File size: 11,442 Bytes
8fefb8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
\documentclass[12pt]{article}
\usepackage[margin=1in]{geometry}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{hyperref}
\hypersetup{colorlinks=true, linkcolor=blue, urlcolor=blue, citecolor=black}

\begin{document}

\section*{\ Advanced Problem Set (II)}

\subsection*{Problem 1: Coupled Oscillators \& Normal Modes}

Two identical masses $m$ are constrained to move in one dimension. Mass 1 is connected to a fixed wall by a spring of constant $k$. Mass 2 is connected to another fixed wall by an identical spring $k$. The masses are connected to each other by a "coupling" spring of constant $k_c$. Let $x_1(t)$ and $x_2(t)$ be their displacements from their equilibrium positions.

\begin{itemize}
    \item[a)] Write the system of coupled second-order ODEs for $x_1(t)$ and $x_2(t)$.
    \item[b)] Assume an oscillatory solution (a "normal mode") of the form $x_j(t) = A_j e^{i\omega t}$. Convert the system of DEs into a matrix (eigenvalue) problem.
    \item[c)] Find the two "normal mode" angular frequencies, $\omega_1$ and $\omega_2$.
    \item[d)] For each mode, find the ratio of the amplitudes $A_1/A_2$ and describe the physical motion.
\end{itemize}

\hrule

\subsection*{Problem 2: The Non-Linear Pendulum Period}

The equation for a simple pendulum of length $L$ released from rest at a large angle $\theta_0$ is given by the non-linear DE:
$$ \ddot{\theta} + \omega_0^2 \sin(\theta) = 0 \quad \text{where} \quad \omega_0^2 = g/L $$
The small-angle approximation $\sin(\theta) \approx \theta$ gives the simple period $T_0 = 2\pi / \omega_0$. We want to find a better approximation.

\begin{itemize}
    \item[a)] Use conservation of energy $E = \frac{1}{2}mL^2\dot{\theta}^2 + mgL(1-\cos\theta)$ to find an exact integral expression for the period $T$.
    \item[b)] By approximating $\cos\theta \approx 1 - \theta^2/2 + \theta^4/24$, show that the period $T$ for a moderate amplitude $\theta_0$ is approximately:
    $$ T \approx T_0 \left( 1 + \frac{\theta_0^2}{16} \right) $$
    \textbf{Hint:} You will need the binomial approximation $(1-x)^{-1/2} \approx 1 + x/2$.
\end{itemize}

\hrule

\subsection*{Problem 3: Resonance Width and Quality Factor (Q)}

The mechanical energy $E$ of a driven, damped oscillator is proportional to the square of its steady-state amplitude, $E \propto A^2$. This is given by:
$$ E(\omega_D) \propto A^2(\omega_D) = \frac{(F_0/m)^2}{(\omega_0^2 - \omega_D^2)^2 + (\gamma \omega_D)^2} $$
where $\omega_D$ is the driving frequency and $\gamma = b/m$. We are interested in the "high-Q" (low damping) limit, where $\gamma \ll \omega_0$. The Quality Factor is defined as $Q = \omega_0 / \gamma$.

\begin{itemize}
    \item[a)] Show that the maximum energy $E_{max}$ occurs at $\omega_D \approx \omega_0$, and find an expression for $E_{max}$ (in terms of $A^2_{max}$).
    \item[b)] The "Full Width at Half Maximum" (FWHM), $\Delta \omega$, is the difference between the two frequencies $\omega_1$ and $\omega_2$ at which the energy is half its maximum, $E(\omega_1) = E(\omega_2) = E_{max}/2$.
    \item[c)] By solving $E(\omega_D) = E_{max}/2$, show that in the high-Q limit, $\Delta \omega \approx \gamma$.
    \textbf{Hint:} Use the approximation $\omega_0^2 - \omega_D^2 = (\omega_0-\omega_D)(\omega_0+\omega_D) \approx 2\omega_0(\omega_0-\omega_D)$.
\end{itemize}

