Spaces:
Sleeping
Sleeping
File size: 11,442 Bytes
8fefb8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
\documentclass[12pt]{article}
\usepackage[margin=1in]{geometry}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{hyperref}
\hypersetup{colorlinks=true, linkcolor=blue, urlcolor=blue, citecolor=black}
\begin{document}
\section*{\ Advanced Problem Set (II)}
\subsection*{Problem 1: Coupled Oscillators \& Normal Modes}
Two identical masses $m$ are constrained to move in one dimension. Mass 1 is connected to a fixed wall by a spring of constant $k$. Mass 2 is connected to another fixed wall by an identical spring $k$. The masses are connected to each other by a "coupling" spring of constant $k_c$. Let $x_1(t)$ and $x_2(t)$ be their displacements from their equilibrium positions.
\begin{itemize}
\item[a)] Write the system of coupled second-order ODEs for $x_1(t)$ and $x_2(t)$.
\item[b)] Assume an oscillatory solution (a "normal mode") of the form $x_j(t) = A_j e^{i\omega t}$. Convert the system of DEs into a matrix (eigenvalue) problem.
\item[c)] Find the two "normal mode" angular frequencies, $\omega_1$ and $\omega_2$.
\item[d)] For each mode, find the ratio of the amplitudes $A_1/A_2$ and describe the physical motion.
\end{itemize}
\hrule
\subsection*{Problem 2: The Non-Linear Pendulum Period}
The equation for a simple pendulum of length $L$ released from rest at a large angle $\theta_0$ is given by the non-linear DE:
$$ \ddot{\theta} + \omega_0^2 \sin(\theta) = 0 \quad \text{where} \quad \omega_0^2 = g/L $$
The small-angle approximation $\sin(\theta) \approx \theta$ gives the simple period $T_0 = 2\pi / \omega_0$. We want to find a better approximation.
\begin{itemize}
\item[a)] Use conservation of energy $E = \frac{1}{2}mL^2\dot{\theta}^2 + mgL(1-\cos\theta)$ to find an exact integral expression for the period $T$.
\item[b)] By approximating $\cos\theta \approx 1 - \theta^2/2 + \theta^4/24$, show that the period $T$ for a moderate amplitude $\theta_0$ is approximately:
$$ T \approx T_0 \left( 1 + \frac{\theta_0^2}{16} \right) $$
\textbf{Hint:} You will need the binomial approximation $(1-x)^{-1/2} \approx 1 + x/2$.
\end{itemize}
\hrule
\subsection*{Problem 3: Resonance Width and Quality Factor (Q)}
The mechanical energy $E$ of a driven, damped oscillator is proportional to the square of its steady-state amplitude, $E \propto A^2$. This is given by:
$$ E(\omega_D) \propto A^2(\omega_D) = \frac{(F_0/m)^2}{(\omega_0^2 - \omega_D^2)^2 + (\gamma \omega_D)^2} $$
where $\omega_D$ is the driving frequency and $\gamma = b/m$. We are interested in the "high-Q" (low damping) limit, where $\gamma \ll \omega_0$. The Quality Factor is defined as $Q = \omega_0 / \gamma$.
\begin{itemize}
\item[a)] Show that the maximum energy $E_{max}$ occurs at $\omega_D \approx \omega_0$, and find an expression for $E_{max}$ (in terms of $A^2_{max}$).
\item[b)] The "Full Width at Half Maximum" (FWHM), $\Delta \omega$, is the difference between the two frequencies $\omega_1$ and $\omega_2$ at which the energy is half its maximum, $E(\omega_1) = E(\omega_2) = E_{max}/2$.
\item[c)] By solving $E(\omega_D) = E_{max}/2$, show that in the high-Q limit, $\Delta \omega \approx \gamma$.
\textbf{Hint:} Use the approximation $\omega_0^2 - \omega_D^2 = (\omega_0-\omega_D)(\omega_0+\omega_D) \approx 2\omega_0(\omega_0-\omega_D)$.
