Spaces:
Sleeping
Sleeping
File size: 22,519 Bytes
8fefb8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
\documentclass[12pt]{article}
\usepackage[margin=1in]{geometry}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{hyperref}
\title{Differential Equations in Physics: Course Notes}
\author{Physics Department}
\date{}
\begin{document}
\maketitle
\section{Introduction: What is a Differential Equation?}
A \textbf{differential equation (DE)} is a mathematical equation that relates a function with its derivatives. In physics, these equations are fundamental because the laws of nature are most often expressed as statements about \textit{rates of change}.
\begin{itemize}
\item \textbf{Physical Meaning:} A DE describes the \textit{dynamics} of a system—how a system evolves in time or space.
\begin{itemize}
\item Newton's Second Law ($F=ma$) is a DE: $F = m \frac{d^2x}{dt^2}$.
\item The law of radioactive decay ($dN/dt = -\lambda N$) is a DE.
\end{itemize}
\item \textbf{Key Concepts:}
\begin{itemize}
\item \textbf{Ordinary Differential Equation (ODE):} Involves derivatives with respect to only \textit{one} independent variable (usually time, $t$).
\item \textbf{Partial Differential Equation (PDE):} Involves partial derivatives with respect to \textit{multiple} independent variables (e.g., $t$ and $x$).
\item \textbf{Order:} The order of the highest derivative present (e.g., $dy/dt$ is first-order, $d^2y/dt^2$ is second-order).
\item \textbf{Linearity:} A DE is linear if the dependent variable (e.g., $y$) and its derivatives appear only to the first power. $\ddot{x} + 2\dot{x} + x = 0$ is linear, while $\ddot{x} + x^2 = 0$ is non-linear.
\end{itemize}
\end{itemize}
\hrule
\section{First-Order ODEs}
These equations involve only the first derivative, $dy/dt$. They often describe systems that "settle" towards an equilibrium or decay over time. The general form is $\frac{dy}{dt} = f(y, t)$.
\subsection{Worked Example 1: Radioactivity}
\begin{itemize}
\item \textbf{Concept:} The rate at which a radioactive sample decays is proportional to the number of unstable nuclei, $N$, present.
\item \textbf{Equation:}
$$ \frac{dN}{dt} = -\lambda N $$
\item \textbf{Physical Meaning:} $\frac{dN}{dt}$ is the \textit{activity} (rate of decay). $\lambda$ is the \textbf{decay constant}, representing the probability of a single nucleus decaying per unit time. The minus sign indicates that $N$ is \textit{decreasing}.
\item \textbf{Solution (Separation of Variables):}
\begin{enumerate}
\item Rearrange the equation: $\frac{1}{N} dN = -\lambda dt$
\item Integrate both sides: $\int \frac{1}{N} dN = \int -\lambda dt \implies \ln(N) = -\lambda t + C$
\item Solve for $N$ by exponentiating: $N(t) = e^{-\lambda t + C} = e^C e^{-\lambda t}$
\item At $t=0$, $N(0) = N_0$. So, $N_0 = e^C$.
\item \textbf{Final Solution:} $N(t) = N_0 e^{-\lambda t}$
\end{enumerate}
\item \textbf{Key Idea:} This is the law of \textbf{exponential decay}. The \textbf{half-life} ($T_{1/2}$) is the time it takes for half the sample to decay: $N_0/2 = N_0 e^{-\lambda T_{1/2}} \implies T_{1/2} = \frac{\ln(2)}{\lambda}$.
\end{itemize}
\subsection{Worked Example 2: Motion with Resistance (Terminal Velocity)}
\begin{itemize}
\item \textbf{Concept:} A falling object (mass $m$) experiences gravity ($F_g = mg$) and linear air resistance, or "drag" ($F_d = -bv$, where $b$ is the drag coefficient).
\item \textbf{Equation (Newton's 2nd Law):} $F_{net} = ma$
$$ m\frac{dv}{dt} = mg - bv $$
\item \textbf{Physical Meaning:} The acceleration $\frac{dv}{dt}$ is the result of the constant gravitational force minus the velocity-dependent drag force.
