f\"Number of bigwig tracks: {len(bigwig_ids)}\")\n",
    "print(f\"Model parameters: {sum(p.numel() for p in model.parameters()):,}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 4. 🔄 Data loading\n",
    "\n",
    "Create PyTorch datasets and data loaders that efficiently sample random genomic windows from the reference genome and extract corresponding BigWig signal values. The dataset handles sequence tokenization, target scaling, and chromosome-based train/val/test splits."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Utility function to sample regions for a total length\n",
    "def _sample_regions_for_a_total_length(\n",
    "    regions: list[tuple[str, int, int]],\n",
    "    total_length_needed: int,\n",
    "    seed: int = 0,\n",
    ") -> list[tuple[str, int, int]]:\n",
    "    \"\"\"\n",
    "    Sample fixed regions for a total length.\n",
    "    \"\"\"\n",
    "    # For each region, sample a window until we have total_length_needed\n",
    "    sampled_regions = []\n",
    "    rng = np.random.RandomState(seed)\n",
    "    accumulated_length = 0\n",
    "\n",
    "    for _, (chr_name, start, end) in enumerate(regions):\n",
    "        region_length = end - start\n",
    "        remaining_length_needed = total_length_needed - accumulated_length\n",
    "\n",
    "        if region_length >= remaining_length_needed:\n",
    "            # Sample a random start position for the window\n",
    "            max_start = region_length - remaining_length_needed\n",
    "            if max_start > 0:\n",
    "                window_start_offset = rng.randint(0, max_start + 1)\n",
    "            else:\n",
    "                window_start_offset = 0\n",
    "\n",
    "            window_start = start + window_start_offset\n",
    "            window_end = start + window_start_offset + remaining_length_needed\n",
    "\n",
    "            sampled_regions.append((chr_name, window_start, window_end))\n",
    "            accumulated_length += remaining_length_needed\n",
    "            print(\n",
    "                f\"Sampled window from {chr_name}:{start}-{end} -> \"\n",
    "                f\"{chr_name}:{window_start}-{window_end} \"\n",
    "            )\n",
    "            break  # Stop after getting enough length\n",
    "        else:\n",
    "            # Add this smaller region and continue accumulating\n",
    "            sampled_regions.append((chr_name, start, end))\n",
    "            accumulated_length += region_length\n",
    "            print(f\"Added region {chr_name}:{start}-{end}, {accumulated_length=}\")\n",
    "\n",
    "        # Check if we have enough accumulated length\n",
    "        if accumulated_length >= total_length_needed:\n",
    "            print(f\"Sufficient length ({accumulated_length} >= {total_length_needed})\")\n",
    "            break\n",
    "\n",
    "    print(f\"Sampled {len(sampled_regions)=} with total {accumulated_length=}\")\n",
    "\n",
    "    return sampled_regions\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Process-local cache for file handles (one per worker process)\n",
    "# This allows safe multi-worker DataLoader usage\n",
    "_fasta_cache = {}  # Maps (process_id, file_path) -> Fasta handle\n",
    "_bigwig_cache = {}  # Maps (process_id, file_path) -> pyBigWig handle\n",
    "\n",
    "\n",
    "def _get_fasta_handle(fasta_path: str) -> Fasta:\n",
    "    \"\"\"Get or create a FASTA file handle for the current process.\"\"\"\n",
    "    process_id = os.getpid()\n",
    "    abs_path = str(Path(fasta_path).resolve())\n",
    "    cache_key = (process_id, abs_path)\n",
    "    \n",
    "    if cache_key not in _fasta_cache:\n",
    "        _fasta_cache[cache_key] = Fasta(abs_path, as_raw=True, sequence_always_upper=True)\n",
    "    \n",
    "    return _fasta_cache[cache_key]\n",
    "\n",
    "\n",
    "def _get_bigwig_handle(bigwig_path: str) -> pyBigWig.pyBigWig:\n",
    "    \"\"\"Get or create a BigWig file handle for the current process.\"\"\"\n",
    "    process_id = os.getpid()\n",
    "    abs_path = str(Path(bigwig_path).resolve())\n",
    "    cache_key = (process_id, abs_path)\n",
    "    \n",
    "    if cache_key not in _bigwig_cache:\n",
    "        # Check if file exists before trying to open\n",
    "        if not Path(abs_path).exists():\n",
    "            raise FileNotFoundError(\n",
    "                f\"BigWig file not found: {abs_path}\\n\"\n",
    "                f\"Original path: {bigwig_path}\\n\"\n",
    "                f\"Current working directory: {os.getcwd()}\"\n",
    "            )\n",
    "        \n",
    "        try:\n",
    "            _bigwig_cache[cache_key] = pyBigWig.open(abs_path)\n",
    "        except Exception as e:\n",
    "            raise RuntimeError(\n",
    "                f\"Failed to open BigWig file: {abs_path} with error: {str(e)}\\n\"\n",
    "                f\"File exists: {Path(abs_path).exists()}\\n\"\n",
    "                f\"File size: {Path(abs_path).stat().st_size if Path(abs_path).exists() else 'N/A'} bytes\"\n",
    "            ) from e\n",
    "    \n",
    "    return _bigwig_cache[cache_key]\n",
    "\n",
    "\n",
    "class GenomeBigWigDataset(Dataset):\n",
    "    \"\"\"\n",
    "    A PyTorch dataset to access a reference genome and bigwig tracks. The dataset is \n",
    "    compatible with multi-worker DataLoaders (using process-local file handles and lazy \n",
    "    loading). For each sample, a random genomic region is picked from the specified split,\n",
    "    and a random window of length `sequence_length` within that region is returned.\n",
    "    \"\"\"\n",
    "\n",
    "    def __init__(\n",
    "        self,\n",
    "        fasta_path: str,\n",
    "        bigwig_path_list: list[str],\n",
    "        chrom_regions: pd.DataFrame,\n",
    "        split: str,\n",
    "        sequence_length: int,\n",
    "        tokenizer: AutoTokenizer,\n",
    "        transform_fn: Callable[[torch.Tensor], torch.Tensor],\n",
    "        overlap: float = 0.0,\n",
    "        keep_target_center_fraction: float = 1.0,\n",
    "        limit_num_samples: int | None = None,\n",
    "    ):\n",
    "        super().__init__()\n",
    "\n",
    "        # Store paths instead of opening files immediately (for multi-worker compatibility)\n",
    "        self.fasta_path = fasta_path\n",
    "        self.bigwig_path_list = bigwig_path_list\n",
    "        self.sequence_length = sequence_length\n",
    "        self.tokenizer = tokenizer\n",
    "        self.transform_fn = transform_fn\n",
    "        self.keep_target_center_fraction = keep_target_center_fraction\n",
    "        self.chrom_regions = chrom_regions\n",
    "        self.stride = int((1 - overlap) * sequence_length)\n",
    "\n",
    "        # Filter regions by split\n",
    "        split_regions = self.chrom_regions[self.chrom_regions[\"split\"] == split].copy()\n",
    "        region_list = [\n",
    "            (row.chr_name, row.start, row.end) for _, row in split_regions.iterrows()\n",
    "        ]\n",
    "        if limit_num_samples is not None:\n",
    "            length_required = limit_num_samples * self.sequence_length\n",
    "            region_list = _sample_regions_for_a_total_length(region_list, length_required)\n",
    "        \n",
    "        # Build an index structure for efficient sequence access across genomic regions\n",
    "        self.chromosome_info, self._cumulative_starts, self.num_samples = (\n",
    "            self._process_regions(region_list)\n",
    "        )\n",
    "\n",
    "    def __len__(self):\n",
    "        return self.num_samples\n",
    "\n",
    "    def __getitem__(self, idx):\n",
    "        # Select the chromosome for the given index using binary search\n",
    "        chromosome_idx = bisect.bisect_right(self._cumulative_starts, idx) - 1\n",
    "\n",
    "        # Explicitly cast types from dictionary of chromosome information\n",
    "        chrom: str = cast(str, self.chromosome_info[chromosome_idx][\"chr_name\"])\n",
    "        region_start: int = cast(int, self.chromosome_info[chromosome_idx][\"region_start_offset\"])\n",
    "\n",
    "        # Calculate the index of the sample *within* the selected chromosome region\n",
    "        index_within_region = idx - self._cumulative_starts[chromosome_idx]\n",
    "\n",
    "        # Calculate 0-based start and end for the specific sample in genome coordinates\n",
    "        start = region_start + index_within_region * self.stride\n",
    "        end = start + self.sequence_length\n",
    "\n",
    "        # Sequence - get FASTA handle lazily (cached per worker process)\n",
    "        fasta = _get_fasta_handle(self.fasta_path)\n",
    "        seq = fasta[chrom][start:end]  # string slice\n",
    "        # Tokenize with padding and truncation to ensure consistent lengths for batching\n",
    "        tokenized = self.tokenizer(\n",
    "            seq,\n",
    "            padding=\"max_length\",\n",
    "            truncation=True,\n",
    "            max_length=self.sequence_length,\n",
    "            return_tensors=\"pt\",\n",
    "        )\n",
    "        tokens = tokenized[\"input_ids\"][0]  # Shape: (max_length,)\n",
    "\n",
    "        # Signal from bigWig tracks (numpy array) -> torch tensor\n",
    "        # Get BigWig handles lazily (cached per worker process)\n",
    "        bigwig_targets = np.array([\n",
    "            _get_bigwig_handle(bw_path).values(chrom, start, end, numpy=True)\n",
    "            for bw_path in self.bigwig_path_list\n",
    "        ])  # shape (num_tracks, seq_len)\n",
    "        # Transpose to (seq_len, num_tracks)\n",
    "        bigwig_targets = bigwig_targets.T\n",
    "        # pyBigWig returns NaN where no data; turn NaN into 0\n",
    "        bigwig_targets = torch.tensor(bigwig_targets, dtype=torch.float32)\n",
    "        bigwig_targets = torch.nan_to_num(bigwig_targets, nan=0.0)\n",
    "        \n",
    "        # Crop targets to center fraction\n",
    "        if self.keep_target_center_fraction < 1.0:\n",
    "            bigwig_targets = crop_center(bigwig_targets, self.keep_target_center_fraction)\n",
    "\n",
    "        # Apply scaling to targets\n",
    "        bigwig_targets = self.transform_fn(bigwig_targets)\n",
    "\n",
    "        sample = {\n",
    "            \"tokens\": tokens,\n",
    "            \"bigwig_targets\": bigwig_targets,\n",
    "            \"chrom\": chrom,\n",
    "            \"start\": start,\n",
    "            \"end\": end,\n",
    "        }\n",
    "        return sample\n",
    "\n",
    "    def _process_regions(\n",
    "        self, actual_regions_list: list[tuple[str, int, int]]\n",
    "    ) -> tuple[list[dict[str, Any]], list[int], int]:\n",
    "        \"\"\"\n",
    "        Build an index structure for efficient sequence access across genomic regions.\n",
    "\n",
    "        This method analyzes each genomic region to determine how many sequences of\n",
    "        fixed length can be extracted from it, accounting for stride and overlap\n",
    "        settings. It creates an index that maps global sequence indices to their\n",
    "        genomic locations.\n",
    "\n",
    "        Args:\n",
    "            actual_regions_list: List of genomic regions as (chromosome, start, end).\n",
    "\n",
    "        Returns:\n",
    "            region_info: List of dictionaries containing chromosome, start position,\n",
    "                and number of sequences for each valid region.\n",
    "            cumulative_starts: List of cumulative sequence counts for binary search.\n",
    "            total_sequences: Total number of sequences across all regions.\n",
    "        \"\"\"\n",
    "        region_info = []\n",
    "        cumulative_starts = []  # For bisect\n",
    "        total_sequences = 0\n",
    "\n",
    "        for chr_name, region_s, region_e in actual_regions_list:\n",
    "            region_length: int = region_e - region_s\n",
    "\n",
    "            num_sequences: int = 0\n",
    "            if region_length >= self.sequence_length:\n",
    "                num_sequences = (\n",
    "                    region_length - self.sequence_length\n",
    "                ) // self.stride + 1\n",
    "\n",
    "            if num_sequences > 0:\n",
    "                region_info.append(\n",
    "                    {\n",
    "                        \"chr_name\": chr_name,\n",
    "                        \"region_start_offset\": region_s,\n",
    "                        \"num_samples\": num_sequences,\n",
    "                        \"region_length\": region_length,\n",
    "                    }\n",
    "                )\n",
    "                cumulative_starts.append(total_sequences)\n",
    "                total_sequences += num_sequences\n",
    "\n",
    "        return region_info, cumulative_starts, int(total_sequences)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data preprocessing utilities"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_targets_scaling_fn(\n",
    "    metadata_df: pd.DataFrame\n",
    ") -> Callable[[torch.Tensor], torch.Tensor]:\n",
    "    \"\"\"\n",
    "    Build a scaling function that uses the track means to normalise and softclip the targets.\n",
    "    \"\"\"\n",
    "    # Open bigwig files and compute track statistics\n",
    "    track_means = metadata_df[\"mean\"].to_numpy()\n",
    "    print(f\"Track means: {track_means}\")\n",
    "    print(f\"Number of tracks: {track_means.shape}\")\n",
    "\n",
    "    # Create tensor from computed means\n",
    "    track_means_tensor = torch.tensor(track_means, dtype=torch.float32)\n",
    "\n",
    "    def transform_fn(x: torch.Tensor) -> torch.Tensor:\n",
    "        # Move constants to correct device then normalize\n",
    "        means = track_means_tensor.to(x.device)\n",
    "        scaled = x / means\n",
    "\n",
    "        # Smooth clipping: if > 10, apply formula\n",
    "        clipped = torch.where(\n",
    "            scaled > 10.0,\n",
    "            2.0 * torch.sqrt(scaled * 10.0) - 10.0,\n",
    "            scaled,\n",
    "        )\n",
    "        return clipped\n",
    "\n",
    "    return transform_fn"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Track means: [0.00219467 0.00128605 0.65863696 0.01080696 0.00494403 0.00370035\n",
      " 0.72501702 0.00227474 0.48636405 0.00211876 0.00530738 0.00877379\n",
      " 0.00627039 0.00400846 0.44757743 0.66685837 0.00335876 0.00820212\n",
      " 0.0034627  0.72625355 0.00622468 0.00548278 0.00574464 0.63734638\n",
      " 0.01177604 0.74402866 0.64354244 0.00343102 0.01549048 0.0463601\n",
      " 0.0057952  0.00376132 0.00498001 0.01612531]\n",
      "Number of tracks: (34,)\n",
      "Added region chr2:52738399-68719540, accumulated_length=15981141\n",
      "Added region chr2:94594361-95921948, accumulated_length=17308728\n",
      "Added region chr2:95922032-97200446, accumulated_length=18587142\n",
      "Added region chr2:97538791-106291501, accumulated_length=27339852\n",
      "Added region chr2:110035770-110281551, accumulated_length=27585633\n",
      "Added region chr2:110576673-111363357, accumulated_length=28372317\n",
      "Added region chr2:111510960-112936893, accumulated_length=29798250\n",
      "Sampled window from chr2:114061575-121781652 -> chr2:118561590-121531340 \n",
      "Sampled len(sampled_regions)=8 with total accumulated_length=32768000\n",
      "\n",
      "Train samples: 65051340\n",
      "Val samples: 997\n",
      "Test samples: 10531\n"
     ]
    }
   ],
   "source": [
    "# Pre-build the FASTA index in the main process to avoid race conditions\n",
    "# when multiple DataLoader workers try to create it simultaneously\n",
    "print(f\"Pre-building FASTA index for {fasta_path}...\")\n",
    "fai_path = Path(fasta_path + \".fai\")\n",
    "if fai_path.exists():\n",
    "    # Remove potentially corrupted index from a previous failed run\n",
    "    print(f\"Removing existing FASTA index: {fai_path}\")\n",
    "    fai_path.unlink()\n",
    "_prebuild_fasta = Fasta(fasta_path, as_raw=True, sequence_always_upper=True)\n",
    "del _prebuild_fasta  # Close the handle; workers will reopen with existing index\n",
    "print(\"FASTA index built successfully.\")\n",
    "\n",
    "# Create datasets & dataloaders\n",
    "create_dataset_fn = functools.partial(\n",
    "    GenomeBigWigDataset,\n",
    "    fasta_path=fasta_path,\n",
    "    bigwig_path_list=bigwig_paths,\n",
    "    chrom_regions=species_splits_df,\n",
    "    sequence_length=config[\"sequence_length\"],\n",
    "    tokenizer=tokenizer,\n",
    "    transform_fn=create_targets_scaling_fn(metadata_df),\n",
    "    keep_target_center_fraction=config[\"keep_target_center_fraction\"],\n",
    ")\n",
    "\n",
    "train_dataset = create_dataset_fn(\n",
    "    split=\"train\",\n",
    "    overlap=config[\"train_overlap\"],\n",
    ")\n",
    "\n",
    "val_dataset = create_dataset_fn(\n",
    "    split=\"val\", limit_num_samples=config[\"num_validation_samples\"]\n",
    ")\n",
    "test_dataset = create_dataset_fn(split=\"test\") # Use all test samples\n",
    "\n",
    "\n",
    "# Create dataloaders\n",
    "train_loader = DataLoader(\n",
    "    train_dataset,\n",
    "    batch_size=config[\"mini_batch_size\"],\n",
    "    shuffle=True,\n",
    "    num_workers=config[\"num_workers\"],\n",
    ")\n",
    "\n",
    "val_loader = DataLoader(\n",
    "    val_dataset,\n",
    "    batch_size=config[\"mini_batch_size\"],\n",
    "    shuffle=False,\n",
    "    num_workers=config[\"num_workers\"],\n",
    ")\n",
    "\n",
    "test_loader = DataLoader(\n",
    "    test_dataset,\n",
    "    batch_size=config[\"mini_batch_size\"],\n",
    "    shuffle=False,\n",
    "    num_workers=config[\"num_workers\"],\n",
    ")\n",
    "\n",
    "print(f\"\\nTrain samples: {len(train_dataset)}\")\n",
    "print(f\"Val samples: {len(val_dataset)}\")\n",
    "print(f\"Test samples: {len(test_dataset)}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 5. ⚙️ Optimizer setup\n",
    "\n",
    "Configure the AdamW optimizer with learning rate and weight decay hyperparameters. This optimizer will update the model parameters during training to minimize the loss function.\n",
    "A variable learning rate is used with linear warmup, followed by a polynomial decay."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Training configuration:\n",
      "  Mini batch size: 4\n",
      "  Gradient accumulation steps: 8\n",
      "  Effective batch size: 32\n",
      "  Total training steps: 19932\n",
      "  Log metrics every: 50 steps\n",
      "  Validate every: 500 steps\n",
      "\n",
      "Optimiser & learning rate scheduler:\n",
      "  Optimizer base LR (peak): 5e-05\n",
      "  Initial LR: 1e-05\n",
      "  Peak LR: 5e-05\n",
      "  Warmup steps: 598\n",
      "  Alpha polynomial decay: 0.1977\n",
      "  Final LR multiplier: 0.5\n"
     ]
    }
   ],
   "source": [
    "print(f\"Training configuration:\")\n",
    "print(f\"  Mini batch size: {config['mini_batch_size']}\")\n",
    "print(f\"  Gradient accumulation steps: {config['num_accumulation_gradient']}\")\n",
    "print(f\"  Effective batch size: {config['mini_batch_size'] * config['num_accumulation_gradient']}\")\n",
    "print(f\"  Total training steps: {config['num_steps_training']}\")\n",
