Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,99 +1,615 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
demo.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
import re
|
| 4 |
+
import random
|
| 5 |
+
import time
|
| 6 |
+
import os
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
from huggingface_hub import HfApi
|
| 9 |
+
|
| 10 |
+
# Set constants
|
| 11 |
+
DEFAULT_NUM_QUESTIONS = 3
|
| 12 |
+
DEFAULT_DIFFICULTY = "Medium"
|
| 13 |
+
MODEL_GENERATION = "facebook/opt-1.3b" # Free model for question generation
|
| 14 |
+
MODEL_VERIFICATION = "gpt2-large" # Free model for verification
|
| 15 |
+
|
| 16 |
+
# Initialize models (with low memory footprint)
|
| 17 |
+
try:
|
| 18 |
+
question_generator = pipeline("text-generation", model=MODEL_GENERATION, max_length=1000)
|
| 19 |
+
question_verifier = pipeline("text-generation", model=MODEL_VERIFICATION, max_length=300)
|
| 20 |
+
except Exception as e:
|
| 21 |
+
print(f"Model loading error: {str(e)}. Will attempt to load on first use.")
|
| 22 |
+
question_generator = None
|
| 23 |
+
question_verifier = None
|
| 24 |
+
|
| 25 |
+
# Calculus curriculum from James Stewart's textbooks
|
| 26 |
+
calculus_curriculum = [
|
| 27 |
+
{
|
| 28 |
+
"chapter": "1. Functions and Models",
|
| 29 |
+
"subchapters": [
|
| 30 |
+
"1.1 Four Ways to Represent a Function",
|
| 31 |
+
"1.2 Mathematical Models",
|
| 32 |
+
"1.3 New Functions from Old Functions",
|
| 33 |
+
"1.4 Exponential Functions",
|
| 34 |
+
"1.5 Inverse Functions and Logarithms",
|
| 35 |
+
"1.6 Parametric Curves"
|
| 36 |
+
],
|
| 37 |
+
"key_formulas": [
|
| 38 |
+
"Domain and Range",
|
| 39 |
+
"Function composition: $(f \\circ g)(x) = f(g(x))$",
|
| 40 |
+
"Exponential function: $f(x) = a^x$, where $a > 0$",
|
| 41 |
+
"Natural exponential function: $f(x) = e^x$",
|
| 42 |
+
"Logarithmic function: $f(x) = \\log_a(x)$, where $a > 0, a \\neq 1$",
|
| 43 |
+
"Natural logarithm: $f(x) = \\ln(x)$"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"chapter": "2. Limits and Derivatives",
|
| 48 |
+
"subchapters": [
|
| 49 |
+
"2.1 The Tangent and Velocity Problems",
|
| 50 |
+
"2.2 The Limit of a Function",
|
| 51 |
+
"2.3 Calculating Limits",
|
| 52 |
+
"2.4 Continuity",
|
| 53 |
+
"2.5 The Derivative",
|
| 54 |
+
"2.6 The Derivative as a Function",
|
| 55 |
+
"2.7 Derivatives of Trigonometric Functions",
|
| 56 |
+
"2.8 The Chain Rule",
|
| 57 |
+
"2.9 Implicit Differentiation",
|
| 58 |
+
"2.10 Related Rates",
|
| 59 |
+
"2.11 Linear Approximations and Differentials"
|
| 60 |
+
],
|
| 61 |
+
"key_formulas": [
|
| 62 |
+
"Limit Definition: $\\lim_{x \\to a} f(x) = L$",
|
| 63 |
+
"Derivative Definition: $f'(x) = \\lim_{h \\to 0} \\frac{f(x+h) - f(x)}{h}$",
|
| 64 |
+
"Power Rule: $\\frac{d}{dx}(x^n) = nx^{n-1}$",
|
| 65 |
+
"Product Rule: $\\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$",
|
| 66 |
+
"Quotient Rule: $\\frac{d}{dx}\\left[\\frac{f(x)}{g(x)}\\right] = \\frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$",
|
| 67 |
+
"Chain Rule: $\\frac{d}{dx}[f(g(x))] = f'(g(x)) \\cdot g'(x)$"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"chapter": "3. Applications of Differentiation",
|
| 72 |
+
"subchapters": [
|
| 73 |
+
"3.1 Maximum and Minimum Values",
|
| 74 |
+
"3.2 The Mean Value Theorem",
|
| 75 |
+
"3.3 How Derivatives Affect the Shape of a Graph",
|
| 76 |
+
"3.4 Indeterminate Forms and L'Hospital's Rule",
|
| 77 |
+
"3.5 Summary of Curve Sketching",
|
| 78 |
+
"3.6 Optimization Problems",
|
| 79 |
+
"3.7 Newton's Method",
|
| 80 |
+
"3.8 Antiderivatives"
|
| 81 |
+
],
|
| 82 |
+
"key_formulas": [
|
| 83 |
+
"Critical Points: $f'(x) = 0$ or $f'(x)$ is undefined",
|
| 84 |
+
"Mean Value Theorem: If $f$ is continuous on $[a, b]$ and differentiable on $(a, b)$, then there exists a $c$ in $(a, b)$ such that $f'(c) = \\frac{f(b) - f(a)}{b - a}$",