\item \textbf{Solution (Separation of Variables):}
\begin{enumerate}
\item Rearrange: $m\frac{dv}{mg - bv} = dt \implies \int \frac{dv}{g - (b/m)v} = \int dt$
\item Integrate (using u-substitution $u = g - (b/m)v$):
$$ -\frac{m}{b} \ln\left(g - \frac{b}{m}v\right) = t + C $$
\item Assume the object is dropped from rest, $v(0) = 0$.
$$ -\frac{m}{b} \ln(g) = C $$
\item Substitute $C$ back and solve for $v(t)$:
$$ \ln\left(g - \frac{b}{m}v\right) - \ln(g) = -\frac{b}{m}t $$
$$ \ln\left(\frac{g - (b/m)v}{g}\right) = -\frac{b}{m}t $$
$$ 1 - \frac{b}{mg}v = e^{-(b/m)t} $$
\item \textbf{Final Solution:} $v(t) = \frac{mg}{b} \left(1 - e^{-(b/m)t}\right)$
\end{enumerate}
\item \textbf{Key Idea:} As $t \to \infty$, the exponential term $e^{-(b/m)t} \to 0$. The velocity approaches a constant value $v_T = \frac{mg}{b}$. This is the \textbf{terminal velocity}, where the drag force perfectly balances the gravitational force ($mg = bv_T$) and acceleration becomes zero.
\end{itemize}
\subsection{Worked Example 3: Newton's Law of Cooling}
\begin{itemize}
\item \textbf{Concept:} The rate of change of an object's temperature $T$ is proportional to the difference between its temperature and the ambient temperature $T_a$.
\item \textbf{Equation:} $\frac{dT}{dt} = -k(T - T_a)$
\item \textbf{Physical Meaning:} $k$ is a positive constant related to the object's surface area and material. The equation states that if the object is hotter than its surroundings ($T > T_a$), $dT/dt$ is negative (it cools). If it's cooler ($T < T_a$), $dT/dt$ is positive (it warms).
\item \textbf{Solution:} Let $y(t) = T(t) - T_a$. Then $\frac{dy}{dt} = \frac{dT}{dt}$.
\begin{itemize}
\item $\frac{dy}{dt} = -ky \implies y(t) = y_0 e^{-kt}$
\item Substitute back: $T(t) - T_a = (T(0) - T_a)e^{-kt}$
\item \textbf{Final Solution:} $T(t) = T_a + (T_0 - T_a)e^{-kt}$
\end{itemize}
\item \textbf{Key Idea:} The object's temperature exponentially approaches the ambient temperature.
\end{itemize}
\subsection{Worked Example 4: Variation of Air Pressure with Height}
\begin{itemize}
\item \textbf{Concept:} The pressure $P$ at a height $h$ is due to the weight of the air above it. Consider a thin slice of air $dh$. The pressure difference $dP$ between $h$ and $h+dh$ is $dP = -\rho g dh$.
\item \textbf{Physics:} We need a link between $P$ and $\rho$. Using the Ideal Gas Law ($PV=nRT$), $P = \frac{\rho M}{RT}$, where $M$ is the molar mass of air. So, $\rho = \frac{PM}{RT}$.
\item \textbf{Equation (assuming constant $T$):}
$$ \frac{dP}{dh} = -\rho g = -\left(\frac{PM}{RT}\right)g $$
\item \textbf{Solution (Separation of Variables):}
\begin{enumerate}
\item $\frac{dP}{P} = -\left(\frac{Mg}{RT}\right) dh$
\item $\int \frac{dP}{P} = \int -\left(\frac{Mg}{RT}\right) dh$
\item $\ln(P) = -\left(\frac{Mg}{RT}\right)h + C$
\item Let $P(0) = P_0$ (pressure at sea level). Then $C = \ln(P_0)$.
\item \textbf{Final Solution:} $P(h) = P_0 e^{-(Mg/RT)h}$
\end{enumerate}
\item \textbf{Key Idea:} This is the \textbf{Barometric Formula}. It shows that atmospheric pressure decreases exponentially with altitude.