    "print(f\"  Log metrics every: {config['log_every_n_steps']} steps\")\n",
    "print(f\"  Validate every: {config['validate_every_n_steps']} steps\")\n",
    "\n",
    "# Setup optimizer (LR is set to peak LR for scheduler)\n",
    "optimizer_lr = config[\"end_learning_rate\"]\n",
    "\n",
    "# Setup optimizer\n",
    "optimizer = AdamW(\n",
    "    model.parameters(),\n",
    "    lr=optimizer_lr,\n",
    "    weight_decay=config[\"weight_decay\"],\n",
    ")\n",
    "\n",
    "# Setup learning rate scheduler\n",
    "final_lr_multiplier = 0.5\n",
    "num = np.log(1.0 / final_lr_multiplier)\n",
    "denom = np.log(float(config[\"num_steps_training\"]) / float(config[\"num_steps_warmup\"]))\n",
    "alpha_polynomial_decay = num / denom\n",
    "\n",
    "def _modified_square_decay(current_step: int) -> float:\n",
    "    \"\"\"LR multiplier function matching the pipeline's modified_square_decay.\"\"\"\n",
    "    if current_step < 0:\n",
    "        current_step = 0\n",
    "    if optimizer_lr == 0:\n",
    "        return 0.0\n",
    "    \n",
    "    # Phase 1: Warmup (linear increase from initial LR to peak LR)\n",
    "    if current_step < config[\"num_steps_warmup\"]:\n",
    "        start_multiplier = config[\"initial_learning_rate\"] / optimizer_lr\n",
    "        progress = float(current_step) / float(config[\"num_steps_warmup\"])\n",
    "        return start_multiplier + (1.0 - start_multiplier) * progress\n",
    "    \n",
    "    # Phase 2: Polynomial decay\n",
    "    denominator = float(current_step + 1)\n",
    "    decay_multiplier = (float(config[\"num_steps_warmup\"]) / denominator) ** alpha_polynomial_decay\n",
    "    decay_multiplier = min(decay_multiplier, 1.0)\n",
    "    \n",
    "    return decay_multiplier\n",
    "\n",
    "scheduler = LambdaLR(optimizer, lr_lambda=_modified_square_decay)\n",
    "print(f\"\\nOptimiser & learning rate scheduler:\")\n",
    "print(f\"  Optimizer base LR (peak): {optimizer_lr}\")\n",
    "print(f\"  Initial LR: {config['initial_learning_rate']}\")\n",
    "print(f\"  Peak LR: {config['end_learning_rate']}\")\n",
    "print(f\"  Warmup steps: {config['num_steps_warmup']}\")\n",
    "print(f\"  Alpha polynomial decay: {alpha_polynomial_decay:.4f}\")\n",
    "print(f\"  Final LR multiplier: {final_lr_multiplier}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 6. 📊 Metrics setup\n",
    "\n",
    "Set up evaluation metrics to track model performance during training and validation. We use Pearson correlation coefficients to measure how well the predicted BigWig signals match the ground truth signals."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "class TracksMetrics:\n",
    "    \"\"\"Metrics to handle multi-track pearson correlations and losses\"\"\"\n",
    "    \n",
    "    def __init__(self, track_names: List[str], split: str):\n",
    "        self.track_names = track_names\n",
    "        self.num_tracks = len(track_names)\n",
    "        self.split = split\n",
    "\n",
    "        # Initialise metrics \n",
    "        self.pearson = PearsonCorrCoef(num_outputs=self.num_tracks).to(device)\n",
    "        self.pearson.set_dtype(torch.float64) # Use float64 for improved numerical stability\n",
    "        self.losses = []\n",
    "\n",
    "        # Record mean metrics per logging interval\n",
    "        self.step_idxs = []\n",
    "        self.mean_pearsons = []\n",
    "        self.mean_losses = []\n",
    "    \n",
    "    def reset(self):\n",
    "        self.pearson.reset()\n",
    "        self.losses = []\n",
    "    \n",
    "    def update(\n",
    "        self, \n",
    "        predictions: torch.Tensor, \n",
    "        targets: torch.Tensor,\n",
    "        loss: float\n",
    "    ):\n",
    "        \"\"\"\n",
    "        Update the metrics with predictions and targets of shape (..., num_tracks) and a scalar loss.\n",
    "        \"\"\"\n",
    "        # Flatten batch and sequence dimensions\n",
    "        pred_flat = predictions.detach().reshape(-1, self.num_tracks).to(torch.float64)  # (N, num_tracks)\n",
    "        target_flat = targets.detach().reshape(-1, self.num_tracks).to(torch.float64)  # (N, num_tracks)\n",
    "        \n",
    "        # Update metrics\n",
    "        self.pearson.update(pred_flat, target_flat)\n",
    "        self.losses.append(loss)\n",
    "    \n",
    "    def compute(self) -> Dict[str, float]:\n",
    "        \"\"\"Compute the pearson correlations and loss and return a dictionary of metrics.\"\"\"\n",
    "        # Per-track Pearson correlations\n",
    "        correlations = self.pearson.compute().cpu().numpy()\n",
    "        metrics_dict = {\n",
    "            f\"{track_name}/pearson\": correlations[i] for i, track_name in enumerate(self.track_names)\n",
    "        }\n",
    "        metrics_dict[\"mean/pearson\"] = correlations.mean()\n",
    "        \n",
    "        # Mean loss\n",
    "        metrics_dict[\"loss\"] = np.mean(self.losses)\n",
    "        \n",
    "        return metrics_dict\n",
    "\n",
    "    def update_mean_metrics(self, step_idx: int):\n",
    "        \"\"\"Update the mean metrics over the logging interval and save to a csv file.\"\"\"\n",
    "        # Update mean metrics with the mean pearson & average loss\n",
    "        metrics_dict = self.compute()\n",
    "        self.step_idxs.append(step_idx)\n",
    "        self.mean_pearsons.append(metrics_dict[\"mean/pearson\"])\n",
    "        self.mean_losses.append(metrics_dict[\"loss\"])\n",
    "\n",
    "        # Save metrics to a csv for plotting\n",
    "        data = {\n",
    "            \"step\": self.step_idxs,\n",
    "            \"mean_loss\": self.mean_losses,\n",
    "            \"mean_pearson\": self.mean_pearsons,\n",
    "        }\n",
    "        df = pd.DataFrame(data)\n",
    "        df.to_csv(f\"metrics_{self.split}.csv\", index=False)\n",
    "\n",
    "        return self.mean_pearsons[-1]\n",
    "        \n",
    "    def print_metrics(self, print_per_track: bool = False, current_lr: float | None = None):\n",
    "        \"\"\"Print a summary of the metrics.\"\"\"\n",
    "        lr_str = f\"LR: {current_lr:.2e} | \" if current_lr is not None else \"\"\n",
    "        print(\n",
    "            f\"Step {self.step_idxs[-1]}/{config['num_steps_training']} | \"\n",
    "            f\"{lr_str}\"\n",
    "            f\"Loss: {self.mean_losses[-1]:.4f} | \"\n",
    "            f\"Mean Pearson: {self.mean_pearsons[-1]:.4f}\"\n",
    "        )\n",
    "        metrics_dict = self.compute()\n",
    "        if print_per_track:\n",
    "            for metric_key, metric_value in metrics_dict.items():\n",
    "                print(f\"    {metric_key}: {metric_value:.4f}\")\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "train_metrics = TracksMetrics(bigwig_ids, \"train\")\n",
    "val_metrics = TracksMetrics(bigwig_ids, \"val\")\n",
    "test_metrics = TracksMetrics(bigwig_ids, \"test\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 7. 📉 Loss functions\n",
    "\n",
    "Define the Poisson-Multinomial loss function that captures both the scale (total signal) and shape (distribution) of BigWig tracks. This loss is specifically designed for count-based genomic signal data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "def poisson_loss(ytrue: torch.Tensor, ypred: torch.Tensor, epsilon: float = 1e-7) -> torch.Tensor:\n",
    "    \"\"\"Poisson loss per element: ypred - ytrue * log(ypred).\"\"\"\n",
    "    return ypred - ytrue * torch.log(ypred + epsilon)\n",
    "\n",
    "\n",
    "def safe_for_grad_log_torch(x: torch.Tensor) -> torch.Tensor:\n",
    "    \"\"\"Guarantees that the log is defined for all x > 0 in a differentiable way.\"\"\"\n",
    "    return torch.log(torch.where(x > 0.0, x, torch.ones_like(x)))\n",
    "\n",
    "\n",
    "def poisson_multinomial_loss(\n",
    "    logits: torch.Tensor,\n",
    "    targets: torch.Tensor,\n",
    "    shape_loss_coefficient: float = 5.0,\n",
    "    epsilon: float = 1e-7,\n",
    ") -> torch.Tensor: \n",
    "    \"\"\"\n",
    "    Regression loss for bigwig tracks (Poisson-Multinomial). The logits and targets are\n",
    "    expected to be of shape (batch, seq_length, num_tracks).\n",
    "    \"\"\"\n",
    "    batch_size, seq_length, num_tracks = logits.shape\n",
    "    \n",
    "    # Scale loss: Poisson loss on total counts per sequence per track\n",
    "    # Sum over sequence dimension (axis=1)\n",
    "    sum_pred = logits.sum(dim=1)  # (batch, num_tracks)\n",
    "    sum_true = targets.sum(dim=1)  # (batch, num_tracks)\n",
    "    \n",
    "    # Compute poisson loss per (batch, track)\n",
    "    scale_loss = poisson_loss(sum_true, sum_pred, epsilon=epsilon)  # (batch, num_tracks)\n",
    "    \n",
    "    # Normalize by sequence length\n",
    "    scale_loss = scale_loss / (seq_length + epsilon)\n",
    "    \n",
    "    # Average over batch and tracks\n",
    "    scale_loss = scale_loss.mean()\n",
    "    \n",
    "    # Shape loss: Multinomial loss\n",
    "    # Add epsilon to all positions\n",
    "    predicted_counts = logits + epsilon\n",
    "    targets_with_epsilon = targets + epsilon\n",
    "    \n",
    "    # Normalize predictions to get probabilities\n",
    "    denom = predicted_counts.sum(dim=1, keepdim=True) + epsilon  # (batch, 1, num_tracks)\n",
    "    p_pred = predicted_counts / denom\n",
    "    \n",
    "    # Compute shape loss: -sum(targets * log(p_pred))\n",
    "    pl_pred = safe_for_grad_log_torch(p_pred)\n",
    "    shape_loss = -(targets_with_epsilon * pl_pred)\n",
    "    \n",
    "    # Sum over all dimensions and normalize by total number of positions\n",
    "    shape_denom = batch_size * seq_length * num_tracks + epsilon\n",
    "    shape_loss = shape_loss.sum() / shape_denom\n",
    "    \n",
    "    # Combine losses\n",
    "    loss = shape_loss + scale_loss / shape_loss_coefficient\n",
    "\n",
    "    return loss\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 8. 🏃 Training loop\n",
    "\n",
    "Run the main training loop that iterates through batches, computes gradients, and updates model parameters. The loop includes periodic validation checks and real-time metric visualization to monitor training progress."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "def train_step(\n",
    "    model: nn.Module,\n",
    "    batch: Dict[str, torch.Tensor],\n",
    "    train_metrics: TracksMetrics,\n",
    "    num_accumulation_gradient_steps: int = 1,\n",
    ") -> None:\n",
    "    \"\"\"\n",
    "    Single training step for one batch (gradient accumulation handled in training loop).\n",
    "    \n",
    "    Args:\n",
    "        model: The model to train\n",
    "        batch: Batch of data\n",
    "        train_metrics: Metrics tracker\n",
    "        num_accumulation_gradient_steps: Number of gradient accumulation steps (for loss scaling)\n",
    "    \"\"\"\n",
    "    tokens = batch[\"tokens\"].to(device)\n",
    "    bigwig_targets = batch[\"bigwig_targets\"].to(device)\n",
    "    \n",
    "    # Forward pass\n",
    "    outputs = model(tokens=tokens)\n",
    "    bigwig_logits = outputs[\"bigwig_tracks_logits\"]\n",
    "    \n",
    "    # Compute loss\n",
    "    loss = poisson_multinomial_loss(\n",
    "        logits=bigwig_logits,\n",
    "        targets=bigwig_targets,\n",
    "    )\n",
    "    scaled_loss = loss / num_accumulation_gradient_steps\n",
    "    \n",
    "    # Backward pass (accumulate gradients)\n",
    "    scaled_loss.backward()\n",
    "    \n",
    "    # Update metrics (use unscaled loss for logging)\n",
    "    train_metrics.update(\n",
    "        predictions=bigwig_logits,\n",
    "        targets=bigwig_targets,\n",
    "        loss=loss.item()\n",
    "    )\n",
    "\n",
    "\n",
    "def validation_step(\n",
    "    model: nn.Module,\n",
    "    batch: Dict[str, torch.Tensor],\n",
    "    metrics: TracksMetrics,\n",
    ") -> None:\n",
    "    \"\"\"Single validation step.\"\"\"\n",
    "    tokens = batch[\"tokens\"].to(device)\n",
    "    bigwig_targets = batch[\"bigwig_targets\"].to(device)\n",
    "    \n",
    "    with torch.no_grad():\n",
    "        # Forward pass\n",
    "        outputs = model(tokens=tokens)\n",
    "        bigwig_logits = outputs[\"bigwig_tracks_logits\"]\n",
    "        \n",
    "        # Compute loss\n",
    "        loss = poisson_multinomial_loss(\n",
    "            logits=bigwig_logits,\n",
    "            targets=bigwig_targets,\n",
    "        )\n",
    "        \n",
    "        # Update metrics\n",
    "        metrics.update(\n",
    "            predictions=bigwig_logits,\n",
    "            targets=bigwig_targets,\n",
    "            loss=loss.item()\n",
    "        )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Run Training Loop"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Starting training for 19932 steps\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Step 50/19932 | LR: 1.34e-05 | Loss: 4.9725 | Mean Pearson: 0.1257\n",
      "Step 100/19932 | LR: 1.68e-05 | Loss: 4.7497 | Mean Pearson: 0.3412\n",
      "Step 150/19932 | LR: 2.01e-05 | Loss: 4.6592 | Mean Pearson: 0.3977\n",
      "Step 200/19932 | LR: 2.34e-05 | Loss: 4.4238 | Mean Pearson: 0.4344\n",
      "Step 250/19932 | LR: 2.68e-05 | Loss: 4.7748 | Mean Pearson: 0.4435\n",
      "Step 300/19932 | LR: 3.01e-05 | Loss: 4.3888 | Mean Pearson: 0.4834\n"
     ]
    }
   ],
   "source": [
    "# Training loop\n",
    "print(f\"Starting training for {config['num_steps_training']} steps\\n\")\n",
    "\n",
    "# Create iterator for training data (will cycle if needed)\n",
    "train_iter = iter(train_loader)\n",
    "model.train()\n",
    "\n",
    "highest_mean_pearson = 0.0\n",
    "# Main training loop\n",
    "for step_idx in range(config[\"num_steps_training\"]):\n",
    "    # Zero gradients once before accumulation\n",
    "    optimizer.zero_grad()\n",
    "    \n",
    "    # Gradient accumulation: process multiple batches before optimizer step\n",
    "    for acc_idx in range(config[\"num_accumulation_gradient\"]):\n",
    "        try:\n",
    "            batch = next(train_iter)\n",
    "        except StopIteration:\n",
    "            # Restart iterator if we run out of data\n",
    "            train_iter = iter(train_loader)\n",
    "            batch = next(train_iter)\n",
    "        \n",
    "        # Process batch (accumulates gradients)\n",
    "        train_step(\n",
    "            model,\n",
    "            batch,\n",
    "            train_metrics,\n",
    "            num_accumulation_gradient_steps=config[\"num_accumulation_gradient\"]\n",
    "        )\n",
    "    \n",
    "    optimizer.step()  # Update optimizer once after all accumulation steps\n",
    "    scheduler.step()  # Update learning rate scheduler\n",
    "\n",
    "    # Logging\n",
    "    if (step_idx + 1) % config[\"log_every_n_steps\"] == 0:\n",
    "        train_metrics.update_mean_metrics(step_idx + 1)\n",
    "        train_metrics.print_metrics(current_lr=scheduler.get_last_lr()[0])\n",
    "        train_metrics.reset()\n",
    "    \n",
    "    # Validation\n",
    "    if (step_idx + 1) % config[\"validate_every_n_steps\"] == 0:\n",
    "        print(f\"\\nRunning validation at step {step_idx + 1}...\")\n",
    "        model.eval()\n",
    "        \n",
    "        for val_batch in val_loader:\n",
    "            validation_step(model, val_batch, val_metrics)\n",
    "        \n",
    "        mean_pearson_idx = val_metrics.update_mean_metrics(step_idx + 1)\n",
    "        val_metrics.print_metrics(print_per_track=True)\n",
    "        val_metrics.reset()\n",
    "\n",
    "        # Back to training mode\n",
    "        print(\"\\n\" + \"-\"*100 + \"\\nTraining metrics:\")\n",
    "        model.train()  \n",
    "\n",
    "        # Save model checkpoint\n",
    "        torch.save(model.state_dict(), f\"model_checkpoint_{step_idx + 1}.pth\")\n",
    "        previous_checkpoint_path = f\"model_checkpoint_{step_idx + 1 - config['validate_every_n_steps']}.pth\"\n",
    "        if os.path.exists(previous_checkpoint_path):\n",
    "            os.remove(previous_checkpoint_path)\n",
    "\n",
    "        if mean_pearson_idx > highest_mean_pearson:\n",
    "            highest_mean_pearson = mean_pearson_idx\n",
    "            print(f\"New highest mean Pearson: {highest_mean_pearson}\")\n",
    "            torch.save(model.state_dict(), f\"best_model_checkpoint.pth\")\n",
    "\n",