|
| 85 |
+
"Second Derivative Test: If $f'(c) = 0$ and $f''(c) > 0$, then $f$ has a local minimum at $c$",
|
| 86 |
+
"L'Hospital's Rule: $\\lim_{x \\to a}\\frac{f(x)}{g(x)} = \\lim_{x \\to a}\\frac{f'(x)}{g'(x)}$",
|
| 87 |
+
"Newton's Method: $x_{n+1} = x_n - \\frac{f(x_n)}{f'(x_n)}$"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"chapter": "4. Integrals",
|
| 92 |
+
"subchapters": [
|
| 93 |
+
"4.1 Areas and Distances",
|
| 94 |
+
"4.2 The Definite Integral",
|
| 95 |
+
"4.3 The Fundamental Theorem of Calculus",
|
| 96 |
+
"4.4 Indefinite Integrals and the Net Change Theorem",
|
| 97 |
+
"4.5 The Substitution Rule"
|
| 98 |
+
],
|
| 99 |
+
"key_formulas": [
|
| 100 |
+
"Definite Integral: $\\int_a^b f(x)\\,dx = \\lim_{n \\to \\infty} \\sum_{i=1}^{n} f(x_i^*)\\Delta x$",
|
| 101 |
+
"Fundamental Theorem of Calculus: $\\int_a^b f(x)\\,dx = F(b) - F(a)$ where $F'(x) = f(x)$",
|
| 102 |
+
"Indefinite Integral: $\\int f(x)\\,dx = F(x) + C$ where $F'(x) = f(x)$",
|
| 103 |
+
"Power Rule for Integration: $\\int x^n\\,dx = \\frac{x^{n+1}}{n+1} + C$ for $n \\neq -1$",
|
| 104 |
+
"Substitution Rule: $\\int f(g(x))g'(x)\\,dx = \\int f(u)\\,du$ where $u = g(x)$"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"chapter": "5. Applications of Integration",
|
| 109 |
+
"subchapters": [
|
| 110 |
+
"5.1 Areas Between Curves",
|
| 111 |
+
"5.2 Volumes",
|
| 112 |
+
"5.3 Volumes by Cylindrical Shells",
|
| 113 |
+
"5.4 Work",
|
| 114 |
+
"5.5 Average Value of a Function"
|
| 115 |
+
],
|
| 116 |
+
"key_formulas": [
|
| 117 |
+
"Area Between Curves: $\\int_a^b [f(x) - g(x)]\\,dx$ where $f(x) \\geq g(x)$",
|
| 118 |
+
"Volume by Disk Method: $V = \\pi\\int_a^b [R(x)]^2\\,dx$",
|
| 119 |
+
"Volume by Washer Method: $V = \\pi\\int_a^b [(R(x))^2 - (r(x))^2]\\,dx$",
|
| 120 |
+
"Volume by Cylindrical Shells: $V = 2\\pi\\int_a^b xf(x)\\,dx$ for rotation about y-axis",
|
| 121 |
+
"Average Value of $f$ on $[a,b]$: $f_{avg} = \\frac{1}{b-a}\\int_a^b f(x)\\,dx$",
|
| 122 |
+
"Work: $W = \\int_a^b F(x)\\,dx$"
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"chapter": "6. Techniques of Integration",
|
| 127 |
+
"subchapters": [
|
| 128 |
+
"6.1 Integration by Parts",
|
| 129 |
+
"6.2 Trigonometric Integrals",
|
| 130 |
+
"6.3 Trigonometric Substitution",
|
| 131 |
+
"6.4 Integration of Rational Functions by Partial Fractions",
|
| 132 |
+
"6.5 Strategy for Integration",
|
| 133 |
+
"6.6 Approximate Integration",
|
| 134 |
+
"6.7 Improper Integrals"
|
| 135 |
+
],
|
| 136 |
+
"key_formulas": [
|
| 137 |
+
"Integration by Parts: $\\int u\\,dv = uv - \\int v\\,du$",
|
| 138 |
+
"Trigonometric Integrals: $\\int \\sin^n x \\cos^m x\\,dx$ (various formulas)",
|
| 139 |
+
"Trig Substitution: $x = a\\sin\\theta$ for $\\sqrt{a^2-x^2}$, $x = a\\tan\\theta$ for $\\sqrt{a^2+x^2}$",
|
| 140 |
+
"Partial Fractions: $\\frac{P(x)}{Q(x)} = \\frac{A}{(x-a)} + \\frac{B}{(x-a)^2} + \\frac{Cx+D}{x^2+bx+c} + ...$",
|
| 141 |
+
"Improper Integrals: $\\int_a^{\\infty} f(x)\\,dx = \\lim_{t \\to \\infty} \\int_a^t f(x)\\,dx$"
|
| 142 |
+
]
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"chapter": "7. Differential Equations",
|
| 146 |
+
"subchapters": [
|
| 147 |
+
"7.1 Modeling with Differential Equations",
|
| 148 |
+
"7.2 Direction Fields and Euler's Method",
|
| 149 |
+
"7.3 Separable Equations",
|
| 150 |
+
"7.4 Models for Population Growth",
|
| 151 |
+
"7.5 Linear Equations",
|
| 152 |
+
"7.6 Predator-Prey Systems"
|
| 153 |
+
],
|
| 154 |
+
"key_formulas": [
|
| 155 |
+
"General form of a first-order differential equation: $\\frac{dy}{dx} = f(x, y)$",
|
| 156 |
+
"Separable equation: $\\frac{dy}{dx} = g(x)h(y)$ → $\\int \\frac{1}{h(y)}dy = \\int g(x)dx + C$",
|
| 157 |
+
"First-order linear differential equation: $\\frac{dy}{dx} + P(x)y = Q(x)$",