\hrule

\subsection*{Problem 4: PDE - The 1D Heat Equation}

A thin, uniform rod of length $L=1$ m has its ends fixed at $T=0^\circ$C (i.e., $T(0, t) = T(1, t) = 0$). The rod has a thermal diffusivity $\alpha = 0.1$ m$^2$/s. At $t=0$, it has a uniform initial temperature $T(x, 0) = 100^\circ$C for $0 < x < 1$. The heat equation is:
$$ \frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} $$
\begin{itemize}
    \item[a)] Using the method of separation of variables, $T(x, t) = X(x) \Theta(t)$, find the general solution for $T(x,t)$ that satisfies the boundary conditions.
    \item[b)] Using a Fourier sine series, apply the initial condition $T(x, 0) = 100$ to find the specific solution for $T(x,t)$.
\end{itemize}

\newpage

\section*{\ Solutions to Advanced Problem Set (II)}

\subsection*{Solution 1: Coupled Oscillators}

a) Apply Newton's second law $F=ma$ to each mass:
\begin{align*}
    \sum F_1 &= -kx_1 - k_c(x_1 - x_2) = m\ddot{x}_1 \\
    \sum F_2 &= -kx_2 - k_c(x_2 - x_1) = m\ddot{x}_2
\end{align*}
Rearranging gives the system of ODEs:
\begin{align*}
    m\ddot{x}_1 + (k+k_c)x_1 - k_c x_2 &= 0 \\
    m\ddot{x}_2 - k_c x_1 + (k+k_c)x_2 &= 0
\end{align*}

b) Substitute $x_j(t) = A_j e^{i\omega t}$, so $\ddot{x}_j = -\omega^2 x_j$.
\begin{align*}
    -m\omega^2 A_1 + (k+k_c)A_1 - k_c A_2 &= 0 \\
    -m\omega^2 A_2 - k_c A_1 + (k+k_c)A_2 &= 0
\end{align*}
In matrix form:
$$ \begin{pmatrix}
(k+k_c) - m\omega^2 & -k_c \\
-k_c & (k+k_c) - m\omega^2
\end{pmatrix}
\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}
= \begin{pmatrix} 0 \\ 0 \end{pmatrix} $$

c) For a non-trivial solution, the determinant must be zero. Let $\lambda = m\omega^2$.
$$ (k+k_c - \lambda)^2 - (-k_c)^2 = 0 \implies (k+k_c - \lambda) = \pm k_c $$
This gives two eigenvalues (and two modes):
\begin{itemize}
    \item \textbf{Mode 1:} $k+k_c - \lambda_1 = +k_c \implies \lambda_1 = k \implies \omega_1 = \sqrt{k/m}$.
    \item \textbf{Mode 2:} $k+k_c - \lambda_2 = -k_c \implies \lambda_2 = k+2k_c \implies \omega_2 = \sqrt{(k+2k_c)/m}$.
\end{itemize}

d)
\begin{itemize}
    \item \textbf{Mode 1 ($\omega_1$):} Plug $\lambda_1=k$ into the first row of the matrix equation:
    $$ (k+k_c - k)A_1 - k_c A_2 = 0 \implies k_c A_1 - k_c A_2 = 0 \implies \mathbf{A_1 = A_2} $$
    \textbf{Physical Motion:} The masses oscillate in-phase. The central spring $k_c$ is never compressed.
    
    \item \textbf{Mode 2 ($\omega_2$):} Plug $\lambda_2=k+2k_c$ into the first row:
    $$ (k+k_c - (k+2k_c))A_1 - k_c A_2 = 0 \implies -k_c A_1 - k_c A_2 = 0 \implies \mathbf{A_1 = -A_2} $$
    \textbf{Physical Motion:} The masses oscillate 180° out-of-phase (anti-phase).
\end{itemize}