    "print(f\"\\nTraining completed after {config['num_steps_training']} steps.\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAHWCAYAAAACZWhUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXd4FOXaxu/Z9J5ACi0kgiSEktAUKQIqiIoohGLBhmLDhqCon0IIoIgIcqzYPccj50hZyxEVEQQVC0iIRAwJPdQUAgnpye58fwyzOzM7Mzu7O9uS58e1Fzsz77zzzuzsZu73aQzLsiwIgiAIgiAIgiAIgvA5DN4eAEEQBEEQBEEQBEEQ8pBoJwiCIAiCIAiCIAgfhUQ7QRAEQRAEQRAEQfgoJNoJgiAIgiAIgiAIwkch0U4QBEEQBEEQBEEQPgqJdoIgCIIgCIIgCILwUUi0EwRBEARBEARBEISPQqKdIAiCIAiCIAiCIHwUEu0EQRAEQRAEQRAE4aOQaCcIgiAIgiAIghCwYMECMAyja59bt24FwzDYunWrrv0SrR8S7QTRhvnoo4/AMAz++OMPbw+FIAiCaIPwf4cYhsHPP/9ss51lWSQnJ4NhGFx//fVeGKF2UlNTLefCMAwSExNx+eWX47PPPvP20HyG/Px83HbbbUhOTkZISAjatWuH0aNH48MPP4TJZPL28HTjzTffxEcffeTtYRCtiEBvD4AgCIIgCIJo24SGhmL16tUYPny4aP22bdtw/PhxhISEeGlkjtGvXz/MmTMHAHDy5Em8/fbbyM7OxltvvYUHHnjAy6PzLu+99x4eeOABJCUl4fbbb0ePHj1w/vx5bN68Gffccw9OnTqF//u///P2MHXhzTffRHx8PO666y7R+hEjRqC+vh7BwcHeGRjht5BoJwiCIAiCILzKddddh7Vr1+LVV19FYKD18XT16tUYOHAgKioqvDg67XTu3Bm33XabZfmOO+7AxRdfjFdeecVjor2lpQVms9mnhOFvv/2GBx54AEOGDMHXX3+NqKgoy7ZZs2bhjz/+wF9//eXyccxmM5qamhAaGmqzrba2FhERES4fwxUMBoPs2AjCHuQeTxCEKrt378a1116L6OhoREZG4qqrrsJvv/0matPc3Izc3Fz06NEDoaGhaN++PYYPH45NmzZZ2pw+fRrTp09Hly5dEBISgo4dO+LGG2/EkSNHPHxGBEEQhK9xyy234MyZM6K/G01NTVi3bh1uvfVW2X3MZjNWrlyJ3r17IzQ0FElJSbj//vtx9uxZUbsvvvgC48aNQ6dOnRASEoLu3btj0aJFNu7Yo0aNQp8+ffD333/jiiuuQHh4ODp37oyXXnrJ6fPq0KEDMjIycPjwYcu6EydO4O6770ZSUhJCQkLQu3dvfPDBB6L9mpqaMH/+fAwcOBAxMTGIiIjA5Zdfjh9++EHU7siRI2AYBi+//DJWrlyJ7t27IyQkBH///TcA4LXXXkPv3r0RHh6OuLg4DBo0CKtXrxb1oeXvPB/GsH37dsyePRsJCQmIiIjAxIkTUV5ebvc65ObmgmEYfPLJJyLBzjNo0CCRVbq2thZz5syxuNGnp6fj5ZdfBsuyov0YhsHDDz+MTz75BL1790ZISAi+/fZby3i3bduGmTNnIjExEV26dLHs98033+Dyyy9HREQEoqKiMG7cOOzdu9fueXz44Ye48sorkZiYiJCQEPTq1QtvvfWWqE1qair27t2Lbdu2WUIlRo0aBUA5pn3t2rUYOHAgwsLCEB8fj9tuuw0nTpwQtbnrrrsQGRmJEydOYMKECYiMjERCQgKeeOKJVhVaQMhDlnaCIBTZu3cvLr/8ckRHR2Pu3LkICgrC22+/jVGjRmHbtm0YPHgwAC5Zy5IlSzBjxgxceumlqK6uxh9//IG8vDyMGTMGADBp0iTs3bsXjzzyCFJTU1FWVoZNmzahpKQEqampXjxLgiAIwtukpqZiyJAh+M9//oNrr70WACesqqqqcPPNN+PVV1+12ef+++/HRx99hOnTp+PRRx/F4cOH8frrr2P37t3Yvn07goKCAHCCMzIyErNnz0ZkZCS2bNmC+fPno7q6GsuWLRP1efbsWVxzzTXIzs7G1KlTsW7dOjz11FPo27evZVyO0NzcjGPHjqF9+/YAgNLSUlx22WUWsZmQkIBvvvkG99xzD6qrqzFr1iwAQHV1Nd577z3ccsstuPfee3H+/Hm8//77GDt2LHbs2IF+/fqJjvPhhx+ioaEB9913nyVW/N1338Wjjz6KyZMn47HHHkNDQwP27NmD33//3TIRovXvPM8jjzyCuLg45OTk4MiRI1i5ciUefvhhfPrpp4rXoK6uDps3b8aIESPQtWtXu9eMZVnccMMN+OGHH3DPPfegX79+2LhxI5588kmcOHECr7zyiqj9li1bsGbNGjz88MOIj49Hamoq8vPzAQAzZ85EQkIC5s+fj9raWgDAxx9/jDvvvBNjx47F0qVLUVdXh7feegvDhw/H7t27VZ9J3nrrLfTu3Rs33HADAgMD8b///Q8zZ86E2WzGQw89BABYuXIlHnnkEURGRuLZZ58FACQlJSn2yd/Dl1xyCZYsWYLS0lL84x//wPbt27F7927ExsZa2ppMJowdOxaDBw/Gyy+/jO+//x7Lly9H9+7d8eCDD9q9toQfwxIE0Wb58MMPWQDszp07ZbdPmDCBDQ4OZg8ePGhZd/LkSTYqKoodMWKEZV1WVhY7btw4xeOcPXuWBcAuW7ZMv8ETBEEQfo/w79Drr7/ORkVFsXV1dSzLsuyUKVPYK664gmVZlk1JSRH9nfnpp59YAOwnn3wi6u/bb7+1Wc/3J+T+++9nw8PD2YaGBsu6kSNHsgDYf/3rX5Z1jY2NbIcOHdhJkybZPZeUlBT26quvZsvLy9ny8nL2zz//ZG+++WYWAPvII4+wLMuy99xzD9uxY0e2oqJCtO/NN9/MxsTEWMba0tLCNjY2itqcPXuWTUpKYu+++27LusOHD7MA2OjoaLasrEzU/sYbb2R79+6tOmatf+f5z2n06NGs2Wy2rH/88cfZgIAA9ty5c4rH+PPPP1kA7GOPPaY6Fp7PP/+cBcAuXrxYtH7y5MkswzDsgQMHLOsAsAaDgd27d6+oLT/e4cOHsy0tLZb158+fZ2NjY9l7771X1P706dNsTEyMaH1OTg4rlUpy99LYsWPZbt26idb17t2bHTlypE3bH374gQXA/vDDDyzLsmxTUxObmJjI9unTh62vr7e0++qrr1gA7Pz58y3r7rzzThYAu3DhQlGf/fv3ZwcOHGhzLKJ1Qe7xBEHIYjKZ8N1332HChAno1q2bZX3Hjh1x66234ueff0Z1dTUAIDY2Fnv37sX+/ftl+woLC0NwcDC2bt1q47ZIEARBEAAwdepU1NfX46uvvsL58+fx1VdfKbrGr127FjExMRgzZgwqKiosr4EDByIyMlLkRh4WFmZ5f/78eVRUVODyyy9HXV0d9u3bJ+o3MjJSFJMeHByMSy+9FIcOHdJ0Dt999x0SEhKQkJCArKwsrF27FrfffjuWLl0KlmWxfv16jB8/HizLisY9duxYVFVVIS8vDwAQEBBgiUk3m82orKxES0sLBg0aZGkjZNKkSUhISBCti42NxfHjx7Fz507ZsTryd57nvvvuE5VBu/zyy2EymXD06FHFa8L3IecWL8fXX3+NgIAAPProo6L1c+bMAcuy+Oabb0TrR44ciV69esn2de+99yIgIMCyvGnTJpw7dw633HKL6PoHBARg8ODBNuEHUoT3UlVVFSoqKjBy5EgcOnQIVVVVms5PyB9//IGysjLMnDlTFOs+btw49OzZExs2bLDZR5ob4fLLL9d8fxL+C7nHEwQhS3l5Oerq6pCenm6zLSMjA2azGceOHUPv3r2xcOFC3HjjjUhLS0OfPn1wzTXX4Pbbb0dmZiYAICQkBEuXLsWcOXOQlJSEyy67DNdffz3uuOMOdOjQwdOnRhAEQfggCQkJGD16NFavXo26ujqYTCZMnjxZtu3+/ftRVVWFxMRE2e1lZWWW93v37sVzzz2HLVu22IhQqdDq0qWLTW3uuLg47NmzR9M5DB48GIsXLwbDMAgPD0dGRobFvbmsrAznzp3DO++8g3feecfuuP/5z39i+fLl2LdvH5qbmy3rL7roIpv95NY99dRT+P7773HppZfi4osvxtVXX41bb70Vw4YNA+DY33keqXt7XFwcAKhOyEdHRwPgJky0cPToUXTq1MlG5GdkZFi2C5E7d6VtvHHhyiuvVB2rEtu3b0dOTg5+/fVX1NXVibZVVVUhJiZGdX8p/LnIfQY9e/a0KYMYGhpqMzkTFxdHBpE2AIl2giBcZsSIETh48CC++OILfPfdd3jvvffwyiuvYNWqVZgxYwYALjvs+PHj8fnnn2Pjxo2YN28elixZgi1btqB///5ePgOCIAjCF7j11ltx77334vTp07j22mtF8bxCzGYzEhMT8cknn8hu54XNuXPnMHLkSERHR2PhwoXo3r07QkNDkZeXh6eeegpms1m0n9AqK4SVJEBTIj4+HqNHj1YcMwDcdtttuPPOO2Xb8JPd//73v3HXXXdhwoQJePLJJ5GYmIiAgAAsWbIEBw8etNlPaAHmycjIQFFREb766it8++23WL9+Pd58803Mnz8fubm5ms5HijPX5+KLL0ZgYCAKCgqcOqY95M5daRv/GXz88ceyRgNh5QIpBw8exFVXXYWePXtixYoVSE5ORnBwML7++mu88sorNveSO1C6/kTrh0Q7QRCyJCQkIDw8HEVFRTbb9u3bB4PBgOTkZMu6du3aYfr06Zg+fTpqamowYsQILFiwwCLaAaB79+6YM2cO5syZg/3796Nfv35Yvnw5/v3vf3vknAiCIAjfZuLEibj//vvx22+/qSY36969O77//nsMGzZMVbRt3boVZ86cgdFoxIgRIyzrhdncPUVCQgKioqJgMpkUhT3PunXr0K1bNxiNRpHlPycnx6FjRkRE4KabbsJNN92EpqYmZGdn4/nnn8czzzzj8N95ZwkPD8eVV16JLVu24NixY3b7TElJwffff4/z58+LrO18KENKSorTY+nevTsAIDEx0e5nIOV///sfGhsb8eWXX4o8DuRc6qXeGkrw51JUVGRj/S8qKnLpXInWBcW0EwQhS0BAAK6++mp88cUXorJspaWlWL16NYYPH25xIztz5oxo38jISFx88cVobGwEwGWObWhoELXp3r07oqKiLG0IgiAIIjIyEm+99RYWLFiA8ePHK7abOnUqTCYTFi1aZLOtpaUF586dA2C1TAotwU1NTXjzzTf1HbgGAgICMGnSJKxfv162JrmwdJrcuH///Xf8+uuvmo8n/dscHByMXr16gWVZNDc3O/R33lVycnLAsixuv/121NTU2GzftWsX/vnPfwIArrvuOphMJrz++uuiNq+88goYhnEqiz/P2LFjER0djRdeeEEUcsCjVr5O7jOpqqrChx9+aNM2IiLCcg+qMWjQICQmJmLVqlWi56FvvvkGhYWFGDdunN0+iLYBWdoJgsAHH3yAb7/91mb9ggULsGnTJgwfPhwzZ85EYGAg3n77bTQ2Norq1vbq1QujRo3CwIED0a5dO/zxxx9Yt24dHn74YQBAcXExrrrqKkydOhW9evVCYGAgPvvsM5SWluLmm2/22HkSBEEQvo+S67iQkSNH4v7778eSJUuQn5+Pq6++GkFBQdi/fz/Wrl2Lf/zjH5g8eTKGDh2KuLg43HnnnXj00UfBMAw+/vhjze7uevPiiy/ihx9+wODBg3HvvfeiV69eqKysRF5eHr7//ntUVlYCAK6//noYjUZMnDgR48aNw+HDh7Fq1Sr06tVLVvTKcfXVV6NDhw4YNmwYkpKSUFhYiNdffx3jxo2zWLAXL16s6e+8qwwdOhRvvPEGZs6ciZ49e+L2229Hjx49cP78eWzduhVffvklFi9eDAAYP348rrjiCjz77LM4cuQIsrKy8N133+GLL77ArFmzLNZyZ4iOjsZbb72F22+/HQMGDMDNN9+MhIQElJSUYMOGDRg2bJjNZAHP1VdfjeDgYIwfPx73338/ampq8O677yIxMRGnTp0StR04cCDeeustLF68GBdffDESExNl4+iDgoKwdOlSTJ8+HSNHjsQtt9xiKfmWmpqKxx9/3OlzJVoZXspaTxCED8CXRFF6HTt2jM3Ly2PHjh3LRkZGsuHh4ewVV1zB/vLLL6J+Fi9ezF566aVsbGwsGxYWxvbs2ZN9/vnn2aamJpZlWbaiooJ96KGH2J49e7IRERFsTEwMO3jwYHbNmjXeOG2CIAjCR7BXepRHWvKN55133mEHDhzIhoWFsVFRUWzfvn3ZuXPnsidPnrS02b59O3vZZZexYWFhbKdOndi5c+eyGzduFJXeYlmu5JtcibQ777yTTUlJsXsuSmOUUlpayj700ENscnIyGxQUxHbo0IG96qqr2HfeecfSxmw2sy+88AKbkpLChoSEsP3792e/+uorm7HwJd/kSqq+/fbb7IgRI9j27duzISEhbPfu3dknn3ySraqqErXT8nde6XOSljCzx65du9hbb72V7dSpExsUFMTGxcWxV111FfvPf/6TNZlMlnbnz59nH3/8cUu7Hj16sMuWLROVm2NZruTbQw89ZHMce/fVDz/8wI4dO5aNiYlhQ0ND2e7du7N33XUX+8cff1jayJV8+/LLL9nMzEw2NDSUTU1NZZcuXcp+8MEHLAD28OHDlnanT59mx40bx0ZFRbEALOXflK7Xp59+yvbv358NCQlh27Vrx06bNo09fvy4qM2dd97JRkRE2JyL3DiJ1gfDsl6aaiQIgiAIgiAIgiAIQhWKaScIgiAIgiAIgiAIH4VEO0EQBEEQBEEQBEH4KCTaCYIgCIIgCIIgCMJHIdFOEARBEARBEARBED4KiXaCIAiCIAiCIAiC8FFItBMEQRAEQRAEQRCEjxLo7QF4GrPZjJMnTyIqKgoMw3h7OARBEAQBlmVx/vx5dOrUCQYDzafrAf29JwiCIHwJV/7WtznRfvLkSSQnJ3t7GARBEARhw7Fjx9ClSxdvD6NVQH/vCYIgCF/Emb/1bU60R0VFAeAuVnR0tEt9mc1mlJeXIyEhwS8tIzR+7+Pv5+Dv4wf8/xxo/N5Hj3Oorq5GcnKy5W8U4Tp6/b3393vU38cP+P850Pi9j7+fg7+PH/D/c/D23/o2J9p5F7no6GhdRHtDQwOio6P99uaj8XsXfz8Hfx8/4P/nQOP3PnqeA7lx64def+/9/R719/ED/n8ONH7v4+/n4O/jB/z/HLz9t97/rhhBEARBEARBEARBtBFItBMEQRAEQRAEQRCEj0KinSAIgiAIgiAIgiB8lDYX004QBOEvsCyLlpYWmEwmxTZmsxnNzc1oaGjw2xgxfx4/oO0cAgICEBgYSDHrBEEQBEE4DIl2giAIH6SpqQmnTp1CXV2dajuWZWE2m3H+/Hm/FIT+Pn5A+zmEh4ejY8eOCA4O9uDoCIIgCILwd0i0EwRB+BhmsxmHDx9GQEAAOnXqhODgYEUxyFvj/dWK6+/jB+yfA8uyaGpqQnl5OQ4fPowePXr4rVcBQRAEQRCeh0Q7QRCEj9HU1ASz2Yzk5GSEh4ertvV30evv4we0nUNYWBiCgoJw9OhRNDU1ITQ01MOjJAiCIAjCX6GpfoIgCB+FrLGtC/o8CYIgCIJwBnqCIAiCIAiCIAiCIAgfhUQ7QRAEQRAEQRAEQfgoJNoJgiAInyU1NRUrV6709jAIgiAIgiC8Bol2FzAagSuvbI/wcAZZWdwyQRBEW4RhGNXXggULnOp3586duO+++1wa26hRozBr1iyX+iAIgiAIwrcxFhqRtSoLYYvDkLUqC8bC1iPOSLQ7idEITJliwL59gWhsZFBQAEyaRMKdIAjfwWgEsrKAsDC4fWLx1KlTltfKlSsRHR0tWvfEE09Y2vLZ1rWQkJBgN4M+QRAEQRBtG2OhEZPWTEJBaQEaTA0oKC3ApDWTWo1wJ9HuJLm5AMOwYFmuvA/LAgwDLFzo5YERBNHqYFmgttax1+rV3ERiQQHQ0ADLxOLq1Y71w7LaxtihQwfLKyYmBgzDWJb37duHqKgofPPNNxg4cCBCQkLw888/4+DBg5gwYQK6dOmCqKgoXHLJJfj+++9F/Urd4xmGwXvvvYeJEyciPDwcPXr0wJdffunS9V2/fj169+6NkJAQpKamYvny5aLtb775Jnr06IHQ0FAkJSVh8uTJlm3r1q1DZmYmoqOjER8fj9GjR6O2ttal8RAEQRAE4Ri523LBgAEL7sGFBQsGDBZu48SZnBXenyzzVKfdSYqLYRHsPCwLFBV5aUAEQbRa6uqAyEilrQyAIMV9edHN/z9tmmPHrqkBIiIc20eJp59+Gi+//DK6deuGuLg4HDt2DNdeey0WLFiAiIgIfPzxxxg/fjyKiorQtWtXxX5yc3Px0ksvYdmyZXjttdcwbdo0HD16FO3atXN4TLt27cLUqVOxYMEC3HTTTfjll18wc+ZMtG/fHnfddRf++OMPPProo/j4448xdOhQVFZW4qeffgLAeRfccsstWLp0KcaPH4/6+nr8/PPPYLXOdBAEQRAEoQvFFcUWwc7DgkXRmSKLFZ4X9bwVHoDNuvVT1yM7I9sbp6AKiXYnSUsDCgpYkXBnGCA93YuDIgiC8GEWLlyIMWPGWJbbtWuHzMxMtLS0IDAwEIsWLcJnn32GL7/8Eg8//LBiP3fddRduueUWAMALL7yAV199FTt27MA111zj8JhWrFiBq666CvPmzQMApKWl4e+//8ayZctw1113oaSkBBEREbj++usRFRWFlJQU9O/fHwAn2ltaWpCdnY3OnTsjMDAQmZmZDo+BIAiCIAjnMBYakbstF42mRpttDBikt0+XtcLzyFnmfVG0k3u8k+TkyFvac3K8NCCCIFot4eGcxVvudf48i7Nnm3H+PCta36cPN5EohGGAvn2V+5J76RlOPmjQINFyTU0NnnjiCfTt2xdxcXGIjIxEYWEhSkpKVPsRCuOIiAhER0ejrKzMqTEVFhZi2LBhonXDhg3D/v37YTKZMGbMGKSkpKBbt264/fbb8cknn6Curg4AkJWVhauuugqZmZm4+eab8e677+Ls2bNOjYMgCIIgCCtaXNeFcexSKzsv0nNG5sha4eVgweLP0j9hyDUgdWWqT7nLk2h3kuxsYO1as2U5IIBL8jRxohcHRRBEq4RhOBd1R165udZcG3wfLMutd6QfqfB3hQiJn/0TTzyBzz//HIsWLcKPP/6I/Px89O3bF01NTar9BAWJwwEYhoHZbFZo7RpRUVHIy8vDf/7zH3Ts2BHz589HVlYWzp07h4CAAGzatAlff/01MjIy8PrrryM9PR2HDx92y1gIgiAIwt1ojfO2186VeHFpUrk9pXswac0kBC8KRurKVKSuTEXY4jBMM04TWdCF9E7sDeNUIyZmTERSZJJD14AFi6NVR30qkR2JdhfIFnhOtG9Pgp0gCN8hOxtYvx7IzARCQ7n/fW1icfv27bjzzjsxYcIE9O3bFx06dMCRI0c8OoaMjAxs377dZlxpaWkICAgAAAQGBmL06NF46aWXsGfPHhw5cgRbtmwBwE0YDBs2DDk5OcjLy0NwcDA+++wzj54DQRAEQeiB1gzs9trJbZ+ybgo2HNqgaRxSd3aeZnMzjlYdxdGqo2gwNaChpUHRgs4LdleZvGYyghcFo//b/TWP3x1QTLtOBAd7ewQEQRBisrPFk4u+Ro8ePfDZZ5/h2muvRVBQEObPn+82i3l5eTny8/NF6zp27Ig5c+bgkksuwaJFi3DTTTfh119/xeuvv44333wTAPDVV1/h0KFDGDFiBOLi4vD111/DbDYjPT0dv//+OzZv3owxY8agXbt22LVrF8rLy5GRkeGWcyAIgiAId2EsNGKakctWay/OWy1Te3ZGtuL2FXkrMP2y6YrHz92Wi+KKYjSaGjW5s6tRVluGHu17AABKa0qd7ocFi2ZzMwrKCjBj0wzExMRgcu/J9nfUGRLtOkGinSAIwjFWrFiBu+++GyNHjkR8fDyeeuopVFdXu+VYq1evxurVq0XrFi1ahOeeew5r1qzB/PnzsWjRInTs2BELFy7EXXfdBQCIjY2F0WjEggUL0NDQgB49euA///kPevfujcLCQvz4449YuXIlqqurkZKSguXLl+Paa691yzkQBEEQhBpC4ZsWn4ackTl2k6oZC42YvXE2jlYdld3OZ2AXopSp/e/yv5G1Kgt7SvfI9lN4phATP52I7w59h4aWBoQGhuKRSx/BZV0uE2V314PyunLL+7T4NNkxOQI/8bDop0VeEe0M28Zq01RXVyMmJgZVVVWIjo52qS+z2YyAAC7CoGdPoLBQjxF6DrPZjLKyMiQmJsJg8L9ICX8fP+DdczAaufjm4mKuGkJOjuNWWfoM3ENDQwMOHz6Miy66CKGhoaptWZa1ZF9n9AxA9xD+Pn5A+zmofa56/m0iOPS6pr74G+EI/j5+wP/Pgcbvffz9HITj/7zocxthDsBGePMCWK6EGS/uC8sL0Wxutnv8lJgUrBi7wnJcMEBDS4NsW2eEd0J4AirqKnQT7ADQOaozymrLEGAIQLOpGSbWpEu/oQGhqH+u3ql9Xfm7RJZ2nSBLO+FPGI3ApEnW5GQFBdzy+vW+7U5NEARBEATRVjEWGjFl3RTZeuNSlFzbpTXLtcAnZdOyjzPCW2gV14sT508AgKZJCa0wYJAe75363v431eSjSJIZE4RPk5vL/c/72fBZxhcu9N6YCIIgCIIgvA2f9Tx4UTDCng9D8KJgTdnP3ZlNnWfRj4sU643LIXRZ5487e+Nsp93Q9bSE+yMsWMwbMc8rxyZLu06QpZ3wJ4qLbdexLFBUZLueIAiCIAiiLcBboXl4Ky1v0Ra6mgvjx5Mik3C06qiNBZxvL7Vu89ufHPokNh7caOkD4JKmpcWnYWz3sZZtae3T8GjWoyg6U+SwcG42N1vqmLsa193WCTQEYmJP75ThIdGuEyTaCX8iLQ3YI/ndZhgg3TsePwRBEARBEF5HqdQYvzx742xZEc7HkstlUwcgm5UdAJb9ssymDwDYU7pHJLD5zOUJ4QlOuZK3dQu5HjBgkBaX5rXjk3u8TpB7POFP5OSIl/nYdul6giAIgiAIX0UPl3MhclnRhRytOoqYJTG4ed3NANTFMO+aPmnNJMWkbfb6kLZxR+w3ARhgQFZSFhgoJ5NlwWLOwDkeHJUYEu06QZZ2wp/IzgZ697YuZ2ZyyekmesfjhyAIgiAIwiF4a3dBaQEaTA0Wl/PUlakOx6PzpMXbt6RWN1VrTm7WYm5RFYKE9+gU1cnyPjIkEvkP5CMkIES2LQMG66asw3UXXeep4dlAot0FhMXySLQT/kZCgvV9fj4JdoIgCIIgfBepVV2aUI3//2jVUTSbm9HQ0mCJ556ybgo2HNqg2p+x0Ggpn6YX7IV//kiQIQgBTIC3h2FBbvKjX1I/p/sTxqaHB4UD4CZtpMdhwCAzKdNrsew8JNpdoKnJ+p7c4wmCIAiCIAhCHldc2Xmr+p7SPWgwNWBP6R4crTrqkGv5Q1seQsjzIQh7PgyBCwNF/QlLpwUZ6KEeAAIMAT51LcICw2zWGQzOSdnUmFSMSBlh03fOyBxLPgLAWnNe78kcZyDR7gKNjdb3ZGkn/A2GvLUIgiAIgvAASq7sWoV77rZcl8fQaGpEi7kFDS0NMLEm0TZh4riMhAyXj+XvMGCQ3j5d1vIspEe7HnZjwfWirqXOZt3Rc0dlWtpnxdgViAqOsiyHBXGiPTsjG+unrkdmUiZCA0ORmZQJ41QjJmZ43x2VRLsLCEU7WdoJgiBcZ9SoUZg1a5a3h0EQBEE4iZxFXZqVXZpd3R7FFTK1anWGL4k2uttotx/LmwQHBCM0MBQpMSlIjUm1WNPlrMtSy7OUsKAw5D+Qj7EXj3VpTN1iu9mMSYuVv7K+UnW7dNypMakWER4VYhXtvHs8wAn3/AfyUf9sPfIfyPcJwQ6QaHeJBuVEkATh87D+GWJFaKWkBMjLs32VlLjlcOPHj8c111wju+2nn34CwzDYI60z6AQfffQRYmNjXe6HIAiCcBx7Lu5KFvXC8kLZMmpFZ4o09a8lQZwesGCx4tcVluWQgBCkxKT4VGy3GlqE7kujX0L9s/U4MusIDs86jKZ5TYrWZaHlWa7vPaV7YCw0on1Ye5fG/eGED23GlJGQYdeCrxQewYBBSkyK5ZyykrJgnGrE4VmHLSI8MjjS0l7O9d7XoDrtLiC0tJvN3hsHQRCEiJISID1dfmYxNBQoKgK6dtX1kPfccw8mTZqE48ePo0uXLqJtH374IQYNGoTMzExdj0kQBEF4DmOhEVPWTbFYYnlB/uTQJ7Hx4EbOGs7AxqIOQDbbOu+CzVviC8sL0Wxutul//dT1yBmZY4k5d5RAQyBazC2a2/PHjwqOQvUz1ZZzd/b4noBPlpb/QD6MhUYs3LYQRWeKkBSRBAaMKP7/lr632OyfnZGN7Ixs2b75bVmrslBQWmAjlBduW4iRKSMdHq+wHznRbK/8nlKf/P+vjH1F1UoudI8XWtp9FbK0uwCJdoIgPALLArW12l/Hjim7AjU0cNu19qXRJeP6669HQkICPvroI9H6mpoarF27Fvfccw/OnDmDW265BZ07d0Z4eDj69u2L//znPy5eHDElJSW48cYbERkZiejoaEydOhWlpaWW7X/++SeuuOIKREVFITo6GgMHDsQff/wBADh69CjGjx+PuLg4REREoHfv3vj66691HR9BEIS/sujHRbKCfNkvyyyW9YaWBs1CiwWLi2IvsljmeWEv50KfnZGNBwc96NS4HRHswuPHhsZa1vEW546RHZ0agztQSpYmdO/mLdeDuwy27OesVVxJRBedKUL7cGufQjGsNG5pP3xMuRB78fRCnhjyhMNx6EJLe2hgqKbjeBMS7S4gfCYmV2PC36BEdH5EXR0QGSn7YqKiEBQXByYqyrp++HD1/oYPV+zP5lVnm/hFjsDAQNxxxx346KOPwAp+ENeuXQuTyYRbbrkFDQ0NGDhwIDZs2IC//voL9913H+644w7s3LnTlatjwWw248Ybb0RlZSW2bduGTZs24dChQ7jpppssbaZNm4YuXbpg586d2LVrF55++mkEXUhK8tBDD6GxsRE//vgjCgoKsHTpUkRGRiodjiAIotWgJbN70ZkiRUHubFmzz4s+V92fjzM3Fhpx38D7nDqGo/BCMSY0RrQ+OyMbr4x9xSNjsMeIriMcEqln6s5Y3g94Z4BDmft5lER0evt00URAckyyaj8hgSF4eczLonVylnalePogQ5DNxMPobqMdjkMXxrSbWd+3vpJodwFVS7uH40kJgiC8zd13342DBw9i27ZtlnUffvghJk2ahJiYGHTu3BlPPPEE+vXrh27duuGRRx7BNddcg3Xr1uly/M2bN6OgoACrV6/GwIEDMXjwYPzrX//Ctm3bLBMDJSUlGD16NHr27IkePXpgypQpyMrKsmwbNmwY+vbti27duuH666/HiBEj1A5JEAThNVwpoSbtx15m9w2HNnhN2LBgMWnNJIz9t2vJzrQgtAILLe08R84dsbwPNHgvyvjQ2UOYP3K+JpFqLDRif+V+y7Kjmft5eBEtt35v+V7LckmVHa3DAtf1uE60Ss7SLs3kzselN81rwrS+00RthQJcK8KJAmk1AV+EYtpdQFG0eyGelCCIVkx4OFBTI7uJZVm0tLQgMDAQDO8+kZ+vbm3/+WegXz/tx9ZIz549MXToUHzwwQcYNWoUDhw4gJ9++gkLF3LZgU0mE1544QWsWbMGJ06cQFNTExobGxEaqo9bWmFhIZKTk5GcbJ3l79WrF2JjY1FYWIhLLrkEs2fPxowZM/Dxxx9j9OjRmDJlCrp37w4AePTRR/Hggw/iu+++w+jRozFp0iSKwycIwifhhTYvMveU7sGkNZMQwAQgKCAIJrMJGQkZFpfp3G25KK4oRlp8GnJG5ojil+UyuwPANOM0gAWSIpJwtNq50lp6UlZb5vZjZCRkYFTKKLz5x5s2ot1YaMTTm5+2LJvMVqEnjaeeO3QuXvrlJbeN88T5E5Z4f6VYdB5puTxp2IFWeBF99xd3o6qxCgBw/8D7wYLFW3+8ZWlX02R9XpG6wjNgkB6fbuOOrpQITinWXrp/dEi05vOwjEXgcir8LH0VsrS7gKJ7fEWFejxpRYVbx0UQRCuDYYCICO2vMDtZUMPCtPflYBzFPffcg/Xr1+P8+fP48MMP0b17d4wcySWoWbZsGf7xj3/gqaeewg8//ID8/HyMHTsWTU1Nzl4Zh1mwYAH27t2LcePGYcuWLejVqxc+++wzAMCMGTNw6NAh3H777SgoKMCgQYPw2muveWxsBEEQWpEKbR4Ta0JDSwOazc0Wi6o9K7pSrHJDSwMaTA0+Idi1YnBR2hRVFOGdvHcAAD+X/Cy6Tvw15+HFrzBLOe+qvnTMUkVLfJAhCKkxqZYSZ8Ixp8SkYO7QuQDEMevC/4XH1lIyT65cnlzmfi1kZ2Tjrn53WZZHpoy0uS7S40hj7+eNmGdjWZeztKshFe324ujt4WjeA29Aot0FKBGdf2E0AllZnF7JyuKWCaJVEh/PefXIERrKbXcTU6dOhcFgwOrVq/Gvf/0Ld999t2U2e/v27bjxxhtx2223ISsrC926dUNxsX61dzMyMnDs2DEcO3bMsu7vv//GuXPn0KtXL8u6tLQ0PP744/juu++QnZ2NDz/80LItOTkZDzzwAIxGI+bMmYN3331Xt/ERBEHohZbM2sLtUiv65DWTLS71SZFJ7huom1ASaZenXK65DzmhaWJNFgF3ruGcaIJD7pqzYFFaWyobTy1NWscf79PJn+LwrMP4JPsTHK06CjOsIuJo1VEM7jLYpgRbkCFIU8k8OeRi0fnM/c4gPK/okGjVe/GNa9+wnEffpL54/+r3MbHnRBvRHRIQ4tAYpPuPWz3OYXd/Yfvfjv/mdHiJpyDR7gJCYzqJdt/GaAQmTQIKCrjPraCAWybhTrRKunblwnB27bJ9uTk8JzIyEjfddBOeeeYZnDp1CnfddZdlW48ePbBp0yb88ssvKCwsxP333y/K7K4Vk8mE/Px80auwsBCjR49G3759MW3aNOTl5WHHjh244447MHLkSAwaNAj19fV4+OGHsXXrVhw9ehTbt2/Hzp07kZGRAQCYNWsWNm7ciMOHDyMvLw8//PCDZRtBEIQcSnHlwvX93+6PDYc26NY34FhmbTmELvVHqzxnSXdlzELON52XXd+/Q3+sn7oeWUlZdmuWa0meJ7RmOyp+U2NTLe8DmACbhHFyFmqh27pwIiAj3rZmuVbhLU3oJs027ygdo6yiPSokSvVenNx7suU8dt+3G9ddxMWyS0U346BXX/EZ8YT/3+V/OxSnLy3hV9tc61Scvych0e4CZGn3H3JzOS9fPoyBZbnlhfa9igjCP+naFRgwwPblgXwa99xzD86ePYuxY8eiU6dOlvXPPfccBgwYgLFjx2LUqFHo0KEDJkyY4HD/NTU16N+/v+g1fvx4MAyDL774AnFxcRgxYgRGjx6Nbt264dNPPwUABAQE4MyZM7jjjjuQlpaGqVOn4tprr0VuLhfvZzKZ8NBDDyEjIwPXXHMN0tLS8Oabb+pyTQjgjTfeQGpqKkJDQzF48GDs2LFDse2oUaPAMIzNa9y4cR4cMUGoo5TAbe6mueL1ZQWYsWkGjIVGWSEuXJe6MhWpK1MRvChY1a1dKSmYrxMfHi8Ss3oQwARY3rcPb28RvE3zmrB+6noAtpMFqTGpME41IiIoQrVvoTXbUfHbLqyd5f3LV79skzBOyXIvZz2fN2Ke08JbmtBNa0k0JQ5WHrS8n/HlDIztPlY2yzug7BHhqGVdyqZDm0TLjoQLAOoTJr4KJaJzAaFod6jk2/vvA/37+2TNLaORE7jFxUBaGpCTA2Rrz1HhsxQX235GLMsZHQmC0JchQ4aIyr7xtGvXDp9//rloHZ9Ij2fr1q2qfd91110i672Url274osvvpDdFhwcrFoXnuLX3cenn36K2bNnY9WqVRg8eDBWrlyJsWPHoqioCImJiTbtjUajKNfBmTNnkJWVhSlTpnhy2AShilwCNwYMXtvxmuz6JzY9gaNVRy3beCEuRGr1lqtZzh870BDoF7G4Qs42nEVDi0LeJydJjU3FwbOckJSWAuMFa+62XBRVFCE9Ph0LRi6wCNbIDZGoba5V7Ftozeb7WrhtIYrOFCG9fTpyRuYoil+haO8Q2cFme1p8GgpKC2wTtclYz7MzsvHemPfw6p5XUXym2O6x5fZ3JOmcEsZCIxb+aBW2ByoPYNkvy/Dk0Cfx3cHvUHSmCFHBUSivKwegXP/cUcu6lNJaWy89R+L0HZkw8RXI0u4CipZ2tXhSAHjzTWDOHJ8zz7dmF/K0NNs5Eobhkvy3VXxwzoggiFbKihUrcO+992L69Ono1asXVq1ahfDwcHzwwQey7du1a4cOHTpYXps2bUJ4eDiJdsKtOFpCTenBv6GlQXZ9SVWJbJZ2rbBg8VfZX5i0ZhL2lO7xqmBPiUlxar+kiCRVkZwSk4KspCyH3OiFlvv24e1ttmdnZGP3fbtxZMYR7L5vt0jo2kuAJrVmS93W1URzXGic5X1ShG3eAEct9+O6jcPu+3Y7VItcb5SS8X138DvLdRnSZYhle7+3+7nF5VyaLwBwLE5f7zh/T0Ci3QUURbtaPOn8+VybV14B7rkHaPGdGdLW7EKekyO2tPPnmeNcOE+rwCHvEIIgCCdpamrCrl27MHr0aMs6g8GA0aNH49dff9XUx/vvv4+bb74ZERHKrqyNjY2orq4WvQDAbDa7/GJZVpd+vPXy9/F74hzW7V0n646+bu86xX0SI229RBgwCA0MlRUEgONCXYq360knhCdg3ZR1OF1z2m47wNYtvV9SP9V678uvXo68+/KwZvIazWMSenY9/f3Tip+Z3D0k5xXGE2QIwrop63Bj+o1O3VNC0Z4QnmCzfUL6BKydvBZ9k/oiNIBL1KZ2PF/4HhdVFMlbqCuKLN+jL4u/tGyTfo+E5yDE0XHc1Psm0f7CzPRa9p93uXy4gb399fgMnIXc453EaARWrLD+EJ06JWnQtat87OiAAUC3bpxg/+gj4ORJYMECIEQS2xEf7/Fa7q3ZhTw7G5g7F3jpQsnMzExOsE/0/CQlQRBEm6KiogImkwlJSWJLU1JSEvbt22d3/x07duCvv/7C+++/r9puyZIllvwEQsrLy9GgVIZVA2azGVVVVWBZFgaD/9k6/H38gGfOYf6W+bIu7Y9/+zjmb5mPQ1WH0C2mG+YMnINx3cZh4a8LUVJVYtMPCxYRgREiF3C+3y6RXXC85rhT45Mr7+ZJ0mPS8eQlT2Jcdy6vRLeYbiisLFRsX15XjgczH8S2E9tQVFlkmWzYU7pHcZ+Hsh7CsHbDUFZWhuHth+O9Me9hwa8LZK/ZtJ7T8Mm+TwAAW45ssaw/cu4IpqybgvfGvIdx3aw5MJTuoRaTsvFsZtZMy3ic4a+Tf1neT/p0EuYOmisaEwAMbz8cGydsFK2TO56vfI+7xXTDvsp9Ni793WK7oaysDPO3zBe1579HOT/kYGjcUNlzYMA4fI37xfazvA9gApDeLh1zBs7R/Hnx99eKvBU4eO4gusd2t7u/Hp/B+fPyCRS1QKLdCXg3ciF5edx6TfHfd94JxMYCU6cC333HvaSEhro9y7OUtDRgj+S3tDW5kF96qfV9fr7XhkEQBEE4wPvvv4++ffviUuGPuAzPPPMMZs+ebVmurq5GcnIyEhISEB0d7fTxzWYzGIZBQkKCX4pefx8/4JlzOFR1SNaCKBSMhZWFmLFpBm5Iu0FkTZRS2VApWu4Q2QGLhyzG3+f/xvLfljs1Pm8K9szETHw74VvR9V945UJMWaccrsKAwfbS7SiYWYDcbbmWOOjSOvmKIUGGILx6w6uiddMTp2P6ZdNhLDRi0U+LUFxRjLT4NMwfMR/nG89bRLsQXiS+uudVTL9sumW94j0kcAToFNUJJ8+ftCyP7zNeNueGFoyFRnxa/Kllef/Z/ZixaQbWTl7rVGy5r3yP+c+dn0Ti/1945UIkJibiUNUhm31YsDh07hASExNlz4FhGIevc1KtdRJ48RWLMXfYXIfPhb+/tKLHZxCqFj5tB//89fYyvBs5JC4/DrmR33gj8OqrytsbGoCKCmeG5zRSV/HW5kLuQ5EIPgHFtPs+am57hP/RVj/P+Ph4BAQE2JT3Ky0tRYcOtsmZhNTW1uK///0v7rnnHrvHCQkJQXR0tOgFcK74rr4YhtGlH2+9/H38rp7D50Wfo/87/RHxQgT6v9Mfnxd9brPdkcRYaoIdsBXYgzoNwpM/Pem0YHcFoXt6kCHIqZJrV3e/2ub6T+49GeunrleMbWfBovhMMQwGA+LCrG7iqbGpsqEDvRJ6KX5+k3tPxp8P/In65+rx5wN/gmEYTP9SWWwJj23vHhK66i++YrGon8jgSKfvuUU/LbIZEwMGi39a7NffY/5zl2ain9RrEgwGA9Lj0+VjxePTbc5BuN3RcYQHh1v2T45J9tj56/EZOAuJdieQcyMHnHAjv+QSXcajF9nZwMiR1uXMTM57oLW4kJu8GwZGEJoJCuJqy9bV1Xl5JISe8J8n//m2FYKDgzFw4EBs3rzZss5sNmPz5s0YMmSIyp7A2rVr0djYiNtuu83dwyRaKUpl2fhSa6krUzFpzSSbjOZ61RMHgP8V/8/G+u5uGDAwTjWKBPPV3a+GOceM+wbc51BfL//6smyd+eyMbByZdQSZSZmqSb2iQ6yeLnOHzXW5ZrhcuS6lY9tDKNojgsU5M8KDwqXNNVNcUWyzztezk2tFLRmfMzXhnckk/8uxXyzv52+d79P11fWC3OOdIC2Ny6wuFe6twY1c6I3f2lzISbQT/kJAQABiY2MtcVXh4eGKf9T4kmmBgYEul1DxBv4+fsD+ObAsi7q6OpSVlSE2NhYBAQEyvbRuZs+ejTvvvBODBg3CpZdeipUrV6K2thbTp3PWsjvuuAOdO3fGkiVLRPu9//77mDBhAtq3t80ITRBaUCrLNnvjbJvyakKCA4LRIbKDahtfhQGDzKRMTMyYiEe+ecSyni+/VVHnmCcnAwYr8lYouhLnjMzBpDWTbFymeaGWdyrP0nblbytF5cEcLV0GyGftF47VkUmA+uZ6y/unvn9KtM0V0e5IObfWhFpZPKUkbI5OkBkLjXhy05OW5cNnD2PSmklYP3W9LmXtfBUS7U6Qk8PFtDMMC5ZlROt1haxsukKinfAneLdhewlV+EymvNuWv+Hv4we0n0NsbKxdd/DWyk033YTy8nLMnz8fp0+fRr9+/fDtt99aktOVlJTYuA0WFRXh559/xndyeV+INoOx0Ijcrbn4u+JvBDKBMLEmZCRkIGdkjqYHdKWybNLya1JazC1YMXaFTR11X0cqWoV1skMCQzgPg32OWSVZsDh47qDidjWhZiw04o2db1ja7i3bi7/K/nJJYMkJYsA6WaF1EsBYaER1U7Vl+eg58QSNK6Ld3kRGa8bRmvCO/u1XmohbuG0hiXZCTHY2sH49F9v+998sWloY9O7tBjfy224D/vc/oG9fXbs1GrmxFxUx6NatPRYuBCZP1vUQPokwpp0vZ0cQvgrDMOjYsSMSExPR3Nys2M5sNuPMmTNo3769S7FS3sLfxw9oO4egoKA2aWEX8vDDD+Phhx+W3bZ161abdenp6W02DwDBwbu287SA+0POu7hrEX5KFk9APbmbiTX5pWCXilaRaA8IQe422woLwv3lrgkDBt1ju6seW0mouUNgKQni9VPXO2Sxl14L6bm7ItrVJjIIiNzZm0xNMBYaNd8PShNxrSH0QA0S7U6SnQ1MmMDi/fercN99cXDKcy8+nssSr1SK5uhRYPBg4PXXgauuAs6cke/DgQzzfOZ7Lskcg337AjFlCoP16zVmvvdjhJZ2Eu2EvxAQEKAq9sxmM4KCghAaGuqXotffxw+0jnMgCF9ESWA6Ivx4gcfDC7yUmBSHXd/1qrWuxoT0CVxiPA0l3rSI1rCgMMv70MBQ2Vhrno5RHS3Z06V9zxk4x6nzcYfA0ksQq10LwDXRDjhucW4rGAuNNpUHHHFvb6uhB/R04SK88FMI01Cna1cue92uXbavvDxg7Figvp6r6d6tGzBwoO0rPR0osa0TqgSf+Z43XrAsA4ZhwWe+b81GDamlnSAIgiAI30VNVLFg8Xf537LbjIVGZK3KQtjiMORuy8XlyZdbtqXGpsI41YgVY1c4PJ7QwFD0Teorm3RNDxgwOHzusCU7d5AhCAaVR/WuMV1FGbzlRKvU0p4Wn6Y43vZhVgtU78Telr7XTVmH6y66zqlzkjueHgJLLRmaK2PjCTIEISigbSUN9RSLflwke08s3KatDJczye5aA2RpdxFetDstArt2VbaUf/018OKLwHPPKc8K8KXhunblxLtcmTiBNV4u8z3LMo5nvvdDhJZ2sxlo456qBEEQBOHTJEUmqVrDm83NNm61vEs9/yC/p3SPaJ/r0663CLzsntkOxXfXt9QjNSZV1KcWi7iU2NBYnGs4Z7Oet0Dz52PPPT82NBZHZh1RbSONaZe6lgsRitQ/H/gTBoabMDCbzXbzqyjhy7HdSmMDuGtFuIeiM0UueV+01dADsrS7CO8J6ZSlXUvn//d/wNtv229bUsJZ3e1Y49PSgK4oQX/kWV4DsAs3Juc5ZLH3R8jSLobCAwiCIAhfxVhotOu+Lmedk8ZQS3ltx2uWeNrEiESHxyWt0c6CxWODH9O8/9yhcxETEiO7TWiBtlfWDIAmkRMWaHWPDwkIsQgevs52RJC1zFmL2fqgxAt2V5EeT80rwNNIx9YnsY+3h9QmSG+vUMvdAe8LPTwt/A2fEe0vvvgiGIbBrFmzVNutXLkS6enpCAsLQ3JyMh5//HE0KMWEewC3inaegQPVt997LzB/vnJsPG+NB/DizBLsQzryMNDy2oVB+O9+Tty3q2m9wl1qaW/r0MQFQRAE4WmErutZq7IU6ytrEa1C6xzf757SPXYt35PXTEbWqizsPr1btD4uNE5hD2UYMPh83+eK2xPCExAaEIpe7Xth3ZR1WDpmqawVV2qBVitrxqNF5Agt7fx7oeC5KO4iy/aiCve4XfqywBKO7c8H/vT2cNoE80bMa5Pu7a7iE6J9586dePvtt5GZmanabvXq1Xj66aeRk5ODwsJCvP/++/j000/xf//3fx4aqS0uu8frQV4e8M9/qrf57Tdg715cm3YQYVAW91GNjtXu9GWMRiArCwgL4/7/U/BbTKKdIAiCIDwL77q+p3QPGkwN2FO6B5PWTMLcTXNt2smV9JLCW+eE/WqBBYuC0gL8fuJ30fqXr34Z66euR0J4guZzYsHKegSkxKTAONWIsifLUPt/tdg8eTMm9uTEakiAVbQnhCfIWqDV4q15tIgcqXu8EGOhEX+V/WVZbjQ1Wt6rTai0VoSlx6hyhfvwZe8LX8bror2mpgbTpk3Du+++i7g49RnOX375BcOGDcOtt96K1NRUXH311bjllluwY8cOD43WFo9Y2u0xf779enMPPQT06QNceaVnxuRl+Cz5BQWco0FBAfDJJ9bt9FtMEARBEJ5l9sbZsuuX/bLMIhB5Aa4lTpwFi3MN5zB5jeN1a+X6jw6JRnZGNsqeLMOTQ590uE8eBgxiQ2MVRYhQPN874F5ZCzSfbEuJoV2GahI5Uvd4IWrl3/iyem1NuPO4s0IA4dveF76K1xPRPfTQQxg3bhxGjx6NxYsXq7YdOnQo/v3vf2PHjh249NJLcejQIXz99de4/fbbFfdpbGxEY6N15rC6uhoAl1TD7KLSNpvNYBj2wnsWZrObvuDt2oEJDQUj4/7OhoaCnT4dqKiA4bPPFLtgu3UDzp0DU1mpeijhObh6fdyN2WwGy7Ky48zNZSxl7QBepLPAhVnrlhazT1jb1c7B3XAzyoxlHM7gzfHrhb+fA43f++hxDv58/gQBcGI7d1suiiuKkRafhpyROTYJ4tRi1KcZpwn/TNuFd6ktqSrRTWAJY81fGvMSLutyGRZuW4i/yv6CiTWp7CnGXlItoXhWSniWnZGtWpauZ3xPTWNRs7Tby87P5wyYkD5B07FaE2RpJ3wNr4r2//73v8jLy8POnTs1tb/11ltRUVGB4cOHg2VZtLS04IEHHlB1j1+yZAlyc21nEsvLy12OhTebzaitbQHQDk1NLSgrk6mjrgehoTD89BMMMoLb3K4dzKGhCKysRLxKF2feegstmZkI/OMPxI8fr9huWPF7CEdP1CECFXl5ysfs0sWZM9EVs9mMqqoqsCxrUxu5qCjJItitWJfLyspRX+/9H2S1c3A3TU1xALg/4M5mhfXm+PWCP4cNG0KwYkUUDh0KRLduLZgzpwbjxjXa78DL+Ptn4O/jB/Q5h/Pnz+s8KoLwHNKM7byVVlh3WcnKztPQ4tgzGcMwAKuvRTTvVB7GdB9jWbaXxT3YEIyOUR1tJg7sJdUSimehqJZSWlOquG194XqMSxtnt661XEw7j1y9ayGu1lMnCEI/vCbajx07hsceewybNm1CaKjyD5aQrVu34oUXXsCbb76JwYMH48CBA3jsscewaNEizJs3T3afZ555BrNnW/9QVFdXIzk5GQkJCYiOjnbpHMxmM6KiqgAAAQGBSEx0PAupZuz1nZYGVsUa3y4tjeujQwfVbsYdXoWD+Axv4kEkDF8CptFWtLChoWALC5VL1XkIztOBQUJCgs2Dcno6UFDASoS7dQq/ffsExMZ6bKiKqJ2DuwkKsl4bZ+9db45fL8xmM775Jgz33hsHhuHumX37AjFjRhzWrjUjW/15yOv4+2fg7+MH9DkHrX8HCcIXkWZsF1ppszOyNWWCdxQzq793ykf5H+Gp4U+J1qm5kAPAirErHC5pJrS0q4l2NVFd1VhlMzEiR1iQsnu8Wvk3QJ966v4KuccTvobXRPuuXbtQVlaGAQMGWNaZTCb8+OOPeP3119HY2IgASSHtefPm4fbbb8eMGTMAAH379kVtbS3uu+8+PPvss7IPSyEhIQgJsXU9MhgMujwgBgTw7sUMDAYv1tBKTQWKimTrtDPx8WB4gZ2YCHNwKAxNMjPaQUEoD+yIDvUlWIgFgIKRkWlo4NzsU1M11YZ3JwzDyH6WOTlcTLu1HUQCnmEM8BV9oHQOnsSVY/vC+F1l+fJIi2AHuHuFYYDFiw2Y7HiopMfx98/A38cPuH4O/nzuBCGX6ZwFiz9L/0TqylS3HdeZGulqHD532Gadmgt5SmyKUzWjtVratYhqfmJECTX3eOHY/y7/G83mZp+sp+4NyD2e8DW8JtqvuuoqFBQUiNZNnz4dPXv2xFNPPWUj2AGgrq7O5sGGb+etL5dPZI/n6drVvlDu2hV71hbh7hs5of3F52fQuXMcd13j4/H4kx0RseYDLMJzSISdTPJ8bXi5MIPQUG4SwUvW+Oxs4L33gAvzO8jIAHr0AL74glsWhY9qmXjQOjnh5UkMwjkOHQq0CadgWe4WJgiCIDiU4taTIpMULel6W9iF6G0NTWufZrsuPk0xK/1DlzwEgBO/9tzUhYhi2gPkY9r5fnlR/WepbTkyLe7rwkR0chMEwrEbC42ykw9tJeeGMOlek6kJxkKjQ58rQbgTr4n2qKgo9OnTR7QuIiIC7du3t6y/44470LlzZyxZsgQAMH78eKxYsQL9+/e3uMfPmzcP48ePlxX5nsAnssc7SGNSV+wGJyAbepUC3RMsJ2IyAO/gfuxBX/yKYcqd3Hgj0L27/drwXhSqwkT5mzcDS5daly2TLFomHgBtkxM+PIkhB+NFxxCfgJ9gMZsxrqMZR44EgAWDCsTjGLqCYbiPkyAIoi3DC/XC8kKRJZaPW39y6JNuFeaepLqx2kao8dZuOcanK+cIUkOrpR2wiuqsVVk2rvJa3NdFlnaVCQLhsdoifF4GHhaspvADgvAUXs8er0ZJSYnIsv7cc8+BYRg899xzOHHiBBISEjB+/Hg8//zzXhujNXu814bgMEKvAOm4+W2NsBNfefw499KKnpZqgdgKrKwE2rXjJh0kfQnD8VkWaGmxLlvOu6JCfeIhLw8wmdTbHD8OJCfb78vLkxiEAMEEiwHAesGmeoQiHUU4xnZFjlavQPLEcB90zQjCowit6bwFXRqvzv/PgMHK31Z6cbSOYc+dvqSqxEaoCa3de8v3osVsfZgIDwp3ahxaY9qFSF3ltbqvq7nHE1akeRkAbeEHBOEpfEq0b926VXU5MDAQOTk5yNH8JO1+/NHSLhTtTrv1v/UWcPAg8PLLym2efBK4/34gMxPo318fSzUgElvxSn0BMB0uQf8LLv6Be4AOJ4H+ACoQD5btCtTWAj//rH6eEzXUjRx2wSNBJneCS5BYcR8qEyxhaECHwAr8Y01XTBxYAuRpmETyZU8MPe8jd/SlNvmm9zWj7xRBqCLNAs9b0NWyizebmx0+TpAhyKH9UmJScPL8SaeOJcSeO700gR4Pb4H+15//wp2f32lZL3Q9dwQtJd+kOBM7D6gnoiOsKOVloOz5hK/gU6LdH/GpmHYnUBp3BeK5h2Klh+XrruMeftVE+5Yt3CskRGz2FiK0QNuzVP/+O3D+vHqbI0c4q/exY8iYkI48XGh7DfAsuFczAmG+biBQkAc023kAiIzkPmQt5ZiUzpFn925u8oJh7AsWR8SKr4oyrf3pbaXW4RwS2pk5wa7lM7B33x4/DkREAHv3avPEcPQ8PSV63dSX4uRbcjL3fdbqvWLvunnrO0UQfoSctdEdOCK+jVONuDH9Rnz424eYsWmGS8dlwKBrTFcb7wEhakItMjhStOy0pd0B93ghzrivq5V8I6zIZepvy9nzCd+DRLuL+LulXck9/hi6Kmajtzy4ym0TctddwI8/AocOqbe76SZO2NfWqrebOlV9OwCMHMkJpLg4+Qz5AILQAuT9zi107AicOqXc37Zt3P8DByq3+fFHIC0N2LEDuOEG5XYzZgBLlnBt3nwTaGxUFiwnT6qLlQMHLJMTzgqRi6uBSlyYoIGTosZVwQjoa6VWaxcSArzyCvDnn8CGDbbbBRjLhgIjOql/Bk8+yR27pES1L4snhj2++w44exa4/nqHzlPV40RryIYWkepI+Ie9/uz1NXQody3q6uTb8Hz6KfejFRsL9Omjft0cuRZ+lJuCIPSksLzQp0pdBRmCLInQxnUbh64xXVFSpfyba2/CgQWL0tpSi8V6T+kem/ZqQk0o2gMNgQgKCHLwjDiccY93FnKP14az4QcE4SlItLuIkmg3GoHcXKC4mNNzOTnwmXrPmt3j7WWjj7djjc/N5YTl6tXAbbcp93PggN0xAwBiYoCoKPux9LW1dicAqmc+jejH7wGqqoBBg7QdX4mICCApCejcWb1dWBgXUvDKK8ptGhqASy8FSkvV+7rqKiA8HEhIcFqIrLrwfz1CgRINoubYMe2CsUsXYP9+9f7efJP74qi1+fprYMAA7phq7U6fBjp0AE6cUG7X2AjMnCm/TUIImoGjdhIrrVmjqS8LgYHixApSnnlGff+GBi6bYqdO6ufZ0AA8/jj3fTl9Wr3P8nLOmp2RId9fcDDw0kvctZCEK9mwYQPQvj0sGfyUJk5efdU6GabEiRPq23leeol7BQcDTU3ybRoagAceAM6dU+/rppu477G9e5JyUxCtFGOh0WX3cz1hwKBXQi/RuuVjlmPKuik24jzIwInnXgm90C2uGz7b95lin+nt0y0Wa2k4gD2hJhTtzrrGA2Lx7G6XdeE4yT1eGWfDDwjCU5BodxE593ijkasRztUGBwoKuOX1631DuItFu22ZK8101WCNBzhBoMabb3IP+QcPAvfdp9xuyxbufzWr988/cw/eW7cC996r2Kxu3BREX3wxJwbVJh7i463v7bWxN4mRlwfs3Am89hr3vxL2BLvlJOrsC8tbbuFyCkRGqsZwY8oUTpSrMXw4N2kSF6cuagYM4ASSyaTenzCdvxIPPmi/DQAMHqytXbduwPjxQGoqJ2wVuKv9l/ho8Qn1499zDzcjd+4c50GhxI8/AkOGAHv2qN+7ffuqT3QA3HdFC0aj/TYAcM016pMJTU3ArFna+po/n3slJalPnNx/v/2+3n8fGDWK84IZPly53dChQGEhZ5VX45tv7B/zwAHtE4gE0QrJ3Zbr0eOlxKSgqrEK5xrOWdbZE8+8sHrm+2dQXMnVTw8PDEfts9aJ+oXbFopEu1qfjgq1iKAIy3tnXeMBz1rahd4AZGlXpy1nzyd8HxLtLmIw2GaPz821CnaA+59hgIULfUO0C7WUVKQ7HJuvpTa8PQYP5oRebKxr/QCcNfvii4HqatVmlvPUOvGgpY2Wvnr2BHr3VhdvH37IWarHjFFu88svnJV982bOiqhEcTH3sseOHfbbAFxsv734/jNntPU1ejT3xdi0SblNt27cDXv2rN3PVBNr11ot9888Iysu6xGKvwOzgEvteE7MnMn1lZenLtojIjhhbI+PPuJ+SC65RLnNjTdyn/uZM8Bn8pYkAJwwTk3lJoBWrlRuxzDq1n+Am/QZOZILgchVeajv0wfYt8/+pNNFF3HXbf165Tb9+nGfvT3r+GuvcXkiPv9c/cd11izu92XBAuU2b7zBeWsUFKi3I4hWSnGFhr8VGtESF//K2Ffw6d5P8eneTwEAHSM7IjggGKW1pariOTsjG6NSR6H9S+0BAB2iOoi2C0Vwr4ReCDIEqQpyR4Sa0NLukmh3MqbdGbYdsXo2XfHPK5A7KpeEKUH4ISTaXYS3tAtFe3GxvBjmQ3i9jXCsHkmgZ88CrdVS7YjV2w6i89Yy8aB1ckKPSYzMTPttQkI0TU5YXPF//VXdnXvBAi6U4Z57lNts28aJmm3b1D0i/v1v4IoruDAGNQs4b2lXE+28yM7LU5/o2LKFE2979nAC0x6CCRaz2YzKykq0a9cOgy4xoALxMAV0BWAnZwOPnve3vTwR8+dbr4eaaL/vPms7NdH+229AWRnnfaDEhx9a+1IT7f/8J5CejkVpH2PeSRUPhXXruP/VRDuPlmvGMEBKino/t9/O/a8mxi+7jDvP1FQS7YTfIizXlhafhpyROZiQPkFTezC22xkwCA8KR22znZwzArKSslBUUYQGk0JeGUMQPp38KViwFsEOAKdrToMFq6ku9g+Hf7C8P1Z1TFRbXSiCu0R3wcbbNmoeuz2Eot0Vse1M9nhnMBYa8fTmpy3Le8v2Uu1xgvBTSLS7iJx7fFoaZ6wRruPDPH0BoWjn3/Mx+H/95YYDarVmO2j1FootgzQJWnw8WgJDEdgib0ltjtUm7r2GViFojxEjOCEyYoS6aFcTbTyRkdzNXVOj3i4jg4u7thdPrScxMZwlNTLSblML/ASL2YyWsjIgMRG7wSWp6MhC+2eg5/1tT7Q7ir1z6NBBmxeAlr7i44GICHxdcSnm6dEXoP3a6jV+gvBjpPHZBaUFmLRmEtZOXovh7W3DTPj2arBgUddsJyGkhJyROViwbQH2lO6R3f7p5E8xMWMislZl2dR/11IX21hoxOS1ky3LzeZmkRB1Z7Z0oWhnGJlZDo0EGAIs791paZdWA9B6jQmC8D1ItLuIXCK6nBwuhl0Iy3LrfQGppd1o5EKahS79ALdeN3d+PS3VMmLL8kEI2vx7XhFezeEe9r/8ggtP+GMXly39h45eTCSlRTxoFSt6ChG9RY2enhN6e2vAOlFVVMSgW7f2WLhQ0t4RwajX/a33eeo5UaDxenTtCsBeaLiCp4PN5Bvf1t619dXvFEF4ECWBtuinRdg4wdbarCWGXc7NXc31fe7QuZiYMREsWNkJAX474HxdbLmydEIh6s7Ea8Ka52ZWn7JB7hTtVHucIFoPJNpdRE60Z2dznp+8cI+PB955B5joIwkopTHtixYxNoId8J0YfGepCO+K3eAexBt7A4VhwO4L27xaos+OYDH+0RW544Hi4q5IS+uqXnlAByFSj1CEuUPUeDpfgAPtxMkiGezbF4gpU2SsJnqEOziCE+fpsuh1RKRquB53PRGP+gdCuQSHav1pmXzTiiPXTcukoF7WfYLwIEoCTRirLnSHbzQ12u1TTpxP7jUZa/9ei06RnXCy5iQAziVeGC+uJcGbs3Wx7QlRd5Y4MzDW3yhXRDsreOByZ0Z3qj1OEK0HEu0uIuceD4hF1s03+45gB2zd44uK5GPbfSUG31kaBc8jLAs0N4uXvYqCYHGq8oCTQuTBB4Hfd3CeByVOihpdrKR65wvQ0M42WSQDhmEt1RS8en84ep6uil6dReq193fF2JVFKN/H9ZfWgwuxv/JK5/rTjJ4TLJ6erCEIHZATaAAABlj460J8feRrHK22U3FEA52iOgGARbCHBoZi/sj5Did4c7Yutj0hKhLtbhTEJrOdCikqCMcudJXXG6o9ThCtBxLtLqJUp12I1wWiBPFYGaSnc/m7pPhKDL6zCA2HUtHuVUu7Cm6tPCARIgeirZ4HTvelh5XUC8gni2QE7z08IG+js0hlk7ti9z6uvzz9ElITRJtGmmRubPex2HhwIwrLCxFgCECzqVnWMt7Q0oC39ryl2zgq6ytt+ncmuZmzdbHtCVGhC7s7Xc9dsbTvPmX965u1ivNScEeMOdUeJ4jWA4l2F2EY25JvUnxNAEgt7fPmsbKuwb4Sg+8sPm1pV8DXKw+0FtLSbCeqhJZ2wjVcyM9EEIQM0iRze0r3iBK9NZubVfbWl61Httqscza5mTN1se0JUU9Z2p0V7cZCI97Je8eyzCcMdFdGd6o9ThCtAxLtLqLkHu/LSGPas7OBq67iSn4LmTDBo8PSHX+0tMuLSf/3evA1pMkiSbATBOHLyCVf8xana2wrg3g6uZmaEHVnTLux0Gh5f/L8SVGpOa1QRneC8AC1JUCjTNhfSDwQ0VV7Gx+CRLuL+Lt7PD+2pCTbdrxrtr/ij5Z2WzHpW5UHWgvZ2cDkyVzJcIOBRc+eLVi4MACTJ3NfaF+9P/wFf/7dIAhfRC75mi/hS8nN3FXyTVoiT1pqTiuU0Z1wC94QoL4qemtLgP+lA2aZhLiGUGD8he+avTY+JtxJtLuIFtHua1ZduTrtcomjzWb/CFM2GoFFizjX8rQ0WLKt+6OlXRq3npnJnY8vJTJsLaSlcf9fey3w3ntnkJiYaNlGop0gCF8iLT5Nse65p5G64vtacjN3lXyzV2pOK5TRndAdLSLVEQGq1Uqt9Zh8f2YzAs9XAoHtOIHhjNVbS7vGCvlxAdx6fn97bUi0ty54Uav2kO9rAkDqHg8A9fW27Xxt3HJs2BCCGTMMstnWpaK9pUW87A/k53t7BK0X/h5oavLuOAiCIOzBJ19zBgNjsBt/nRCegPK6cqf67xLdBf+45h8+k9zMXe7xelnIKaN7G0BPAapF8GoRqVrFsVYxXnNY/ZgN5Tb9GQDEy/UHaDumlrGFdQZqj8mPiyf/Kf8RAgJItLsI7wbq7+7xSpZ2X2f58kibUl18tvXUVHFbf7C0ewt/D4VwBv4eEE7m8Pjad5YgiLaNK5nKtezL1x93Jm7+xdEv+oxgB8SiPdCg32OuXhZyyujug+gtsvUSoIC64L1qC7f/6S3az9PeMe1NAGy5GmgsA5rOqh9r03AgMgUIilHv78hq63ulNmU/AnFZwPkDdsY2BqgrAUwKbXhOf6++3Uch0e4irSF7POC/ov3QoUCbBGJ8tvUOHcTr/CGm3ZMIRXpbFu1kadeftnYvEYQ74Eu8FZYXuj07fFltGQCga0xXlNaWgmVZNJoa7ezF4c6yas7grvHoaSFvdRnd9RS97hqbkqVaT5EdngzUHlEXlsVvAuGd7bfb+zzAQr3NpqEaLgCA7bcAHcYAYZ3U+/v7JaDmkHpf5zV6lpgbgGoNbf98xn6bX2/XdszzF2rMMkEAq/KbmTEXAAMULtXWr49Aot1FfMk93mjk6nxLY7ulSOu0A/7rHt+tWwv27RMLdz7buloiOn+YkHA3ws/XHz5rveHPuVnmd70tXg89IdFOEK4hLfHmbngRGhsaiyOzjqDfqn74s/RPTfv6smhndfwxJwu5AnqKXjfGXSu6ZjeUqwvZA+9wIrvmiHq7jUOA5rOASeaBWohWoXjgHfttmEAgsht3zhW/KLc7X2wVtGrsf8N+mwErgQ6jOUv795crt7v8cyA4Gij7CShQmdiKGwiABc7mKbcJTeQezEx1QEutcrv+K4Au44HGs8B3lyq3S7mJ+59Ee9vCV9zjjUYullsutlsq3IUx7fy45US7PwjbOXNqMGNGnGgdn239pZfE68jSrkxbvB5kaScIwldxZ4k3pX6F8dlqseDS/X1NtAcYAizv9b5+rc5Cbg894qkPf3IhBvqgtrhrPV3QG8rsCO3L5I8lZO/z6tt5Gk5qa5d0JXcuTVXA6Y3K7bpceKg/tk65zZhfgPhLgMo84NuByu36vQjUnwJOfQdUFyq363gtNwmgJt4TLwdie3PHVCMiGWg3gHOPVxPtgy9MTqiNf9Q3XF/2zjNpJBB1MWAo4e4DpfsjJN763l4bH4JEu4v4Ssm33FyrYOePycd2S0W7XEy7v4r2ceMasXatGVOmcB9EYiKwahWXbX3RIms7f7S0B3rw2+kP10Nv1ER7W5zE0BOytBOEa7izxNv6qetx+2e3o7ZZbLESxmcrZV1nwCAjIQN/l/9tWedrol1YS33pz0vRJbpL2xLaemHPSj36R6D+GHDsC/V+9vyftuOV/QQYgoBvL7Uvxu1NFGy/GWg8Y9/Vu+GU/XEljgRC2gPN1eqx0IM/5ERj/UkunluJ/ssEAlRFtPe5cN3URDs/QRUSry5AU27hrps90Zu1mPtfi8Xd3jG9KXojulrj86UIJ3+0tPEhSLS7iK+4xxcX2x6Hj+2WojURnb8IF+GkxH33WcujCc/JZPI/d3B3i3ZpTHtbg9zjCYLwVZwp8abFMn9z75sxMWMium/rLupfGp8dHBBss43//6mhT+HOL+60bPcl0S6tpX6y5qRTtdQ9ji/Wu7YnjNXcj4W0GwQEx3JuzRW/KrfLm6Xej7kB2LMAYFvUrcWA+nGEDP4ACEkAfhyv3GbACm1W3rhMIPIi+wna3IFWkaoFrWJc6zG19qeljSMTBRFd7Z+3ljY+BIl2F1Fyj5cTxu4kLY1ziRcei4/tliKXiM5fLe1ShHXlhTHtUmuqP5xbUJDnjtUWRSq5xxME4asolXgzwAAz5P+AabHMf3fwOxgLjega01Uk2jOTMkXx2UL3+JSYFJyuPW2J4R7dbbRItOtZC91V9Kql7lG8EeutpV3zeTsHYoDYTCCyO3DcqNzs0re1id7wZKDOTqmuwx/aGdMF+swDkq4AWuqAbdcrt4vL0tafI2gVlnqKWUCbANVyTEcmALQK4wv9mc1mVJ6tRLu4djBIwyy0HFPPyQk/hES7i/DZ4wFxBm65WujuwmgEqqrkLe05MmEkcmPz1+zxUvjrbzQCJSXW9d9LPJr8QaSSaHcv/P0tZ2knCILwJtkZ2RjSZQh+PS62GPZo3wOV9ZVO11SvbKjEpDWTcFnnyyzr0tqnIf+BfFE7oRBfdf0qjL14rGW5ySSe6fQlS7tetdTtoqdl3JEa21rG5WpSOCYQiL8MKLdjrR69jYtvrsxTF+1aGfE50FgO/HCNcpuuU7kJAFMzUDBPuV2XCdaJAnvoLbK1CksHXbhVBa9WHBmbngKY789sRktLGdAuUWxlc+SYfmYd1xMS7S4ivOfMZiDgQniJp0S7MAGdkNBQYPVqq6u4EDkvgNbiImwwWK+JkOeeEy//8AMwbJjnxuUM7naPF36+/jhB4yr8+VNMu/5QTDtBuI5cffXiM67HujNgsO/MPstyeFC4TRuhpT0sKEy0LcggnlH2JdGuSy11e4LcEcu4lkRuWv/gaJkosDcBUHcMCAgHqvYqt2NbgPKf7Y8nMMJ6fL1dm5Xo9ZRVjKuJdh49Lct6W6C1ttMieB2hDYtef4dEu4soxQV7yj1emoCOx2CQF+yOjM0fhRzDKF8TIfPmAe+9B5SWqpfH8yZkaXcvlIiOIAhfpviMbYkmPZLTsWBxvtHq+hwWGGbTRhjTLhXlDMPAwBgskwq+JNpVa6nrlZVcq2XcXiK3of/mYq+Pfqp+UvnPcgnOCnIAs8wfLEMocM0OLmb8lEpiM0A9QZqQ9Me4BGw/aXgw0lP02svkLmzvoNVb1VJNVl7CDyDR7iJSSzuPXFk1dyCXgA6Qj1HnEXsBMIoxvf4o2g0G5Wsi5ehR7n+18njehBLRuRc19/i2eD30hCztBOE4xkIjcrflorCcS7LVbFaP3ZEKU60l4vh67GfqzwCwtaQDYvd4OVEvrH/uS6JdsZZ614HarOP2BPnOmep1ogHg6Bqg7jjQXKPe18+TtZ3U6W+5lxLmBuDrTG198TCBnEVdiYvu0D/pl5Z2erugC4+pl6WaILwEiXYX0SLa3SkA5BLQAUBwsHx7wDYRXU2NfDt/FC4Mo3xNlFArj+dNPFnyzR8/a1dRc48nCEJ/3njjDSxbtgynT59GVlYWXnvtNVx6qXIG6nPnzuHZZ5+F0WhEZWUlUlJSsHLlSlx33XUeHLVnmLtpLpb9skxz+5SYFMSGxlqE6djuY/HSLy/ZCPcAJgAm1vpAwm8f0mUIvtr/FQB5US4U7XKiXHgMtZru3kC2lnplnrqA3jUbaK4EzhWod35yg/0BFC4F7CQ3BwAERnKx17GZQP5c5XbdZwCVu4Czu9X7C+vEvSr/UG4z5meg/WXAuT/Vk8IB2q3UeuIOF3SCaCXQVJOLKFkrhaLdneTkyAuumBjlfaTu8evX22+nBaMRyMoCwsK4/4065CVxFINB+ZqooVQez5sEBXnumvqjV4Wr8OdsMjFt8vwJwpN8+umnmD17NnJycpCXl4esrCyMHTsWZWVlsu2bmpowZswYHDlyBOvWrUNRURHeffdddO7c2cMjdz+OCnYAeGXsK8h/IB/1z9Yj/4F8LB2zFOunrkdmUiZCA0ORlZQF41QjWua3YO3ktejVvhdCA0KRmZQJ41Qjeif2tvQlZ2kXusfLbRcSaGgF9p/j64HSH+y7Z6c9CvSyU3c8cRTQbiAQFKve7srNwNCPgZSbOCuyHIZQLhP64PfU+xq9DZh4gsvUrkZAmLW2txYiunIx5O0GoCUq0/LerWJZcEzRiwQ60cZpBb+03kWLpb2khBNcxcX6x09nZ3OiW5p4LUDlN1k4zu3bg/Hii/JzN44IGWFCPJb1nss5wyhfE3v7yZXH8yZ1dZ67pm3R0i68v6Uu8m3xehCEO1mxYgXuvfdeTJ8+HQCwatUqbNiwAR988AGefvppm/YffPABKisr8csvvyDoQoKP1NRUTw7ZIxgLjQ4L9rlD51pKswmRtTBfWD+8/XAkJiZyVlIAf5b+adkuZ2kPCrAmVfEl93enqdqrvv2i6UDSKAAs8Ntdyu26XSh19/cLym0GLNdW4oyf7NAj1jsw0treU0nhCILwKCTaXURY8k1JtG/f7l7hJdePsEa5FOHY/vOfMDAMC5a1DUJ1RLhIk7950uVcOE5+EkWahG/mTODNN+X358ctVx7Pm5SVee6atkWRKjzn5mZGcRvhOHIx7UYj9zvhjslLwrdpamrCrl278Mwzz1jWGQwGjB49Gr/+Kl9W6ssvv8SQIUPw0EMP4YsvvkBCQgJuvfVWPPXUUwhQmJVubGxEo+CPX3V1NQDAbDbD7II7jdlsBsuyLvWhRO7WXM1tQwND8e+J/8bEnhMdGovc+IMN4kRz0v6EyyGGENXjueO6yB1D8TNQSzDXUgOmYD6Y45+p999jpkVoq7mgms1mICQejCEUjIzgZQ2hYIPacQ+EZrP9vvjzCevCveQbau8rrAswrlD5eoR1caydoH93fQc8hb+fg7+PH/D/c9Bj/K7sS6LdRYSWdrUSWp4Ws3J11+XGdvJkgKxgl7ZTw2iUjyH3lMu5cJz85yEde2am7fKePdb3OTnK2fY9ifAaNjZ67pq2RZGqZmknXEMq2tU8cSZM8MoQCQ9SUVEBk8mEpKQk0fqkpCTs27dPdp9Dhw5hy5YtmDZtGr7++mscOHAAM2fORHNzM3IUZliXLFmC3FxbEVxeXo4GtT+KdjCbzaiqqgLLshZLtV78XfG35rZvXPkGhrUbphhSoITc+JsarMk82CbWps/ztdbs8tWV1ag1KCdfc3Q8jmBoOA5DcyVYM4uGmhqcrY4EY2BgDmoHc2gXGBqOI+G34WDMtpYKFgYArCXKXy0/ZuXZSrS0lMHQACQYQuT7M4SgogYwt4TCcNlPMDRX2rQxB7WDuTYUqNXal7Zr51hfoQBkJgBaANQKj6e1nXu/A57C38/B38cP+P856DH+8+fP22+kAIl2FxE+nCpZ2qV4QsxqFe2dOplQUiIv3IXtlKxkcjXReTzlct4iSIDKfx5S0S4VZcJnx/x8twzLKYRJ0cLCuCoAQkHtrmvqp5OeLiEW7ZTu3J2oeeKQaCfkMJvNSExMxDvvvIOAgAAMHDgQJ06cwLJlyxRF+zPPPIPZs2dblqurq5GcnIyEhARER0e7NBaGYZCQkKDrg6ax0IgWs0oG7wsEGYLwn0n/wcSezs0sy40/Psbq/hwfE4/ExETRPqFhVpf4jh06qvYv3Vc3akvAbL3cYtFOEGxiDaFgxxUCgZAVsgDAgPuRZ7tMAHvxg8CPNypax9t1SAMiEgEkgm2/D6yCBTreElet5ZytfZlZM86ePYu4uDgYGIOkLy1oHZd7cNd3wJP4+zn4+/gB/z8HPcYfGup8uBGJdhfREtMuxRNiVk2ECcc2dWo9li2Lkm3HP2CrWcnUaqJ7yuVceD5KlnZ/iVkWivbUVOBviRHGXdfUV6+HO6GYdvchtbTLlWH0xeSPhHuIj49HQEAASktLRetLS0vRoUMH2X06duyIoKAgkSt8RkYGTp8+jaamJgTLlEgJCQlBSIhtJnODweDyAyLDMLr0I2TRT4s0tQswBGBSLweStMggHX9okPXBMTwoXPW87J2z2x6+mysVM74z5gYwO2bI1y0XMuRfYC66nbOyK8SNMyHxYISiNyqVe+kB35fZDJOpDIb2ic5fLz3H5QTu+A54Gn8/B38fP+D/5+Dq+F05b/+8Yj6Eknu8kmj3hfhpoVgZPLgZixbJK3y+He9tKGclU6uJbjR6xuXcGUu7ryIU7R07ijP7Bwfre02Fn1tbFKkU0+450tJshbwvJn8k3ENwcDAGDhyIzZs3W9aZzWZs3rwZQ4YMkd1n2LBhOHDggCj+r7i4GB07dpQV7P5IcUWx3TYMGKS31/+LIkwuJ5cd3swqxI5X5gGVeegfAssLtSWOD0DQl+hVWwKwZqD8V6BwuXofpZuB8p/U28RYs+RTVnKCIPwZsrS7iBb3+N69gb0XEpd27gy8+qp346elddqHD1dvVyzzXMFbyZRqoickeO4cW6ulnc+Ez9O1q77XtK2LduE9QrXa3UtOjm0YjbcnLwnPMnv2bNx5550YNGgQLr30UqxcuRK1tbWWbPJ33HEHOnfujCVLlgAAHnzwQbz++ut47LHH8Mgjj2D//v144YUX8Oijj3rzNHQlLT4NBaUFoprnQvia6jkj9f+iCOuwy2WP339mv+V91qosvDhkJq4tnGWxfOcJde7/0jkrtlbxW1vC7SNnRWcCgJAEoOG0/X4yngIMQcDexdqOSxAE4ceQpd1FtIj2du2s7597zvsJz6R12pUEG78+Lc12G28lU6qJPnSo6+PUSmu1tEvPQW9PIrXEiW0B4Tm3tJCl3Z3wZRiFeMoTh/ANbrrpJrz88suYP38++vXrh/z8fHz77beW5HQlJSU4deqUpX1ycjI2btyInTt3IjMzE48++igee+wx2fJw/oCx0IisVVkIWxyGrFVZMBYaMbb7WJFgZy6kSkuNSUVooLWmulx5N1cJCRSIdoml3VhoxDcHv7EsF5QW4NlvHlB0VYe5wep2rmZB52msUO6LNXGCPTAK6Hit+kmkTAWS6UeEIIi2AVnadcBgYGE2M4oiSCgq3SEGlFzxTSb5eu3C9iyrLNj49VIrmdDFf+JE+ZroPXpoH7+rSM9H+D+PP1rapWOUK6PlCtLJm7aG8JzJ0q4vcveqtFoGCfa2x8MPP4yHH35YdtvWrVtt1g0ZMgS//fabm0flfoyFRkxaM8liOS8oLcCkNbYx6ixYzB06F0vHLHX7mNQs7bnbxBn4WbCqmdctqFnQDaGcNd4QDJz4Ur2f/suBtJlA1d/AqW/U21K9cYIg2ggk2nVAzrorFJJC0e4Oi6ZSTfa6OiBKJsec1D1eSbDx7aQP29ISaXKl6zwpAuWur7+6xws/S09a2n31ergTsrS3bahuPOEpcrflWgQ7AFV3+I0HN3pEtKvFtMvF2o+y9aAXs+txIK6fujV+yxjgvP04fiSNAgJCtQnyiK6KCeYs2wmCIFoBJNp1wGDgRLo/inY1S7uScNFSIs2Tokd4rbWKdl9FzdJOot1x1IQZxbS7D729QvRGrSIGX8qSBD2hF8UVxYpCXQgLFkVnPFNSQegeH2c6z7mwX+CGxC44UHkA5SagayDwUjww1J5oL/+Re6nBC/boDKC60P4gBYLcbDaj8mwl2sW147IvCwV5RFcS5wRBtHpItOsAL6aUsserxSnrgZJor62VX681pt1f4py1WNpb7JfC9Qkopl0/7AkzrdnjScC1PtTqxgPq9w1BOEpafBr2lO6x285dmeLl4N3jkwOBy/fMAP60/vH5NBJAJGBigYALP431ZiBM7W9Q+izgbD5QtlW5Td9FQI/7gLrjwLcDtQ2UF+RmM1payoB2ifr/MSQIgvAD6JdPB+y5xwtFtTssmkpWwmuv5QSHFHEMOGM3pt0ZfN3S7quCVU206229bO2WdnvCTCnvBN8WsAr/ggKgocEq4OS+V4T/oFY33t59QxCOYCw0oqqhSlNbd2WKl4O3tMcHAAZW/iEigAFaWGBtU3v82nMp55IuQ70Z+CawJzDATom2ztcBoYlWt3c5KA6dIAhCFrK064BcmTFfsLTv3y9vIXI0e7wz+FNMu8nkOxP35B6vH2rCDJC6x8vPiKgJOLK6ugdPeDbIlarkK2IUFanfNwShFWECOi0EGYLckileDmEiOjUCL1+HKV0vJM3LuBk3fXIVDlQeEDn7nzEBcTVv4drkS7QdnOLQCYIgHMZHpIp/I+cerxQv60nRrmQhkiaiI0u7e8blDJ50j/dG9nijEcjKAsLCuP/dabFWK1UIiM9ZKXzCnvD3NTx5fdVw1ivEU54NcqUq+YoYaWm24xfeNwShFWkCOnv0Sujl5hFZ2XJ4i7aGkRdZ30d0xZdlx5HXCOwWvEpawMXiO2JBj+gKtBtg+yLBThAEIQuJdh1wxD3ek6IdkBcY0hJprTGm3V7JNyFKJfO8gbeyx3vis/a0q3mOxMtUWKoQULe089fGnwScL7nyOyvaPeWaLq0bHxVlrRsvFfTS+4YgtKI1AR2Pp1zjjYVG3PfVfUgNBFYmOLZvWnyajeeAJRaft6Bfs8v2Nb6IBDlBEIQLkGjXAXvu8UpCTC+rmJpolxMYWrPHuyLk/v1vz1n7nHGPF+JLot2Tddo97R7v6Vjh7Gzghhusy5mZVmEGiO8RpUR0rgo4PS3f9vpatIjx+1hsT3o2CF3uhw4Vl7Bct866LSkJSEkBbr3Vu94LhP8hJ3CVSI1J1d81vraEywpfmYfA83ss79//8Rn8XxywNwUYYS8rvISckTkX6rZz58V7ElgmHMiCThAE4RZItOuAvezxcqJdT6uYUiI6/gH+3Dnxg77WOu2uCLkzZzxn7XPVPd5XRXtrq9PuDVfziy+2vs/Ptwoz/tg8SvcHb5ENCuKWL7pILPzV0PM7rqWv1hCL7S3PBul1E36+p08DJSXe914g/A9e4GphxdgV+h68tgT4Xzrw7UAYvrsE8TvHwvDdJcC3A/G/yGI8Hw+EG4Bf6oFGpQl6maRw2RnZWD91PTKTMhEaGIrMpEwYpxo9FotPEATRViHRrgP2LO1yolJPq6OSpT3+wt9a6QPn4cPWNu6ytAv7d+a8HLFQupqIzpfCAFqzaLcXY+4O1M5LzdIuJDubs7YCwKpV2gQ7oO93XEtfctfRV135lfCWa7r0uyZc9nfvBcJ7ZGdk4+lhT9ttN3foXMdFr8CKLnrVlnDbGysAc4PsrgYGONMC3HYaGHYc6HEUGFgC3FzTQ5NLe3ZGNvIfyEf9s/XIfyCfBDtBEIQHoOzxOmAvpl0ILzD1tDoqifbwcPkHzj//tD2uHHqJWUfPy159bSmtydL+++/W9/v2iScr/D0RXU4O9znyeEKQaRXtSt4qPPw94sh3Qs/vuJa+5s1jMWWKdfLBm7HYzoZy8J4N/H3SpQvwj39onyhxFjXR7u/eC4T3MBYasWrXKtltQYYg9ErohZyROc4J9v+ly4tyQygntk3qP2rZp4CfGhgALI63MDjWwuK5y5dyruwEQRCEz0GWdh2Qs7QrPdzz4lFPN1Al0X7ypPwDZ5WgZKzZrFynXS8h5+h5OWqhdMbSrmWCxdMYjcC771qXGxrEItffE9FlZwPDh1uXpTHm7kDtvITnv3hxFPr3Z2S3AdZ7xJHvhJ6eBVp+L7KzgfHjrctar6+vZJznEU7MLVzofsEO2N4nwt8Ef0lESPgWfLm3cw3nbLYxYNAroZfzVmoVKzrMDcDmK4BNw1S7yBm9jFzcCYIg/AgS7TpgL6ZdCC8w9XQDVRLtHTvKP3BGR1uX3Z093pnzctRC6YylXSj0fUW05+barhN+fv7uHg9wCb14pDHmnqaszPreZGJQUGBdll4PpftKDXvZ63m0iGatvxepqdb3Wq6vuzLO65U0Ue97XgmtlnbKJE9ohS/3JgcLliuR5i5qDgFQ/7G68qIrycWdIAjCjyDRrgOOuMfz4jE7G7j7buv6Pn2ctzoqufZOniz/wNlLUArWXXXaeVJSHD8vRy2UzpR8U8o54E2Ki23XST8/PfGGaNf7HOyhdl5HjkjbKg/OUUu70chNwghFp5zlW6tozs4G1q61LnfuLP+9UquSIIenM/o7SkCAZ46jJtoffdT63pXfaaJtUVheqJiEzlIizVnO/KG+fcA/gFFfO98/QRAE4XOQaNcBe4nohAgfqrsK8rv8/LPzD4JKlvZLLgE+/NC63KMH98DZsaN1nZqlXQ8h50jiLh6tFkoeZyztcvt4G6XJCp7WYGn3lOWUR+2zra/X3o8jMe1CIS5sP3++7XfBEdF8443W9089Jf+9Ek5gacHTGf0d/fx9wdJ+ySXW97/+SoKdsI+x0Ihms/IMmqhEmiPUlwK/3A7svF+9XeJwIKY3F98uh0xWeIIgCMK3IdGuA864xwNAZaX99oB991kl0c6ywBVXWJfXruUeOD1Rp50nONjxfbKzxaW67MXmOhPT7ouWdrlJCeE95e8x7YBvWdrDVOoTuxLTLhXiPHJC3BHRLLxPlSYcHLW0e6LEmqP3sDvveS3HBJR/E3xlgo/wbWZvnK24LTUmVT1+XC4rfMVO4K/nga96Akf+rW0QEV25hHTX7IL56p2ouGQjzFfvVM0KTxAEQfgulD1eB5xxjweAs2et75UsZFoyqSuJdrMZqK0VL0vHqVanXY8H1EAn77AOHYADB7j3+fnqbVtLTHt2NnDDDcCXX3LLwcHAf/9r/Zz9PXs84HlLu9p5de4M7N9vXWYYVtFF3hFLu5wQB+SFeFoa952WhkHIiWYtot1eFnwp0oz+gD4x28KJALPZ6uauZdJGeI19wdLuDY8Uwn8xFhpxtOqo7LYgQxAOzzqsvLNaVnieuAFAnxxg+03K2eN5K3pEV+5lNqOlpQxol+j5H2GCIAhCF+jXWwecyR4PABUV1vdKwlGL+6yaaK+psS7zfQiPpWZp9+YDalCQ9rb+ZmkXek70789gw4YQyzZhIrHkZLF3AcW0O46ayI6Ntb43GFj07Wu/Hy3XSS7MAZAX4tIEc/wx5ESzFtHuqHs8X2KNJyxM/5htRy3nwnMQtndnlns10e6NyS3CPzEWGjHNOE1xe6+EXorbAKhnhQeAjLnA2B1A8g0WK7rNi6zoBEEQrRKytOuAI+7xQvFYXm59r/SwrcV9Vsm6JrW08/2oPaBqWe8IzvbhiGjXYmmXXl9vWdrlPCdmzIhDTIwZkyeL7w/pOXgipp1PoFZczInPnBxxCS5X8bRoF2I2i6+h8PynTq3HJ5+EIiDAdUu7nPWaXy9FWpc8IMAaxqI0BkA/93h+DDx9++oj2KWWdrn1SsiJdi0eR65Aol0es9mMAwcOoKysDGbJRRoxYoSXRuWb8CXe1HAqjl1Iyk2A4YLbCm9FJwiCINoEZGnXAUfc4/kHUqMR+PNP6/oNG+Tba8mk7qilXfxAyrjsHq/2IOvsQ64jsfBassdLRbu3EtHZek4wYBgWixZxN5FQdEm9INwd0+6u8l9CvOkeL/1OCq9tU5O6mnQkpj07G5gwwXa9khgWis7YWOV27hLt7kBJtGv5/IXnybvVuzvLvVqddl9MWukJfvvtN1x88cXIyMjAiBEjMGrUKMvrCmGyFAKAeok3gItlt1tWra3NChEEQRCaIdGuA45mj587lxNDwgfsBx5Qrs8sRC6TuloiOnsx7Xq4x6s9yMr1ocXN1RHR7mr2eE9a2uU9JxhLuTeppV04Nndb2j1R/sub7vFqol1N7GoJe5HSo4f6dul3gEftOyccf12dfBtH3eOluEMz6OEe7+4s92qWdmk4UVvhgQcewKBBg/DXX3+hsrISZ8+etbwqhVlUCQBAcUWxYok3AFgxdoV6B01VwO4ndB4VQRAE0Vog0a4DjrjHl5QAy5bZrlcSR9nZQEyMdVmaSd1oBD75RP5YWmLa9UhEpyZ6pX1otea21ph2ec8J1uI5IQx1YFnx2Nwd0+6J8l++ZGkXbmtuVr64wnvpySe1xVSrfXfkvgNyY5IiHL9wMk6Iq5Z2d4hSV9zj+fbuznJPot2W/fv344UXXkBGRgZiY2MRExMjehFikiKTZNeHBoaqZ4sHgLN/At8OAsq2umdwBEEQhN9Dol0HHHGP5y2qUnhxJGeFFgqd/HyxYJ80SVw6ToiWmHY9Sr6piV7pQ65Wa67eMe2+kj3e1nOCy1g+bx53QaSWdqWkXHogvQ88Uf7Ll0S7Vku7cL9jx7SFDqiJO7nvgJb9hOMQTsYJcTR7vCdw1NIuJ5KlCfvkPI5cQatob0vu8YMHD8YBvoQHoYpaxvjV2avVBfuhj4DvLgNqDgBhnQGDgpsZ1VYnCIJo01AiOh1wJHu8koUMAJKS5JMthYbKt1eqBy0cg72YdpZV3l8P93jpNq3WXKF7vDSBmBR/co/PzgamTOGSjQFc4q/HHjuLiRM5y5W33OPNZveV/xLiu+7xtgPLyuLu14svtq6Tm2ySS4Sm9p1QKglnbz+paOeTBhYVMejWrT0WLvQdS7teiej48WRnA6+9BjzyCLeclgYsWaI9aZ69BItqddrbqqX9kUcewZw5c3D69Gn07dsXQZKZ1MzMTC+NzPfg49ml7vHBhmCrYK8t4bLD85gagcJlwPHPuOWO1wJDPwZaasXteELiKfEcQRBEG4ZEuw444h4fFqYu3OWs0Eox64WF6g+RSnXapSLXk5Z2rXWphc+HjY3cdVPCGfd4uX3soVdm9V6Cqj+7d7MoK7N+wNJEdM5Y2rWOU2rhlWYy5/vSs/yXULTx97encNQ9nr9P9+6V708tdEDunuInn9LSgD17lPtUQjj+EyeEE3wM9u0LxJQpDLp1U97fW7gS0y68