|
| 158 |
+
"Integrating factor method: Multiply by $e^{\\int P(x)dx}$",
|
| 159 |
+
"Euler's Method: $y_{n+1} = y_n + hf(x_n, y_n)$"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"chapter": "8. Infinite Sequences and Series",
|
| 164 |
+
"subchapters": [
|
| 165 |
+
"8.1 Sequences",
|
| 166 |
+
"8.2 Series",
|
| 167 |
+
"8.3 The Integral Test and Estimates of Sums",
|
| 168 |
+
"8.4 The Comparison Tests",
|
| 169 |
+
"8.5 Alternating Series",
|
| 170 |
+
"8.6 Absolute Convergence and the Ratio and Root Tests",
|
| 171 |
+
"8.7 Strategy for Testing Series",
|
| 172 |
+
"8.8 Power Series",
|
| 173 |
+
"8.9 Representations of Functions as Power Series",
|
| 174 |
+
"8.10 Taylor and Maclaurin Series"
|
| 175 |
+
],
|
| 176 |
+
"key_formulas": [
|
| 177 |
+
"Geometric Series: $\\sum_{n=0}^{\\infty} ar^n = \\frac{a}{1-r}$ if $|r| < 1$",
|
| 178 |
+
"Taylor Series: $f(x) = \\sum_{n=0}^{\\infty} \\frac{f^{(n)}(a)}{n!}(x-a)^n$",
|
| 179 |
+
"Maclaurin Series: $f(x) = \\sum_{n=0}^{\\infty} \\frac{f^{(n)}(0)}{n!}x^n$",
|
| 180 |
+
"Common Maclaurin Series: $e^x = \\sum_{n=0}^{\\infty} \\frac{x^n}{n!}$, $\\sin(x) = \\sum_{n=0}^{\\infty} \\frac{(-1)^n}{(2n+1)!}x^{2n+1}$",
|
| 181 |
+
"Ratio Test: $\\lim_{n \\to \\infty} |\\frac{a_{n+1}}{a_n}| < 1$ implies convergence"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"chapter": "9. Parametric Equations and Polar Coordinates",
|
| 186 |
+
"subchapters": [
|
| 187 |
+
"9.1 Parametric Curves",
|
| 188 |
+
"9.2 Calculus with Parametric Curves",
|
| 189 |
+
"9.3 Polar Coordinates",
|
| 190 |
+
"9.4 Areas and Lengths in Polar Coordinates",
|
| 191 |
+
"9.5 Conic Sections"
|
| 192 |
+
],
|
| 193 |
+
"key_formulas": [
|
| 194 |
+
"Parametric curve: $x = f(t)$, $y = g(t)$",
|
| 195 |
+
"Arc length of parametric curve: $L = \\int_a^b \\sqrt{[f'(t)]^2 + [g'(t)]^2}\\,dt$",
|
| 196 |
+
"Polar to rectangular coordinates: $x = r\\cos\\theta$, $y = r\\sin\\theta$",
|
| 197 |
+
"Rectangular to polar coordinates: $r = \\sqrt{x^2 + y^2}$, $\\theta = \\arctan(\\frac{y}{x})$",
|
| 198 |
+
"Area in polar coordinates: $A = \\frac{1}{2}\\int_{\\alpha}^{\\beta} [r(\\theta)]^2\\,d\\theta$"
|
| 199 |
+
]
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"chapter": "10. Vectors and the Geometry of Space",
|
| 203 |
+
"subchapters": [
|
| 204 |
+
"10.1 Three-Dimensional Coordinate Systems",
|
| 205 |
+
"10.2 Vectors",
|
| 206 |
+
"10.3 The Dot Product",
|
| 207 |
+
"10.4 The Cross Product",
|
| 208 |
+
"10.5 Equations of Lines and Planes",
|
| 209 |
+
"10.6 Cylinders and Quadric Surfaces"
|
| 210 |
+
],
|
| 211 |
+
"key_formulas": [
|
| 212 |
+
"Dot Product: $\\vec{a} \\cdot \\vec{b} = |\\vec{a}||\\vec{b}|\\cos\\theta$",
|
| 213 |
+
"Cross Product: $\\vec{a} \\times \\vec{b} = |\\vec{a}||\\vec{b}|\\sin\\theta\\,\\vec{n}$",
|
| 214 |
+
"Equation of a line: $\\vec{r} = \\vec{r_0} + t\\vec{v}$",
|
| 215 |
+
"Equation of a plane: $\\vec{n} \\cdot (\\vec{r} - \\vec{r_0}) = 0$ or $ax + by + cz + d = 0$",
|
| 216 |
+
"Distance from point to plane: $d = \\frac{|ax_0 + by_0 + cz_0 + d|}{\\sqrt{a^2 + b^2 + c^2}}$"
|
| 217 |
+
]
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"chapter": "11. Vector Functions",
|
| 221 |
+
"subchapters": [
|
| 222 |
+
"11.1 Vector Functions and Space Curves",
|
| 223 |
+
"11.2 Derivatives and Integrals of Vector Functions",
|
| 224 |
+
"11.3 Arc Length and Curvature",
|
| 225 |
+
"11.4 Motion in Space: Velocity and Acceleration"
|
| 226 |
+
],
|
| 227 |
+
"key_formulas": [
|
| 228 |
+
"Vector function: $\\vec{r}(t) = x(t)\\vec{i} + y(t)\\vec{j} + z(t)\\vec{k}$",
|
| 229 |
+
"Derivative of vector function: $\\vec{r}'(t) = x'(t)\\vec{i} + y'(t)\\vec{j} + z'(t)\\vec{k}$",
|
| 230 |
+
"Arc length: $L = \\int_a^b |\\vec{r}'(t)|\\,dt$",
|
| 231 |
+
"Unit tangent vector: $\\vec{T}(t) = \\frac{\\vec{r}'(t)}{|\\vec{r}'(t)|}$",