\end{itemize}
\subsection{Worked Example 5: Radioactive Decay Chain (A $\to$ B $\to$ C)}
\begin{itemize}
\item \textbf{Concept:} A "parent" nucleus (A) decays with constant $\lambda_A$ into a "daughter" nucleus (B). This daughter (B) is \textit{also} radioactive and decays with constant $\lambda_B$ into a stable "granddaughter" nucleus (C). This is a \textbf{system of coupled first-order ODEs}.
\item \textbf{Equations:}
\begin{align}
\frac{dN_A}{dt} &= -\lambda_A N_A \label{eq:A} \\
\frac{dN_B}{dt} &= +\lambda_A N_A - \lambda_B N_B \label{eq:B} \\
\frac{dN_C}{dt} &= +\lambda_B N_B \label{eq:C}
\end{align}
\item \textbf{Physical Meaning:} The rate of change of B, $\frac{dN_B}{dt}$, is the \textit{rate of creation} ($\lambda_A N_A$) minus the \textit{rate of decay} ($\lambda_B N_B$).
\item \textbf{Solution:} Assume at $t=0$, we have $N_A(0) = N_0$, and $N_B(0) = N_C(0) = 0$.
\begin{enumerate}
\item \textbf{Solve for $N_A$:} This is standard exponential decay.
$$ N_A(t) = N_0 e^{-\lambda_A t} $$
\item \textbf{Solve for $N_B$:} Substitute the solution for $N_A$ into Eq. (\ref{eq:B}):
$$ \frac{dN_B}{dt} + \lambda_B N_B = \lambda_A N_0 e^{-\lambda_A t} $$
This is a first-order linear ODE. Solved using an \textbf{integrating factor} $I(t) = e^{\int \lambda_B dt} = e^{\lambda_B t}$.
\begin{itemize}
\item Multiply by $I(t)$: $e^{\lambda_B t} \frac{dN_B}{dt} + \lambda_B e^{\lambda_B t} N_B = \lambda_A N_0 e^{(\lambda_B - \lambda_A)t}$
\item The left side is a product rule: $\frac{d}{dt} \left( N_B e^{\lambda_B t} \right) = \lambda_A N_0 e^{(\lambda_B - \lambda_A)t}$
\item Integrate: $N_B e^{\lambda_B t} = \frac{\lambda_A N_0}{\lambda_B - \lambda_A} e^{(\lambda_B - \lambda_A)t} + K$
\item Apply $N_B(0) = 0$: $0 = \frac{\lambda_A N_0}{\lambda_B - \lambda_A} + K \implies K = -\frac{\lambda_A N_0}{\lambda_B - \lambda_A}$
\item \textbf{Final Solution for $N_B$:} (assuming $\lambda_A \neq \lambda_B$)
$$ N_B(t) = \frac{\lambda_A N_0}{\lambda_B - \lambda_A} \left( e^{-\lambda_A t} - e^{-\lambda_B t} \right) $$
\end{itemize}
\item \textbf{Solve for $N_C$:} Use conservation: $N_A(t) + N_B(t) + N_C(t) = N_0$.
\begin{itemize}
\item \textbf{Final Solution for $N_C$:} $N_C(t) = N_0 - N_A(t) - N_B(t)$
$$ N_C(t) = N_0 \left( 1 - \frac{\lambda_B}{\lambda_B - \lambda_A} e^{-\lambda_A t} + \frac{\lambda_A}{\lambda_B - \lambda_A} e^{-\lambda_B t} \right) $$
\end{itemize}
\end{enumerate}
\item \textbf{Key Idea (Secular Equilibrium):} If A decays much slower than B ($\lambda_A \ll \lambda_B$), then $\frac{dN_B}{dt} \approx 0$ after some time. This means $\lambda_A N_A \approx \lambda_B N_B$. The activities become equal.