\end{itemize}
\hrule
\subsection*{Problem 4: PDE - The 1D Heat Equation}
A thin, uniform rod of length $L=1$ m has its ends fixed at $T=0^\circ$C (i.e., $T(0, t) = T(1, t) = 0$). The rod has a thermal diffusivity $\alpha = 0.1$ m$^2$/s. At $t=0$, it has a uniform initial temperature $T(x, 0) = 100^\circ$C for $0 < x < 1$. The heat equation is:
$$ \frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} $$
\begin{itemize}
\item[a)] Using the method of separation of variables, $T(x, t) = X(x) \Theta(t)$, find the general solution for $T(x,t)$ that satisfies the boundary conditions.
\item[b)] Using a Fourier sine series, apply the initial condition $T(x, 0) = 100$ to find the specific solution for $T(x,t)$.
\end{itemize}
\newpage
\section*{\ Solutions to Advanced Problem Set (II)}
\subsection*{Solution 1: Coupled Oscillators}
a) Apply Newton's second law $F=ma$ to each mass:
\begin{align*}
\sum F_1 &= -kx_1 - k_c(x_1 - x_2) = m\ddot{x}_1 \\
\sum F_2 &= -kx_2 - k_c(x_2 - x_1) = m\ddot{x}_2
\end{align*}
Rearranging gives the system of ODEs:
\begin{align*}
m\ddot{x}_1 + (k+k_c)x_1 - k_c x_2 &= 0 \\
m\ddot{x}_2 - k_c x_1 + (k+k_c)x_2 &= 0
\end{align*}
b) Substitute $x_j(t) = A_j e^{i\omega t}$, so $\ddot{x}_j = -\omega^2 x_j$.
\begin{align*}
-m\omega^2 A_1 + (k+k_c)A_1 - k_c A_2 &= 0 \\
-m\omega^2 A_2 - k_c A_1 + (k+k_c)A_2 &= 0
\end{align*}
In matrix form:
$$ \begin{pmatrix}
(k+k_c) - m\omega^2 & -k_c \\
-k_c & (k+k_c) - m\omega^2
\end{pmatrix}
\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}
= \begin{pmatrix} 0 \\ 0 \end{pmatrix} $$
c) For a non-trivial solution, the determinant must be zero. Let $\lambda = m\omega^2$.
$$ (k+k_c - \lambda)^2 - (-k_c)^2 = 0 \implies (k+k_c - \lambda) = \pm k_c $$
This gives two eigenvalues (and two modes):
\begin{itemize}
\item \textbf{Mode 1:} $k+k_c - \lambda_1 = +k_c \implies \lambda_1 = k \implies \omega_1 = \sqrt{k/m}$.
\item \textbf{Mode 2:} $k+k_c - \lambda_2 = -k_c \implies \lambda_2 = k+2k_c \implies \omega_2 = \sqrt{(k+2k_c)/m}$.
\end{itemize}
d)
\begin{itemize}
\item \textbf{Mode 1 ($\omega_1$):} Plug $\lambda_1=k$ into the first row of the matrix equation:
$$ (k+k_c - k)A_1 - k_c A_2 = 0 \implies k_c A_1 - k_c A_2 = 0 \implies \mathbf{A_1 = A_2} $$
\textbf{Physical Motion:} The masses oscillate in-phase. The central spring $k_c$ is never compressed.
\item \textbf{Mode 2 ($\omega_2$):} Plug $\lambda_2=k+2k_c$ into the first row:
$$ (k+k_c - (k+2k_c))A_1 - k_c A_2 = 0 \implies -k_c A_1 - k_c A_2 = 0 \implies \mathbf{A_1 = -A_2} $$
\textbf{Physical Motion:} The masses oscillate 180° out-of-phase (anti-phase).
\end{itemize}
\hrule
\subsection*{Solution 2: Non-Linear Pendulum}
a) Total energy $E = \frac{1}{2}mL^2\dot{\theta}^2 + mgL(1-\cos\theta)$.