|
| 232 |
+
"Curvature: $\\kappa = \\frac{|\\vec{T}'(t)|}{|\\vec{r}'(t)|}$",
|
| 233 |
+
"Acceleration: $\\vec{a}(t) = \\vec{r}''(t)$"
|
| 234 |
+
]
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"chapter": "12. Partial Derivatives",
|
| 238 |
+
"subchapters": [
|
| 239 |
+
"12.1 Functions of Several Variables",
|
| 240 |
+
"12.2 Limits and Continuity",
|
| 241 |
+
"12.3 Partial Derivatives",
|
| 242 |
+
"12.4 Tangent Planes and Linear Approximations",
|
| 243 |
+
"12.5 The Chain Rule",
|
| 244 |
+
"12.6 Directional Derivatives and the Gradient Vector",
|
| 245 |
+
"12.7 Maximum and Minimum Values",
|
| 246 |
+
"12.8 Lagrange Multipliers"
|
| 247 |
+
],
|
| 248 |
+
"key_formulas": [
|
| 249 |
+
"Partial derivative: $\\frac{\\partial f}{\\partial x}(x_0, y_0)$",
|
| 250 |
+
"Gradient: $\\nabla f = \\frac{\\partial f}{\\partial x}\\vec{i} + \\frac{\\partial f}{\\partial y}\\vec{j} + \\frac{\\partial f}{\\partial z}\\vec{k}$",
|
| 251 |
+
"Directional derivative: $D_\\vec{u}f = \\nabla f \\cdot \\vec{u}$",
|
| 252 |
+
"Tangent plane: $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$",
|
| 253 |
+
"Chain Rule: $\\frac{dz}{dt} = \\frac{\\partial z}{\\partial x}\\frac{dx}{dt} + \\frac{\\partial z}{\\partial y}\\frac{dy}{dt}$"
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"chapter": "13. Multiple Integrals",
|
| 258 |
+
"subchapters": [
|
| 259 |
+
"13.1 Double Integrals over Rectangles",
|
| 260 |
+
"13.2 Iterated Integrals",
|
| 261 |
+
"13.3 Double Integrals over General Regions",
|
| 262 |
+
"13.4 Double Integrals in Polar Coordinates",
|
| 263 |
+
"13.5 Applications of Double Integrals",
|
| 264 |
+
"13.6 Triple Integrals",
|
| 265 |
+
"13.7 Triple Integrals in Cylindrical Coordinates",
|
| 266 |
+
"13.8 Triple Integrals in Spherical Coordinates",
|
| 267 |
+
"13.9 Change of Variables in Multiple Integrals"
|
| 268 |
+
],
|
| 269 |
+
"key_formulas": [
|
| 270 |
+
"Double integral: $\\iint_R f(x,y)\\,dA = \\int_a^b \\int_c^d f(x,y)\\,dy\\,dx$",
|
| 271 |
+
"Area in polar coordinates: $\\iint_R f(r,\\theta)\\,dA = \\int_{\\alpha}^{\\beta} \\int_{h_1(\\theta)}^{h_2(\\theta)} f(r,\\theta)\\,r\\,dr\\,d\\theta$",
|
| 272 |
+
"Triple integral: $\\iiint_E f(x,y,z)\\,dV$",
|
| 273 |
+
"Cylindrical coordinates: $\\iiint_E f(x,y,z)\\,dV = \\iiint_E f(r\\cos\\theta, r\\sin\\theta, z)\\,r\\,dr\\,d\\theta\\,dz$",
|
| 274 |
+
"Spherical coordinates: $\\iiint_E f(x,y,z)\\,dV = \\iiint_E f(\\rho\\sin\\phi\\cos\\theta, \\rho\\sin\\phi\\sin\\theta, \\rho\\cos\\phi)\\,\\rho^2\\sin\\phi\\,d\\rho\\,d\\phi\\,d\\theta$"
|
| 275 |
+
]
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"chapter": "14. Vector Calculus",
|
| 279 |
+
"subchapters": [
|
| 280 |
+
"14.1 Vector Fields",
|
| 281 |
+
"14.2 Line Integrals",
|
| 282 |
+
"14.3 The Fundamental Theorem for Line Integrals",
|
| 283 |
+
"14.4 Green's Theorem",
|
| 284 |
+
"14.5 Curl and Divergence",
|
| 285 |
+
"14.6 Surface Integrals",
|
| 286 |
+
"14.7 Stokes' Theorem",
|
| 287 |
+
"14.8 The Divergence Theorem"
|
| 288 |
+
],
|
| 289 |
+
"key_formulas": [
|
| 290 |
+
"Line integral of scalar function: $\\int_C f(x,y,z)\\,ds = \\int_a^b f(\\vec{r}(t))|\\vec{r}'(t)|\\,dt$",
|
| 291 |
+
"Line integral of vector field: $\\int_C \\vec{F} \\cdot d\\vec{r} = \\int_a^b \\vec{F}(\\vec{r}(t)) \\cdot \\vec{r}'(t)\\,dt$",
|
| 292 |
+
"Green's Theorem: $\\oint_C (P\\,dx + Q\\,dy) = \\iint_D (\\frac{\\partial Q}{\\partial x} - \\frac{\\partial P}{\\partial y})\\,dA$",
|
| 293 |
+
"Divergence: $\\text{div}\\,\\vec{F} = \\nabla \\cdot \\vec{F} = \\frac{\\partial P}{\\partial x} + \\frac{\\partial Q}{\\partial y} + \\frac{\\partial R}{\\partial z}$",
|
| 294 |
+
"Curl: $\\text{curl}\\,\\vec{F} = \\nabla \\times \\vec{F}$",
|
| 295 |
+