\hrule

\subsection*{Solution 2: Non-Linear Pendulum}

a) Total energy $E = \frac{1}{2}mL^2\dot{\theta}^2 + mgL(1-\cos\theta)$.
At release, $E_{total} = mgL(1-\cos\theta_0)$.
$$ \frac{1}{2}mL^2\dot{\theta}^2 + mgL(1-\cos\theta) = mgL(1-\cos\theta_0) $$
$$ \dot{\theta} = \frac{d\theta}{dt} = \sqrt{\frac{2g}{L}(\cos\theta - \cos\theta_0)} $$
The period $T$ is 4 times the time to go from $\theta=0$ to $\theta=\theta_0$:
$$ T = 4 \int_0^{T/4} dt = 4 \int_0^{\theta_0} \frac{dt}{d\theta} d\theta = 4 \sqrt{\frac{L}{2g}} \int_0^{\theta_0} \frac{d\theta}{\sqrt{\cos\theta - \cos\theta_0}} $$

b) Approximate $\cos x \approx 1 - x^2/2 + x^4/24$.
$$ \cos\theta - \cos\theta_0 \approx \frac{1}{2}(\theta_0^2 - \theta^2) - \frac{1}{24}(\theta_0^4 - \theta^4) $$
$$ = \frac{1}{2}(\theta_0^2 - \theta^2) \left[ 1 - \frac{\theta_0^2 + \theta^2}{12} \right] $$
Plug this into the integral for $T$:
$$ T \approx 4 \sqrt{\frac{L}{g}} \int_0^{\theta_0} \frac{d\theta}{\sqrt{(\theta_0^2 - \theta^2)(1 - (\theta_0^2 + \theta^2)/12)}} $$
Use binomial approximation $(1-x)^{-1/2} \approx 1 + x/2$:
$$ T \approx 4 \sqrt{\frac{L}{g}} \int_0^{\theta_0} \frac{1}{\sqrt{\theta_0^2 - \theta^2}} \left(1 + \frac{\theta_0^2 + \theta^2}{24}\right) d\theta $$
$$ T \approx 4 \sqrt{\frac{L}{g}} \left[ \int_0^{\theta_0} \frac{d\theta}{\sqrt{\theta_0^2 - \theta^2}} + \int_0^{\theta_0} \frac{\theta_0^2 + \theta^2}{24\sqrt{\theta_0^2 - \theta^2}} d\theta \right] $$
The first integral is $T_0$: $\int_0^{\theta_0} \frac{d\theta}{\sqrt{\theta_0^2 - \theta^2}} = [\arcsin(\theta/\theta_0)]_0^{\theta_0} = \pi/2$. This gives $4\sqrt{L/g}(\pi/2) = T_0$.
Let $\theta = \theta_0 \sin\phi$ in the second integral:
$$ \int_0^{\pi/2} \frac{\theta_0^2(1 + \sin^2\phi)}{24 \theta_0 \cos\phi} (\theta_0 \cos\phi d\phi) = \frac{\theta_0^2}{24} \int_0^{\pi/2} (1 + \sin^2\phi) d\phi $$
$$ = \frac{\theta_0^2}{24} \int_0^{\pi/2} \left(\frac{3}{2} - \frac{\cos 2\phi}{2}\right) d\phi = \frac{\theta_0^2}{24} \left[ \frac{3\phi}{2} - \frac{\sin 2\phi}{4} \right]_0^{\pi/2} = \frac{\theta_0^2}{24} \left( \frac{3\pi}{4} \right) = \frac{\pi \theta_0^2}{32} $$
Combine:
$$ T \approx 4 \sqrt{\frac{L}{g}} \left[ \frac{\pi}{2} + \frac{\pi \theta_0^2}{32} \right] = 2\pi\sqrt{\frac{L}{g}} \left( 1 + \frac{\theta_0^2}{16} \right) = T_0 \left( 1 + \frac{\theta_0^2}{16} \right) $$

\hrule

\subsection*{Solution 3: Resonance Width}

a) $E \propto A^2 = \frac{(F_0/m)^2}{(\omega_0^2 - \omega_D^2)^2 + (\gamma \omega_D)^2}$.
For high-Q, $\gamma \ll \omega_0$, the denominator is minimized (and $E$ maximized) at $\omega_D \approx \omega_0$.
$$ E_{max} \propto A^2_{max} \approx \frac{(F_0/m)^2}{(\omega_0^2 - \omega_0^2)^2 + (\gamma \omega_0)^2} = \frac{(F_0/m)^2}{\gamma^2 \omega_0^2} $$