jldeaX3/0UfAZZfZ78toBGbPBo4KjKDCzPNyx5EuS7+TbYVJF34I7r77bss6hmHAsiwYhoHJ07UyfZjC8kLZePYmcxOMhUZkdx2kXn89fTYwYBnAGICQ9iTOCYIgCBvIPV4HHElE17mz/PrbbwdKS+Wt0ErJ3OxZ1aSJ6JRKvrkzpl3at1Y3V6Fob1ApWys9vtbSXI66x3siszogdm+WusdrEbiOjFPOLVsq7vUU7IBYtHnimV94DGmSNnvu8XLu60LUQgfk7j9+LHLJJdX2k+4PAKdOyVchOHlSeX9P4kr2eDlLOyD+bqhNfPLw34WjEq9luZAcNdGuNJ7WzuHDh21ehw4dsvxPcBgLjWg2K/8xnrRmErbsW6Nef/2iaZxgJwiCIAgF6K+EDjgS0x4TA/zjH9Zl3g185kzlmGI5cnPtj8td7vHSRFyOuMdnZwPPPWdd7ttX3porfLi3J9q1lHyT4qh7vJ6Z1dXEt5p7vBbBoBQvPXu2bVutsdR6Ijx3VzOda0Ftcsaee7wa9mKq5a4n/9lKJ0aEXsZaLe3NzfJVCJS8crTi7uzxWiaelGLIhaJdKaZfCP9dUBqT0EtCq2hvSzHtKSkpqi+CI3eb+h9jBgze2fWOh0ZDEARBtFZItOuAI+7xzc3A5Zdz7zt1Arpe8IJraVG2QsuhlNBOiJZEdM7UaZdacB2xtAPW8weAHTvkrbnC/RyxtCu5x/Pwn5Wjot0TmdUBdfd4LYJBKV766FFba7s0pt0R+ISJ4eEMrryyvWaPA+FkjKOiXUupQClqol3sHu/YWJKS1EMH5K6n0vnm58uPSYq9+5RhWIcSOMrh7uzxrljahZ+RFtGuljtA6iWhVqe9rVraAeDgwYN45JFHMHr0aIwePRqPPvooDh486O1h+RSF5YWq21mwiknqCIIgCEIrJNp1wNE67fX13PuwMCAw0No+O5srKcXTq5eyMJGzykuRWtrlYtqdzR4vtDQ7KtqFKAkZYZ/2rIdaYtp5eFHjaEZoPTOrO2tp1zpOJaReAVKPC60IXfAbG/l4aoMmEe2spd3Z8ATh9dTT0j59OifYlSYSHBHtwnwNap/Dd98pb+OrEPhiJS69YtodtbSrfRekXhLkHm/Lxo0b0atXL+zYsQOZmZnIzMzE77//jt69e2PTpk3eHp7PEGAIUN3OgEFKDHkmEARBEK5Bol0H5NzjlZJXnT0rL9r5B0NhciU1S57UKi+HNku789njeUuzI+7xgFi4KVk4hfvZt7RbO7Qn2oNlqulosbTLXW9nM6uriXa1mHYtol1tPFKvAGfd421d8Ll4ai2hAs6KdmfDE7S7xyv3ER5uu66+Xn0iQe6zUjqG8P5WuyarVilvS09vwbp1Zpct7efOOe7NIIeSF4cnLe1K34WQENvfVkpEZ8vTTz+Nxx9/HL///jtWrFiBFStW4Pfff8esWbPw1FNPeXt4PoPJrPwHhM8of9/A+zw4IoIgCKI1QqJdB+Tc47dtk29bUWEV7aGhQMCFSXpeUAiFxblzysfkM33zlrW4ONs2e/YAv/9uOya96rTzlmZHLe16i3ZnLO1C5MYvtaAC4mzTcg/+eiAVCI7GtGdnA1262K6X8wpwVrTLhwow+PtvxwSfI6Ld2fAEre7xTU3KYSL9+tmuq69Xn0iQ60vL+fJt5Cz40oRqQj77rBITJ7qeJ+DwYX2SLSrdW9LqAXJoiWnfscP+vaZU2WHMGNvvLcW021JYWIh77rnHZv3dd9+Nv//+2wsj8k0yEjJk1zNgkJmUCeNUI67sORVgFCzyVH+dIAiC0ACJdh2Qc48/c0a+bVOTVYTKWdqFD6xnz6ofNzsbGD2aez95su32f/3LOkEAAAsW2FoB1RLR2XtA5S3Njop2tYzecm30jGnXYmlXsqAKSU11XrA74h7vjGCYN8/2eHJeAc7GtMuHZrBobrYv+BzNJaB2TC3hCcLrp5Y9vqXFMY+T+nr1iQRH3OOlKN1/7dop78NfSz2swnokW1S6t4SfodLnr8U9fs0a5ycX5K6j9FpRnXYgISEB+cKECxfIz89HYmKi5wfko8wfMV+0zIC7yddPXY/8B/K5Ou1hnYDgC8I8awlwzS7ra3wRlXgjCIIg7OIzov3FF18EwzCYNWuWartz587hoYceQseOHRESEoK0tDR8/fXXnhmkAnLu8UoP2IGBYvd43tIuJ9rVLO08/DG1uMXKxaCrWdrtPaDylmZH3eOFD+WetrRrEe1aXLFdKVfmzph2ALj6avEynxtBOsngrKXdNmEiC4DR5L6uZMF0/JjawhMciWl3ZPKqvl59IsER93gpSvefFLEAZmyOoYdV2Nlki1rc45U+fy3u8cJtjk4u8F5JapNW5B4P3HvvvbjvvvuwdOlS/PTTT/jpp5/w4osv4v7778e9997r7eH5DGcbrLPrDBh0jekK41QjJ9Z5Tm0EGku5Guw9HwfaDbC+SLATBEEQGvAJ0b5z5068/fbbyBTWPpKhqakJY8aMwZEjR7Bu3ToUFRXh3XffRWel4uceQs49XhibLiQsTDkRnfB/QH/RLmcFdMXSzotALZZ2obvvQw9Zt2sR7fYS0ckJW6VzkrtO0vPU4ortiiBScxFWyx6vVTBIxdDGjfYz9DsiRrKzgbVrrctdupgQFMRqcl/X4mWhdExheIK97O1yx7AX0+7I5FV9vfpEgiuWdqX7r7JSvC411fpeztKuh2h3Ntmi0r0lFO2uWNrljqd1coGfKJXm9hBC7vHAvHnzMH/+fLz22msYOXIkRo4ciddffx0LFizAc8K6nW0YY6ER9/5PPIFxtOooWEi+wAff4/5PvQMICPHQ6AiCIIjWhNdFe01NDaZNm4Z3330XcXKB2QI++OADVFZW4vPPP8ewYcOQmpqKkSNHIosPOvYScu7x3bopt5WztG/fzolaYQihVLSrCU6tlnapFdCVmHZehI8fr9yGZW3dfUtKrNt9MaZdLuu0vRJRziLtR5qIzhlLu/R8lCY9nM0eDwDXXWd9/+KL1cjI0Oa+7qylHRDHKD/8sLbwBO0l35Qt7UqiPTtbnBwuI0Pd+0Tr+SpZ8JOTxev+8Q/bvvW2CjubbFFJEGsR7Uru6GqeCo5MLsgl5JReK7K0AwzD4PHHH8fx48dRVVWFqqoqHD9+HI899hgYe6VL2gi523It7vAAV96NAYOF2wRuH/WngRP/4953t80RQBAEQRBa8Lpof+ihhzBu3DiM5oOzVfjyyy8xZMgQPPTQQ0hKSkKfPn3wwgsvwKRi6m1sbER1dbXoBQBms1mXFyt4imtpsa43meSf7pqbWdTVcU+EISEsAgO5dsuXAwUFrOjB/rffWJgFT4/BwazN8fnj8P2owbLAvHnisZlMgNksv6/wfOQoKGDR0ADs36987JYWM3Jz2Qslqazj4Glqkr+uLS3WRnV16tdf2NZkYi/sLz/moCDbsTY3i/ucN0+8Lz924Xqz2faz0PoCzKJjs6y1r+ZmVnSMpiZrW/7c7L2E+wBAQ4Nj964QpWPU1lrbBQWxeO45s43LPH/N5O5XQPmzV792HCyrrb3wem7aZEZWFovQUBZZWSzq6oRjAUwm+XuGlVFq9fXcZ3HFFdZ9vvrKjBtvVP7+Nzaqf5945s0zS8Qhdy2nTRPvJ743+M/Kun39evH5rltn/7qmpFgPHBfH7cOfk9Jr3Tq54wi/k9a2XCiFdfzCe1Hu/hXelw0N8tdN6V5Tus5yvxHS75Zwm/AeEp6L3PfJ2d8ELfeFN4mKikJUVJS3h+FzFJYX2ljVWbAoOiNw+zj8L4A1AfFDgNjeHh4hQRAE0VoI9ObB//vf/yIvLw87d+7U1P7QoUPYsmULpk2bhq+//hoHDhzAzJkz0dzcjBwFc9CSJUuQm5trs768vBwN9ky4djCbzaiqqkJLSzsAITh3rhplZVyfNTVRACJs9mlpASoq6gBEAqiHyRQAIATcg7nYerFtmxknT5YD6ACAE0dlZWWiNg0NcQBC0NRUe6FPK2PGNGDTplDL8mOPncewYbVobo4H/9HX1zdceNCPthlrdfV5lJXxmew62Gznxysdt5CqqmoUFcUotiktrURioq0Jsr4+BgBXwLq8XDgOK/z1r6mJBn+tGxqaUFZ2FmfPhgCw9dxgmBYAYnP72bPWzw0Ahg8HDIYkmM3cmDMyWjBnTg2GDWsEfx2am80oKytXPG81amoiAHAPwKdOlaGpqQosy8JgMKCpKREAf12BioqzANoDABobuXOzR3l5IABrNuLTpyvRrp3tNTaZEgBwrh5nz55DWRlv5rd+1tL7jefkSQMALhlVXV0NxoxpxLJlEXjyyRgAQFpaC+bO5a6ZsAvuswq/0HclEhIcTXfe4UI/tSgrq7XTFmhoaA/+8/6//zMA4OLvCwrE3zeWZXDqVDmAjjZ9NDXZ3jPV1S0oKzuD06cDACQAAE6dOoOwMNOF41rvX57y8kqUlfHna/t94hk+vAzvvReCGTO4+zcsjMXrr59DWBgLwJoso7KyCvw9fvbs+Qt9d7Jsv/VWg6V+e0EBiylTDHjvvbMYN07O9YIbT0SE9VzHjGnAsGFVULgFAAAbNnDjlB6nf/8mAMEXzvsMwsO562I2W397Tp8uR0sLa/ke89+BM2es313hb1BlZTjkfqeE30/bsdpe5717G1FWdu6CxxO33WQS/7aeORMM/lrX1TWA/ywrKs4gNtZ2klh6Ds5w/vx5p/bTkwEDBmDz5s2Ii4tD//79VS3qeXl5HhyZ72EsNKLZbOv+wYBBevsLbh8sa3WNJys7QRAE4QJeE+3Hjh3DY489hk2bNiE0NNT+DuAejBITE/HOO+8gICAAAwcOxIkTJ7Bs2TJF0f7MM89g9uzZluXq6mokJycjISEB0dG2D4COwFmOGJw/zz3kPvJIDN58Mwbz5rEIDpZ/2GluBgICOIHZrl0YTp/mt9i2P3vWgGuuSbIsh4QwNll7AwO5/WJjbYtJJyeLY+dGj45AYmKE6EEsJCQUERG2kwsAEBkZhcRE16wrUVHRSE+HjUiybm8HuUTEQUHCMcqPg7/+QUFWcRQYGIzExEQoGYXCw21v+YiIaCQmiu8F4bNqQUEAgBjJXganMygLx9auXSIaGhgkJCTAYDCgpUVccz4qyjrxEBQUrOmYx4+LlyMj5a+x8D6IiYmVbaN0vKoq6/vw8EgkJsZg6lQDnnySW/fjjwGIj5deM+4eth5TflxaiIzk7mUeoxFYtIhBURHnJj1vHnvBnV54z7GwTogwomUAiI5OkD1WQIDtPdPSEojExETB9xeIimpvOR/h/Wvdru18ExMTMX06MGMGt9yjB4O77oqBNN9mWJj1+kZERCM+XjxJxQtpgDtfhmHx6quxmD5d2TMmMNB6rsHBoUhMtI2/FV5rhpE/zsGD1kmOdu2s18VgsF6XuLgEJCZav8f8dyBSMPcYEWH97iv9mZD/fiqzeXMofv45UZSwkWXFv63CPw0Gg/XAcXHtZT9D6Tk4g9a/g+7kxhtvREhIiOU9ucErk7vN1hgAcJb2nJEXnkfKfwLO7wcCI4GuN3lwdARBEERrw2uifdeuXSgrK8OAAQMs60wmE3788Ue8/vrraGxsRAAf8H2Bjh07IigoSLQ+IyMDp0+fRlNTE4JlUoOHhIRYHkKEGAwGpx+uhHz9dSj++ovrp7mZQUEBMGUKg6uukm/Psgzq6rj34eGMnVh0rvY1T2AgI3ro5frj/g8Otj2XmhpxW4YxwGCQxnIyilZwljXA9UtkQE6OuGSaMDO2ySR/DOEYGxuVx8EwjCVzNjdm22skRH4yRf085e4Ts1n9OGoIu2NZAxiGgcFgAMMYJDHt4s/GbGbw+ecMcnO5ZGVpaVy8sbQetdSbu6VF/vzE7uzybZS+I8I4ee6aG8CyBsE6+8c0m52/v4TjNRqBKVOs9xX/HVy/XhoHLf28xMvNzfKDkft+1Ndzn7/wPm1pMeDzz7ns73/9ZduP0r0uRXrNz5/njmUbd21tZzIxNuOXjptlGRQXQ/W+lXofSNtKr7VSHzU1ojOSTdYpvEf474DBYBBdU+HnrBTT7szv+OLFBhvRrnRdhL8vSt8Tbpv1HJxBj79HriKc/F6wYIH3BuIHFFcUy64PMgRZM8cfuGBlT7kZCIqUbU8QBEEQWvDaU8JVV12FgoIC5OfnW16DBg3CtGnTkJ+fbyPYAWDYsGE4cOCAKPavuLgYHTt2lBXsnmD58khAENPGlx/avVt5nwth9aJEdErYy/DNXwo58S/1trQKZfE6RxJwOcqOHZyoXLrUuk5oqVJKziV8cPd0Ijot6BV+aq9uufDcysrk63dL61NLr6lS1m1n67QD4s+E31dL0jxns8dLEY5drUSfI8dQStinlIgOEAvJjRutn4/c+Tt7vvz3WHp/SMvZ2auyoCVZm717QnqtlY4jtJYr9aml5JuwvUzJcADAunXKY1FCWkVDeq5K42xLiei6deuGM2fO2Kw/d+4cuillWm1DpMXbZixlwKBXQi9uoekccOxCmY3uMzw3MIIgCKJV4jXRHhUVhT59+oheERERaN++Pfr06QMAuOOOO/DMM89Y9nnwwQdRWVmJxx57DMXFxdiwYQNeeOEFPCSsIeZhDh0KhNRix7Lq5dp40R4aai35JpexXIqcqHNEtMsJWleyx2vhH//gROWgQdZ106db3zc3i8vBZWVxy46IdkdKvmmp0662v/Q4ziCur219L2dJFK47etR+/Xhpn4CyaJfeB45QL0gxwPejlqld7piuiHYhaiX6lI4h5/Xrqmh/7z11Qevs+fK/F9JrKuyvpUW9JJrWuvZC5O5xuWstd5wePeT7Eb7XUvJNeKytW+XbL1qkPB4lpFU0pOeqNLnUlkT7kSNHZJO8NjY24rg0BqcNYnGBvwADRuwaf2Q1YGoAYvoA7S/1wggJgiCI1oT3/fFUKCkpwalTpyzLycnJ2LhxI3bu3InMzEw8+uijeOyxx/D00097bYzdurUAkuyxDAPEqIRY8mJaaGlXa88j9xCtJtr5h30epVJHSu7x9gSwFnhRKZxAEIrwrVvlrccnTljbvPSSVczL4Q1LuzP78CgJF3uivb7efv14wDlLuyuiXc6Dw92WdiFKJdLS05VdqjMzbWOkXRXtJSXq11GtZJka/OenZmk3mxmb8ffqZX2fmamtrr09S7vctRbCH6eDIP+bUp9aSr4J28sYfQFor88uJCdH/X5Vmlzy4QTvuvHll1/iyy+/BABs3LjRsvzll1/is88+w6JFi3DRRRd5eZTeJzsjG1ddxMXBBRoCkZmUCeNUo9U1/uD73P/dZ6h/aQiCIAhCA17NHi9lq8SUIl0GgCFDhuC3337zzIA0MGdOjSXLMw/LAr17Az//LL+P0D2et7QrPQyK479tt/P7Bcp8ktrc4xnFY6sdV0jfvpzYVuqjqEhZtH/yia31GAB27bK2MZmsYj4lBSgt5cTD1VcDGza0Fz202xPtcpZ2ubbutLRLhSs/cWNPtIeF2Qp3OZdnrXXa9RLtfJZ9T1raheNVypmQkwPcd5/8/vn5YhduQJtHAg8/duE5dOkCHDmiv6Wdx56l/X//E28XjkPJtVwNufNWy08BAL/9xk2GvPeefD/Ctlrc44Xt4+KAigrb9lq8lIRcdRU3eVFaal0nvbbCMbe1Ou0TJkwAwMXo33nnnaJtQUFBSE1NxfLly53q+4033sCyZctw+vRpZGVl4bXXXsOll8pboT/66CNMF7plgctR42rVFz1JiOCSVy4bswyzLptl3VCZB5zNAwzBwEW3eWdwBEEQRKvCpy3t/sC4cY0YMED8JGc0Ap06KewAYM8e7n97op1hAGHooKvu8XKWdrNZ+UFULlZZDrUk/LyoVBLtJ07IH1/OogxwLuINDdw1fPllA/btC7SIRgAoLxePXYovxLQrWRvlRKNQMHTqJH9dpC7Pnohpt+ceryXkQi9Le3Y2cP311uU+faxWZbVjSK+lI5Z2fr3w85k6VV3UuTpJoSbat28PxiOPiH/OCwudPx4g/xlmZwOvv25d7t0bePZZ6zJ/XyjdW466xwvbDxwo337uXPn1SqSk2Pbd3Kwt9r4tiHa+ZnzXrl1RVlYmqiPf2NiIoqIiXC/8wmnk008/xezZs5GTk4O8vDxkZWVh7NiximUlASA6OhqnTp2yvI4ePerKqelObRNXdjIiSFKBhbeyd5kIhLT38KgIgiCI1giJdh3o3Fm8PHGi9YFUTiTyIio/32pllXuA7dIFeOMN67Kj7vF6xbTbE7VqsbS8qBSORSj4OtqWxXYA2zJyfKilI5Z2Z0S7Kw/vSsnn7Fna4+KA9evFy3Iuz1pj2vWztNseV4vrs6PXXWmMRiOwbZt1+amnrNdEzSVdeo84asDLzAR+/NG6PHAg8Oijyu0ddY8XetTW16uL9v/+NwwMo6+iVPoOXXON9f3WrcCwYdZlOdHuSiI64b7JyfbHowUlbxylCQUtYR+tkcOHDyM+Pl63/lasWIF7770X06dPR69evbBq1SqEh4fjgw8+UNyHYRh06NDB8kpKSlJs6w1qmrgyCZHBAredljrgyCfc+4spAR1BEAShDz7lHt9aaGqyPuiFhio/rK9dC0tpOLmHweZmYMsW6/L580BqqtU9PCdHXbRLLYeOWtq1usdLRWH79sDZs1zfM2dyAuq556zbheJowgTg1VfV+1dGrhQX97+rlnZ7ItaVmHZHRLu4BJy4vNsNN8jHKHs6pt1Tlna58RqNYndtALjtNs6LJTtb/Rj8WAwGFmYzo+k6Cdm7V1zarakJUPD0BWAdi9ZrHRRk/ewGDQKuuEK8XXi/nDoVoJibwhEc9b4wmcTXWA9Lu5JIVvoddfS7qDQZKQxVacvu8UJqa2uxbds2lJSUoEnyBXlUbYZKQlNTE3bt2iVKLGswGDB69Gj8+uuvivvV1NQgJSUFZrMZAwYMwAsvvIDevXsrtm9sbESj4A9f9YVYNN5TwFnMZjNYlrXpg7e0hwWGWbcdXQtDcxXYiFSwCaN8YqZHafz+hL+fA43f+/j7Ofj7+AH/Pwc9xu/KviTadYCvu85TWioW7VKLN8/x4/IPiTy1tVwSNiG8dyAf4929O7esXu+dQ6nkm96W9ptu4s7tyy+Bfv24dUqW9v79ObfiNWvsDl8GFlLhzl8Hd1va3eEez4uDkBDrhIs42Zi4H6XcRp7OHi93X2kRZI6Kdrk+5UqQ8ckP7Yl2fp+QEO58lNzj1XI+CI/d1MT1pQQ/Fi0Wd6NR/Lnt22fr7i48tw4dTDh+3HXhrkW0SydehJ+L3KSZo4nolCztSvexs5M/0vNrabF+fm3ZPZ5n9+7duO6661BXV4fa2lq0a9cOFRUVCA8PR2JiokOivaKiAiaTycZSnpSUhH379snuk56ejg8++ACZmZmoqqrCyy+/jKFDh2Lv3r3o0qWL7D5LlixBbm6uzfry8nKXYuHNZjOqqqrAsiwMBquDYlV9FQCgpa7F4ubfruhtBAOoSZyK2nKZJAxeQGn8/oS/nwON3/v4+zn4+/gB/z8HPcZ/XkkUaoBEuw7U1IiXr7zSGuctzVAtJCXFGtMu9wBbW6tcQooXDCdPcsuOiHbb7PHy7V1xj+cFJd+3Ukx7czMXg6wm2hkG6NrVOmEh2CI7FqNR+ZzkrpMzAlzPRHQ8/HVUEu3Sc1IS7XrGtBuNnDAuLrZ6d2Rni0W7yWSbiM4dlna5+1Ct3JtcHDhg/U7yY3FWtPPH4mlq4iz8SvCfpVo4CY9Ud0gnCIT9AcCECQ147TVJZj0n0PIZSidn5ES70r3laCI64b5K1036GfP3rFJWeSX3eKXjtlXR/vjjj2P8+PFYtWoVYmJi8NtvvyEoKAi33XYbHnvsMbcff8iQIRgyZIhleejQocjIyMDbb7+NRQp1/p555hnMnj3bslxdXY3k5GQkJCQgWi35ih3MZjMYhkFCQoLoQa3B3IDkQCAtvAaJgceB2qMwnPsVLBhEdJ+AiPhEp4+pJ0rj9yf8/Rxo/N7H38/B38cP+P856DH+UDVhaAcS7TogLE8GAAcPWh/u1D6b2lrg8GHuvVq8uhIsaxXAvMVeDUdj2pUsUlKkD9MM45holxt7RAR3fQDOWp+XJ3aFjooCQkPZC4nnxOp14ULg/vvlx7p6te06X7S0S9c5ckw9Y9onTbKKRd67Y/1679RplxN/aWncuOQy6iv1HxUl7o//jjqaiI4/ltDSrlbZiR+PFtFeXGx/HMLz69+/GYsWmTFvnvWPSPfu3G+RI2i537RY2rXEtDtqaVfyUBC2538jlCY7hX2qiXaliTU/9ehzivz8fLz99tswGAwICAhAY2MjunXrhpdeegl33nknsoWxOnaIj49HQEAASoUp+wGUlpaig7A+oApBQUHo378/Dhw4oNgmJCQEITLuLgaDweUHRIZhbPqJNVfj1xQgbLc4yz0DFsyWK4HxRUBEV5eOqxdy4/c3/P0caPzex9/Pwd/HD/j/Obg6flfO2z+vmI9x+rR4WfiwqCbaT50CNmzg3is9wGot76rlHnDG0m40AiNHqvcrFSH//S93bsJjKbnHC+NIhWRlWd/z4QfCZ8RrruFL59leoKIi5YdrPru8EE+Ldnsx7VpFu56WdqV7QFqOj3c9t5eITouVVg9Le06OckZ9pf4jIqztAOv1VhLtSkiFoT0x7oh7vFwZM+nnLRWZl18u3h4ba/84UtxtadcyaaN0H2mxtMuFS0hRi2m3N862ZGkPCgqyPFwkJiaipKQEABATE4Njx4451FdwcDAGDhyIzZs3W9aZzWZs3rxZZE1Xw2QyoaCgAB1dy16qK2GmWoQp/e01NwCNvuEeTxAEQfg/JNp1QE18qIl2LVYkew+J/Pbt29XbCdtqrdO+dy9ntVIIObQgDQ84cwb4/XfxMR21tAvHxIt24broaL4+ue0FSk93TFS7klTOGexZ2oVx9+6Madci2pVcz/WwtDt63eXaZ2cD//qXeN3773MJ+tTEsfC8eNHu6HewRw/g3nuty/Ys7Y64xwvLqAHyQlR8vW2/x85MLGmZeJF+hsJx8N9tb1na5cIlpDjqHt9WE9H1798fO3fuBACMHDkS8+fPxyeffIJZs2ahT58+Dvc3e/ZsvPvuu/jnP/+JwsJCPPjgg6itrbXUYr/jjjtEieoWLlyI7777DocOHUJeXh5uu+02HD16FDNm+EZGdpPZhEaThi8zQRAEQegAiXY3s3evtnZKD/K33qpt/08+sd/GbLa1rPPr5Ni61b7VCrBNxCeE3/dCEl8AYsGnJNqFVk++f6Hwj4kB5s2zTUQHiLPqa8HTol3O0m40Anfdxb0XhlsI7wutgkE6iaTF7VvpeklFKO96bi8RnTti2pVio6Ulo/kSYEr9nzghLp1nz9KudC6rVwO9elmXm5rU77v8fM6D5OKLldvw3HCDeDk1FbjzTvE64fm1tMhPsDiKo5Z2Le7xSp+bo3XatVja5TwUpCi5xytNkLVVS/sLL7xgsWo///zziIuLw4MPPojy8nK88847Dvd300034eWXX8b8+fPRr18/5Ofn49tvv7UkpyspKcEp3kULwNmzZ3HvvfciIyMD1113Haqrq/HLL7+gl/BL50XqmlX+8BEEQRCEzlBMuy4om9fUBK0QpQfSbt207a/FW3HHDttJALWY9jNntD2k2nNFNRrFSaGqqqzvm5vlvRH4eHbAeg3PnbOuCwnhrKyhoWY0NBgQGMg9XHfqxFlZX3nF/riFY/QkUkGwYUMIZswwWASyUDx6O3u8kuu5MDeA2WybiM7d2ePVvAT4dkr9NzcDU6ZYl52NaTeZxJ9PU5P6OX38sbZJML5vIcuXA/v3i9cJj20y2d4fzghMaZ9ySK3lzmaP1+Ie72j2+Jwc2xKAUrS4x1NMOzBo0CDL+8TERHz77bcu9/nwww/j4Ycflt22detW0fIrr7yCVxz5IfcwfI12giAIgvAEZGl3kQ0bVGo82UEoupQeSLWK/uRk+20+/9z2QVXN0t6+vbZjq5Gfzz1EC8WA0GLe0iL/8C50ua+v58Z59qx1HX8evGDkXaT5eGWtlmNhX55CamlfvjwSDMPKfg7OJKLTM6ZdaJEODOQmYCZO9E6ddiVLvpJbuJp7vPA+sFra5WdB1M5Fmv3f3r2kVUhL+5GKY8DWPV7atzMCU9inlrrojlraHXWPV3JTVxpPdrZ9aztljyf0oLa51n4jgiAIgtAJsrS7gNEIzJgR5/T+mZlA796c1dJV0X733bZxsFJOn5a3xik93A8fzp2jowitid9+q25dbG62L9oBLlZWKNr5yYamJk5o8aW2+HNROl7HjtYyeTzeFu2HDgUq1td2puSbnjHtwuR/sbGcYAfsJ6Jzh6VdSfApiXYtNdoB++7xahZhRyztjqBFtLvD0i5XglCKFku7lph2LSXfnKnTHh8vn31f2ieJdlv69+8PRmP207y8PDePxrepbapFhQloYIFQuUtmCAVC4j0+LoIgCKJ1QqLdBRYtYi5YSDWmeBfQqxdnhV66lBPtSlYkraJ91Cj7bTp0sBXhR44EKFqmzGbOgq81UXBUFHce6elcoriffgLKytQfdJub5c9dKtrr6mxFu3A/ae1tuYkIgwF44glAUMYXgPcT0XXr1oLCwkDIhVm4M3u80piU4EWt0Qj89pt1/fPPR+K55xgkCkoSu9vSruRCLTyGWv/CiSRfFO3SfqQWbWkbOdHuqqVdSwy5J2PalX4jp03j8hSkpXHu8fZwxdI+fTo36ccfy4GqZ37BhAkTvD0Ev6GmqQbHWoAxZ7vip1s/s20QEu8z5d4IgiAI/4dEuwsUFcEhwS6sPR4dzf0faOcT0CratZR8693bNqZ98+ZQGAzyqvrzz7kEWFoZORL43/+497fdxv2fkMBZ+JWEu5J7vPSBWk60C0WW1NIuJ1gYRv46ORunmpXFWfQcfYCXis85c2oUPTbcFdPuTNKyxkZrHWwh585xmQSPH1ceA49e2eNddY93l6Vdrwkgxy3ttu7xnrK0C/fRwz3e0ZJvfC36ggLu3uSqSijjSkz74cPcufHHWr++dQn3HC2zHgQAq3v8+cA4oN0AL4+GIAiCaO1QTLsLpKcDDGP7ZBwWZi3bJbQ+8kId4LKfA/KZ04XoIdr5iYG//pITeix27VLet7RU2/EB8bnw4xkzxr6lXYt18vPPgXnzrMtFRY6LdoNB35j2ggLObZ9/gNcaSiC14o0b14hbb7WuDAqyfmZCoSLNP+CKpd0ZgdfUZK2DLYeWbPTucI931NJuMIirLWzZwv3/3//Kt1eLpZaKXHe5x9uztLe0aHePNxq5CaewMO5/pftWSwy5L7jHC9syjH3PID3c4/ljLVyofix/59y5c3jvvffwzDPPoLKyEgDnFn9CWOKijbL5EFdzfk/pHmStyoKx0IlYMoIgCILQCIl2F5g3j3ON54U7L2Z69ODiKgHg0Uet7YWiXaulvVZjrhs10d6lC/e/vMWbEWVzlyKsqe7IGPhr0acP8NpryvsoucdLeewxQFANCN98wwl5AAgIYBEUxL13xtK+dq19ASOHsw/wcm7eQutgc7N1vTSmXXhe9izt/LnKiR1n45+11MEWjkHtuHq5xytZ2jdulO8nJAQYN866zN//Qk8OIUrjlIZoeNrSLhWZWhLR8Z4S0gknObRY2qWTCfzvhZx1XVpuUi/3eCEsK863IIej7vFKE1AsK66K0drYs2cP0tLSsHTpUrz88ss4d6F8h9FoFNVTb4sYC4146ZeXAAAsWBSUFmDSmkkk3AmCIAi3QaLdBbKzgffeO4u+fbmY6q4XwteioqwPvJGR1vbOiHY9Le1JSfKWdt7qL0d4uLbjA2JLO38clgUuv1x5H62WdjmB+sor3MqQEOv5O2Npr6x0zmIuRPgAbzRyYQUGA/dKTRX3KWcxLigQD4wXN0ePivfTcq34NvxnJ+f27Wym8bQ05ckCLf3pVfLNnmg3Grn8BUr9iM+fkfwvxlcT0Ykt7YymiRjeU0I64SSHlph2Ryzt0vHobWkHuHPhvW6UUPqNcLRSA8PYd8X3Z2bPno277roL+/fvR6igLud1112HH3/80Ysj8z6523LBCH4vWLBgwGDhtlbuekEQBEF4DRLtLjJuXCN272ZRXw+89Ra3rq7OKpT4EmQAROLYk+7x/DGuv17e0t6vn2BJ8gCvtU688DjC8ZjN6uegFNMuRU6AHDrE/R8crE20K1nahcdw1uWVf4DnLZlHj1oti0ePiicD5MSn0jPwjh3W97W14mtlz9LOi3a93OMBLnbfW5Z2R9zj1dz45ZK2qaHmJu7NRHTS7PFaJmLkPCXUKjvIoWZpV4tplx5Hr5h2Hn4ygp88VYIfh/T499xj/Y7auz/4Y7XmEPCdO3fi/vvvt1nfuXNnnD592gsj8h2KK4rBQnxDs2BRdKYVu14QBEEQXoVEu47wFp76eqto9yVLe79+wAcfiLddfnmj5SH3ttu4MnS8+L7uOqBTJ23Hl45BaGlXc/G35x7Pj11OgPFJ8uQs7XJCRMnSLsRZl1f+AT43V7kNPxkgJ1zPnLF/jHPngDhBvjp7Me2OinY+1lmt3bhxXPItuftWeK97Mnu8nKVdzY3fUdGuNh5H67Q70rd02dHs8XLnL+cp4aql3V4iOqUYcun58PffmjW2+xqN9n8LMzO5du3bq7fjx7Ftm3j94cPc5NrcufY/x759uWPxJRBbIyEhIaiurrZZX1xcjISEBC+MyHdIi7ctucKAQXr7Vux6QRAEQXgVEu06IhTt/ANvVJR1u5xo94SlnY/3ZllOiAtJTjZZHmL79uXK0P3f/3HLF11kf1JBiJJ7vNo52HOP54WgnACZPp1b6Yh7vL0s+3Iur/YEXmys9QFerT40PxkgJz6FYlwN4QQHnzVbCt8nfz/y96IwAdmgQeJ98vKssc5ChAIKAKqrubAQuWd2YZ9arKiuZI+3J9rtufEL97cmk3Qs3bpcTLv36rTbZo+Xu2/lPCWUJjeciWlXs7SrxZBv2BCCKVMMKCgQt9u3T75igRz5+dx3UMvEHAD885/y25cts/0eSPn119Yt2AHghhtuwMKFC9F84UZjGAYlJSV46qmnMEnLB9KKyRkpdrFgwIAFa7OeIAiCIPSCRLuO8JZNYWI3oXu8XPZ4T1razWZ5axz/EMv3wf/Pss6Ldr3c43nR/uCDYmF7xRXA0KHce62inWHUH+iVXF7tCbFrr7U+wCvVvAeskwFy4vOSS9SPIcfOnfLr5Szt0gRke/eK99mwQRzrzLN4sXiZN7zJXV8tMcGeco+358YvHGvHjtz/fOk3rXgypl2v7PHZ2ZynBP9dio9Xz5ov14dwHLNmAUuWWJe//56bGLqQaFw0DjVL+/LlkWAY1uZ427erhzo4Az8OYYlCKT/8oN6HlqR4/s7y5ctRU1ODxMRE1NfXY+TIkbj44osRFRWF559/3tvD8yrZGdnondAbABBkCEJmUiaMU42YmNHKZ3IIgiAIr0GiXUd4y+aFJLsA7LvHe7LkmzT7OCAW8vyDsVAA81Z6R8fgiKVd7QGY91To2RO45hrr+uRkawiCXpZ23r1WakGzZxEWHkstxpXfJic+U1K4/+WTBcojvM+EyFna5RKQCSkrkxdo+/eLl8+fFx9DiDTGWg6paNdafkzap5ql3WTixOnTTyv3xQtegwHIzeVOvEMH5fZK4/Gl7PFaKwJkZwNjx3Lvb70VuOEG5XHITUIIj3PsmO0ESkEB52ouba+WiO7QoUCwrO2NX1mpvWKBVvjx8FU15KioUO9Dr8kZXyYmJgabNm3CV199hVdffRUPP/wwvv76a2zbtg0RwtnoNoqJ5W78jbdtRP4D+STYCYIgCLdCol1H5LIWC59thJnA587lBIo9S7ZWEeCsaGdZxsbSzotGs1kf93h7Me1aLO11dbZCjRftjiSiUxPEeXmcYNea5ZpH2D47G3jnHfH2zp3FkwFy4pMXfw8/DKxbp348nthY+fVylnZ7wicxUX599+7i5cmTuXORu75KJbOECM/9wAHO+r9nj7bs/Y6WfFPzXhCKdv47WlOj3F5pPJ6q064le7wjFQH4+81efL+ci7yal4PcOiVL+4oV1s+6W7cWQZiClXbttFcs4NHqHn/LLcr724uLb+2W9ubmZgQGBuKvv/7CsGHDMHPmTMydOxejR4/29tB8htM1XDK+DpEOzvYRBEEQhBOQaNcRaXm0gACuFBzPxx9b3x85wgkUJRdnR9Eq2uUeqNUs7fY8AYQ44x5vT7TzMbLPPSeuu20y6W9p58epFnsrh7T9lVeKl7/9Vmy9l7O088cICuKEv9ArQ4n+/eXX833ydcePHJEv+yZE6MUgZPhw8fKhQ9x9y9fjFuKopX33bvE2e9n7HXGPl45HaawMY/3eqk0uyeFOS7sz2ePtWdqFXg2bNinvJ0ROtDuaxI9v//nn4vWnT1snaebMqZG1tA8erL1igaPjuewy+e0sa3vfS2ntlvagoCB07doVJr1u6FZGQ0sDzjWcA0CinSAIgvAMJNp1RGppDw4Wu5cLLUC8QJEm+nIW/iFcDrWYdrNZPabdkWc2Z9zjW1rUxdVff3H/m0ziXAFCS/v/t3fm4VFUWRt/q7MSsgJJ2PddCAgo4gZKFJRRJIjIoCgqjgsfKjAioxAWFUREVFxQVFwYUSAiMygOoLiBokAwCASJQFAgYcvGkq3r+6O43VXVtXZXd3Wnz+958qSruurec2vpqveec881mj1ez9PORJv8hVzvGMjrkgtkufBR8hizOtm5EncAjR+vXG+LFsrrWVniDiG5jfLj0L27clnyDNvsutUT7UY87QqJqTWz95v1tGtdV0qe9vPnzQ2ctjsRnTx7vJanXZ7TgB37/fuNj/1nov/OO423A3CXP3eu53ccB8yezWHIkEqsWOF50bRrJ3RiiWe9MJJMUgt5x17Hju4cIw0aCENV5B0Mcuq6px0AnnzySfzrX//CKXGCAgIAUFRRBACIjohGcmyyvcYQBEEQYYGJ4GdCj5gY6bjhmBipaFfycmslQzLDQw+pf6cdHq/taTcj2tXC45m3XAk9T7saTqdbDBsNj9fztKuJdrOedrloly9redrZuRLbGR2tXK+RDO1qxMRIhbeacBOPTRZvq7S9WU97QoK0I4aRnq68r5po98XT7nB4RsgYJZgS0dXWcpqednlOA8b27cY87Uz0K5UhR74NK3//fs9ted4940JWluf3bF8WCeJwCENmlDp8jCKfpz01FejXT8gmf+qUEKGi18a67mkHgEWLFmH//v1o2rQpWrVq5TGOffv27TZZZj8f7foIAFBVW4Wei3siu382srooXMAEQRAEYREk2i2E44RweCZSlTzt4pdBjhO8pX/8YU3dai+aeqJda0y71supvE618HgmhqOjPb3Ovoh2s+Hxep52NqbZDk87E39K89KrZTVXs8vI8TQ67VfLlp5iS9whI8Zs9ng14XXokCAS5SJOLTzeG0+7ODze25xa8jHtlZXWhMf36AHs2eNZl1Z4fE2N9jlVy2lQWmpMtKuJfiUyMgTxe/iwsMzKb9cO2L1buq3SFItKbRB3aul52vWQ/0ZEREg7boy0MRxE+y233GK3CUFJzp4cTN041bWcV5SH4Z8Mx6rbVpFwJwiCIPwGiXaLiYtzi3YlTzt78WX/77pLO+O4UbReNL31tGuFx0dHC2Gk4uzieuHxiYmeWZn1sserYZen3eFQF4kMeei4lqf9hRc4PPVUukuYs+vF3572Nm2EObAZatfP3XcL+QQY7LqNjPQ8TkY87eKhEmp1snHtctFuZXi8PzztJ08CK1Z4V5aYvDzPY/Puu9Jp1AD97PHi5Y4dhYR/chITjYl2oxncW7QQ5ku/6CL3Orbf5MnAPfdIt+d5YNo09YKZbex8R0bqh7+bDY8XD5EwSl0Pj6+pqQHHcbjnnnvQXCvNfhgy85uZrnnZAYAHDw4cZn0zi0Q7QRAE4TdoTLvFiMe1y0X7I48IXqjYWPf0YgMGKJdjds5orRdVb+dp1/K079zpKVDUwuOZUGPjRsXozdOuhreJ6IyMaZe/kIvtU0rM54un/dgxoLKSc3mdd+5028pQm3aPlSOfNu3gQeXtxdx7r3RZTZD16yddTk0V6lPaXtxONSFoZApDtXHtVobHK41pN0ttLXD8uHQdS/7nC0rH9sQJz2Mq9bRrh8dPn65cV7duxsa0G83grnT/sc833ijdluOEOeNZkkal34GCAul3ERG+e9rl2ey96bip6572yMhIPP/886ip6w31gn0n9rkEO4MHj/yTKsk4CIIgCMICSLRbjFi0y8Pje/cWvFDnzgn/hw1Tn1JNnHXeCMx7D3i+XJudp10cHq/mMXU4PG3Xyx6vJNr37gW2bVOuQ16fWFyJPe1i0c46IdTC47Ve+I2ExysJl02bpPOMmxHtACf5/5//eNaj5WmXJxjLywM2bxa+HzFCeT/Aczo0NZEtb8uoUcJ1q7S9eFsjY9rVUAuZtjI8np1jcfZ4szidwNGj3u1rBWYS0ckjndnvS9Om2ueEZXc3msFdKRGk2pRvPC/ttFSKUvjyS6F+M552ozayMsnTrsy1116Lb+SZKAl0bNTRYx0HDp0aaozzIAiCIAgf8Uq0Hz58GH+KMqht3boVjz76KN6UT1AdZuTkuMdxAoI4FwtZJSGjNqWa3NOuN/Xa22+7vfgtW0q/057yzXOedrEAVnO0OByeNqmFxzMPtpJo18suf/PNwv/bbxc6PRjCmHahErFoZ2X64mnXC4+XU14unWdc/p6rFR4v59gxz3q0RLt8rLH4/PbooV6PfE5yNUEmt/3MGfVEdOJt1dpoJPM3zysPGQnG8HilKdEChVy0a3na5d+1aaO+n5j9+4VrGgCWLtW3SUm0//STcC2yOjnO/dtx2WXuudqffVb55pw1y5yn3Wx4vHhMuzisX4twcEDfcMMNeOKJJzB58mR89NFHWLNmjeQvXMnuL/1xYqHy8vUEQRAEYSVejWn/+9//jvvvvx933nknjh07huuuuw4XXXQRli1bhmPHjmG6WixmHYZ5PMUcOOB+IQWURbtRT3u9ep5CS8xNN7nHi8pt8SV7vJZoN+tpNzL3uJyuXYE1azwTcaklomPfqU35ZsWYdjVYtIPcY6jtaZfStKlnPVrh8VpjjdXEPiB0NIhRK0Nu+5kz6iLPyJj2yEhtoduyJfDii9J57ZXK9DY8nnUKiMPjIyOB6GgeVVXmXLi1tcK5sUu4y7PHayWiUwutV7tXxGWwHANa00rK6xGX+dJLnh1L7Pzt3w+MGOHAkiUxrlB4Ofn50kR0avY6ncZC57XC443OBx8OnvaHLkxJsmDBAo/vOI4L2zncs7pkISE6AeVV5YiOiEaXRl2Q3T8bw7oo/GgRBEEQhEV45WnftWsXLr30UgDAJ598gm7dumHz5s1YtmwZlhpxx9RBmMdTzqxZ7s9KYseoaNcLlxe/rMpfXMUC2sg87UbD4+Wedm/GtOvBBKvcFvGYdnEiOratN552I+HxeqKA5z1DpuWiTln0Cidh5EhhyUh4vNOpPdZYS7T74mk38q6uJuz1vKDJycqCXV6mt552FgYtzh4PAHFxBtWaiNpaYdo6u5BnjzfjaWf76nnaWTli4ayFkmhXWhav5zgeCxbEuzzxcjp1kobHq92D8s5HPRuVwuOLirT3ZYSDp93pdKr+hatgB4Blvy5DeZXQ69mhQQdM7z+dBDtBEAThd7wS7dXV1Yi5EL+9YcMG3Hwhhrlz5844aucgTxtR83iKE2opvRwbDY/3VrSLw0m9yR6v9nIaEeHZ4aAUHr9vn3se5rVrtdugBBPtSp52pTHt7DtvxrT//LPwX8vTrjdMgeM85xmXC1+l912WC+HKK4X/RsPj5WONjYh9wFO0qwk3eYfD2bPGxqV7O6ZdKQGdUpneetrZfSUOjweAevXMi3an0/MY610f/kLJY26VaGc5BnwR7VrwPIeCgkg89JDyTtnZ0vB4NVFu5LoUb6fkaT950lgZ4eBpJzzJ2ZODOz69w7W8+/huDP9kOHL25GjsRRAEQRC+45Vov+iii/DGG2/gu+++w/r16zF48GAAwJEjR9CwYUNLDQwV1DyeYgE3e7Y0XB4AvvpKuTxfPO1iO8QvuUbnaRd75r31tLMy/vMft/Az+kIsRku0u8PjeUs87cuXC+fHW087CwHOzJSuN+Jp79xZ+K80T7uWaM/Kkobjt2wpZATX2g8w72ln51YrPF6M2jZ6DjqtObvVvOvyuth2SsKKtUMcHg94J9rFU76xzgC7HJBK2eO1jhGz+5tvhN8uNcQ5BsxEWBgV0EIdPNq1q0H//sKyuEPwmmuEyAsznnY95OHxERHmE9GFg6cdAL755hvcdNNNaN++Pdq3b4+bb74Z3333nd1m2cbsb2eDg/vHWTzdG0EQBEH4E69E+3PPPYfFixdjwIABGDVqFHpcyHi1Zs0aV9h8uKGWXfnQIffnI0fc2ZgB4f8jjyiXJ85CD3jvaRcLVaOednF4vLdj2s1keGb7Ke3DhKfZMe1qol0vvF2c9IphdEx748bCOZWLICNj2lkdSvO060359re/udc9/zzQoIHw2UrRnpIi/DcaHu+tp10pAZ3Svt6Gx7NrzarweFZOo0amd7cUvezx8mPE8jeUl3tGgohp3Vq4pocNMyZU2Xkx62kfMKDSdZ80bgw8+6zwuUUL4b8RTzur25t52s0mIwwHT/uHH36IzMxMxMXFYcKECZgwYQLq1auHgQMH4t///rfd5tlC/sl8mu6NIAiCsAWvEtENGDAAJ06cQFlZGVLY2zyA+++/H3HepmIOcbKyhDmHH3rIPS4yLk7IIC9OwMSSOmVleWb+FmNleLxYhGuNe1XKHm/G067m7dciLk4Yx3zkCNChgzDHuFjkqnnai4uFafMAYOFCTpIxX9zOiAjpy7yeXUpjd42K9okTBXHD7GIYCY8XJ9qS16PlaVcqn5VlZSK6Bg2EucJ98bTrCbkrr1Qfzw6YD49XShDH5lW3IjxeLtr/+st0EZahJNrVwuM5TvhdMsJLLwlJLgHvw+PZPch+6yIjpWVxHI/XXotHs2bCzvIpHMV1W+lp92XKt3DwtD/zzDOYN28eHnvsMde6CRMmYMGCBZg9ezb+/ve/22idPXRq2Am/Fv8qWUfTvREEQRCBwCtP+7lz51BZWekS7IcOHcLChQuRn5+PtLQ0Sw0MJbKygClT3Mvnzyu/SLNxu1qZv61KRKc3pl0scP2RPV6P2lp3HStXegpetUR0e/YApaXC56NHhSnhGHLRLrbJiF0bN0qXN20SpqyqVw84fVp9P1b2+fPS9UbC4+Wi3Wh4vLx8cUeLGdGuJnis9LRrdQABwpR54vnutfb31tPOjjPLX+CraGfl2T0qqLbWMzxeTbRHRxv3hKtFN+htLy6f7ce85k6n9PrmeQ4cx+OddziXfeKORnEZWvO0m01EpzTlm1HCwdP+xx9/4CbWYyPi5ptvxoEDB2ywyH6mXT1NskzTvREEQRCBwivRPnToULz//vsAgJKSEvTt2xcvvPACbrnlFrz++uuWGhhqJCdLP8tfIFlSJ0A787fY0x4VpZ/gyoinXW2edvl+bPtNm4Ddu5Xr+/xz8+HxSuvE3srISM9QcDVP+4USXW0Qly1OyiW3Se+FvrISeOop6bqZMwVBef68toeNHT+559uIp118DMRlAfrh8WLRPnkysHWr8PmXX9RtlSd8MxoebzQRndI2avuxNpeWSue7lwt3K8LjGSwpIscJ9WzfrnKQNdizx33st20zvbvXKM04UVNjPDxe7XpSQryfr4noWGeWctI8DoWFwmctT7vWPO1GQ/OtCI8PB097ixYtsFHegwkh+WwL1gMTZmR1ycJNHYWOjAguAhnpGci5LYeyxxMEQRB+xyvRvn37dlx11VUAgJUrVyI9PR2HDh3C+++/j5dfftlSA0MN0WgB9O3rDokHpEmdAPVx8IDUsx4Vpf8iqhaa7s2Y9u3bhf9yb6yY+fONhccPHOhe16qVZzk1NdLx3OZEu7QdDDOedrk3Wny+xG0x4plUE+1mPO1KY9rNeNoPH3bbysYFK8GEPcNIeDzgm6ddTbTLBZB4GIlamd5mj2cUFwv/z50T5gmvqDA3Rzsg7VRgUR+BQEm0Kw19UevYMJPhXlyGr6JdnNTQ8x7j0ayZ8DkmxjtP+1VXCZEaP/2kbaPSPO1mw+Ofeko7KqQuMGnSJEyYMAEPPvggPvjgA3zwwQd44IEH8Oijj2Ly5Ml2m2cbjeMbAwBmDJiB3AdySbATBEEQAcEr0X727FkkXJig+H//+x+ysrLgcDhw2WWX4ZA481oYIva0d+0qjHPPyBBEeEaGO6kTIITTXwhY8EAs2qOj9b2bn33m/qzmaV+8WCqiAeV52tes0a4LAH7/3Vh4fNOm7nVjxiiXxTxwkZGeZRoV7XJPu/iFXLyNkbH2RueYliMX7cx7ZyYRnVJ4vDy/gbwctURiZpIBGvW019YaGw+tdL2aSU4nHkaitL8ZT7vScUhNFf6XlgqCETAv2u1CyVNeU8N5nEOtY2SULVvcQ0PEQ1DU0Moez+7z+vXl0xTy4HkOw4cLK6OjpUN0AGOe9t27hTpYkj09G8Vj2s162v/8UzsqpC7w4IMPYvny5cjLy8Ojjz6KRx99FLt27cLHH3+Mf/zjH3abZxtllWUAgIToBJstIQiCIMIJr0R7+/btsXr1ahw+fBhffvklrr/+egBAcXExEhMTLTUw1BB72mNiBGGemysIndxcz0Rbw4crl2PW0/700+7PctH+xx/C5+JiTwGp5Gk/ckS7LkAI7dea8o2VJfZ2LlumXJb34fH8hbp4iYfcjKe9dWtlz7rWshryMe3sVpCLaiVBoxUeb8bTLsZMBm81UcfOmXhaOa0IDLltRupQEqHiYSRK+5sR7UrRE9dc495GPEQkFFDytOvNty4+XmY6cxYscA8NKSjQ396Ipz0uTujMZL+VjRsDb799Gj17Cst6iejM2K9lo/g3IjJSOweEGuzamj07tK4howwbNgzff/89Tp48iZMnT+L777/H0KFD7TbLVsqrhB/AhBgS7QRBEETg8Eq0T58+HZMnT0br1q1x6aWXol+/fgAEr/vFF19sqYGhhtjTruYhFaM2vlTuadcTYGKvpFy0y0Ohxcjnac/JMRb+/K9/CS+ramPplUT74cPaZSqFxzOBIk9E16qV2zvWqpVgNxPoWqJd/sL/8MNyr5/3nnZWFxMnTLQb8bSLow2YrQy1a0QrSzpgPLIAUG/jqVPCfxZODgBlZfrlmfG0K02XJh5GorS/mfD48ePd0S7svurQQfgfFcU87cGJkpBUuh6UsseLEUdHmBG94vvB6H2glDtDXmZWFnDLLcLy//0fjxtvrHTdN3qJ6IwmudSyT1w2+93zdpw6zwtJResKp0+fxiuvvIIyhRu9tLRU9btwobzygmgnTztBEAQRQLx6/bn11ltRWFiIX375BV9++aVr/cCBA/Hiiy9aZlwoIva0GwlJVfKaAZ6J6ORTNskReyXlQlor47nc0z5zpr7NgPuFW2zL7NnuMFFmg1i0K41pF6PkaWdCWO5pT0wEOncWPi9axGPYMGlIrZJol3cyAMD117vHfnOcIO7kwzUffVTbboY8PF5NtCtdF2fPCv9Z+41kj9+3TztsmeeNew/NeOXlc7wrYcbTzsbLixEPI1Eq04ynvV8/d7QLu2aYQGvUiHnag1O4K3X8eeNpZ9cXYM2wCS2UEs2JYfeJuJMNcN83Yk/7+vXCNc7uSa3weDP2if8fOiREPHk7hEApKiSUWbRoEb799lvFqLmkpCR89913eOWVV2ywLDhgnvbEmPCOKiQIgiACi9evP40bN8bFF1+MI0eO4M8//wQAXHrppejM3orDlPh492fxi7IaHKecGErL064U7iv2Soq/i4iQdiTIkXva1TxGkZFSmyIiPL3yf/3lHt8p97RHRgoeTy3MiHbxdHTy5G1mPO0OBzBokPC5SRNB3PXuLd2mVy9tuxnsODLxcSHtg6Hs8SxE20x4fGWl4KFnwx/kPPecf0S7kfB4M9njlYSp0nztauHxep528TXFjiu7dhITgRUrnGjY0Lxi69HD9C6mMe5p95zyTYx4nLeRSBqGN6HoRkU7+8/sYecrJsY99WNZmXCNX3jE4ORJ68LjWb07dnhfJotEmDYtODt9vGHVqlV44IEHVL//xz/+gZUrVwbQouDC5Wmn8HiCIAgigHgl2p1OJ2bNmoWkpCS0atUKrVq1QnJyMmbPng2nt+6KOsLq1e7P77xjLEGR0ku41pj2VauAdu3cy5GRUpEjD4+//HL1up1OTuJpV5uGrn176bLD4emVF2f9ZmUwL3NkJHDDDVK75CiFx2uJdrVx4FpTvsm9dA6HWzQycS0Pky0p8bRVCbaffEy7kfB4hpnweIaaQMrMlLY/IUF/jmsjPPaY/jZm5mkXX+uMnBx3AjSWodtbT7v4+LHjwb5zOIRQ7dGjDWTXk8E6ZZSyoVuFGU+7llAWi3Z2fRrBDk97dLR7Sj65HQUF+p52ccepEvLw+NJS79oJeCYXrQsUFBSgAxs/okCHDh1QYCTBQR3FNaadwuMJgiCIAOKVaH/yySexaNEizJ07Fzt27MCOHTvw7LPP4pVXXsG0adOstjFkyMmRJpY7edJYZmGll3Ct8Hh51nn5/nLR3rGjet1yTzubhk4uQh55RPpiq+aVZ1m/5eHxkZHAhg3u7Ro39txXabyqmmivrfXMuK7kaZcPFVDytDPRyESDfKow8XhuLeTZ3M0komMoCXS1IRR6yI9nx47q4sSMaGFeTy189bQPH+5OgMYydO/c6f7eStEuXm8GFkmjJ5h9QenYsPnMxdTUGPe0q802oMSDD7o/a0XsiFGafk6Mp6edk9gVEwMcO6a875kz+h0kF1KsaNon/i/OQ2IWpeSioU5ERASOaGQjPXLkCBy+jlEIYVzZ48nTThAEQQQQr5687733HpYsWYIHH3wQGRkZyMjIwEMPPYS33noLS5cutdjE0GHmTOXM4/L5puXoedp37gR++036vdL0akrLel5A+Zj2rCxPTz4A3HijZ8I2pc4ANr5THh7vdAIPPeTeTumdUEmcWhke762nvajI0y4l5KKdeWK98bSLRY+3oj0iQtr+5s0BtaGoaqLTSDJFJcx42pXqkCdA4zhg40blstSmOtMS7ewcs+s0IsK86hbnIfCXp10pPF5p/nk977beNGhqiIcAiCNltNCzhR0r+bRuVVXCFzExyp16gHBPWT2m/dJLfSuvrnHxxRdjtThkTMann34atglna5w1OF8jhKqQp50gCIIIJF69/pw6dUpx7Hrnzp1xiqWbDkP27VPOPC6fb1qOkmj/9FNpGfK5sdWytit9pyUolOZpz8oCPvlEup2ScJRn92ZCKzvbU7RXVkrtkB8npenYxDbJs8frhcebGdPORGN1tbDfzz9Lt2Hja/Vg9rHwYzXRruWFtFK0yz3tDoc7gaAcNZGVluZd3Vqedvn1riTale6jEyfcy8HgaWf3ZGpqYD3tStTUGE9EZwa1IQl6+5gJj5d3dkVHA2qzil10kX4HidpsCgxmG6u3Y0f9JJnhxPjx4/HCCy9g0aJFqBWd9NraWrzyyit48cUX8fDDD9tooX2w8ewAedoJgiCIwOKVaO/RowcWLVrksX7RokXIyMjw2ahQRWk8uJHMwkqi7IsvtPfR8rTLE9Hpeabk87QDnh4+JVGTlSXN/N2hg3t8pzw8Xu9FXk2YWp2ITsvTDgidFW+9Jd1GLuLVYPbohccb8bSLt7HK0x4R4Z4mT46a4GNJ58x6krWyx0dFSc+DmqddvtywoXL5dofHN2okRKf4w9tuNJGgcH+pG+Ctp10cdWJUtJtNRCefujAmBrjkEuk+9eoJ/1u10v890+ugUJqnfcEC4bO/IiZCieHDh+Pxxx/HhAkT0KBBA1x88cW4+OKL0aBBAzz66KOYOHEibr31VrvNtAU2nj06IhrREQZvToIgCIKwAK/kwLx58zBkyBBs2LDBNUf7li1bcPjwYXz++eeWGhhKZGcLY2+Zx1nsedZCL9GYEkY97Xrh8UqedsBTSEVGKr+Ix8e75/Jevx5o2VL4rJQ9Xku4V1UJobjyY6U1pt2sp11p3nKOk7b16aeV7TNCba3QafHXX8Lyq68K/8142tm14C9Pu5poVzsvbHo3s55krXnaHQ7BNnZclISpkqf96quBFSukZSlta0S0y8PjIyO9D4+PiRE6sBo1Ao4fd5drhffdqKf95EkH3nhD/XtvRbv42jU6j7kViejk92mrVsDevcJ1oyes9dqqNE87GxY0a5YwFMnbOdvrCs888wyGDh2KZcuWYf/+/eB5Hv3798ff//53XBrG4wmYp52meyMIgiACjVee9v79+2Pfvn0YNmwYSkpKUFJSgqysLPz222/44IMPrLYxZGAvfhkZwph0o5mFvRHt/hrTzjDiaQc8506X28Be+lNSpAnulGxiCceU6pXPQ22lp13c1v37Pe0yCrOf2XX0qPD/9Gn3NuLjrYRcyIjXmUXJ0x4To3zs1UQWa8tbb7nD/cUebzW0PO0REdJrXkmYfvih+3NqqnAfiRNae+tpl0eAyL2+ZmDh8cx+cdZycV4HXzCeU4DTTJi4fbt39ftDtMvHtMvD48XztDNYB4mRyCGjnnZxJxIg/H7n5gqzfhDCFK4vvfQS1q5di88//xwLFy4Ma8EOAP/Z9x8AwMmzJ9HjjR7I2WNgehiCIAiCsACvU/o0bdoUzzzzDFatWoVVq1bh6aefxunTp/H2229baV/IwV78zp0znlnYn552vTHt8uzxDKOedvELcoJoiJ/c056Q4NmhIbdLKWu9PJyZ4e2Ub0pj2jnOLdzbtPFso1G+/lp53L44zYOeB5LtLxal3ibeGjRImguBla/kbdfzCo8YAfTvL3zOytKvW2tMu8OhL9p793Z/HjdOuI/Uxlf74mlnx9abaAZWD7NffP1/+aVniLc3iDuU4uOFe0c8JEWK+o1uZOpJJcSi3Ux4vJHs8fIOKnF4vPw+ZdexFZ52eXi8/P4yOiSBMM+rr76K1q1bIzY2Fn379sXWrVsN7bd8+XJwHIdb1JJyBIC1f6zFk18/CQDgwSOvKA/DPxlOwp0gCIIICOE7b0sQ4Y1gMONp1xJ98nnaGUqedj3RLhfIgFRYyzs0lMpTSlAHKIeYezPlm9qxYsLLl/xKJ04ot8nouGDxvmbmTVdj717pdHWsrUqiXa+++vXd51cv0RegnT3eiGg/fNj9mXlg5WXKxZd8vb+zxzOUPO1Wzd0uvg+vuEK4dwKpW/Ly3J+tDo9X87RHR/vX0y4Pj5dHspBo9w8ff/wxJk6ciOzsbGzfvh09evTAoEGDUKwzp+bBgwcxefJkXHXVVQGyVJkXtr0ATtQxxoMHBw6zvtGZHoYgCIIgLIBEexCg5GlftUoY4x0bK/xv3lz6vZanXZ6IzipPuxJqcz4rzdMuRyns24yn3Zsp35Q87YB7ir0BA4BrrvG0ywgNGigfa/FxNSrajXo1tZALJ3YszHrao6OF88fOoRHRruVpj4iQXg/i6Q0Z99zj/symO5SXyY6RXYnoGEqiXZ5PwNeyAc/rPBB89537s79Eu3xMu92edjORT1Z0roULCxYswLhx4zB27Fh07doVb7zxBuLi4vCOxniE2tpajB49GjNnzkTbtm0DaK0nf5T+AR7SC5sHj/yTOtPDEARBEIQFeJniirASpZfErCxpGHLXrtLvxS+aakIU8P+YdjWUPO1yEhKAkhLpPmpCUy4UhenZOEnZ3o5pB6RztbPwY4fD3Ev55ZcDn33mud7pdCfZGzxYfX+xbf4QA1qedi2RVb++8F+tA0UJXz3tf/7p/rxunRDeLS+ztlYox5vweH+IdvFxNSIujSC2i7VDvVweWiHy3iAe2mGkswYwn4iuthZYuzYGX38tLM+eDdx2m2eZgDWdIWpj2hlmPO1OZ2A7UUKVqqoqbNu2DVOnTnWtczgcyMzMxJYtW1T3mzVrFtLS0nDvvffiO3EPkgqVlZWoFPUkl5WVAQCcTiecPvyoOp1OtE1qi72n9kqEOwcOnRp28qnsQOB0OsHzfNDbqUWot4Hst59Qb0Oo2w+EfhussN+XfU2J9iydwawlYgVGGMZIeLz8HBsNj1eb/5yh5mmX22T2xdSIaK9f3y3aOU4Y556dLe2sUBPt4mW5B3LUKKCgQPgsTgLncABffSUt57//Be68UyraL7znoX5995RnRmjXTkigdscdnt+xJHXiBGvyTgomjgH/iHZvPe1y0W5EvIlFN8NMIjo5s2YB8uhYa8Pj3duY7axhIo9NS8bKs0LMiQW6mqc9MpJHTQ2HiAhrIjTEJCcDJ08Kn9WiauSYTURXUAC8+WYKcEEM/fWXewo2OVYMO1DKHi+GPO3Wc+LECdTW1iI9PV2yPj09HXv37lXc5/vvv8fbb7+N3Nxcw/XMmTMHM2fO9Fh//PhxnD9/3pTNYpxOJx7o/AAe2fyIax0HDjx4TOgxQTfE326cTidKS0vB8zwcIdrLFOptIPvtJ9TbEOr2A6HfBivsLzcjLGSYEu1JSUm6348ZM8ZrY8IVpZdE5pllAlZtrLf8s3xZ7SWXCUY1T7sSZqawko9F1wuP79xZGOeuto1cjIgFRGSk4IllQlGcAV78PlhUBEyaJC1nzBhBlIpFO7ufzN5XNTVST7pYlLMke3Pnur/v1g3YtYt3za8tFu2+iC/5lIMMb8e0s7BvM+HxW7cK50TcAWMmEZ2c/HxhTLcYrfB4cbSFMU+7+0A1bw4UFurbxGD2i0W7VZ52MWqe9n79hDD22lr1Cr2dgq5HD3dHl1WiXe5p374d4Dj3faB07TKs9LRbMaa9Lov2oqIiTJ48GRs3bkRxcTF42QmptbqHSER5eTnuvPNOvPXWW2jUqJHh/aZOnYqJEye6lsvKytCiRQukpqYiUTy9iUmcTidGcCOw48wOLN25FA7OgW5p3TD96ukY1tlAtlmbcTqd4DgOqampIfmiDIR+G8h++wn1NoS6/UDot8EK+2OVxoQaxJRof/fdd72uiFBHSbQzz+yqVYLwUQsbB7wb0x4ZyULMlT3tSph56Zd72pXCj8XrxKJe/MKuZpP4ffG//wX+/nd9mwoKPMUAxwleXCVPu1nEc8cDynON//67e3nbNmDgQPe4YfF14IsYaNJECGvu1AkoLQUOHhTWW+VpNxIeDwjHVSza5fO0M4yIpE6dlMPjAeXweLGNZsPjzQh2wH3tiH+HrfK0i1HztBupx6xgj40Fzp8XriWG1aKd/S8thUuwM9T2t8LTbuWYdj/qVtu5++67UVhYiGnTpqFJkybgfDjwjRo1QkREBIqKiiTri4qK0LhxY4/tCwoKcPDgQdx0002udSykMDIyEvn5+WjXrp3HfjExMYhR6AV0OBw+vyByHIcujboAAO7IuAPv3fKeT+UFGo7jLDkOdhLqbSD77SfU2xDq9gOh3wZf7fel3TSmPQhQ8kIzbxMTPlZ72iMiBOFixtOuhdhLrFSWnqddLqxY+LKRscZz5nCGPIlnzigL6fx8oGdPYVnsaTdLba3bC83aL+8gaN/enVhNHiYuPka+iPZZs4B77xU+9+njFu1WjWk3OrY5X5afyZfw+Oxs4PPPpeu0PO1qop0dA3l4fGSk79nj7fK0f/ONxRUB6NUL2LxZeq7NiHat65cNiWHXU2IiUFrKS4S7Pz3trFyrxrTXVb7//nt899136Ml+HH0gOjoavXv3xsaNG13TtjmdTmzcuBHjx4/32L5z587IE09dAOCpp55CeXk5XnrpJbRo0cJnm7yhqla4IaIdNMUAQRAEEVhCs5ujjqHm2WGCEtAe066ViE5tTDvbX21Mu5o9ashFu+e4W3Ub5N/LOx204Dge+/YZ8yTWr+95rDhO8OJa5WkXzzUtF+w8Lw3P5zhpu8WfffHgicWj0rH0VrSbCY8HhOMqxkwiOrHXumtXYZ52o9nj5REPRuZpNyME5dekkmj3h6ediUnPyBrvOxzUYOdcfByt8rSzYSysHd27M0+7sJNWB5wVnSHyYUEUHq9MixYtPELifWHixIl466238N5772HPnj148MEHcebMGYwdOxYAMGbMGFeiutjYWHTr1k3yl5ycjISEBHTr1g3RNs3L5xLtESTaCYIgiMBCoj0IUBPtTFAC2p52b7LHsxdVtXnajZCT4/58+rR02aynXfy9eL2eaI+KEo6REds7dVL2tGdnu4XXuXPee9pratyCtn59YWhDaqqw3LChcHzYmHeHQ7BZzdPui2gXi3KlYRRmx7R762nPzlauQx4eryTaW7Z0f05IEP57Gx6vdG3Jw+ONJINUKg9QDo9n59dXlBLRycuVh5ZbAbtGzHjamX033aR9/bLp29ixb9YMWLLktOs4tm0LiJKMS7CqM0Qs2ik8XpmFCxfiiSeewEEWquMjI0eOxPz58zF9+nT07NkTubm5WLdunSs5XWFhIY4ePWpJXf6CifaYSAPhQQRBEARhISTagwD5eG72nwlKQHtMu5ag1xPtZjztYnJyhDH3jOpqYZkJdyOiXbxOyRsq/6xERASPadN4Vc9c797uz82bA598Iv1+xQrBi8sEw+nT7pf5557TrluO2MMbHS2dtu/UKWDGDGH8vWC38F/cbqvGtIudUFZ62s2Mae/WTTiuYsSeTfH1oSTaxXNtM7GoJtqVwuPFCRDlOR7EbVCb8k1LcKuJdrGnXVy2VTAbA+lpNyPa2TET521Qgl1/7o5DYMiQSrRqJSy/+64wfaISVg070BLt5GkXGDlyJDZt2oR27dohISEBDRo0kPx5w/jx43Ho0CFUVlbip59+Qt++fV3fbdq0CUuXLlXdd+nSpVi9erVX9VpFZa1wE5CnnSAIggg0NKY9CBCLtQ4dhERYnToJgp0JH/nLoZYgMJqIDgAKCyNcL+Zffw1ccokxm2fOVE/qlpXlaZ+ZRHRmwuOjooT6Vq0SplpjXjxG8+ZCwjdm34gR0u/Z8WVe0hMn3Ns+8AAwZYp2/WLE4fFRUUIHxuLFwrLTKSQXvP9+aRv94WkfPx6YP184LkY97Vqi/b//FdpiJjxe6Z1eHB4vrk8pkaZYtLOZmtTC47U87XKvqfqUb+5CLr5YKGPPHuW2ystkIk88U0GPHtaPaRd36IkJFk87O6Z6EdWtWwv/2fXIzqM4j4Xa75tVnnanU31MO035JrBw4UK7TQg6KDyeIAiCsAsS7UGA+CVxxQphvnI5YhHTowfw+OPuZb0kdUovuUzUCC/lwkv/lClCojTmHdaar1ppHLl4DL4v4fFaSfbUysjKEsbGbt2qXodSWWwd85YePy78T0gQEmSZQRweHx3t2bEhnspKydNuVSK6gwfdMw9Y4Wk/eVIo7+abhWUjol3JfrUxxP7wtK9dK3w+d046faIRT3uTJsL+334L9O/vaZtc1MXECJ0ab73lXpeX590Ua1qojb+fO9eJJ56w1q2v5GnX60gyes2yISNiT7u4fC1vuvy79HSguNj8sRYny6Mx7crcdddddpsQdLjC4yMoPJ4gCIIILBQeHwSojedm5OQIwomRlyd4ldUwEh5fUcE+STM2z5qlbQujY0f1pG7ssxiz2eON2CCUy4s+a9fBjovYs8vslIv2xETpGH0jiD3t0dHqHRtiW3wV7UrnVjzzgBVj2lk9P/4ofDYi2pUEnjgcWXxclESSOAT/8GEh9HzdOuU65Lbv2wf83/+5l9n0iTk5xsa0s2Oq1mGkFB7POmgYVgl2ccZ8Zo/8nA8aZE1dYpQ87XoYzQsg73yQe9q1MsTLv3voIWGeerNYFR5fl8e0A8Jc7KtWrcLTTz+Np59+Gp9++qlf52cPdig8niAIgrALEu1BgNKUVGJmzpQuM1GmhjxJndK27AVZXq54mi4twZydLbVDPgbfl+zxWqJd7uVUE/sMpYR98rHHgFu0s/B4npeO2TeCeEx7VJR6x4bYVrH9W7YIXuGcHONiQE0csnOp5GmXT8WmVY74e9ZxxNqoJdKUOgG+/Vb4v3On8Ce3S42aGiFEvrRUul4tPP6nnzwFNOvEUJvyzeFwF6KXUV7J0250BgOzsOnRAPXweDPh3EYxO1MAACQlGdtOHt3ArhWxaFf7fZN3QnKcd+HyYk87hccrs3//fnTp0gVjxoxBTk4OcnJycMcdd+Ciiy5CQUGB3ebZAoXHEwRBEHZBoj0I0BOe+/Z5rhMLBL3M8kovwEreJLGnXM0WBhtHnpEheK4zMgSxycaIWxUeryfaxWOR9cbNs3K1RPsffwj///rLcxs95J521rHBEIfKM1sOH3Z/z/Nur7CRZG9iu+Wwcylvf04O8OabntsXFmrXw3FAo0bCZ3GSNzksrFre6ZCTAzzzjPCZ54GzZ6V2eYOap72kRH3ohpHweDVxzFDytCt10FiNWmeC/J5QO55mjjPb1oxoN9p+PU+71rh1uaddbfiPHqtXAxs3Cp+ffloaVWPG0y6OhKhrTJgwAe3atcPhw4exfft2bN++HYWFhWjTpg0mTJhgt3m2QKKdIAiCsAsS7UGAXni8lsdWCSOeqIYNPdeJPeVqtojJygJyc4Vxw7m50mzhcvv0BLXR8Hj5C7VaeLnS/swmpfBwJn69EesM+Zj2rCwhRwGja1eA5XZidv3yi7QM5hU2KtpTUjzXiaMe5B0g8jBuRl6eeh2svGuuEZbFyfbkJCcL/+VCWq1ewHrRnpSkPnRDbZ52X8PjlSJPrEYtPH7oUOkKtfv2vvuM12V2ej8AKCtT/y4+3v1ZLtqVxrRrJaKT/77p/U4pMXq0296//pLOfPHZZ8bLeeAB88NoQoVvvvkG8+bNk2SKb9iwIebOnYtvvvnGRsvsg6Z8IwiCIOwiaET73LlzwXEcHn30UUPbL1++HBzH4ZZbbvGrXYFALzxeLRSd4Y2nXSmUdeFCqfD25mVYyQbA+/B4Pa+i3vh3s552X5B72gHg1lvdbXM63QkE2Xbi8GeGeBo+JcRj8o8d8/y+ZUt31IO8/Wph3FqCq1kzobzu3aW2K51Tdl3JPe1a4eNqAk1P+KqFx/furRzhkJ2tnj1eHB6vJ7yVwuOVIk+MzsRgFGaPPPJGPtxB7b6NijLeQcK2M9p5pLet+PdGPkTETHi8XNB7Gx6vNnxCPpWlkXLEeUDqEjExMSgvL/dYX1FRgWgz4Qh1CBrTThAEQdhFUIj2n3/+GYsXL0aGUtp0BQ4ePIjJkyfjqquu8rNlgUEvPF4tFF0NI6JdqZ7rr9ffxij+SkTnOabdeHi8EU+7GkY8p/Ix7Qx2PvbudQvesjLhHCpNjaY3R7h8Wjv5vsnJ7s4XuafdmzDuZ56RdgCIPaJy1DztWvWqiS6lKAIxt90mHEN5Xa1aAU88IXzmOOnQDX8logM8I0+aN9e23wjiY8bs+f576TbyKd/Ucg1ERhq/p70Jj9fqaBKLdjVPu5FEdDt2eB4Tb0S72vAJrYgQtXKUckTUBf72t7/h/vvvx08//QSe58HzPH788Uc88MADuJlNJRFmVNcKPxwk2gmCIIhAY7tor6iowOjRo/HWW28hRe8tHUI229GjR2PmzJlo27ZtACz0P2rjucVohaJ742lXerE3EtJuFKvGtMvt1/K0G80eb1a0c5wwDZgeSp52QH3+6tGjhSn25HVpiR89gaKVTNDh8Bxnz9BKqMXaoteBAqh72tXqBdRFUrNm6jYBQEGB4BX99VfpeqdT8LYDwFVXSe8XeRuUxrTrJaKTX2dqTkd5GLdZWIeD3C7xTBJKaHnajd7T3oTHayG+Hr79VprJ34ynfeFC4OhR97IVnna23KmT+YSC8jwgdYmXX34Z7dq1Q79+/RAbG4vY2FhcccUVaN++PV566SW7zbMFmvKNIAiCsAvbRfvDDz+MIUOGIDMz09D2s2bNQlpaGu69915D21dWVqKsrEzyBwBOp9OSP57nfS4jMtKtmDjO+H5ueNl66Xcc56nIxAnc3EjLF4cMS+vTP35SG4T65NuIyxd/L69XbKvYsw4IU74p7ec+nrzks9PpRGystHyn04k9ezyPEdt3xQonJk/WTxP90088HnhA2Ke4WNxeZRVw/jyPLVvc6iEykkf37jxWrvQ81vI2uJGWzXE8OnVy1y1uv8PhxC23OPHaa+ZSXkdEsOMr3U883R4jIYG/YLP0fN9yixP33ee8YAePuDjxvsr2JCZqqychrJnHxo3S7WpreZw9K5QZHc3Lrjl5XbzCev7Cva1sl/wajIpSvgfEx175ftNmxQontm8X2yCU27ChdllqdUVE8Ir3iBLsN6OqSn376Gge8utPDXFHUnk5j+HDga1bhTpqagCe513CXqhb+dhzHI/du8X3tPJ9r4cgzHlXmTwPTJvmRMeOvOS8qewtKWfaNOueBcFEcnIyPvvsM+zbtw8rV67EypUrkZ+fj08//RRJRqcKqGNQIjqCIAjCLgzOrOsfli9fju3bt+Pnn382tP3333+Pt99+G7m5uYbrmDNnDmbK50wDcPz4cZw/f95wOUo4nU6UlpaC53k4vM2mBaCyMg5AIgDg9OkTiIgw+vLWGABQU+NEcfFxUXnu7yorz6GiohqA9CWL56sBSF88Tp06ieJit0uM41IBCO6w4uJiV5nuZXXKymIAuCMnqqrOorhYOj6ypiYZgDBAu7ra/T3PNwK7NIuLixERkS4ag1wL8WXLcTUoLi6Bw+GQlCeuFxBSmldWnkNxcRkcDvd2xcXFWLs2BkuWeEZ5NGtWi5kzy3HFFZXYs8d9jtQQMqILInzrVg7vvluCIUMqERmZrjjFnrAt79rnzTdLcMMNlRe+kx/rxhfaKz8X3AXR4f4/YcJpFBcL5dTUJAEQBvGfOVOB4uKz6N+fA5Cu2RZpu0pRXFyJc+ekx8DhkJ4LAIiMPAcgDlVVtSguPiH5rnlzYf+hQ8/j4MEI7NghXH+nT58EkOpRb2RkFQBtjxbPczh+XCqyzpw5j+PHqwAkweGoRHFxieu7c+fqA0hwLa9cCeTl8cjKcl/3VVXnUVxcipKSSACNFOqU3jtnzpxCcbHnCa6qch97s572yy+vxBVXnIZwmwnn+uzZMyguPoPLLkvCmjXuxAzsvDOEDghPl3pV1Rk4HHFg15sWZ85UAEjU9LQLwtdow9zXObtmP/nECcCBysoqnDpVAp4XwllOnz5+4dh7ZsvkeQ7l5e7zfeZMBWpqoiG/7/V48cUSTJ2aiPPnOTRvXosZM4T7fMKEGNx3X4rHMRUTESF0DAEcZs4swxVXnEVxse/PAqXx48FA+/bt0b59e9TW1iIvLw+nT582FBVXF6msoTHtBEEQhD3YJtoPHz6MRx55BOvXr0dsrP4LV3l5Oe6880689dZbaNTI80VajalTp2LixImu5bKyMrRo0QKpqalITNQWYXoI3jQOqampPol2sdMiLa0RTDQPABAR4UBaWpprWZwQql69ekhI8Dy+sbGesc2pqQ0hKgZRUe6XVnH5Ssty5O90CQlxSEuTZoCLi3OXn5jo/j4mRlqv+NDGxkZIXqhjYiIubONA/fqeL9nx8e5Y+Li4ekhLi0VKirT8l1/mFF7SeTRoEIG77066YJ9mcy8g3f/ll5MxdiyPhg2BoiL9fTp3ToLSYRUf64gI6XLv3jyqq4F9+3h07AhMn+7EsGHuC6pePXf5SUnxSEuLd407N0pqqmCXfL+YGE9h2KgRE6kRHtcICyNPSoqVhNanpipMZQAgJUX/xZjjeKSmShPyRUfHIubCeIfExBiJHfLz6HRy2Ls3Es884x7/EBsbi7S0GMUkfwAQFye9dx54oCGefppHVpZ0O/GxN/vz0KlTtMfxS0ioj7S0+ujVC1izhq3l0a2bNPt/VJRyZcnJcYiM1BfZkZE8kpOFdO+1terbt2gBHDigLm6lSLfheQ5FRcL143BEIz4+2fVdkyapigkaAeF8Jya6EzgmJsYjNtb82IMnnkhydaQsXuzAoEHCPTN2LJCU5MTs2Rx27+ZRU+NZ9qBBwtj6o0eBm24S7ikrngVGnoOB5NFHH0X37t1x7733ora2Fv3798fmzZsRFxeH//73vxgwYIDdJgYc8rQTBEEQdmFbePy2bdtQXFyMXr16ITIyEpGRkfjmm2/w8ssvIzIyErWyQbEFBQU4ePAgbrrpJtf277//PtasWYPIyEgUFBQo1hMTE4PExETJHwA4HA5L/jiO87mMiAj3aYiKMr6fG6kNkZHu7xwOTlI+IyLC82U0IkJul1h0SMsw0yahXZ7HSSwgxN+Xl7vXX3yxQyIKIiI4OBzi/aBYHkO8zuEQ6hB3FjgcDuzbxykIDw779nEqx9sI7v3FnQSeuL2GzZop1yVeZtcbo0ULDjt3cjh3Tvg/fLj6MY6MFNbFxpprS0yM53UFSDt1GMuXC+tqaz3Pd1WVsL8gsqR2KREfry3GhPH/HAYM8BSElZVCmfXqqd8b4u2loeyc6rYAcOqUtL59+ziMGOHA6tXy+0B67ZlBfD+47fK8t2JjOWzbJh8yolxXVJRD8b6XEx2t/Jsh5557uAvHTndTDzgOaN5c2JHnpZ0D0dGevx8MnufQvbv0/jXSESGnspLD+fMsKkZ63m691YGdOzns2KFcbocO7t8gnrf2WRBMrFy5Ej169AAA/Oc//8Eff/yBvXv34rHHHsOTTz5ps3X2UOWkKd8IgiAIe7DtLWHgwIHIy8tDbm6u669Pnz4YPXo0cnNzESHLmNS5c2eP7W+++WZcc801yM3NRYsWLWxqie9oTXFmBL1EdEplKiWkkm8nzlJ+4d3NMN5mj8/JAQoL3evz8gDxKAaHLFu03pRvH3wg3RfwTESnltlcnGDKm/PC9teeHcld8d/+pj/ns9wOtUzhStt7qwnYuZHXpVQ3GzVRUeH5XeWFyH950j81u+rX17arTRvheMkTgX3+uTt7/JEj0u/UErGJO230pnz74w/5vspTf/ly7NmxFV8PL70kLIvtiojwLNvXRHTR0ca2u/Za6awWZhzFPA+MGiV8djqFiAeGUpsY06cLUxoyvE1EJ+bDD5XXa812IE+iVxc5ceIEGjcWhmZ8/vnnuO2229CxY0fcc889yBOHdoQRFB5PEARB2IVtoj0hIQHdunWT/NWvXx8NGzZEt27dAABjxozB1KlTAQihg/Ltk5OTXeWE8ryx8pdwK8tTWlarR7xdTo40S7PZdzQj4lIp87s8/YC8Q0L+Qi9OhqZUxwnRsGq1Kd/UMptnZ3vuawa2v9FLc9cuIRu6XLiLO0zMina9Tg1Av21mssczlMKbxaJdfLzVRNeqVdp2vfqqkBVefu5KS92ZyDdulB5P9WPgOU+7ml1nzniuU5r6S2m6NqNERnrOGX70qLC8e7d7XUQEm2FB+z5g642KdiP2OhzSWS0uukh5O44DHn/cvZycLLTtyiuF5dpaSHI+aGWPHzDAszPEV9Eu7iQUo1auuM66LNrT09Oxe/du1NbWYt26dbjuuusAAGfPnvXoVA8XKDyeIAiCsIvgiseTUVhYiKNi5VhHUfMcG0VvijCjol1sh5541sPbKd/27dMuNyJCfZo3vWPH2if2lDJB/K9/SbcdNkw6rZ5ZYTB0qHt/JdHuPj7STNQcB4hSMACQdpiYnZbPiLdX7LlUgolzM6K9pkY4tvXqCf9zcqSi/dQp97ZDhiiXceKE8nrGd98J//WEk9gDrtT5JM9nwK51teOVkOC5TmnqL1897UpzhnMc8NVX7mV2Toz8hhj1tMfEGLNXbfo8OXFxwjhwxg03CPeG2FstFu1annbWScHgON87Olu3Vl6vZoPYu1+XRfvYsWNx2223oVu3buA4zjXDy08//YTOnTvbbJ090JRvBEEQhF0ElWjftGkTFi5cKFleunSp6vZLly7F6tWr/W6Xv/E1PF4LtfBRvXna9cSzkXrFKL1YK4XHq4Wqi/dR87QbEbA5OcDy5e51eXmC91K+r9xraNbTLt5fLNoTEoQw4owM1mb5eGxPz5+WV9oKT/vLL2uXwew3Eh4vhg1tYMd4715h/f79whzrDLmH2ij//rfwX084sfJzcoAlSzy/b9kSeOWVEtcyK0/tnF8IBHIhjK2XRmbI9zd7X0dFKc8ZzvPSzgx2To2cZ6vD4+VtUmtjvXrSZJtsO/a/ttY9pp15sdWOfWSk9Z72Bx9UXm/E0y5LvVKnmDFjBt5++23cf//9+OGHH1zJHSMiIvAEG38SZpCnnSAIgrCLoBLt4Yo/Pe1C6Kznej1Pu5541sPb8HgWqq42rthTtGvXIYbjPL2XrC4mANXKMnssxEJd/Pm664RQ4txcoEsXaVizkXpYxwNjzRrtcfBGvL164ftGPO2sHfJjy/5zHLB9u7C8aZO0HLNRHIy//pLur3TsxB5wNc91UhIweHClax0T7WrHq00b6f4ZGcI5EEdmyPf3xtOudA9yHJAqmh3PjKddLnjVEJI76m9n1NNer540a79ctDudbvGr1B4x8tB5s2Pala71wYOVt9US7XV9THt1dTUGDhyIjIwMPPbYY2jevLnru7vuugtDhw610Tp74HkelbU0pp0gCIKwBxLtQYAVycK0UBIzep52PfFstk6joj0rS5rcKiMDaNhQuo+aaNcbp+9wqHsvDx/WtlftvCQlKQsBsaAVfy9OwiYcY04ieHle8PyqHe+qKuk459OnlcfBM9Q8sGqdCkqoiXbxMWrSRDhfHTsql8HzwlhzADh+XLs+ozRtKvxnwkme4I7Vyzzgaud+3z4gIsL9hZ6nXdzunj2FDhi5YJfvb/a+5jjle5DnhY4fhlvk6o9pN+NpNzqmXWuZERenPGWiWPgyTzuzXe3Yy+9/sYA2gtKQDrVhHmo2hEN4fFRUFH799Ve7zQgqapzuMRwk2gmCIIhAQ6I9CPBVtPvD064kns3gbfZ4VjdLbpWbKx1DLH9pj4pSDo+PihLsFk8qwHHq3kv5uG6jnvYhQ4AffvBcryaKxcIyKwtYscKJLl1qEBvLuzy2Cxaod5icOaNsvzxzOUPt2oqPd3/WGpsutl9+TMT7PfEEj3PnxPOHe9rI6kxP9y2Kg8E6L9j1X6+e5zb33ecW1GrRI+np0muHeX3V7kVxu5XEKEM+i4Me4mvj/HnlezAnRzkxoVpHlhgzieiMbCffRm0feXg8S+QnDjFnY9qZ7f7ytCttq3b9h3t4/B133IG3337bbjOChmpnteszTflGEARBBBqdgGIiEPhzel61MZ9yzzLgKSyysoQ/te/16hWjJCSMhrbLvcVq3mPx55YthbHTy5YBd9zhtik7WxB7zGvJ/o8bB0yZom6P1gu8ku1GRDsgHN8rrzyJtLQ0iOfyXrVKEOL5+UJ4986dwnpxwi6GUuZyhtrxiY93J4OzwtOuJB4Z7Bi3awfs2CGI6EWLPM+BUaKjhYiD3r2FZebtVBJfl17q/szOvZxDhzj873/uE2PG066UlI5hdlaI2Fh3sj423aL8HgSAF1/0LNfKMe27dwPbtulvZ9TTvnMn0Leve7m8XGqnOBGdWU+7XaK9rofHA0BNTQ3eeecdbNiwAb1790Z92RyMCxYssMkye2Ch8QB52gmCIIjAQ572IMBX0e6Np33rVs91n3/umx3yesWY8bTLkY/XNTLlGytb7pVT816KQ46V7NUSEUpCSC083uhc1vJoA7FdSp52eeZyhhFPuxVj2lnZSseCHePkZGH5iiuk56BrV/W6lY57ly7Cf+blZMJJqW7x8c7KAlq1UqqDx4svug+I3ph2cbvFx1GO2QgacVuZaNcr1x/Z48+eBUT5QFUxOqad56VZ+ysqpNvX1rrnaTc7pt1sIjql68kXT3tdFu27du1Cr169kJCQgH379mHHjh2uv1zxj1KYwDztHDhEcOE55R1BEARhH+RpDwL8KdoB4x7y+fOBu+/2zRa1OvWyx5vxtBsZ064k2tl+St5L+VRgRkW72phao552syQlASdPenqp5ZnLGWoe2Koq9+fbb9eu00j2eC2xtWOHYOf8+cJyTIzgbWfn4MQJaXI1xoMPAps3C57fandkqsu7zUQ7u/6VriF5J0lRkec2PM+hoMC9s1Wi3eyYdqOiXcmDLx7TrpWIzuj4byPRD0Y97YC0LCbajXraExLc3nl5Mj2zU74p2ajWaRXOY9oB4Ouvv7bbhKDCNd1bZAw4K8b3EARBEIQJyNMeBPgzPF7N067E/v3W1ett9nglvBHtSi//WsdZ7m0zGh6v5mn3l2ivX185UkApERqg7O3NyZGe699/167TTHj8//7nuT8T1+J52tVsFHPppUKUgTwCRC7amXAyItqVcxrwaNfOPe6AletreLxZT7u4Y2LtWvXkgnqedl8T0QHGhisY9bTLYQLc6Jj2lBRpnb542mlMO+EtzNNOofEEQRCEHZCnPQj4+Wf35x49BK+p3BOshV54vNGX2g4djNeph5Xh8Vpj2s2Gx6uhNwe5lqfdlzHtZnE4lCMF1FDytM+cKd1GT6AZm/JNEJn33++5/8qVgjffrGhn9Ym3j452H08j4fHyupRzGnCYNKkC996bIilPLrqVOgdkw3wlmPW0Mw80AJSVCXauWuV5rpU87UbGtBud8o3VYaWnXYxctOtljxeXO2QI0Lq11M5AhMeLz3+4jGkHgF9++QWffPIJCgsLUSUOzwGQozXXZB2E5mgnCIIg7IQ87TbDsoUz8vK0p/Ayi5anXT5H+BNPWFMnq1dMoD3tWuHxSuiJdrOedl/HtKthNipDydu7b5+5Mlj79I6R0jzogDvBn7eiXXz84uLc670Jj1fKabBypRM33ug5T7u4LeKyjYbHi/EmmlZtVgB/e9qNJgY04mlXmgFBKTxea572gwfdn/fuBb74Qlqnr+HxavuLt42Lc38Ol/D45cuX4/LLL8eePXvw6aeforq6Gr/99hu++uorJImnAwgTqpwk2gmCIAj7INFuM3Khw7x/alN4KeFNIrrbbwe6d5eOhb35ZuN16hG48HjlsbxmPe164fFmE9H5y9NuVvwpHRO1qc/MlAV4etqV5kEHgMJCoRPKCk+7kmg3moiOIU/yJx9aoORpV5vpwKhoNyMsGWqzAih1RFmRiC4hwd2R8a9/6dtnxNOuNGVkZaUQUfTVV8KyUni82vUpv758zR4fFaUdRcMQX0fhEh7/7LPP4sUXX8R//vMfREdH46WXXsLevXtx2223oaV8jswwoLpWCI+PiaDp3giCIIjAQ6LdZpSEjtYUXmZRE+3dugE7dvC49lq3h9HKsfVmE9F5nz1e+7O/Pe2BTkRnhac9O1t9HngttMa0c5zQGaDGrFnmRTsr36hoV+r48eZ4K83TLi57zx7357lzjUXFeHNvqc0KoOxp9z0R3dVXuzsyrrxS3z4jnnbWOTJ9unR9Xh7w2GPCZ6XweDNh/L6Ex2v97oi3lYv2cAiPLygowJAhQwAA0dHROHPmDDiOw2OPPYY333zTZusCzzd/fgMAOFhyED3e6IGcPeE1PIAgCIKwFxLtNqOcGEt9Ci+zqL3UKk3RZWVC3MCFx1vjafd2THtEhLLtauHx3ohIsSg8dMjc0AmlYyIPEe/WzVhZ8nbKBY9aBntA6ITyl6fdTHi8EZTC48VtXbbM/fmvv4wNZzEjQtl/tVkB9Ma0exseL+48NGKvmTHtSnkUWDvMeNqVbPAlPF5rukM1T3u4hMenpKSg/EICgmbNmmHXrl0AgJKSEpw9e9ZO0wJOzp4czPtlHgCAB4+8ojwM/2Q4CXeCIAgiYJBotxklr6fWFF5KeBMeryTarfS0+zM8/swZ9/Kbb9Z3CSZ/jmk3O+WbVaI9J0cQhYyqKnM5D9QymItDxHfsMFaWXni8+jzoQieUmmjX6hAB9Me0mw2P10MvPF6M0eEsRu6t+HhjswJ4O0+7nqddLECN2CvP6q+1j1IeBfa7JR7TruZpV4sK8aen3Uh4fF0W7VdffTXWr18PABgxYgQeeeQRjBs3DqNGjcLAgQNtti6wzP52Nji4Lx4ePDhwmPWNiXFsBEEQBOEDJNptRikxltYUXmbRF+28ZFur8Ff2+MJCwbvJKCpyYMQIB3JyfAuPt3rKt7vucgtrXxLRKSV3M5PzwEhWcaOeSq3weAZLqijP0zB9OnD+vLDsi6c9NtYeT7tWp5KR4SxG7q2YGO2x9kpleZuITsnDLBagRq6J+++Xdh5p3V9qEUWAcB5ZeLxSZ9ugQdLfx6FDpXX6OqbdyLbhOKZ90aJFuP322wEATz75JCZOnIiioiIMHz4cb7/9ts3WBZb8k/ngIe0d58Ej/6RF49gIgiAIQgcS7UGAXmIsPXzxtCvNtW0F/gqP377doyZwHI9Zs+wJj+c4ZdsPHHB7xH3xtPua88DsXOFa6HnaAWknFGPxYuCmm9zt8EW0iztJ/DWm3YynHTA2nMVfUSxmxrRHRbn3VRKrZsPjKyulUR9a+6hFFAHC8daap71jR+nvo/hYc5xv4fHejGkX11mXPe0NGjRA06ZNAQAOhwNPPPEE1qxZgxdeeAEpKSk2WxdYOjXsJPG0AwAHDp0aWjSOjSAIgiB0INFex7FrTLu8Tr1EdFqiSFxWaann9zzPIT/f2vB4I0m2hLqV2yYOm/ZFtPua88DK4Q96HRsM1gnF5jDPzHSHxgP+E+1Wh8erjWkXf2d0OIs32ePV8GWedvadFaKd2cKiPrT2UYooYrnM9MLjte5Fs552Co83R0FBAZ566imMGjUKxcXFAIAvvvgCv/32m82WBZZpV0+TeNo5cODBI7u/iXFsBEEQBOEDJNrrAL552nmPdVbgr/D45GSlunh06qQfHq/VKSF/+dfytIvtcTrVRRLziPsi2n3NeWBkrLNR9LLHq21fW6st2tXOCytffPyURLtWeHzfvuYS9wH6nvYxY8wPZ1HqbJJjZG50uV3eTvmmdL+ZDY8HpFEfevvII4puvFFYLw6PV7pv5eXK72kKj/cP33zzDbp3746ffvoJOTk5qKioAADs3LkT2WaSrtQBsrpk4R8Z/wAAOOBARnoGcm7LwbAuFo1jIwiCIAgdSLTXcdREO1snfjE142nv0UNbDFmZiO74cffnqirpdxzHg+c5ZGf75mmX26Al2sUiUku0M4+4L2Pafc15YKWnXd5OvSgNJdHucGifa6X95WPLzYTH5+WZS9wnLldNtGdkmB/O8scfxuvXw9sx7f7ytLOoD7PXlzjEnIXHG0msJ//N8sXT7m32+HAIj3/iiSfw9NNPY/369YgWHahrr70WP/74o42W2UPP1J4AgAFtBiD3gVwS7ARBEERAIdFeB5B76MQCZckSYPNmz32UxrRriXa56NETQ/Kybr/dc1sjoj0nRzqO/cIMRC5at67FypVODBumHyKs1ymhJdrFL/DiF/3aWmXRIPaI+zrlmy85D6z0tOsNIVDbvqZGPXO8FmpDKuShyVqi3Wh2dzFmE9EFGmXR7v4ROHRIeT8ziei0hLBa1IdZ0e4+jxxqarzztJud8k0usrU87atXuz9v2CCtMxzC4/Py8jBM4ccmLS0NJ06csMEie3Hywsl2cPTaRBAEQQQeevrUMeRThBUXA88+67mdUvZ4LdTmWVYTQ199JV3+/XdPkW8kPF5er5ylS0+7RKxYWPnT0y4Pjxd/16iRp0fcV9HuC/70tOtFaSh52q0Q7WbC49n3RhP3Acrh8VrizirkUSRqKHXEiI/VunXK+1kRHp+aqh714a2nHQCqq4X/SmPa5deWL552eTi72nnNyQFuu829XFIirT8cRHtycjKOHj3qsX7Hjh1o1qyZDRbZC4l2giAIwk7o6VPHUJsiTI5SIjot1OZZVhNDixd7bisX+UY87Ur1iklIUM6abXZMOyB9gdfytIvLkb+033mnp0fcTtHuzzHtwSLatRLRMduMJu4Tl2elp93I0JOKCmNh/Hrh8WpYER6fnq4e9eGtpx0A/vWvRABAUZGwrNXZJv/OzLAe+f2qdl6VfkfFdYbDmPbbb78dU6ZMwbFjx8BxHJxOJ3744QdMnjwZY8aMsdu8gOMEiXaCIAjCPujpUwcQv2yrTREmx6xoN5vFXClEVy7yjXjaO3bUtis+Xlm0+9PTriXaldohLsubbOa+4M/s8WbGtDPvb1GRfj4EpfLF64x42r1N3CcuV22cuDezLIiTCWphJIxfeco3/f2sEO1sRgA9u4zw3/+6P7Pw+K1bhWtDa6pCb/NwAMZFttLvqLjOcBjT/uyzz6Jz585o0aIFKioq0LVrV1x99dW4/PLL8dRTT9ltXsDhL1wQJNoJgiAIO6CnTx1DTVzLUcoer4XZLOatW3uuk4t8I552efnyttSv77Y/UOHx4nLkIkCvE6SuetqVYMdwwwbgiSfc640mh2P7i7f74gthqAWgnYiuRQvvEveJy7PS086SCeqJTCNh/N562sUe4guJwCWIRaratRIfr12+GebNU14/a5Y5T7vRrPuA5/2qtq/S76i4znAIj4+OjsZbb72FP/74A//973/x4YcfYu/evfjggw8QYeUchiEChccTBEEQdkJPnzqA+MVTTVzLUZoqSguzWcwfeki6rCTyjYj2rCzgqqvcy23aCOPG5e1QKy/Q4fFK7di0yf35yivNT0HmC/4c056b6/48dSqnmmjw7belx8xocriICM8cDSUlwnUICN7QHj3cy3/+6d7uxRe9S9wHGJun3SwsmWDbtu51StejkTB+JS+00dwU7JwUFHh+J84tpnatWCnaWeeLnPx8c2PaxeidJ6MiW+l3VFx/XQ6PdzqdeO6553DFFVfgkksuwauvvoprrrkGt912Gzp06GC3ebZBop0gCIKwE3r61DGUxLVSMjel7PFGyjaaxfz666XLXbt6inxx3Vov223auD9//LG6dywYw+NzcoDp093Lu3aZn4LMF/yZPf71192fDx9WTzR4+LDykA09r3JEhHaOhi+/FLz27ByIO0d8iWgQi3ZWlz+yxyuFzBsJ49fztN95p/q+WteAuNNDbTsrw+PVhr506mTc0y7vlNQT7UY97fLf0ebNpXXW5fD4Z555Bv/6178QHx+PZs2a4aWXXsLDDz9st1m2Q6KdIAiCsBN6+tQB5C+ecnEt9lQz3GLERGypCeRiZPNmT5FvdJ528Ut7gwbAmTPK2+mFx1s15ZtctIuF6muvSZflotObKch8wZ+edmm7OI92sWOYkuJZlpHkcBER+jka1ESX1vzbeoiFHWujP7LHL18uiEJGfLyxqAC9Me29e6vvqyXaz51TrkOMlaJdbVh0drZxT7s8PN4q0Q5If0fF13VdD49///338dprr+HLL7/E6tWr8Z///AfLli2D04LGvvrqq2jdujViY2PRt29fbN26VXXbnJwc9OnTB8nJyahfvz569uyJDz74wGcbvIUS0c2sr7IAAE9ASURBVBEEQRB2Qk+fMEDpZdpsIjpf61R6mTYq2sUv2ikpwPnzytvZ4Wk/cEAavn3smNTjrCY6zUxB5gtWetrlx0+vXaw+lhFcvq2eVzkiwniOBjm+iHal+cr1ku55w7Bh0iEGRm3W87RrRRloXQPiJIlq90q9eur7mxXt4vuGcf31wnEx42kXY6VoV6uzrov2wsJC3Hjjja7lzMxMcByHI0eO+FTuxx9/jIkTJyI7Oxvbt29Hjx49MGjQIBQXFytu36BBAzz55JPYsmULfv31V4wdOxZjx47Fl19+6ZMd3kKJ6AiCIAg7oadPiCL25upNFWXFlG9mkdepJEjEc0xrCaGyMvfnpCT17Xwd067ViaBWzs6dyqKSeebMZt23Gis97eKwYLYs/14t0aCc1q31vcoREcZzNMixIjye1cdssRq9ThAj+7nvIffOWuJf6/w1aaK8nRgrRbvS9mzItL887XKR7c0xF88NXxfHtNfU1CBWNs1FVFQUqqurfSp3wYIFGDduHMaOHYuuXbvijTfeQFxcHN555x3F7QcMGIBhw4ahS5cuaNeuHR555BFkZGTg+++/98kOb6HweIIgCMJO/DBSk/A38uRcTqewvGqVENIpx4rs8WaRi1y16bsEG7TLKi11f9YSBr562sUYDY8vK9P2OGdnC+eGiU1vpiDzBSs97awM8VRrHMdfCI0X/qslGpRz7Jh+XZGR7rHFs2YJx7RTJ+Dii4GlS7X39aen3ReMTKumhxWe9ssuE8K+8/PdkSviDjE127SmLDTbHpYzQHxMlDrbzIxp1ztPVnnaWT2vvAI8/TTQsSOHCRNiMHassfKCGZ7ncffddyNGdCGdP38eDzzwAOqLxkfkmEjMUVVVhW3btmHq1KmudQ6HA5mZmdiyZYshm7766ivk5+fjueeeU92usrISlZWVruWyCz2+TqfTp/B+p9OJWl64eDhwlgwVCCROpxM8z4ec3WJCvQ1kv/2EehtC3X4g9Ntghf2+7EuiPQRh46TFL5zMu2tWtPvqfVVDXK6a98sb0a6Fr1O+aU3xpeZpT0jwFO5ij7OS6MzONp/R3Fus8LTn5LivK3F5kyYB69cD+fk8OnUCZsxQTzQoxmikAasrK0t6Xb/0kvC/Vy9g+3b3+qFDgc8+Ez6Hgqfd2zB7pY4YcVlaHRZs3zZtgH//W7qvkQ4FK0U7INhfU+NeZteMt552PRu89YzLf0cOHhQ+s6EfeXnAffelICnJiVtv9a6OYOGuu+7yWHfHHXf4VOaJEydQW1uL9PR0yfr09HTs3btXdb/S0lI0a9YMlZWViIiIwGuvvYbrrrtOdfs5c+ZgpkLm1ePHj+O82rgqAzidTpw9exYAUFVZpRrSH6w4nU6UlpaC53k4/PXQ9zOh3gay335CvQ2hbj8Q+m2wwv7y8nKv6yfRHoKYHSetNabdH1mxAWPTZTHBoRfSqibaOU56EHwNj9cS7eJjKE7YVV0t9aAredLlojOQKHllzSKO4hAfl8svB+bN41FcXIy0tDQ4HNIDrFSfmUgDNXvZenmCu65d3aLdrKd97Vq3yj91yt1R4c9hJN6KdqWOKLF9Wh0W+/cL/z/+GPjtN+l5EHdWqLXXatEu38dIZ5vWPa1ng1Xh8b/8Ii9HiDaZPZsLedH+7rvv2m2Ci4SEBOTm5qKiogIbN27ExIkT0bZtWwwYMEBx+6lTp2LixImu5bKyMrRo0QKpqalITEz02g6n04mYWOHGiqsXh7S0NK/LsgOn0wmO45CamhqSL8pA6LeB7LefUG9DqNsPhH4brLBfPvzMDCTaQ5COHQXPjpp3V472mHb/h8eriXI2NLGkRJhvOztbWdweP+7+3Lq1tI61a90hqf4MjxeXI57P+oLzBS1bCl63QHvSzeBLODaL4jDjuWfbtm0L/PGHsH337saPj55oF3eeANJzZsbTnpMjeEkZtbXujgpfIlKsSlgnRzl7vP6Y9pwcYPVq4bPTKfyGyIfZML74QrmMPXvU7fKmY0O+j1lPuzziyKyn3dvw+JISz214nsO+ff75PQ11GjVqhIiICBTJslIWFRWhcePGqvs5HA60b98eANCzZ0/s2bMHc+bMURXtMTExkrB+cTm+viDyEM5thCMiJF82OY6z5DjYSai3gey3n1BvQ6jbD4R+G3y135d2h+YRC3PUknOpeS+VxANbt3u3W+n06GHd/OF64fE5OdIpn5iAkNefkwOII0kOHXJ/djoFscX28XXKNzFa05vJ4TggOdnY/PV2oiWqtNonjuJQ6hgxWt/DD5s7PnqiXR7tKt7ejKd99mzOI2qDdVQohcf7S4wbRSl6woinXR41LBesv//uvv8WLFAuQ03MA9Z42s2OaZeHx5vtOPBWtCtPY8gHLMFkqBEdHY3evXtj48aNrnVOpxMbN25Ev379DJfjdDolY9YDCSWiIwiCIOyEnj4hCBsnnZEhhKtmZAgv22piSM3TnpMDvP++O7GQmnD2Bj1Pu9H5yxWGJ4prcYWkAvrh8WZEhZmw20BO4eYLWm3Q+k4cxSHuGDE6hd6pU8J/s9GpZkW7GDOe9vx8wUsqhp1Tf8+y4A1Kol28Tq3t+/Zpl1tZ6b7/CwqUtzl8WP33wUrRLsZbT7uRzhVvRDvHAXKdyRIxTptGnnY1Jk6ciLfeegvvvfce9uzZgwcffBBnzpzB2AuhUmPGjJEkqpszZw7Wr1+PP/74A3v27MELL7yADz74wOfx9d7iEu302kQQBEHYAD19QpSsLMFracS7qzamXe5hVBPO3qAn2o2Oy9cTGkJIqvBZLzzezJh2s9+FgodNT5irrRdHcVRVub/7v//T7uBh54CFEpsV7Wr5FtTC43ftcn+++mrjnU+dOnnmR2Dn1OpEdFoi0bcp39zr1KIMlKYflMPu/wsRyYqodex5I9rlY8yVjrMZT7t4W9apqYU3x9zhkN7vHCcM+3j77dNBG2UTDIwcORLz58/H9OnT0bNnT+Tm5mLdunWu5HSFhYU4evSoa/szZ87goYcewkUXXYQrrrgCq1atwocffoj77rvPFvvJ004QBEHYCT19wgA1T7uWh9FX9MLjjc5fric0xCGpvmaP10JNOAR6CjezGElEl5MjzeDNiIqSRnHk5ACnT7u/P3gQGDHCIUniJkZen3hKMSOY9bSvXOn+/NtvxqNGpk1zT1sHSM9pqHjaxdenmmgvLZUOq1GC3f9TpmjXr9Sx5839Jb/ufPW0i88T69TUYvduY9eI2pRvADBwILBjB48bb7QnbDuUGD9+PA4dOoTKykr89NNP6Nu3r+u7TZs2YaloLsenn34av//+O86dO4dTp05h8+bNGDlypA1WCzhBop0gCIKwD3r6hAFqol3Lw2hlnUqi3ei4fPl20jqkIalWJqLzrMv9uXFj40MTggm19qsNQejaVRrFoTQmmuN4LFgQr7i/XIBZHR6vJcjMRI1kZQFLlpxG9+6e51QpEZ2/xrQbLVfZ084rfi+msFD437Kl0M7YWPWOM63rWa1jzwrR7o2n3Rcbzp831rkjr9NIJwlRt+Av9A6RaCcIgiDsgJ4+YYCaaNfyMFpZp9JLrdFx+fLtWrUSMsjHxnqGpFo55ZvWd4mJxocmBBNqIlhtCMKvv0rFjNJ2PM+hoEA5jl1en1nRrnY+jIxpF2wzHjUyZEglduzgPc6p1eHxVqAkWo1c56wjgyVNXLZMvePMaI4DMd6Idnk29+pq5frU6jGbPV4JI5078uNLoj38oPB4giAIwk7o6RMGqI1p1/IwWlmn2pRvRsfli7c7eBA4cED4LA9JDVR4vN3Zw71Frf1qQxB4XuqF7NjRcxuO49GunUJsPXwX7WqoiXYjwy3MEsjweKvGtBtNmqjVcaY2e4JWx54Vs7codcT4M3s8YKxzRz6m3Ui2fqJuQaKdIAiCsBN6+oQBWvO0q3kYraxTLaGY1Si9sHs75Zu/yrETNbvZEAS1fZgXctAgz+94nsOkSRWK+/pLtKuJQzPTIBolkInojKI3pt1M0kS1jjP5MTYyHMRfol3P0753r3t5927zdRrp3KHweIJEO0EQBGEn9PQJA7TmafcX4pfaYBHt4e5pV4N5XNW87fn5glB7/nnP7yZPdqom4JKfd7OJ6NRQE9BPPGF9rgGlMe12Y3ZMuzcdGeIyYmONRcRYcV8YEe3i5a++kiYg1Es8p1S2kWNC4fEEiXaCIAjCTujpEwZoedoDUWegxgPrZZ62akx7XRPtgCDcu3dXDzGfOVP5u//9T/1g+Ds8Xs4VV1ifa8BqT7sV147ePO3eeMnlyEW7EayIIvjgA8+kcFrJ5hYv9r4uM8dEHh4vXqbw+PCAByWiIwiCIOwjQD5Qwk7UxrT7k2AMj7cqe3xdFO2A4G0cPtztfRR7If/+d09RxvPqSewAz/MxYAAwY4bQQeALagLaH+dFaUy7L/VYIWz1xrTL7cvNNV+HuIxAivZTp4RrcNUqZVvky4cOeV+XGa+81pRv5GkPD8jTThAEQdgJPX3CADs87RQeHxxs3uz+3KOH9tRWWonJlJLV6Y0FZlOMMXbtMj53uhZqot0f13QoztMuF5W+YtSTbIVoBzyzuWt52lu3Dsz9qBUeT5728IBEO0EQBGEn9PQJA8IlPN7XRHR1LTw+JweYO9e9nJenL5rVEpOxZHXy8dHTpqkrte3bpctm5k7XIpCiPRinfJMLdEA6pp3jrLXXqKfdKuTZ3LWyxz/0kPS69BeUiI4g0U4QBEHYCT19wgC7RXugPO1KbQpnT7t8HLovolnLC69GSYnnOjNzp6thR3i8VfeLljfaqKfayJh2O0S7lZ729HT38lNPSTuaxOdi0CDpdSm2VS+yxAxakQwk2sMDEu0EQRCEndDTJwywY0y7HeHxSoSzp33fPuVx6N6KZjUvvBopKZ7rrJg73Q5Pu3gqseees04MeoORMe1W3nNGw7+dTt/rYhEc4rHqf/4pjRCR34vsuly2TJp9nkWWWAGFxxOUiI4gCIKwE3r6hAF2TPlmh6ddz45w87R7Mw7dSi6/3LNuK+ZOt2NM+wcfuNcdOeL92Hx/ZY/355j2QHnaY2N5ZGQArVppR4io3YszZ3raY9W9SuHxBHnaCYIgCDuhp08YEC7h8Xp2hJunXW0cuq+i2Shdurg/c5x1c6cHMjxerUxvhxloCVuj9huZp90OT7svop3jeJw5wyM3Fygq0o4QUeuIU5rJwMqQfXGd5GkPP0i0EwRBEHZCT58wwO7weDuTeJnxtJ865f4sHw8biqLdm3HoViI+79dcY93c6XZ42uVYMTZfqUwj6I1ptysRnS8CWdzJoBchouZpV9tPCbPXirxOGtMefpBoJwiCIOyEnj5hAHnaBbTanJMD/P67e1meaT0Uw+MB8+PQrUQsbKzMQG5HIjo7hxnIURLt4mMSilO+ie3VixBRu6fV9tOrzwgUHk+QaCcIgiDshJ4+YUC4iHaxZ/yZZ4Rlox5ytfGwLATaqrHx4YT4vAdCtPszEZ2dwwzkKE35Ju9UCrXw+Kgo9856ESJqHWhK+z3+uHJ91dXmchJQeDxBiegIgiAIO6GnTxhgh2gPdHh8To40UzRLFrZhg7JNctTGw7IQ6FD1tNtJoD3t/gyPf/BB/w8zCPUp33zJHi/vZNCKENHqQJPvt26dep1mkglSeDxBnnaCIAjCTujpEwbYMaY90J52tTnJ33hD2SY5euNoQ3FMu92IhY2V3kg7EtFdcok1wwysSIym1CEmvz6tvOcCMaZdnEhPDzMdaEqdceJ9jSYTJE87QaKdIAiCsBN6+oQB4RAerzYn+YED7mWtNpsZR0ui3Rh1ydPuTdkFBe7P8sSGShi9rpQ97dLs8b562sW2fvyxMY+0VYno9DBzLyp1xjHMJBOkMe0EiXaCIAjCTujpEwbYPU97IMLj1Tzlbdsq2yTH23G0hDp1aUy72Ws4J0cams0SG54967tNekNPfBXt8qEmJ04YCyVXEu1GOisAc/YqjelXg3XGKWEmmSCJdoJEO0EQBGEn9PQJA+zwtIsJhKddzVP+8MPubfTabHQcLYl2Y9Sl7PFmRbBaYsPSUvV9rJzyzZd7Tj7UhJWpF0quZL98FgY1IiONu+nN3IusM65VK88yzCQT1BrTTuHx4QGJdoIgCMJO6OkTBtgxpl1MVJT/61DzlF9/vXsbX0QdZYw3T6iHx+fkALt3C5+feMJctnG1xIbV1b7bpTem3VdPu9pQE71QciXRLp+FQQ0znQxmPO2A8Ntw8KDw+9Cjh3fJBMnTTpBoJwiCIOyEnj5hgN2e9kCExwP6c5L70mbyrpsnlEU7CxE/d05YPnzYXLZxteEaVnRg6U0/6KunXS8poxpq2ePVBL/4WB4+HGH42Hob9aL3+2C0TkpEF544QaKdIAiCsA96+oQBdov2QM3TroRV86vLM9MT+gR6TLuVHStqsxEYzTauNlwjMdF32/ztaddLyqiGmideSfDLx81XVQEjRjhMRTMAgfsdk3cU0JRv4Qd52gmCIAg7oadPGECi3fOzWSg83jz+8rSrnQsrz5G3IeIMteEacXG+22ZkTLsvol0vKaMSOTnA6tXKtioJfs9x8xw4jjfcKSIuPxDIQ/IpPD78YKI9whGg0DGCIAiCEGGjnCIChVoIbaAIVHi8EuRpt49Qnqe9Y0chiZr4XJvJNg4I4jcrS7rukUd8t82Ip93XjjIl27WQJ95jxMQA//63p+BX7hThDHeKMAL1O6b1O0Lh8eEBf+GCJU87QRAEYQf09AkDlF5sAyk8ydMenoTymHZvQ8QDgd50ir562r1BKfEeQ8lDrzxunjfVKQLYFx5fW+teJk97eEDh8QRBEISd0NMnDLA7iVqwiHZKRBdYQnmedm9CxH3FaEdaIDztZjGbvM6zU4QHz3OmO0XsCo8Xi3bytIcHlIiOIAiCsBN6+oQBdnvagyU83pcXfAqPN0+oz9PuS7Zxf+LvMe3eYDYyQdopwqNLlxqsXOk0fYzt8LQ7HNKp+wIxpSVhP+RpJwiCIOyEnj5hgNKL7aBB5uad9oW64Gmn8HjzhHJ4vL/Q6vAx2umgdE3bLdq9iUxgnSJnzvDYuPGkV50idoxp5zigpsa9bGenJBE4SLQTBEEQdkJPnzBA6cU2P1+YYmntWv/HdtYF0U7h8eYJ5fD4YEYvPB6w556zIzLBLk+7WLQT4QEloiMIgiDshJ4+YYBaeDzH8ViwIN4vdYq9+DNmBM6rL4cS0dlHoKd8C/WOFaPDLpTD46U7h4v3164x7Vu3upd79LDv940IHORpJwiCIOyEnj5hgNqLLc9zKCiw3iWXkwMMH+5e/vNPYdmOF1vytNuHv0S7vGxGuHSsGPG0Hz3q/lzXRKVVHXHesnYtsHixezkvL3BRS4R9UCI6giAIwk6C5ukzd+5ccByHRx99VHWbt956C1dddRVSUlKQkpKCzMxMbBW7PAhF1D2TPNq1sz7Oc+ZMz8RtHAfMmmV5VbpQIjr78Nc87YDyuQyXjhW9Kd9ycoAffnAv5+XZ12nmb+zoqJk/X7rs76glIjggTztBEARhJ0Hx9Pn555+xePFiZGRkaG63adMmjBo1Cl9//TW2bNmCFi1a4Prrr8dff/0VIEtDEyXhKmR35jBpUoXl9e3b5ylseV4YRx9oKBGdffjL056Tozym+MsvravDX1jR4aPnaZ8507NOuzrN/E2gOmrE562gQOl7/0QtEcEDiXaCIAjCTmx/+lRUVGD06NF46623kJKSorntsmXL8NBDD6Fnz57o3LkzlixZAqfTiY0bNwbI2tBE/GLburU7u/PKlU7ceGOl5fWZnbPZn5Cn3T6cTvdnK0W7XJQyXnrJujqCGb0p3/bt89zHrk4zf2NHZ1r79kq/b/6JWiKCB0pERxAEQdiJ7a6Bhx9+GEOGDEFmZiaefvppU/uePXsW1dXVaNCggeo2lZWVqKx0C9OysjIAgNPphFOsKrzA6XSC53mfy/E3wruG8KLxyitO3HCDsN7pdOL4cevtnzZNGOPJcTx4nnP9nzbNCSurMnL8xW0HfK2flcPD6bRGuYfKNaSGlv3CbSccs+hovWPv+SKsdkz27OEAePbAFBR4d14Cew7ctrvr8+a6El/TTkkiuo4deeTlCd5fV60cj06dYNl1ayVmj7+wmdB+nrf2N8VInVOmODFmjOfv26RJ5XA6E32oIzR/A8IF8rQTBEEQdmKraF++fDm2b9+On3/+2av9p0yZgqZNmyIzM1N1mzlz5mCmgmvu+PHjOH/+vFf1MpxOJ0pLS8HzPBxBHD8thBI3BgCUlJSguLgKgP/sv/JKYMmSGCxYEI+Cgki0a1eDSZMqcMUVlSgutqwaQ/afPOkAkAYAOH36JIqLa32oUTiG1dXVKC4+5UM5bkLlGlJDy/516+IBCON8+/SpxaRJFRgyRC2yo7HHmmKFi2Xt2hhUVytH5PA88O67pRp1mG+D1TidqQAE97i7fULbeZ5XbLOcTz+NASAcg4EDa/H44+U4d64SQDIAYMKEEtx3X4qHqJww4TSKi62PrPEVs8e/pCQagNBRe/x4cUBC5E+ejATQCABw+eXHsWRJtOT3beLEcvTrV4Ti4vNeX0Pl5eUWWkxYDSWiIwiCIOzENtF++PBhPPLII1i/fj1ivYidnTt3LpYvX45NmzZp7j916lRMnDjRtVxWVoYWLVogNTUViYnee0UAXPBwcUhNTQ1qwVUr0qkpKclIEzSsX+0fO1b4A3gIIiXJ0vIB8/Y3atTQ1XZfiIyMQpoVBSF0riE11OzPyQFeecW9vHdvJO67LwUrVjiRlWWsbKVj/PLLHIRrylOpVVfDdB1abfAHDofbbs/2cbrXVU4O8NBDbhv374/EuHENcNddZ1zrxo5NQlKSE7Nnc9i3j0fHjsD06U4MG2b9PWgFZo9/crL7c3q6NfehHuK+lPT0VI/fN6czEcePV/p0DXnzHCQCB3naCYIgCDuxTbRv27YNxcXF6NWrl2tdbW0tvv32WyxatAiVlZWIUJlseP78+Zg7dy42bNigm7wuJiYGMQqpqx0OhyUv6BzHWVZWIIiIcEjGgYaa/XL07BdfQvK2+1CrRHz5XFodPAezZ7Nkh8Ky4PEFnn7agVtvNVbu6tUOD/GtNF6b4U0dWm3wN5516V9XyseVx/r1bsHncAjtlx6D4E6tb+b4S+dMD8z5kib/U/4d8fUaCtX7P1wg0U4QBEHYiW1Pn4EDByIvLw+5ubmuvz59+mD06NHIzc1VFezz5s3D7NmzsW7dOvTp0yfAVocmds9rbCf+aDslotPHihkElKYpU0py6EsdgcbXa0f5uHIoLg4fIWHHb5j4mJO2Dk8oER1BEARhJ7Y9fRISEtCtWzfJX/369dGwYUN069YNADBmzBhMnTrVtc9zzz2HadOm4Z133kHr1q1x7NgxHDt2DBUV1k9bVpcIN6EuJpzbbidWzCCgNE1ZdrZ7CjO1feyYpcAKjFyryseVR1oaJTHzJyTaCfK0EwRBEHYS1E+fwsJCHD161LX8+uuvo6qqCrfeeiuaNGni+ps/f76NVoYW4SZiwznKwE7k4pqFdGdnGy9DyWuelQWsWiVMWRgV5S7b2zoCzblz7s89ekgjCYx44ZWPK4fOnatVyyWshX5HvOfVV19F69atERsbi759+2Lr1q2q27711lu46qqrkJKSgpSUFGRmZmpu728oER1BEARhJ0H19Nm0aRMWLlwoWV66dKlr+eDBg+B53uNvxowZAbc1VAm3F05/tJfC4/URi+vYWOF/Tg4wbJjntmoCU81rnpUF5OYCVVXG6wgGcnKA06fdy3l5whAAMygd18mTnfjqK/eYdlZuXRXu33/v/hyoDooNG9yfe/euu8fWn3z88ceYOHEisrOzsX37dvTo0QODBg1SnTFh06ZNGDVqFL7++mts2bIFLVq0wPXXX4+//vorwJYLkKedIAiCsBN6+oQZ4Szaw63tdsPE9blzwn81Ma0wIyMAY15zo3UEA/J2aoX5ayFv8//+x0nmaWflyocW1AVycqTtCkQHRU4OMGlSYOusiyxYsADjxo3D2LFj0bVrV7zxxhuIi4vDO++8o7j9smXL8NBDD6Fnz57o3LkzlixZAqfTiY0bNwbYcgES7QRBEISd2DpPOxF4wlm4hnPbgxm1jPBRUcEtws2i1E4rojby84UQeXm5wZyQz1tmzpRnz3d3UJiZ5i/Y66xrVFVVYdu2bZIcNQ6HA5mZmdiyZYuhMs6ePYvq6mo0aNBAdZvKykpUVla6lsvKygAI0wo6nd7nfXA6nS7RDh4+lWUHTqcTPM+HnN1iQr0NZL/9hHobQt1+IPTbYIX9vuxLoj0MEHuExo0Dnn8+fF42KZQ9+OnYUfBeis8VxwFdu9pnkz9Qa6ev12inTkBeHi8R7qGckE8LK2YlCIU66xonTpxAbW0t0tPTJevT09Oxd+9eQ2VMmTIFTZs2RWZmpuo2c+bMwUyF0J3jx4/j/Pnz5owW4XQ6UVNbAwAoLSlFcaxySH+w4nQ6UVpaCp7nQ3ZqwVBvA9lvP6HehlC3Hwj9Nlhhf3l5udf1k2iv4+TkSMfNHjggLK9aBdxyi21m2QJ52oOT7GzhmmQCNhQSynmDWjt9Zdo0HiNGOMBxvGuu+rp4/AD1jg9/dlDYUSchZe7cuVi+fDk2bdqE2NhY1e2mTp2KiRMnupbLysrQokULpKamIjEx0ev6nU4nuAsPkIYNGiItLc3rsuyA2Z+amhqSL8pA6LeB7LefUG9DqNsPhH4brLBf6xmmB4n2Oo5WaGc4iPY1a9yfBw4Enn7a9ygD8t5bC0uuNmuW4L3s1EkQnHUpNB5Qb6ev12NWFrBkyWm8/HIy9u2ru8cPsKeDJ1w6lfxJo0aNEBERgaKiIsn6oqIiNG7cWHPf+fPnY+7cudiwYQMyMjI0t42JiUFMTIzHeofD4fMLIsseHxkRGZIvmxzHWXIc7CTU20D220+otyHU7QdCvw2+2u9Lu0PziBGGCefQzpwc4O673ct791ICqWAllBLK+YK/2jlkSCV27ODD4vgFesYAO+qsa0RHR6N3796SJHIsqVy/fv1U95s3bx5mz56NdevWoU+fPoEwVRVKREcQBEHYCXna6zjhHNrprwRS5Gkn/AFdV8bIygp8Tg476qxrTJw4EXfddRf69OmDSy+9FAsXLsSZM2cwduxYAMCYMWPQrFkzzJkzBwDw3HPPYfr06fj3v/+N1q1b49ixYwCA+Ph4xMfHB9x+/sINSqKdIAiCsAMS7XWccA7tDOcoA4IgiGBi5MiROH78OKZPn45jx46hZ8+eWLdunSs5XWFhoSRs8PXXX0dVVRVuvfVWSTnZ2dmYMWNGIE0HQJ52giAIwl5ItNdxtMYLh+iMC4YJ5ygDIvSgRIlEXWf8+PEYP3684nebNm2SLB88eND/BpmAjWkn0U4QBEHYAYn2MCBcQzv9FWVAYcyEP6DriiCCF/K0EwRBEHZCTx+izkIJpAiCIAgrINFOEARB2Al52ok6jT+iDMgjShAEEV5QIjqCIAjCTujpQxAEQRAEoQF52gmCIAg7oacPQRAEQRCEBpSIjiAIgrATevoQhEkoPJ4gCCK8IE87QRAEYSf09CEIgiAIgtCARDtBEARhJ/T0IQiCIAiC0IAS0REEQRB2Qk8fgiCIIICGXRBE8EKedoIgCMJO6OlDEARBEAShASWiIwiCIOyEnj4EYRLyiBIEQYQX5GknCIIg7CTSbgMIgiDClZwc9+dz54TlrCz77CEIQhkS7QQRvtTW1qK6utpWG5xOJ6qrq3H+/Hk4HKH5OxTqbTBqf3R0tF/aR6KdIExCnnbCCnJygOHD3cs8LyyvWkXCnSCCCV70o0+inSDCB57ncezYMZSUlNhtCnieh9PpRHl5OTiOs9scrwj1Nhi13+FwoE2bNoiOjra0fhLtBEEQNjBzJsBx0k4gjgNmzSLRThDBBPOyAyTaCSKcYII9LS0NcXFxtgpNnudRU1ODyMjIkBS8QOi3wYj9TqcTR44cwdGjR9GyZUtL20minSAIwgb27fOM2uB5ID/fHnsIglCGRDtBhB+1tbUuwd6wYUO7zQl5wQuEfhuM2p+amoojR46gpqYGUVFRltVPTx+CMAmFxxNW0LGj4FkXw3FAp0722EMQhDIk2gki/GBj2OPi4my2hAg1WFh8bW2tpeXS04cgCMIGsrOFDiAm3FmofHa2vXYRBCGFRDtBhC+h6BEm7MVf1ww9fQjCJORpJ6wgK0tIOpeRAcTGCv9zcoBhw+y2jCAIMSTaCYIgCLuhpw9BEIRNZGUBubnCdG+5uSTYCSIYIdFOEES407p1ayxcuNBuM8IaevoQBEEQBEGoQKKdIIhQgeM4zb8ZM2Z4Ve7PP/+M+++/3yfbrrnmGtcc5rGxsejatStee+01n8oMJ+jpQxAmofB4giCI8IFEO0EQvpCzJwc93uiBek/XQ483eiBnT47f6jp69Kjrb+HChUhMTJSsmzx5smtblg3dCKmpqZYk5bv33ntx5MgR7N69G7fddhsefvhhfPTRRz6Xq0ZVVZXfyg409PQhCIIgCIJQoZZ3ZwAm0U4Q4QvP8zhTdcbU37/z/o3hnwxHXlEezteeR15RHoZ/Mhz/zvu3qXJ4gx6jxo0bu/6SkpLAcZxree/evUhISMAXX3yB3r17IyYmBt9//z0KCgowdOhQpKenIz4+Hpdccgk2bNggKVceHs9xHJYsWYJhw4YhLi4OHTp0wJo1a3Tti4uLQ+PGjdG2bVvMmDFDsl9JSQnuu+8+pKamIjExEddeey127tzp2teonbNnz8aYMWOQmJiI+++/H1VVVRg/fjyaNGmC2NhYtGrVCnPmzHHtU1hYiKFDhyI+Ph6JiYm47bbbUFRU5Pp+xowZ6NmzJz744AN06NABycnJuP3221FeXm7onFgFzdNOEARBEAShgtjTzoEySRNEuHK2+izi58R7tS8PXvJ/dM5oU/uXP1GOGEeMV3XLeeKJJzB//ny0bdsWKSkpOHz4MG688UY888wziImJwfvvv4+bbroJ+fn5aNmypWo5M2fOxLx58/D888/jlVdewejRo3Ho0CE0aNDAsC316tVzecNHjBiBevXq4YsvvkBSUhIWL16MgQMHYt++fWjQoAEqKioM2Tl//nxMnz4d2Rem43n55ZexZs0afPLJJ2jZsiUOHz6Mw4cPAwCcTqdLsH/zzTeoqanBww8/jJEjR2LTpk2uMgsKCvDZZ5/h008/RXl5OUaOHIm5c+fimWeeMXPofYJEO0EQBEEQhApMtHPgaPongiBCnlmzZuG6665zLTdo0AA9evRwLc+ePRuffvop1qxZg/Hjx6uWc/fdd2PUqFEAgGeffRYvv/wytm7disGDB+vaUFtbi48++gi//vor7r//fnz//ffYunUriouLERMjdE7Mnz8fq1evxsqVK3H//fejR48ehuy89tprMWnSJNdyYWEhOnTogCuvvBIcx6FVq1au7zZu3Ii8vDwcOHAALVq0AAC8//77uOiii/Dzzz/jkksuASCI+3fffRf16tVDZGQk7rzzTmzcuJFEO0EQBEEQRDDARDuFxhNEeBMXFYeKqRWm9rns7cvwW/FvLg87IHQAdkvrhi33bjFcTr3IeqitrdXf0AB9+vSRLFdUVGDGjBlYu3Ytjh49ipqaGpw7dw6FhYWa5WRkZLg+169fH4mJiSguLtbc54033sA777yDqqoqRERE4LHHHsODDz6I119/HRUVFWjYsKFk+3PnzqGgoMCUnfL23X333bjuuuvQqVMnDB48GH/7299w/fXXAwD27NmDFi1auAQ7AHTt2hXJycnYs2ePS7S3bt0aCQkJrhwATZo00W2r1ZBoJwiTUCI6giCI8IGJ9ghHhM2WEARhJxzHoX50fVP7zBwwE8M/GQ4OHHjwrv8zB8w0VZbRMe1GqF9fWu/kyZOxfv16zJ8/H+3bt0e9evVw66236iZxi4qKkixzHAen06mytcCoUaPw1FNPIS4uDk2aNIHDIXSGVlRUoEmTJpKQdEZycrIpO+Xt69WrFw4cOIAvvvgCGzZswG233YbMzEysXLlS01Zf22o1JNoJgiAIgiBUIE87QRDektUlC6tuW4VZ38xC/sl8dGrYCdn9szGsyzC7TXPxww8/4O6778awYYJNFRUVOHjwoF/qSkpKQvv27T2GGvXq1QvHjh1DZGQkWrdubbmdiYmJGDlyJEaOHIlbb70VgwcPxqlTp9ClSxfXGHfmbd+9ezdKSkrQtWtXr9vpD0i0E4RJyNNOEAQRPpBoJwjCF7K6ZCGrS5bdZqjSoUMH5OTk4KabbgLHcZg2bVrAvciZmZno168fbrnlFsybNw8dO3bEkSNHsHbtWgwbNgx9+vTx2s4FCxagSZMmuPjii+FwOLBixQo0btwYycnJyMzMRPfu3TF69GgsXLgQNTU1eOihh9C/f3+PMHu7oScQQRAEQRCECiTaCYKoyyxYsAApKSm4/PLLcdNNN2HQoEHo1atXQG3gOA6ff/45rr76aowdOxYdO3bE7bffjkOHDiE9Pd0nOxMSEjBv3jz06dMHl1xyCQ4ePIjPP/8cDocDHMfhs88+Q0pKCq6++mpkZmaibdu2+Pjjj/3dZNNwvJWDJEKAsrIyJCUlobS0FImJiT6V5XQ6UVxcjLS0NNeYjFCC7DcHi+Tp2BHIz7emTDoH9hPqbSD77ceKNlj5bCIErDqm+07sQ6dXOyExJhGlT5RaaGFgoHvMfsh++zHbhvPnz+PAgQNo06YNYmNjA2ChNjzPo6amBpGRkSE7i0Wot8Go/VrXji/PpdC88wjCRsKrm4sgCCK8IU87QRAEYTf0BCIIgiAIglCBRDtBEARhN/QEIgiTkKedIAgifCDRThAEQdgNPYEIgiAIgiBUINFOEARB2A09gQiCIAiCIFQg0U4QBEHYDT2BCIIgCIIgVCDRThAEQdgNPYEIgiAIgiBUINFOEARB2A09gQjCJJSIjiAIInwg0U4QBEHYDT2BCIIgCIIgVCDRThAEQdgNPYEIgiAIgiBUINFOEES4MWDAADz66KN2m0GIoCcQQZiEwuMJgiDCBxLtBEF4zZlC4NR2z78zhX6p7qabbsLgwYMVv/vuu+/AcRx+/fVXn+tZunQpOI4Dx3FwOBxo3rw5xo4di+LiYp/LJpSJtNsAgiAIgiCIYMUl2snPQRCEGc4UAv/pBDjPe37niAVuygfqt7S0ynvvvRfDhw/Hn3/+iebNm0u+e/fdd9GnTx9kZGRYUldiYiLy8/PhdDqxc+dOjB07FkeOHMGXX35pSflyqqqqEB0d7ZeyQwF6AhGEScjTThAEYZ5XX30VrVu3RmxsLPr27YutW7eqbvvbb79h+PDhaN26NTiOw8KFCwNnqAzytBMEAUB4Aaw5Y/zv7GFlwQ4I688eNl6WwZfPv/3tb0hNTcXSpUsl6ysqKrBixQrce++9OHnyJEaNGoVmzZohLi4O3bt3x0cffWT6cHAch8aNG6Np06a44YYbMGHCBGzYsAHnzp0DACxZsgRdunRBbGwsOnfujNdee02y/5QpU9CxY0fExcWhbdu2mDZtGqqrq13fz5gxAz179sSSJUvQpk0bxMbGAgBWrlyJ7t27o169emjYsCEyMzNx5swZ4bA6nZg1axaaN2+OmJgY9OzZE+vWrXOVefDgQXAch5ycHFxzzTWIi4tDjx49sGXLFtPtDzTkaScIgiAIwq98/PHHmDhxIt544w307dsXCxcuxKBBg5Cfn4+0tDSP7c+ePYu2bdtixIgReOyxx2yw2A2JdoIgAAC1Z4FP4q0rb/2VxrcdUQ4gRnezyMhIjBkzBkuXLsWTTz4JjuMAACtWrEBtbS1GjRqFiooK9O7dG1OmTEFiYiLWrl2LO++8E+3atcOll17qZWOAevXqwel0oqamBsuWLcP06dOxaNEiXHzxxdixYwfGjRuH2NhY3HPPPQCAhIQELF26FE2bNkVeXh7GjRuHhIQEPP74464y9+/fj1WrViEnJwcRERE4evQoRo0ahXnz5mHYsGEoLy/Hd999B/5Cp8ZLL72EF154AYsXL8bFF1+Md955BzfffDN+++03dOjQwVXuk08+ifnz56NDhw548sknMWrUKOzfvx+RkcErjYPXMoIIInJy3J///FNYzsqyzx6CIIhQYsGCBRg3bhzGjh0LAHjjjTewdu1avPPOO3jiiSc8tr/kkktwySWXAIDi90pUVlaisrLStVxWVgZA8Lw4nU6vbf/m4DcAgD0n9qDH6z0w7eppyOoSOg8Ap9MJnud9OgZ2E+ptIPvtx2wb2PbsDwDA8+D8aKMezA5ex+s+duxYPP/889i0aRMGDBgAQAiNHz58OBITE5GYmIhJkya5th8/fjy+/PJLfPzxx67fXVaPWl1yW37//Xe88cYb6NOnD+Lj45GdnY358+dj2LBhAIDWrVvjt99+w5IlS3DPPfeA53k8+eSTrvJatWqFSZMm4eOPP8Y///lPV9lVVVV47733kJqaCgDYvn07ampqMGzYMLRq1QoA0K1bN9f28+fPx+OPP46RI0cCAObOnYuvv/4aL774Il599VWXvZMmTcKNN94IQPDod+vWDb///js6d+6seWyNnAN23JSePb7cQyTaCUKHnBxg+HD3cnW1sLxqFQl3giAIPaqqqrBt2zZMnTrVtc7hcCAzM9PSkMQ5c+Zg5syZHuuPHz+O8+dVQlR1WPvHWsz6bhYAgAePvOI8jFg5AkuuW4IhbYf4ZG+gcDqdKC0tBc/zcDhCM1og1NtA9tuP2TZUV1e7vMY1NTXCSj4aGHbaeKUlOxH19QD1Oq7ZBCT3MFQU74xCrbMWAFzeczXat2+Pfv364e2338aVV16J/fv347vvvsP06dNRU1OD2tpazJ07FytXrsSRI0dQVVWFyspKxMbGutrKhKer7TLY8UxISIDT6cT58+dxxRVX4I033kBpaSkKCgpw33334f7773ftU1NTg6SkJFRXV4PjOHzyySd49dVX8ccff6CiogI1NTVITEx01el0OtGqVSukpKS41l100UW49tprkZGRgeuuuw7XXXcdsrKykJKSgrKyMhw5cgSXXXaZxO5+/frh119/lZzLiy66yPWZdQgcPXoU7du3Vz8HPI/aWv1zUFNTA6fTiZMnTyIqKkryXXl5uep+epBoJwgdZs4EOE46nIjjgFmzSLQTBEHoceLECdTW1iI9PV2yPj09HXv37rWsnqlTp2LixImu5bKyMrRo0QKpqalITEz0qsyXP30ZHDjwuOBdAQ8OHF7+9WWMvWysJXb7G6fTCY7jkJqaGtKCK5TbQPbbj9k2nD9/HuXl5YiMjJSGTEclGa80WjuUPjI6Hog1UV51tYcIVOPee+/FhAkT8Nprr+GDDz5Au3btcO2114LjOMyfPx+LFi3Ciy++iO7du6N+/fp47LHHUFNT42orywyvFi7ucDiQkJCAbdu2weFwoEmTJqhXrx4AoKioCADw5ptvom/fvpL9nE4noqKisGXLFtx1112YMWMGBg0ahKSkJCxfvhwLFixw1elwOFC/fn2JDZGRkVi/fj02b96M//3vf3jttdcwffp0/Pjjj2jYsCEAICIiQrKPuC1sfWxsrOszO6Za7RWjdw4iIyPhcDjQsGFD1zh8hnzZDCTaCUKHffs883/wPJCfb489BEEQhCcxMTGIifEc8+lwOLwWGvtO7nMJdgYPHvtO7gsp8cKmZQolm+WEehvIfvsx0waHw+ESe3qebVViU4Us8SrZ47nYVMELZACe5112GLFn5MiRePTRR/HRRx/hgw8+wIMPPuhq9+bNmzF06FDceeedAAQhvW/fPnTt2lVStlbb2bEUjxNnsOR0Bw4cwB133CFpA/Nub9myBa1atcJTTz3l+r6wsFDSPrX2chyHK6+8EldeeSWys7PRqlUrrF69GhMnTkTTpk2xefNm17AA1t5LL71U0h75Z732MvuNnAPxVHjya82X+4dEO0Ho0LEjkJfn6Wnv1Mk+mwiCIEKFRo0aISIiwuV9YRQVFaFx48Y2WWWMjo06Iq8oTyLcOXDo1JAeAARB6FC/pTCtW+UJz+9iGlk+3ZuY+Ph4jBw5ElOnTkVZWRnuvvtu13cdOnTAypUrsXnzZqSkpGDBggUoKipC165dLat/5syZmDBhApKSkjB48GBUVlbi559/xsmTJzF58mR06NABhYWFWL58OS655BKsXbsWn376qW65P/30EzZu3Ijrr78eaWlp+Omnn3D8+HF06dIFAPDPf/4T2dnZaNeuHXr27Il3330Xubm5WLZsmWVts4vQ7S4jiACRnS0IdtapxkLls7PttYsgCCIUiI6ORu/evbFx40bXOqfTiY0bN6Jfv342WqZPdv9sV0g8AFeofHZ/egAQBGGA+i2BBr08//wo2Bn33nsvTp8+jUGDBqFp06au9U899RR69eqFQYMGYcCAAWjcuDFuueUWS+u+7777sGTJErz77rvo3r07+vfvj/feew+tW7cGANx888147LHHMH78ePTs2RObN2/GtGnTdMtNTEzEt99+ixtvvBEdO3bEU089hRdeeAE33HADAGDChAmYOHEiJk2ahO7du2PdunVYs2aNYkRAqMHxeikI6xhlZWVISkpCaWmp12PcGE6nE8XFxUhLSwvJcCGy3zg5OcIY9vx8wcOenQ1cSIjpE3QO7CfU20D2248VbbDy2RSMfPzxx7jrrruwePFiXHrppVi4cCE++eQT7N27F+np6RgzZgyaNWuGOXPmABCS1+3evRsAcOONN2L06NEYPXo04uPjNRMFibHqmK78bSWyv87GHyV/oFOjTsjun41hXSx4AAQIusfsh+y3H7NtOH/+PA4cOCCZH9xOWGh5ZGSk9+H6NhPqbTBqv9a148tzicLjCcIAWVmUdI4gCMJbRo4ciePHj2P69Ok4duwYevbsiXXr1rmS0xUWFkpepI8cOYKLL77YtTx//nzMnz8f/fv3x6ZNmwJqe1aXLFzZ8MqQFiwEQRBEaEOinSAIgiAIvzN+/HiMHz9e8Tu5EG/durXuXMQEQRAEES5QlzFBEARBEARBEARBBCkk2gmCIAiCIAiCIAgiSCHRThAEQRAEQRAEIYOG6RBm8dc1Q6KdIAiCIAiCIAjiAlFRUQCAs2fP2mwJEWpUVVUBACIiIiwtlxLREQRBEARBEARBXCAiIgLJyckoLi4GAMTFxdk6TVmoT5cGhH4bjNjvdDpx/PhxxMXFITLSWplNop0gCIIgCIIgCEJE48aNAcAl3O2E53k4nU44HI6QFLxA6LfBqP0OhwMtW7a0vI0k2gmCIAiCIAiCIERwHIcmTZogLS0N1dXVttridDpx8uRJNGzYEA5HaI5uDvU2GLU/OjraL+0LGtE+d+5cTJ06FY888ggWLlyout2KFSswbdo0HDx4EB06dMBzzz2HG2+8MXCGEgRBEARBEAQRFkRERFg+PtksTqcTUVFRiI2NDUnBC4R+G+y2PyiO2M8//4zFixcjIyNDc7vNmzdj1KhRuPfee7Fjxw7ccsstuOWWW7Br164AWUoQBEEQBEEQBEEQgcN20V5RUYHRo0fjrbfeQkpKiua2L730EgYPHox//vOf6NKlC2bPno1evXph0aJFAbKWIAiCIAiCIAiCIAKH7eHxDz/8MIYMGYLMzEw8/fTTmttu2bIFEydOlKwbNGgQVq9erbpPZWUlKisrXctlZWUAhBAHp9PpveEXymBJCUIRst9+Qr0NoW4/EPptIPvtx4o2hHL7CYIgCILwL7aK9uXLl2P79u34+eefDW1/7NgxpKenS9alp6fj2LFjqvvMmTMHM2fO9Fh/4MABxMfHmzNYhtPpRFlZGcrKykJ2bAbZby+h3oZQtx8I/TaQ/fZjRRsqKioACNlpCWtgx5J11nuL0+lEeXl5SI/DDGX7gdBvA9lvP6HehlC3Hwj9NlhhP3seefOst020Hz58GI888gjWr1+P2NhYv9UzdepUiXf+r7/+QteuXdGrVy+/1UkQBEEQ3lBeXo6kpCS7zagTlJeXAwBatGhhsyUEQRAE4cabZ71ton3btm0oLi6WiOfa2lp8++23WLRoESorKz0yNTZu3BhFRUWSdUVFRa55FJWIiYlBTEyMazk+Ph6HDx9GQkKCz/PnlZWVoUWLFjh8+DASExN9KssOyH77CfU2hLr9QOi3gey3HyvawPM8ysvL0bRpU4utC1+aNm1qyfM+1K/RULcfCP02kP32E+ptCHX7gdBvg93PettE+8CBA5GXlydZN3bsWHTu3BlTpkxRnFqhX79+2LhxIx599FHXuvXr16Nfv36G63U4HGjevLnXdiuRmJgYkhcfg+y3n1BvQ6jbD4R+G8h++/G1DeRhtxarn/ehfo2Guv1A6LeB7LefUG9DqNsPhH4b7HrW2ybaExIS0K1bN8m6+vXro2HDhq71Y8aMQbNmzTBnzhwAwCOPPIL+/fvjhRdewJAhQ7B8+XL88ssvePPNNwNuP0EQBEEQBEEQBEH4m6DOAlBYWIijR4+6li+//HL8+9//xptvvokePXpg5cqVWL16tYf4JwiCIAiCIAiCIIi6gO1TvonZtGmT5jIAjBgxAiNGjAiMQTrExMQgOztbMmY+lCD77SfU2xDq9gOh3way337qQhsIdUL9/Ia6/UDot4Hst59Qb0Oo2w+Efhvstp/jaX4ZgiAIgiAIgiAIgghKgjo8niAIgiAIgiAIgiDCGRLtBEEQBEEQBEEQBBGkkGgnCIIgCIIgCIIgiCCFRDtBEARBEARBEARBBCkk2r3k1VdfRevWrREbG4u+ffti69atAbdhzpw5uOSSS5CQkIC0tDTccsstyM/Pl2wzYMAAcBwn+XvggQck2xQWFmLIkCGIi4tDWloa/vnPf6KmpkayzaZNm9CrVy/ExMSgffv2WLp0qSVtmDFjhod9nTt3dn1//vx5PPzww2jYsCHi4+MxfPhwFBUVBY39rVu39rCf4zg8/PDDAILz+H/77be46aab0LRpU3Ach9WrV0u+53ke06dPR5MmTVCvXj1kZmbi999/l2xz6tQpjB49GomJiUhOTsa9996LiooKyTa//vorrrrqKsTGxqJFixaYN2+ehy0rVqxA586dERsbi+7du+Pzzz/3yf7q6mpMmTIF3bt3R/369dG0aVOMGTMGR44ckZShdN7mzp0bEPv12gAAd999t4d9gwcPlmwTrOcAgOI9wXEcnn/+edc2dp4DI7+dgfztCYbnCaFMsJybUH/eh/qzHgi95z096+lZ72sb6FkvEDTPep4wzfLly/no6Gj+nXfe4X/77Td+3LhxfHJyMl9UVBRQOwYNGsS/++67/K5du/jc3Fz+xhtv5Fu2bMlXVFS4tunfvz8/btw4/ujRo66/0tJS1/c1NTV8t27d+MzMTH7Hjh38559/zjdq1IifOnWqa5s//viDj4uL4ydOnMjv3r2bf+WVV/iIiAh+3bp1PrchOzubv+iiiyT2HT9+3PX9Aw88wLdo0YLfuHEj/8svv/CXXXYZf/nllweN/cXFxRLb169fzwPgv/76a57ng/P4f/755/yTTz7J5+Tk8AD4Tz/9VPL93Llz+aSkJH716tX8zp07+Ztvvplv06YNf+7cOdc2gwcP5nv06MH/+OOP/Hfffce3b9+eHzVqlOv70tJSPj09nR89ejS/a9cu/qOPPuLr1avHL1682LXNDz/8wEdERPDz5s3jd+/ezT/11FN8VFQUn5eX57X9JSUlfGZmJv/xxx/ze/fu5bds2cJfeumlfO/evSVltGrVip81a5bkvIjvG3/ab+Qc3HXXXfzgwYMl9p06dUqyTbCeA57nJXYfPXqUf+edd3iO4/iCgoKgOAdGfjsD9dsTLM8TwpNgOjeh/rwP9Wc9z4fe856e9fSs9+c54Hl61jMC9awn0e4Fl156Kf/www+7lmtra/mmTZvyc+bMsdEq4YECgP/mm29c6/r3788/8sgjqvt8/vnnvMPh4I8dO+Za9/rrr/OJiYl8ZWUlz/M8//jjj/MXXXSRZL+RI0fygwYN8tnm7OxsvkePHorflZSU8FFRUfyKFStc6/bs2cMD4Lds2RIU9st55JFH+Hbt2vFOp5Pn+eA//vIfYafTyTdu3Jh//vnnXetKSkr4mJgY/qOPPuJ5nud3797NA+B//vln1zZffPEFz3Ec/9dff/E8z/OvvfYan5KS4moDz/P8lClT+E6dOrmWb7vtNn7IkCESe/r27cv/4x//8Np+JbZu3coD4A8dOuRa16pVK/7FF19U3SdQ9qu14a677uKHDh2quk+onYOhQ4fy1157rWRdMJ0D+W9nIH97gvV5QgT3uQm1531de9bzfGg97+lZrww96+lZH0rPegqPN0lVVRW2bduGzMxM1zqHw4HMzExs2bLFRsuA0tJSAECDBg0k65ctW4ZGjRqhW7dumDp1Ks6ePev6bsuWLejevTvS09Nd6wYNGoSysjL89ttvrm3E7WXbWNXe33//HU2bNkXbtm0xevRoFBYWAgC2bduG6upqSd2dO3dGy5YtXXUHg/2MqqoqfPjhh7jnnnvAcZxrfbAffzEHDhzAsWPHJPUlJSWhb9++kmOenJyMPn36uLbJzMyEw+HATz/95Nrm6quvRnR0tMTm/Px8nD59OqDtKi0tBcdxSE5OlqyfO3cuGjZsiIsvvhjPP/+8JNQpGOzftGkT0tLS0KlTJzz44IM4efKkxL5QOQdFRUVYu3Yt7r33Xo/vguUcyH87A/XbE8zPk3An2M9NKD7v68qzHgj95z096xE09tOznp71Rok001gCOHHiBGprayUnDwDS09Oxd+9em6wCnE4nHn30UVxxxRXo1q2ba/3f//53tGrVCk2bNsWvv/6KKVOmID8/Hzk5OQCAY8eOKbaFfae1TVlZGc6dO4d69ep5bXffvn2xdOlSdOrUCUePHsXMmTNx1VVXYdeuXTh27Biio6M9foDT09N1bQuU/WJWr16NkpIS3H333a51wX785bA6leoT25OWlib5PjIyEg0aNJBs06ZNG48y2HcpKSmq7WJlWMH58+cxZcoUjBo1ComJia71EyZMQK9evdCgQQNs3rwZU6dOxdGjR7FgwYKgsH/w4MHIyspCmzZtUFBQgH/961+44YYbsGXLFkRERITUOXjvvfeQkJCArKwsyfpgOQdKv52B+u05ffp0UD5PiOB91gOh+byvS896IPSf9/Ssp2c9PetD71lPor2O8PDDD2PXrl34/vvvJevvv/9+1+fu3bujSZMmGDhwIAoKCtCuXbtAm+nBDTfc4PqckZGBvn37olWrVvjkk08sfcAGgrfffhs33HADmjZt6loX7Me/LlNdXY3bbrsNPM/j9ddfl3w3ceJE1+eMjAxER0fjH//4B+bMmYOYmJhAm+rB7bff7vrcvXt3ZGRkoF27dti0aRMGDhxoo2XmeeeddzB69GjExsZK1gfLOVD77SSIYCUUn/d16VkP0PM+mKBnfXBAz3r/Q+HxJmnUqBEiIiI8MgsWFRWhcePGttg0fvx4/Pe//8XXX3+N5s2ba27bt29fAMD+/fsBAI0bN1ZsC/tOa5vExETLH7bJycno2LEj9u/fj8aNG6OqqgolJSUedevZFmj7Dx06hA0bNuC+++7T3C7Yjz+rU+v6bty4MYqLiyXf19TU4NSpU5acFyvuI/YQP3ToENavXy/peVeib9++qKmpwcGDB4PCfjlt27ZFo0aNJNdNsJ8DAPjuu++Qn5+ve18A9pwDtd/OQP32BOPzhBAI1nNTV573ofqsB+rG856e9QeDwn459Kx328a+09om3J71JNpNEh0djd69e2Pjxo2udU6nExs3bkS/fv0CagvP8xg/fjw+/fRTfPXVVx7hJUrk5uYCAJo0aQIA6NevH/Ly8iQ/CuyHr2vXrq5txO1l2/ijvRUVFSgoKECTJk3Qu3dvREVFSerOz89HYWGhq+5gsf/dd99FWloahgwZorldsB//Nm3aoHHjxpL6ysrK8NNPP0mOeUlJCbZt2+ba5quvvoLT6XS9pPTr1w/ffvstqqurJTZ36tQJKSkpfm0Xe4j//vvv2LBhAxo2bKi7T25uLhwOhysMzU77lfjzzz9x8uRJyXUTzOeA8fbbb6N3797o0aOH7raBPAd6v52B+u0JpucJISXYzk1de96H6rMeqBvPe3rW07OenvUh+Kw3nLKOcLF8+XI+JiaGX7p0Kb97927+/vvv55OTkyWZBQPBgw8+yCclJfGbNm2STKVw9uxZnud5fv/+/fysWbP4X375hT9w4AD/2Wef8W3btuWvvvpqVxlsKoPrr7+ez83N5detW8enpqYqTmXwz3/+k9+zZw//6quvWjaNyqRJk/hNmzbxBw4c4H/44Qc+MzOTb9SoEV9cXMzzvDAVQ8uWLfmvvvqK/+WXX/h+/frx/fr1Cxr7eV7IANmyZUt+ypQpkvXBevzLy8v5HTt28Dt27OAB8AsWLOB37Njhyrg6d+5cPjk5mf/ss8/4X3/9lR86dKjiNDAXX3wx/9NPP/Hff/8936FDB8kUJCUlJXx6ejp/55138rt27eKXL1/Ox8XFeUzhERkZyc+fP5/fs2cPn52dbWgKDy37q6qq+Jtvvplv3rw5n5ubK7kvWJbPzZs38y+++CKfm5vLFxQU8B9++CGfmprKjxkzJiD267WhvLycnzx5Mr9lyxb+wIED/IYNG/hevXrxHTp04M+fPx/054BRWlrKx8XF8a+//rrH/nafA73fTp4P3G9PsDxPCE+C6dyE+vO+LjzreT60nvf0rKdnvT/PAYOe9YF71pNo95JXXnmFb9myJR8dHc1feuml/I8//hhwGwAo/r377rs8z/N8YWEhf/XVV/MNGjTgY2Ji+Pbt2/P//Oc/JfOG8jzPHzx4kL/hhhv4evXq8Y0aNeInTZrEV1dXS7b5+uuv+Z49e/LR0dF827ZtXXX4ysiRI/kmTZrw0dHRfLNmzfiRI0fy+/fvd31/7tw5/qGHHuJTUlL4uLg4ftiwYfzRo0eDxn6e5/kvv/ySB8Dn5+dL1gfr8f/6668Vr5u77rqL53lhKphp06bx6enpfExMDD9w4ECPtp08eZIfNWoUHx8fzycmJvJjx47ly8vLJdvs3LmTv/LKK/mYmBi+WbNm/Ny5cz1s+eSTT/iOHTvy0dHR/EUXXcSvXbvWJ/sPHDigel+wuXS3bdvG9+3bl09KSuJjY2P5Ll268M8++6zkIelP+/XacPbsWf7666/nU1NT+aioKL5Vq1b8uHHjPH7Yg/UcMBYvXszXq1ePLykp8djf7nOg99vJ84H97QmG5wmhTLCcm1B/3teFZz3Ph9bznp719Kz3tQ30rBcIlmc9d6FRBEEQBEEQBEEQBEEEGTSmnSAIgiAIgiAIgiCCFBLtBEEQBEEQBEEQBBGkkGgnCIIgCIIgCIIgiCCFRDtBEARBEARBEARBBCkk2gmCIAiCIAiCIAgiSCHRThAEQRAEQRAEQRBBCol2giAIgiAIgiAIgghSSLQTBEEQBEEQBEEQRJBCop0gCIIgCIIgCIIgghQS7QRBAACOHz+OBx98EC1btkRMTAwaN26MQYMG4YcffgAAcByH1atX22skQRAEQRBeQ896gghNIu02gCCI4GD48OGoqqrCe++9h7Zt26KoqAgbN27EyZMn7TaNIAiCIAgLoGc9QYQmHM/zvN1GEARhLyUlJUhJScGmTZvQv39/j+9bt26NQ4cOuZZbtWqFgwcPAgA+++wzzJw5E7t370bTpk1x11134cknn0RkpNAnyHEcXnvtNaxZswabNm1CkyZNMG/ePNx6660BaRtBEARBEPSsJ4hQhsLjCYJAfHw84uPjsXr1alRWVnp8//PPPwMA3n33XRw9etS1/N1332HMmDF45JFHsHv3bixevBhLly7FM888I9l/2rRpGD58OHbu3InRo0fj9ttvx549e/zfMIIgCIIgANCzniBCGfK0EwQBAFi1ahXGjRuHc+fOoVevXujfvz9uv/12ZGRkABB60T/99FPccsstrn0yMzMxcOBATJ061bXuww8/xOOPP44jR4649nvggQfw+uuvu7a57LLL0KtXL7z22muBaRxBEARBEPSsJ4gQhTztBEEAEMa5HTlyBGvWrMHgwYOxadMm9OrVC0uXLlXdZ+fOnZg1a5ar9z4+Ph7jxo3D0aNHcfbsWdd2/fr1k+zXr18/6n0nCIIgiABDz3qCCE0oER1BEC5iY2Nx3XXX4brrrsO0adNw3333ITs7G3fffbfi9hUVFZg5cyaysrIUyyIIgiAIIrigZz1BhB7kaScIQpWuXbvizJkzAICoqCjU1tZKvu/Vqxfy8/PRvn17jz+Hw/3z8uOPP0r2+/HHH9GlSxf/N4AgCIIgCE3oWU8QwQ952gmCwMmTJzFixAjcc889yMjIQEJCAn755RfMmzcPQ4cOBSBkld24cSOuuOIKxMTEICUlBdOnT8ff/vY3tGzZErfeeiscDgd27tyJXbt24emnn3aVv2LFCvTp0wdXXnklli1bhq1bt+Ltt9+2q7kEQRAEEXbQs54gQhdKREcQBCorKzFjxgz873//Q0FBAaqrq9GiRQuMGDEC//rXv1CvXj385z//wcSJE3Hw4EE0a9bMNQ3Ml19+iVmzZmHHjh2IiopC586dcd9992HcuHEAhOQ0r776KlavXo1vv/0WTZo0wXPPPYfbbrvNxhYTBEEQRHhBz3qCCF1ItBME4VeUMtESBEEQBFF3oGc9QfgXGtNOEARBEARBEARBEEEKiXaCIAiCIAiCIAiCCFIoPJ4gCIIgCIIgCIIgghTytBMEQRAEQRAEQRBEkEKinSAIgiAIgiAIgiCCFBLtBEEQBEEQBEEQBBGkkGgnCIIgCIIgCIIgiCCFRDtBEARBEARBEARBBCkk2gmCIAiCIAiCIAgiSCHRThAEQRAEQRAEQRBBCol2giAIgiAIgiAIgghS/h9D5UbuK2hz2gAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1200x500 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Plot training results\n",
    "fig, axes = plt.subplots(1, 2, figsize=(12, 5))\n",
    "\n",
    "df_train = pd.read_csv(\"metrics_train.csv\")\n",
    "df_val = pd.read_csv(\"metrics_val.csv\")\n",
    "\n",
    "# Plot Loss\n",
    "axes[0].plot(df_train[\"step\"], df_train[\"mean_loss\"], 'b-o', label='Train Loss', markersize=4, linewidth=1.5)\n",
    "axes[0].plot(df_val[\"step\"], df_val[\"mean_loss\"], 'r-s', label='Val Loss', markersize=4, linewidth=1.5)\n",
    "axes[0].set_xlabel('Step')\n",
    "axes[0].set_ylabel('Loss')\n",
    "axes[0].set_title('Loss')\n",
    "axes[0].legend()\n",
    "axes[0].grid(True, alpha=0.3)\n",
    "\n",
    "# Plot Pearson Correlation\n",
    "axes[1].plot(df_train[\"step\"], df_train[\"mean_pearson\"], 'g-o', label='Train Pearson', markersize=4, linewidth=1.5)\n",
    "axes[1].plot(df_val[\"step\"], df_val[\"mean_pearson\"], 'orange', marker='s', label='Val Pearson', markersize=4, linewidth=1.5)\n",
    "axes[1].set_xlabel('Step')\n",
    "axes[1].set_ylabel('Pearson Correlation')\n",
    "axes[1].set_title('Mean Pearson Correlation')\n",
    "axes[1].legend()\n",
    "axes[1].grid(True, alpha=0.3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 9. 🧪 Test evaluation\n",
    "\n",
    "Evaluate the fine-tuned model on the held-out test set to assess final performance. This provides an unbiased estimate of how well the model generalizes to unseen genomic regions."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Calculate number of test steps (based on deepspeed pipeline)\n",
    "num_test_samples = len(test_dataset)\n",
    "num_test_steps = num_test_samples // config[\"mini_batch_size\"]\n",
    "print(f\"Running test evaluation with {num_test_steps} steps ({num_test_samples} samples)\")\n",
    "\n",
    "# Load the best model checkpoint\n",
    "model.load_state_dict(torch.load(config[\"best_model_checkpoint_path\"]))\n",
    "model.to(device)\n",
    "print(f\"Loaded model from {config['best_model_checkpoint_path']=!s}\")\n",
    "\n",
    "# Set model to eval mode\n",
    "model.eval()\n",
    "\n",
    "# Run test evaluation with progress bar\n",
    "for test_batch in tqdm(test_loader, desc=\"Test evaluation\", total=num_test_steps):        \n",
    "    validation_step(        \n",
    "        model, \n",
    "        test_batch, \n",
    "        test_metrics,\n",
    "    )\n",
    "    \n",
    "# Compute final test metrics\n",
    "test_metrics_dict = test_metrics.compute()\n",
    "print(\"\\n\" + \"=\"*50)\n",
    "print(\"Test Set Results\")\n",
    "print(\"=\"*50)\n",
    "print(f\"\\nMetrics:\")\n",
    "print(f\"  Mean Pearson: {test_metrics_dict['mean/pearson']:.4f}\")\n",
    "for track_name in bigwig_ids:    \n",
    "    print(f\"    {track_name}/pearson: {test_metrics_dict[f'{track_name}/pearson']:.4f}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Test set results obtained for reference (human)\n",
    "\n",
    "===== Test Set Results =====\n",
    "\n",
    "Metrics:\n",
    "Mean Pearson: 0.6050\n",
    "- ENCSR154HRN_M/pearson: 0.5132\n",
    "- ENCSR154HRN_P/pearson: 0.5095\n",
    "- ENCSR935RNW_P/pearson: 0.5690\n",
    "- ENCSR114HGS_M/pearson: 0.3433\n",
    "- ENCSR487QSB/pearson: 0.7101\n",
    "- ENCSR046BCI_M/pearson: 0.5188\n",
    "- ENCSR100LIJ_M/pearson: 0.5632\n",
    "- ENCSR754DRC/pearson: 0.6046\n",
    "- ENCSR682BFG/pearson: 0.6839\n",
    "- ENCSR862QCH_M/pearson: 0.5441\n",
    "- ENCSR046BCI_P/pearson: 0.4872\n",
    "- ENCSR249ROI_M/pearson: 0.6077\n",
    "- ENCSR484LTQ_P/pearson: 0.4738\n",
    "- ENCSR410DWV/pearson: 0.7949\n",
    "- ENCSR619DQO_P/pearson: 0.6981\n",
    "- ENCSR321PWZ_M/pearson: 0.6895\n",
    "- ENCSR962OTG/pearson: 0.9150\n",
    "- ENCSR321PWZ_P/pearson: 0.6903\n",
    "- ENCSR484LTQ_M/pearson: 0.4812\n",
    "- ENCSR628PLS/pearson: 0.6479\n",
    "- ENCSR249ROI_P/pearson: 0.5761\n",
    "- ENCSR799DGV_P/pearson: 0.5704\n",
    "- ENCSR862QCH_P/pearson: 0.5402\n",
    "- ENCSR527JGN_M/pearson: 0.5144\n",
    "- ENCSR619DQO_M/pearson: 0.6975\n",
    "- ENCSR814RGG/pearson: 0.7958\n",
    "- ENCSR935RNW_M/pearson: 0.5600\n",
    "- ENCSR863PSM/pearson: 0.6915\n",
    "- ENCSR114HGS_P/pearson: 0.3447\n",
    "- ENCSR325NFE/pearson: 0.8314\n",
    "- ENCSR701YIC/pearson: 0.5613\n",
    "- ENCSR527JGN_P/pearson: 0.7226\n",
    "- ENCSR100LIJ_P/pearson: 0.5643"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Test set results obtained for a new species (tomato)\n",
    "\n",
    "===== Test Set Results =====\n",
    "\n",
    "Metrics:\n",
    "Mean Pearson: 0.7596\n",
    "- SRX29291439/pearson: 0.8581\n",
    "- SRX27799718/pearson: 0.4512\n",
    "- SRX29291446/pearson: 0.9152\n",
    "- SRX29291430/pearson: 0.9069\n",
    "- SRX27799731/pearson: 0.5254\n",
    "- SRX27799719/pearson: 0.4435\n",
    "- SRX29291442/pearson: 0.9151\n",
    "- SRX27799733/pearson: 0.4725\n",
    "- SRX27799722/pearson: 0.4795\n",
    "- SRX29291444/pearson: 0.9139\n",
    "- SRX29291440/pearson: 0.8633\n",
    "- SRX27799727/pearson: 0.6209\n",
    "- SRX29291438/pearson: 0.8770\n",
    "- SRX27799703/pearson: 0.4722\n",
    "- SRX29291448/pearson: 0.9160\n",
    "- SRX29291441/pearson: 0.9169\n",
    "- SRX29291447/pearson: 0.9171\n",
    "- SRX29291445/pearson: 0.8990\n",
    "- SRX29291431/pearson: 0.9181\n",
    "- SRX29291443/pearson: 0.9103\n",
    "\n",
    "NOTE: to achieve these results, set the 'species_name' to 'tomato' in the config."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}