At release, $E_{total} = mgL(1-\cos\theta_0)$.
$$ \frac{1}{2}mL^2\dot{\theta}^2 + mgL(1-\cos\theta) = mgL(1-\cos\theta_0) $$
$$ \dot{\theta} = \frac{d\theta}{dt} = \sqrt{\frac{2g}{L}(\cos\theta - \cos\theta_0)} $$
The period $T$ is 4 times the time to go from $\theta=0$ to $\theta=\theta_0$:
$$ T = 4 \int_0^{T/4} dt = 4 \int_0^{\theta_0} \frac{dt}{d\theta} d\theta = 4 \sqrt{\frac{L}{2g}} \int_0^{\theta_0} \frac{d\theta}{\sqrt{\cos\theta - \cos\theta_0}} $$
b) Approximate $\cos x \approx 1 - x^2/2 + x^4/24$.
$$ \cos\theta - \cos\theta_0 \approx \frac{1}{2}(\theta_0^2 - \theta^2) - \frac{1}{24}(\theta_0^4 - \theta^4) $$
$$ = \frac{1}{2}(\theta_0^2 - \theta^2) \left[ 1 - \frac{\theta_0^2 + \theta^2}{12} \right] $$
Plug this into the integral for $T$:
$$ T \approx 4 \sqrt{\frac{L}{g}} \int_0^{\theta_0} \frac{d\theta}{\sqrt{(\theta_0^2 - \theta^2)(1 - (\theta_0^2 + \theta^2)/12)}} $$
Use binomial approximation $(1-x)^{-1/2} \approx 1 + x/2$:
$$ T \approx 4 \sqrt{\frac{L}{g}} \int_0^{\theta_0} \frac{1}{\sqrt{\theta_0^2 - \theta^2}} \left(1 + \frac{\theta_0^2 + \theta^2}{24}\right) d\theta $$
$$ T \approx 4 \sqrt{\frac{L}{g}} \left[ \int_0^{\theta_0} \frac{d\theta}{\sqrt{\theta_0^2 - \theta^2}} + \int_0^{\theta_0} \frac{\theta_0^2 + \theta^2}{24\sqrt{\theta_0^2 - \theta^2}} d\theta \right] $$
The first integral is $T_0$: $\int_0^{\theta_0} \frac{d\theta}{\sqrt{\theta_0^2 - \theta^2}} = [\arcsin(\theta/\theta_0)]_0^{\theta_0} = \pi/2$. This gives $4\sqrt{L/g}(\pi/2) = T_0$.
Let $\theta = \theta_0 \sin\phi$ in the second integral:
$$ \int_0^{\pi/2} \frac{\theta_0^2(1 + \sin^2\phi)}{24 \theta_0 \cos\phi} (\theta_0 \cos\phi d\phi) = \frac{\theta_0^2}{24} \int_0^{\pi/2} (1 + \sin^2\phi) d\phi $$
$$ = \frac{\theta_0^2}{24} \int_0^{\pi/2} \left(\frac{3}{2} - \frac{\cos 2\phi}{2}\right) d\phi = \frac{\theta_0^2}{24} \left[ \frac{3\phi}{2} - \frac{\sin 2\phi}{4} \right]_0^{\pi/2} = \frac{\theta_0^2}{24} \left( \frac{3\pi}{4} \right) = \frac{\pi \theta_0^2}{32} $$
Combine:
$$ T \approx 4 \sqrt{\frac{L}{g}} \left[ \frac{\pi}{2} + \frac{\pi \theta_0^2}{32} \right] = 2\pi\sqrt{\frac{L}{g}} \left( 1 + \frac{\theta_0^2}{16} \right) = T_0 \left( 1 + \frac{\theta_0^2}{16} \right) $$
\hrule
\subsection*{Solution 3: Resonance Width}
a) $E \propto A^2 = \frac{(F_0/m)^2}{(\omega_0^2 - \omega_D^2)^2 + (\gamma \omega_D)^2}$.