"Stokes' Theorem: $\\int_S (\\nabla \\times \\vec{F}) \\cdot d\\vec{S} = \\oint_C \\vec{F} \\cdot d\\vec{r}$",
|
| 296 |
+
"Divergence Theorem: $\\iiint_E (\\nabla \\cdot \\vec{F})\\,dV = \\iint_{\\partial E} \\vec{F} \\cdot d\\vec{S}$"
|
| 297 |
+
]
|
| 298 |
+
}
|
| 299 |
+
]
|
| 300 |
+
|
| 301 |
+
def load_models_if_needed():
|
| 302 |
+
"""Ensures models are loaded when needed"""
|
| 303 |
+
global question_generator, question_verifier
|
| 304 |
+
|
| 305 |
+
if question_generator is None:
|
| 306 |
+
try:
|
| 307 |
+
question_generator = pipeline("text-generation", model=MODEL_GENERATION, max_length=1000)
|
| 308 |
+
except Exception as e:
|
| 309 |
+
return f"Error loading question generator: {str(e)}"
|
| 310 |
+
|
| 311 |
+
if question_verifier is None:
|
| 312 |
+
try:
|
| 313 |
+
question_verifier = pipeline("text-generation", model=MODEL_VERIFICATION, max_length=300)
|
| 314 |
+
except Exception as e:
|
| 315 |
+
return f"Error loading question verifier: {str(e)}"
|
| 316 |
+
|
| 317 |
+
return None
|
| 318 |
+
|
| 319 |
+
def get_chapter_summary(chapter_idx, subchapter_idx=None):
|
| 320 |
+
"""Get summary of selected chapter and subchapter"""
|
| 321 |
+
if chapter_idx < 0 or chapter_idx >= len(calculus_curriculum):
|
| 322 |
+
return "Invalid chapter selection."
|
| 323 |
+
|
| 324 |
+
chapter = calculus_curriculum[chapter_idx]
|
| 325 |
+
|
| 326 |
+
if subchapter_idx is None or subchapter_idx < 0 or subchapter_idx >= len(chapter["subchapters"]):
|
| 327 |
+
# Return chapter summary only
|
| 328 |
+
summary = f"# {chapter['chapter']}\n\n"
|
| 329 |
+
summary += "## Key Formulas\n"
|
| 330 |
+
for formula in chapter.get("key_formulas", []):
|
| 331 |
+
summary += f"- {formula}\n"
|
| 332 |
+
return summary
|
| 333 |
+
|
| 334 |
+
# Return specific subchapter
|
| 335 |
+
subchapter = chapter["subchapters"][subchapter_idx]
|
| 336 |
+
summary = f"# {chapter['chapter']}\n## {subchapter}\n\n"
|
| 337 |
+
summary += "### Key Formulas\n"
|
| 338 |
+
for formula in chapter.get("key_formulas", []):
|
| 339 |
+
summary += f"- {formula}\n"
|
| 340 |
+
|
| 341 |
+
return summary
|
| 342 |
+
|
| 343 |
+
def generate_question_prompt(chapter, subchapter, difficulty, num_questions=3):
|
| 344 |
+
"""Generate a prompt for the model to create questions"""
|
| 345 |
+
prompt = f"""Create {num_questions} university-level mathematics questions about {subchapter} from {chapter} at {difficulty} difficulty.
|
| 346 |
+
|
| 347 |
+
For each question:
|
| 348 |
+
1. Write a clear, university-level calculus problem that requires understanding of the concepts and techniques.
|
| 349 |
+
2. Include a step-by-step solution showing all work and mathematical reasoning.
|
| 350 |
+
3. Provide the final answer.
|
| 351 |
+
|
| 352 |
+
Format your response exactly as follows:
|
| 353 |
+
|
| 354 |
+
## Question 1
|
| 355 |
+
[Question text]
|
| 356 |
+
|
| 357 |
+
### Solution
|
| 358 |
+
Step 1: [First step of solution]
|
| 359 |
+
Step 2: [Second step]
|
| 360 |
+
...
|
| 361 |
+
|
| 362 |
+
### Answer
|
| 363 |
+
[Final answer]
|
| 364 |
+
|
| 365 |
+
## Question 2
|
| 366 |
+
...
|
| 367 |
+
|
| 368 |
+
Make sure all mathematics is correct and your solution steps are clear and logical.
|
| 369 |
+
"""
|
| 370 |
+
return prompt
|
| 371 |
+
|
| 372 |
+
def verify_question(question_text, solution_text):
|
| 373 |
+
"""Verify if the question and solution are mathematically sound"""
|
| 374 |
+
error_msg = load_models_if_needed()
|
| 375 |
+
if error_msg:
|
| 376 |
+
return False, error_msg
|
| 377 |
+
|
| 378 |
+
verification_prompt = f"""Verify if this calculus question and solution are mathematically correct:
|
| 379 |
+
|
| 380 |
+
Question: {question_text}
|
| 381 |
+
|
| 382 |
+
Solution: {solution_text}
|
| 383 |
+
|
| 384 |
+
Is the solution mathematically correct? Answer Yes or No and briefly explain why."""