\end{itemize}
\hrule
\hrule
\section{Second-Order Linear ODEs}
These are the most important equations for describing oscillations and waves. The general form is $a\ddot{x} + b\dot{x} + cx = F(t)$, where $\dot{x} = dx/dt$ and $\ddot{x} = d^2x/dt^2$.
\textbf{Physical Meaning (Mechanical System):}
$m\ddot{x} + b\dot{x} + kx = F(t)$
\begin{itemize}
\item $m\ddot{x}$: \textbf{Inertial term} (mass $\times$ acceleration)
\item $b\dot{x}$: \textbf{Damping term} (drag, friction, proportional to velocity)
\item $kx$: \textbf{Restoring term} (spring force, proportional to displacement)
\item $F(t)$: \textbf{Driving term} (an external, time-dependent force)
\end{itemize}
We will first study the \textbf{homogeneous} case, where $F(t) = 0$.
\subsection{Worked Example 1: Simple Harmonic Oscillator (SHO)}
\begin{itemize}
\item \textbf{Concept:} A system with \textit{no damping} ($b=0$) and a linear restoring force (like a mass $m$ on an ideal spring with constant $k$).
\item \textbf{Equation (Mechanical):} $m\ddot{x} + kx = 0 \implies \ddot{x} + \frac{k}{m}x = 0$
\begin{itemize}
\item We define the \textbf{natural angular frequency} $\omega_0 = \sqrt{k/m}$.
\item The standard form is $\ddot{x} + \omega_0^2 x = 0$.
\end{itemize}
\item \textbf{Illustration (Electrical): The LC Circuit}
\begin{itemize}
\item An inductor ($L$) and capacitor ($C$) in a closed loop.
\item Kirchhoff's Loop Law: $V_L + V_C = 0 \implies L\frac{dI}{dt} + \frac{Q}{C} = 0$
\item Since $I = \frac{dQ}{dt}$, we have $L\ddot{Q} + \frac{1}{C}Q = 0 \implies \ddot{Q} + \frac{1}{LC}Q = 0$.
\item This is the \textit{exact same equation!} $\omega_0 = 1/\sqrt{LC}$.
\item \textbf{Analogy:} $L \leftrightarrow m$ (inertia), $1/C \leftrightarrow k$ (stiffness).
\end{itemize}
\item \textbf{Solution:}
\begin{enumerate}
\item We guess a solution (an "ansatz") of the form $x(t) = e^{rt}$.
\item Substitute: $r^2 e^{rt} + \omega_0^2 e^{rt} = 0 \implies r^2 + \omega_0^2 = 0$.
\item This is the \textbf{characteristic equation}. Its roots are $r = \pm \sqrt{-\omega_0^2} = \pm i\omega_0$.
\item The general solution: $x(t) = C_1 e^{i\omega_0 t} + C_2 e^{-i\omega_0 t}$.
\item Using Euler's Formula ($e^{i\theta} = \cos\theta + i\sin\theta$):
\item \textbf{Final Solution:} $x(t) = A \cos(\omega_0 t) + B \sin(\omega_0 t)$
\item This can also be written as $x(t) = C \cos(\omega_0 t + \phi)$, where $C$ is the \textbf{amplitude} and $\phi$ is the \textbf{phase}.
\end{enumerate}
\item \textbf{Key Idea:} The system oscillates sinusoidally forever with a constant period $T = 2\pi/\omega_0$.
\end{itemize}
\subsection{Worked Example 2: Damped Oscillations}
\begin{itemize}
\item \textbf{Concept:} A realistic oscillator that includes friction/damping ($b > 0$).
\item \textbf{Equation (Mechanical):} $m\ddot{x} + b\dot{x} + kx = 0$
\item \textbf{Equation (Electrical - RLC Circuit):} $L\ddot{Q} + R\dot{Q} + \frac{1}{C}Q = 0$
\item \textbf{Analogy:} $m \leftrightarrow L$, $b \leftrightarrow R$, $k \leftrightarrow 1/C$.
\item \textbf{Solution:}
\begin{enumerate}
\item Divide by $m$: $\ddot{x} + \frac{b}{m}\dot{x} + \frac{k}{m}x = 0 \implies \ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0$ (where $\gamma = b/m$).