For high-Q, $\gamma \ll \omega_0$, the denominator is minimized (and $E$ maximized) at $\omega_D \approx \omega_0$.
$$ E_{max} \propto A^2_{max} \approx \frac{(F_0/m)^2}{(\omega_0^2 - \omega_0^2)^2 + (\gamma \omega_0)^2} = \frac{(F_0/m)^2}{\gamma^2 \omega_0^2} $$
b) Set $E(\omega_D) = E_{max}/2$:
$$ \frac{(F_0/m)^2}{(\omega_0^2 - \omega_D^2)^2 + (\gamma \omega_D)^2} = \frac{1}{2} \frac{(F_0/m)^2}{\gamma^2 \omega_0^2} $$
$$ (\omega_0^2 - \omega_D^2)^2 + (\gamma \omega_D)^2 = 2 \gamma^2 \omega_0^2 $$
c) In the high-Q limit, $\omega_D \approx \omega_0$. We can approximate $\gamma \omega_D \approx \gamma \omega_0$ in the damping term:
$$ (\omega_0^2 - \omega_D^2)^2 + (\gamma \omega_0)^2 \approx 2 \gamma^2 \omega_0^2 $$
$$ (\omega_0^2 - \omega_D^2)^2 \approx \gamma^2 \omega_0^2 $$
Take the square root:
$$ \omega_0^2 - \omega_D^2 \approx \pm \gamma \omega_0 $$
Use the hint $\omega_0^2 - \omega_D^2 = (\omega_0 - \omega_D)(\omega_0 + \omega_D) \approx (\omega_0 - \omega_D)(2\omega_0)$:
$$ (\omega_0 - \omega_D)(2\omega_0) \approx \pm \gamma \omega_0 $$
$$ \omega_0 - \omega_D \approx \pm \frac{\gamma}{2} $$
The two half-max frequencies are $\omega_1 = \omega_0 - \gamma/2$ and $\omega_2 = \omega_0 + \gamma/2$.
The FWHM is $\Delta \omega = \omega_2 - \omega_1$:
$$ \Delta \omega = (\omega_0 + \gamma/2) - (\omega_0 - \gamma/2) = \gamma $$
\hrule
\subsection*{Solution 4: Heat Equation}
a) Let $T(x,t) = X(x)\Theta(t)$. Substitute into $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$:
$$ X \Theta' = \alpha X'' \Theta \implies \frac{\Theta'}{\alpha \Theta} = \frac{X''}{X} = -k^2 $$
\begin{itemize}
\item Time: $\Theta' = -k^2 \alpha \Theta \implies \Theta(t) = A e^{-k^2 \alpha t}$.
\item Space: $X'' + k^2 X = 0 \implies X(x) = B \sin(kx) + C \cos(kx)$.
\end{itemize}
Apply BCs to $X(x)$:
\begin{enumerate}
\item $X(0) = 0 \implies C = 0$.
\item $X(1) = 0 \implies B \sin(k \cdot 1) = 0 \implies k = n\pi$ for $n = 1, 2, 3, \dots$
\end{enumerate}
The general solution is the superposition:
$$ T(x,t) = \sum_{n=1}^\infty B_n e^{-(n\pi)^2 \alpha t} \sin(n\pi x) $$
b) Apply IC: $T(x, 0) = 100$.
$$ 100 = \sum_{n=1}^\infty B_n \sin(n\pi x) $$
This is a Fourier sine series for $f(x)=100$ on $[0, 1]$. Find $B_n$ by orthogonality:
$$ \int_0^1 100 \sin(m\pi x) dx = \sum_{n=1}^\infty B_n \int_0^1 \sin(n\pi x) \sin(m\pi x) dx = B_m \cdot \frac{1}{2} $$
$$ B_n = 200 \int_0^1 \sin(n\pi x) dx = 200 \left[ -\frac{\cos(n\pi x)}{n\pi} \right]_0^1 $$
$$ B_n = -\frac{200}{n\pi} (\cos(n\pi) - \cos(0)) = -\frac{200}{n\pi} ((-1)^n - 1) $$
If $n$ is even, $B_n = 0$. If $n$ is odd, $B_n = -\frac{200}{n\pi}(-2) = \frac{400}{n\pi}$.
Substitute $B_n$ and $\alpha=0.1$:
$$ T(x,t) = \sum_{n=1, 3, 5,...}^\infty \frac{400}{n\pi} e^{-(n\pi)^2 (0.1) t} \sin(n\pi x) $$
$$ T(x,t) = \frac{400}{\pi} \left( e^{-0.1\pi^2 t} \sin(\pi x) + \frac{1}{3}e^{-0.9\pi^2 t} \sin(3\pi x) + \dots \right) $$
\end{document} |