|
| 385 |
+
|
| 386 |
+
try:
|
| 387 |
+
# Get verification response
|
| 388 |
+
verification = question_verifier(verification_prompt, max_length=300)[0]['generated_text']
|
| 389 |
+
|
| 390 |
+
# Check response for indication that the solution is correct
|
| 391 |
+
if "yes" in verification.lower() and "incorrect" not in verification.lower() and "error" not in verification.lower():
|
| 392 |
+
return True, "Verification passed"
|
| 393 |
+
else:
|
| 394 |
+
# Extract the explanation for why it's incorrect
|
| 395 |
+
explanation = verification.split("No")[1] if "No" in verification else "Unable to determine specific issue"
|
| 396 |
+
return False, f"Verification failed: {explanation}"
|
| 397 |
+
except Exception as e:
|
| 398 |
+
return False, f"Error during verification: {str(e)}"
|
| 399 |
+
|
| 400 |
+
def generate_questions(chapter_index, subchapter_index, difficulty, num_questions):
|
| 401 |
+
"""Generate mathematics questions based on chapter/subchapter"""
|
| 402 |
+
error_msg = load_models_if_needed()
|
| 403 |
+
if error_msg:
|
| 404 |
+
return f"## Error Loading Models\n\n{error_msg}\n\nPlease try again later or contact the administrator."
|
| 405 |
+
|
| 406 |
+
# Get chapter and subchapter information
|
| 407 |
+
if chapter_index < 0 or chapter_index >= len(calculus_curriculum):
|
| 408 |
+
return "Please select a valid chapter."
|
| 409 |
+
|
| 410 |
+
chapter = calculus_curriculum[chapter_index]
|
| 411 |
+
|
| 412 |
+
if subchapter_index < 0 or subchapter_index >= len(chapter["subchapters"]):
|
| 413 |
+
return "Please select a valid subchapter."
|
| 414 |
+
|
| 415 |
+
subchapter = chapter["subchapters"][subchapter_index]
|
| 416 |
+
|
| 417 |
+
# Generate prompt for the model
|
| 418 |
+
prompt = generate_question_prompt(chapter["chapter"], subchapter, difficulty, num_questions)
|
| 419 |
+
|
| 420 |
+
try:
|
| 421 |
+
# Generate questions
|
| 422 |
+
result = question_generator(prompt, max_length=1500, do_sample=True,
|
| 423 |
+
temperature=0.7, top_p=0.85, num_return_sequences=1)[0]['generated_text']
|
| 424 |
+
|
| 425 |
+
# Extract generated questions and solutions
|
| 426 |
+
result = result.replace(prompt, "")
|
| 427 |
+
|
| 428 |
+
# Basic formatting fixes
|
| 429 |
+
result = re.sub(r'#+\s*Question', '## Question', result)
|
| 430 |
+
result = re.sub(r'#+\s*Solution', '### Solution', result)
|
| 431 |
+
result = re.sub(r'#+\s*Answer', '### Answer', result)
|
| 432 |
+
|
| 433 |
+
# Check if we got properly formatted output
|
| 434 |
+
if "## Question" not in result:
|
| 435 |
+
# Fallback to template questions for the topic
|
| 436 |
+
result = generate_fallback_questions(chapter["chapter"], subchapter, num_questions)
|
| 437 |
+
|
| 438 |
+
# Add chapter summary at the top
|
| 439 |
+
summary = get_chapter_summary(chapter_index, subchapter_index)
|
| 440 |
+
result = f"{summary}\n\n# Generated Questions\n\n{result}"
|
| 441 |
+
|
| 442 |
+
return result
|
| 443 |
+
|
| 444 |
+
except Exception as e:
|
| 445 |
+
return f"Error generating questions: {str(e)}\n\nPlease try again or select a different topic."