\item Use the ansatz $x(t) = e^{rt}$.
\item Characteristic Equation: $r^2 + \gamma r + \omega_0^2 = 0$.
\item Roots (quadratic formula): $r = \frac{-\gamma \pm \sqrt{\gamma^2 - 4\omega_0^2}}{2}$.
\end{enumerate}
\item \textbf{Key Idea:} The behavior depends on the discriminant $\Delta = \gamma^2 - 4\omega_0^2$.
\begin{itemize}
\item \textbf{Case 1: Underdamped ($\Delta < 0 \implies \gamma^2 < 4\omega_0^2$)}
\begin{itemize}
\item \textbf{Physical Meaning:} Damping is weak.
\item Roots are complex: $r = -\frac{\gamma}{2} \pm i\omega_d$, where $\omega_d = \sqrt{\omega_0^2 - (\gamma/2)^2}$.
\item \textbf{Solution:} $x(t) = A e^{-\gamma t/2} \cos(\omega_d t + \phi)$
\item \textbf{Behavior:} The system \textbf{oscillates} with a decaying amplitude $A e^{-\gamma t/2}$. The "damped frequency" $\omega_d$ is \textit{less} than $\omega_0$.
\end{itemize}
\item \textbf{Case 2: Overdamped ($\Delta > 0 \implies \gamma^2 > 4\omega_0^2$)}
\begin{itemize}
\item \textbf{Physical Meaning:} Damping is very strong.
\item Roots are two distinct, real, negative numbers: $r_1$ and $r_2$.
\item \textbf{Solution:} $x(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$
\item \textbf{Behavior:} The system \textbf{does not oscillate}. It slowly decays back to equilibrium.
\end{itemize}
\item \textbf{Case 3: Critically Damped ($\Delta = 0 \implies \gamma^2 = 4\omega_0^2$)}
\begin{itemize}
\item \textbf{Physical Meaning:} The "sweet spot" of damping.
\item One repeated, real, negative root: $r = -\gamma/2$.
\item \textbf{Solution:} $x(t) = (C_1 + C_2 t) e^{-\gamma t/2}$
\item \textbf{Behavior:} The system returns to equilibrium as \textbf{fast as possible without oscillating}.
\end{itemize}
\end{itemize}
\end{itemize}
\subsection{Worked Example 3: Forced \& Damped Oscillations (Resonance)}
\begin{itemize}
\item \textbf{Concept:} A damped oscillator is now pushed by an external, periodic force, $F(t) = F_0 \cos(\omega_D t)$. $\omega_D$ is the \textbf{driving frequency}.
\item \textbf{Equation (Mechanical):} $m\ddot{x} + b\dot{x} + kx = F_0 \cos(\omega_D t)$
\item \textbf{Equation (Electrical - AC RLC Circuit):} $L\ddot{Q} + R\dot{Q} + \frac{1}{C}Q = V_0 \cos(\omega_D t)$
\item \textbf{Solution:} The general solution is $x(t) = x_h(t) + x_p(t)$.
\begin{itemize}
\item $x_h(t)$ is the \textbf{homogeneous (transient) solution}. This is the damped oscillation from Example 2. This part \textit{decays to zero}.
\item $x_p(t)$ is the \textbf{particular (steady-state) solution}. This describes the long-term behavior.
\end{itemize}
\item \textbf{Finding the Steady-State Solution $x_p(t)$:}
\begin{enumerate}
\item We look for $x_p(t) = A \cos(\omega_D t - \phi)$. $A$ is the amplitude, $\phi$ is the phase lag.
\item Use complex numbers: $F(t) = F_0 e^{i\omega_D t}$ and $x_p(t) = \tilde{A} e^{i\omega_D t}$.