b) Set $E(\omega_D) = E_{max}/2$:
$$ \frac{(F_0/m)^2}{(\omega_0^2 - \omega_D^2)^2 + (\gamma \omega_D)^2} = \frac{1}{2} \frac{(F_0/m)^2}{\gamma^2 \omega_0^2} $$
$$ (\omega_0^2 - \omega_D^2)^2 + (\gamma \omega_D)^2 = 2 \gamma^2 \omega_0^2 $$

c) In the high-Q limit, $\omega_D \approx \omega_0$. We can approximate $\gamma \omega_D \approx \gamma \omega_0$ in the damping term:
$$ (\omega_0^2 - \omega_D^2)^2 + (\gamma \omega_0)^2 \approx 2 \gamma^2 \omega_0^2 $$
$$ (\omega_0^2 - \omega_D^2)^2 \approx \gamma^2 \omega_0^2 $$
Take the square root:
$$ \omega_0^2 - \omega_D^2 \approx \pm \gamma \omega_0 $$
Use the hint $\omega_0^2 - \omega_D^2 = (\omega_0 - \omega_D)(\omega_0 + \omega_D) \approx (\omega_0 - \omega_D)(2\omega_0)$:
$$ (\omega_0 - \omega_D)(2\omega_0) \approx \pm \gamma \omega_0 $$
$$ \omega_0 - \omega_D \approx \pm \frac{\gamma}{2} $$
The two half-max frequencies are $\omega_1 = \omega_0 - \gamma/2$ and $\omega_2 = \omega_0 + \gamma/2$.
The FWHM is $\Delta \omega = \omega_2 - \omega_1$:
$$ \Delta \omega = (\omega_0 + \gamma/2) - (\omega_0 - \gamma/2) = \gamma $$

\hrule

\subsection*{Solution 4: Heat Equation}

a) Let $T(x,t) = X(x)\Theta(t)$. Substitute into $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$:
$$ X \Theta' = \alpha X'' \Theta \implies \frac{\Theta'}{\alpha \Theta} = \frac{X''}{X} = -k^2 $$
\begin{itemize}
    \item Time: $\Theta' = -k^2 \alpha \Theta \implies \Theta(t) = A e^{-k^2 \alpha t}$.
    \item Space: $X'' + k^2 X = 0 \implies X(x) = B \sin(kx) + C \cos(kx)$.
\end{itemize}
Apply BCs to $X(x)$:
\begin{enumerate}
    \item $X(0) = 0 \implies C = 0$.
    \item $X(1) = 0 \implies B \sin(k \cdot 1) = 0 \implies k = n\pi$ for $n = 1, 2, 3, \dots$
\end{enumerate}
The general solution is the superposition:
$$ T(x,t) = \sum_{n=1}^\infty B_n e^{-(n\pi)^2 \alpha t} \sin(n\pi x) $$

b) Apply IC: $T(x, 0) = 100$.
$$ 100 = \sum_{n=1}^\infty B_n \sin(n\pi x) $$
This is a Fourier sine series for $f(x)=100$ on $[0, 1]$. Find $B_n$ by orthogonality:
$$ \int_0^1 100 \sin(m\pi x) dx = \sum_{n=1}^\infty B_n \int_0^1 \sin(n\pi x) \sin(m\pi x) dx = B_m \cdot \frac{1}{2} $$
$$ B_n = 200 \int_0^1 \sin(n\pi x) dx = 200 \left[ -\frac{\cos(n\pi x)}{n\pi} \right]_0^1 $$
$$ B_n = -\frac{200}{n\pi} (\cos(n\pi) - \cos(0)) = -\frac{200}{n\pi} ((-1)^n - 1) $$
If $n$ is even, $B_n = 0$. If $n$ is odd, $B_n = -\frac{200}{n\pi}(-2) = \frac{400}{n\pi}$.
Substitute $B_n$ and $\alpha=0.1$:
$$ T(x,t) = \sum_{n=1, 3, 5,...}^\infty \frac{400}{n\pi} e^{-(n\pi)^2 (0.1) t} \sin(n\pi x) $$
$$ T(x,t) = \frac{400}{\pi} \left( e^{-0.1\pi^2 t} \sin(\pi x) + \frac{1}{3}e^{-0.9\pi^2 t} \sin(3\pi x) + \dots \right) $$

\end{document}