|
| 446 |
+
|
| 447 |
+
def generate_fallback_questions(chapter, subchapter, num_questions):
|
| 448 |
+
"""Generate fallback questions when model generation fails"""
|
| 449 |
+
# Basic templates for different calculus topics
|
| 450 |
+
if "Limits" in chapter or "Limits" in subchapter:
|
| 451 |
+
questions = [
|
| 452 |
+
{
|
| 453 |
+
"question": "Evaluate the limit: $\\lim_{x \\to 2} \\frac{x^3 - 8}{x - 2}$",
|
| 454 |
+
"solution": "Step 1: Note that this is an indeterminate form (0/0) when x = 2.\n" +
|
| 455 |
+
"Step 2: Factor the numerator: $x^3 - 8 = (x - 2)(x^2 + 2x + 4)$\n" +
|
| 456 |
+
"Step 3: Simplify: $\\lim_{x \\to 2} \\frac{(x - 2)(x^2 + 2x + 4)}{x - 2} = \\lim_{x \\to 2} (x^2 + 2x + 4)$\n" +
|
| 457 |
+
"Step 4: Evaluate by direct substitution: $2^2 + 2(2) + 4 = 4 + 4 + 4 = 12$",
|
| 458 |
+
"answer": "12"
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"question": "Find the limit: $\\lim_{x \\to 0} \\frac{\\sin(3x)}{x}$",
|
| 462 |
+
"solution": "Step 1: Rewrite using the limit property $\\lim_{x \\to 0} \\frac{\\sin x}{x} = 1$\n" +
|
| 463 |
+
"Step 2: $\\lim_{x \\to 0} \\frac{\\sin(3x)}{x} = \\lim_{x \\to 0} 3 \\cdot \\frac{\\sin(3x)}{3x}$\n" +
|
| 464 |
+
"Step 3: Apply the limit property: $3 \\cdot \\lim_{x \\to 0} \\frac{\\sin(3x)}{3x} = 3 \\cdot 1 = 3$",
|
| 465 |
+
"answer": "3"
|
| 466 |
+
}
|
| 467 |
+
]
|
| 468 |
+
elif "Derivative" in chapter or "Derivative" in subchapter:
|
| 469 |
+
questions = [
|
| 470 |
+
{
|
| 471 |
+
"question": "Find the derivative of $f(x) = x^3\\ln(x) - \\frac{x^3}{3}$",
|
| 472 |
+
"solution": "Step 1: Use the product rule on $x^3\\ln(x)$\n" +
|
| 473 |
+
"$\\frac{d}{dx}[x^3\\ln(x)] = x^3 \\cdot \\frac{1}{x} + \\ln(x) \\cdot 3x^2$\n" +
|
| 474 |
+
"$= x^2 + 3x^2\\ln(x)$\n" +
|
| 475 |
+
"Step 2: Find the derivative of $\\frac{x^3}{3}$\n" +
|
| 476 |
+
"$\\frac{d}{dx}[\\frac{x^3}{3}] = \\frac{3x^2}{3} = x^2$\n" +
|
| 477 |
+
"Step 3: Combine the results\n" +
|
| 478 |
+
"$f'(x) = x^2 + 3x^2\\ln(x) - x^2 = 3x^2\\ln(x)$",
|
| 479 |
+
"answer": "$f'(x) = 3x^2\\ln(x)$"
|
| 480 |
+
}
|
| 481 |
+
]
|
| 482 |
+
elif "Integration" in chapter or "Integral" in chapter or "Integration" in subchapter or "Integral" in subchapter:
|
| 483 |
+
questions = [
|
| 484 |
+
{
|
| 485 |
+
"question": "Evaluate the integral: $\\int x^2\\ln(x) dx$",
|
| 486 |
+
"solution": "Step 1: Use integration by parts with $u = \\ln(x)$ and $dv = x^2 dx$\n" +
|
| 487 |
+
"Then $du = \\frac{1}{x}dx$ and $v = \\frac{x^3}{3}$\n" +
|
| 488 |
+
"Step 2: Apply the formula $\\int u dv = uv - \\int v du$\n" +
|
| 489 |
+
"$\\int x^2\\ln(x) dx = \\ln(x) \\cdot \\frac{x^3}{3} - \\int \\frac{x^3}{3} \\cdot \\frac{1}{x} dx$\n" +
|
| 490 |
+
"$= \\frac{x^3\\ln(x)}{3} - \\frac{1}{3}\\int x^2 dx$\n" +
|
| 491 |
+
"$= \\frac{x^3\\ln(x)}{3} - \\frac{1}{3} \\cdot \\frac{x^3}{3} + C$\n" +
|
| 492 |
+
"$= \\frac{x^3\\ln(x)}{3} - \\frac{x^3}{9} + C$",
|
| 493 |
+
"answer": "$\\frac{x^3\\ln(x)}{3} - \\frac{x^3}{9} + C$"
|
| 494 |
+
}
|
| 495 |
+
]
|
| 496 |
+
else:
|
| 497 |
+
# Generic calculus questions
|
| 498 |
+
questions = [
|
| 499 |
+
{
|
| 500 |
+
"question": "Find the critical points of $f(x) = x^3 - 6x^2 + 12x + 5$ and determine their nature.",
|
| 501 |
+
"solution": "Step 1: Find the derivative: $f'(x) = 3x^2 - 12x + 12$\n" +
|
| 502 |
+
"Step 2: Set $f'(x) = 0$ and solve: $3x^2 - 12x + 12 = 0$\n" +
|
| 503 |
+
"Step 3: Simplify: $x^2 - 4x + 4 = 0$\n" +
|
| 504 |
+
"Step 4: Factor: $(x - 2)^2 = 0$\n" +
|
| 505 |
+
"Step 5: Therefore $x = 2$ is a critical point (with multiplicity 2)\n" +
|
| 506 |
+
"Step 6: Find the second derivative: $f''(x) = 6x - 12$\n" +
|
| 507 |
+
"Step 7: Evaluate at $x = 2$: $f''(2) = 6(2) - 12 = 0$\n" +
|
| 508 |
+
"Step 8: Since $f''(2) = 0$, the second derivative test is inconclusive\n" +
|
| 509 |
+
"Step 9: Checking $f'(x)$ around $x = 2$:\n" +
|
| 510 |
+
"For $x < 2$, $f'(x) < 0$ and for $x > 2$, $f'(x) > 0$\n" +
|
| 511 |
+
"Step 10: Therefore, $x = 2$ is a point of inflection",
|
| 512 |
+
"answer": "$x = 2$ is a critical point and an inflection point"
|
| 513 |
+
}
|
| 514 |
+
]
|
| 515 |
+
|
| 516 |
+
# Get a random subset of questions or duplicate if we need more
|