\item Divide the DE by $m$: $\ddot{x} + \gamma \dot{x} + \omega_0^2 x = (F_0/m) e^{i\omega_D t}$ (where $\gamma=b/m$, $\omega_0^2=k/m$)
\item Substitute $x_p$: $(-\omega_D^2)\tilde{A} + (i\omega_D \gamma)\tilde{A} + \omega_0^2 \tilde{A} = F_0/m$
\item Solve for the complex amplitude $\tilde{A}$:
$$ \tilde{A} \left[ (\omega_0^2 - \omega_D^2) + i(\gamma \omega_D) \right] = F_0/m $$
$$ \tilde{A} = \frac{F_0/m}{(\omega_0^2 - \omega_D^2) + i(\gamma \omega_D)} $$
\item The real amplitude is the magnitude $A = |\tilde{A}|$.
\item \textbf{Final Solution (Amplitude):}
$$ A(\omega_D) = \frac{F_0/m}{\sqrt{(\omega_0^2 - \omega_D^2)^2 + (\gamma \omega_D)^2}} $$
\end{enumerate}
\item \textbf{Key Idea (Resonance):}
\begin{itemize}
\item The amplitude $A$ depends *strongly* on the driving frequency $\omega_D$.
\item \textbf{Resonance} occurs when $A$ is maximized. This happens when $\omega_D$ is close to $\omega_0$.
\item The peak resonance frequency is $\omega_R = \sqrt{\omega_0^2 - \gamma^2/2}$.
\item If damping is small ($\gamma \to 0$), $\omega_R \approx \omega_0$, and the amplitude at resonance becomes extremely large.
\end{itemize}
\end{itemize}
\subsection{Worked Example 4: Rocket Motion (Variable Mass)}
\begin{itemize}
\item \textbf{Concept:} A 1st-order DE where the \textit{mass} $m(t)$ is changing. We must use $F_{ext} = \frac{dp}{dt}$.
\item \textbf{Equation:} For a rocket, $p = m(t)v(t)$.
$$ F_{ext} = \frac{d}{dt}(mv) = m\frac{dv}{dt} + v\frac{dm}{dt} $$
\begin{itemize}
\item $F_{ext}$ is the external force (e.g., gravity, $-mg$).
\item The \textbf{thrust} is $F_{thrust} = -v_{ex} \frac{dm}{dt}$, where $v_{ex}$ is the exhaust velocity \textit{relative to the rocket}.
\item Total equation: $F_{ext} + F_{thrust} = m\frac{dv}{dt}$
\item In deep space ($F_{ext}=0$): $-v_{ex} \frac{dm}{dt} = m\frac{dv}{dt}$
\end{itemize}
\item \textbf{Solution (in free space):}
\begin{enumerate}
\item Rearrange: $dv = -v_{ex} \frac{dm}{m}$
\item Integrate from ($v_0, m_0$) to ($v_f, m_f$):
$$ \int_{v_0}^{v_f} dv = -v_{ex} \int_{m_0}^{m_f} \frac{dm}{m} $$
$$ v_f - v_0 = -v_{ex} [\ln(m_f) - \ln(m_0)] $$
\item \textbf{Final Solution:} $\Delta v = v_{ex} \ln\left(\frac{m_0}{m_f}\right)$
\end{enumerate}
\item \textbf{Key Idea:} This is the \textbf{Tsiolkovsky Rocket Equation}. It shows that $\Delta v$ depends logarithmically on the mass ratio $m_0/m_f$.
\end{itemize}
\hrule
\section{Problem Set (Updated)}
\begin{enumerate}
\item \textbf{Radioactivity:} Cobalt-60 (half-life 5.27 years) starts at 1000 GBq. What is its activity after 3 years?
\item \textbf{Decay Chain:} Strontium-90 ($\lambda_A \approx 0.0241~\text{yr}^{-1}$) decays to Yttrium-90 ($\lambda_B \approx 10.1~\text{yr}^{-1}$). If you start with pure Sr-90, find the time $t$ when the amount of Y-90 is maximum. (Hint: Find $t$ such that $dN_B/dt = 0$).
\item \textbf{Terminal Velocity:} An 80 kg skydiver has $v_T = 60$ m/s. Find the linear drag coefficient $b$.
\item \textbf{SHO:} A 0.5 kg mass on a spring has a period of 1.5 s. Find the spring constant $k$.
\item \textbf{RLC Circuit:} An RLC circuit has $L = 2$ H, $C = 0.1$ F, and $R = 10~\Omega$.
\begin{enumerate}
\item Is the \textit{un-driven} circuit underdamped, overdamped, or critically damped?
\item The circuit is now driven by $V(t) = 10 \cos(\omega_D t)$. What is the resonance frequency $\omega_R$?
\item What is the steady-state amplitude of the \textit{charge} $Q$ when driven at this resonance frequency?
\end{enumerate}
\end{enumerate}
\hrule
\section{Solutions (Updated)}
\begin{enumerate}
\item \textbf{Cobalt-60:}
$\lambda = \frac{\ln(2)}{5.27} \approx 0.1315$. $A(3) = 1000 e^{-(0.1315)(3)} \approx 674~\text{GBq}$.
\item \textbf{Decay Chain (Max $N_B$):}
\begin{itemize}
\item Set $\frac{dN_B}{dt} = \lambda_A N_A - \lambda_B N_B = 0 \implies \lambda_A N_A(t) = \lambda_B N_B(t)$.
\item $\lambda_A (N_0 e^{-\lambda_A t}) = \lambda_B \left( \frac{\lambda_A N_0}{\lambda_B - \lambda_A} (e^{-\lambda_A t} - e^{-\lambda_B t}) \right)$
\item $e^{-\lambda_A t} = \frac{\lambda_B}{\lambda_B - \lambda_A} (e^{-\lambda_A t} - e^{-\lambda_B t})$
\item $(\lambda_B - \lambda_A) e^{-\lambda_A t} = \lambda_B e^{-\lambda_A t} - \lambda_B e^{-\lambda_B t}$
\item $\lambda_A e^{-\lambda_A t} = \lambda_B e^{-\lambda_B t} \implies \frac{\lambda_B}{\lambda_A} = e^{(\lambda_B - \lambda_A)t}$
\item \textbf{$t_{max} = \frac{\ln(\lambda_B / \lambda_A)}{\lambda_B - \lambda_A}$}
\item $t_{max} = \frac{\ln(10.1 / 0.0241)}{10.1 - 0.0241} = \frac{\ln(419.1)}{10.076} \approx 0.599~\text{years}$.
\end{itemize}
\item \textbf{Terminal Velocity:}
$b = \frac{mg}{v_T} = \frac{(80)(9.8)}{60} \approx 13.07~\text{N}\cdot\text{s/m}$.
\item \textbf{SHO:}
$\omega_0 = 2\pi/1.5 \approx 4.189$. $k = m\omega_0^2 = (0.5)(4.189)^2 \approx 8.77~\text{N/m}$.
\item \textbf{RLC Circuit:}
\begin{itemize}
\item[a)] Eq: $2\ddot{Q} + 10\dot{Q} + 10Q = 0 \implies \ddot{Q} + 5\dot{Q} + 5Q = 0$.
\item $\gamma = 5$, $\omega_0^2 = 5$.
\item $\Delta = \gamma^2 - 4\omega_0^2 = 25 - 20 = 5 > 0$. The system is \textbf{overdamped}.
\item[b)] $\omega_R = \sqrt{\omega_0^2 - \gamma^2/2} = \sqrt{5 - 5^2/2} = \sqrt{-7.5}$.
\item This is imaginary. The damping is too large for a resonance peak. The amplitude $A(\omega_D)$ is maximum at $\omega_D = 0$.
\item[c)] We find the amplitude at the peak, $\omega_D = 0$.
\item The amplitude formula is $A(\omega_D) = \frac{V_0/L}{\sqrt{(\omega_0^2 - \omega_D^2)^2 + (\gamma \omega_D)^2}}$.
\item $V_0/L = 10/2 = 5$.
\item $A(0) = \frac{5}{\sqrt{(5 - 0)^2 + 0}} = \frac{5}{5} = 1~\text{C}$.
\end{itemize}
\end{enumerate}
\end{document} |