| 517 |
+
result_questions = []
|
| 518 |
+
for i in range(num_questions):
|
| 519 |
+
idx = i % len(questions)
|
| 520 |
+
q = questions[idx]
|
| 521 |
+
result_questions.append({
|
| 522 |
+
"id": i+1,
|
| 523 |
+
"question": q["question"],
|
| 524 |
+
"solution": q["solution"],
|
| 525 |
+
"answer": q["answer"]
|
| 526 |
+
})
|
| 527 |
+
|
| 528 |
+
# Format the output
|
| 529 |
+
result = ""
|
| 530 |
+
for q in result_questions:
|
| 531 |
+
result += f"## Question {q['id']}\n{q['question']}\n\n"
|
| 532 |
+
result += f"### Solution\n{q['solution']}\n\n"
|
| 533 |
+
result += f"### Answer\n{q['answer']}\n\n"
|
| 534 |
+
|
| 535 |
+
return result
|
| 536 |
+
|
| 537 |
+
def on_chapter_change(chapter_index):
|
| 538 |
+
"""Update subchapter dropdown based on selected chapter"""
|
| 539 |
+
if chapter_index < 0 or chapter_index >= len(calculus_curriculum):
|
| 540 |
+
return gr.Dropdown(choices=[], value=None)
|
| 541 |
+
|
| 542 |
+
subchapters = calculus_curriculum[chapter_index]["subchapters"]
|
| 543 |
+
return gr.Dropdown(choices=subchapters, value=subchapters[0] if subchapters else None)
|
| 544 |
+
|
| 545 |
+
def create_interface():
|
| 546 |
+
"""Create the Gradio interface"""
|
| 547 |
+
# Extract chapter titles for dropdown
|
| 548 |
+
chapters = [chapter["chapter"] for chapter in calculus_curriculum]
|
| 549 |
+
|
| 550 |
+
with gr.Blocks(title="Calculus Question Generator", theme=gr.themes.Soft()) as demo:
|
| 551 |
+
gr.Markdown("# 🧮 Calculus Question Generator")
|
| 552 |
+
gr.Markdown("Generate university-level calculus questions with step-by-step solutions.")
|
| 553 |
+
|
| 554 |
+
with gr.Row():
|
| 555 |
+
with gr.Column(scale=2):
|
| 556 |
+
chapter_dropdown = gr.Dropdown(
|
| 557 |
+
choices=chapters,
|
| 558 |
+
value=chapters[0] if chapters else None,
|
| 559 |
+
label="Chapter",
|
| 560 |
+
info="Select a chapter from Stewart's Calculus"
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
subchapter_dropdown = gr.Dropdown(
|
| 564 |
+
choices=calculus_curriculum[0]["subchapters"] if calculus_curriculum else [],
|
| 565 |
+
value=calculus_curriculum[0]["subchapters"][0] if calculus_curriculum and calculus_curriculum[0]["subchapters"] else None,
|
| 566 |
+
label="Subchapter",
|
| 567 |
+
info="Select a specific subchapter"
|
| 568 |
+
)
|
| 569 |
+
|
| 570 |
+
with gr.Row():
|
| 571 |
+
num_questions = gr.Slider(
|
| 572 |
+
minimum=1,
|
| 573 |
+
maximum=5,
|
| 574 |
+
value=DEFAULT_NUM_QUESTIONS,
|
| 575 |
+
step=1,
|
| 576 |
+
label="Number of Questions"
|
| 577 |
+
)
|
| 578 |
+
|
| 579 |
+
difficulty = gr.Dropdown(
|
| 580 |
+
choices=["Easy", "Medium", "Hard", "Advanced"],
|
| 581 |
+
value=DEFAULT_DIFFICULTY,
|
| 582 |
+
label="Difficulty Level"
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
generate_button = gr.Button("Generate Questions", variant="primary")
|
| 586 |
+
|
| 587 |
+
output = gr.Markdown(label="Generated Questions & Solutions")
|
| 588 |
+
|
| 589 |
+
# Handle chapter selection change
|
| 590 |
+
chapter_dropdown.change(
|
| 591 |
+
fn=on_chapter_change,
|
| 592 |
+
inputs=[chapter_dropdown],
|
| 593 |
+
outputs=[subchapter_dropdown]
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
# Handle generate button click
|
| 597 |
+
generate_button.click(
|
| 598 |
+
fn=generate_questions,
|
| 599 |
+
inputs=[
|
| 600 |
+
gr.State(lambda: chapters.index(chapter_dropdown.value) if chapter_dropdown.value in chapters else 0),
|
| 601 |
+
gr.State(lambda: calculus_curriculum[chapters.index(chapter_dropdown.value) if chapter_dropdown.value in chapters else 0]["subchapters"].index(subchapter_dropdown.value) if subchapter_dropdown.value in calculus_curriculum[chapters.index(chapter_dropdown.value) if chapter_dropdown.value in chapters else 0]["subchapters"] else 0),
|
| 602 |
+
difficulty,
|
| 603 |
+
num_questions
|
| 604 |
+
],
|
| 605 |
+
outputs=[output]
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
gr.Markdown("---")
|
| 609 |
+
gr.Markdown("Created by Kamagelo Mosia | Based on James Stewart's Calculus curriculum")
|
| 610 |
+
|
| 611 |
+
return demo
|
| 612 |
+
|
| 613 |
+
# Create and launch the interface
|
| 614 |
+
demo = create_interface()
|
| 615 |
demo.launch()
|